Pascal Langer 4a626eaf14 Change XN297 emulation layer
Loads of protocols have been touched by this change. Some testing has been done but please test on all your models.
The XN297 emulation selects in this order:
 - the CC2500 if it is available and bitrate=250K. Configure the option field automatically for RF tune.
 - the NRF for all bitrates if it is available
 - if NRF is not available and bitrate=1M then an invalid protocol is sent automatically to the radio.
CC2500 @250K can now receive normal and enhanced payloads.
OMP protocol supports telemetry on CC2500 and is also for NRF only modules including telemetry.
Separation of E016H (new protocol) from E01X due to different structure.
MJXQ, MT99XX, Q303 and XK: some sub protocols available on CC2500 only.
2021-03-17 17:05:42 +01:00

155 lines
3.9 KiB
C++

/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// compatible with E016H
#if defined(E016H_NRF24L01_INO)
#include "iface_xn297.h"
//Protocols constants
#define E016H_BIND_COUNT 500
#define E016H_ADDRESS_LENGTH 5
#define E016H_PACKET_PERIOD 4080
#define E016H_PACKET_SIZE 10
#define E016H_BIND_CHANNEL 80
#define E016H_NUM_CHANNELS 4
//Channels
#define E016H_STOP_SW CH5_SW
#define E016H_FLIP_SW CH6_SW
#define E016H_HEADLESS_SW CH8_SW
#define E016H_RTH_SW CH9_SW
// E016H flags packet[1]
#define E016H_FLAG_CALIBRATE 0x80
#define E016H_FLAG_STOP 0x20
#define E016H_FLAG_FLIP 0x04
// E016H flags packet[3]
#define E016H_FLAG_HEADLESS 0x10
#define E016H_FLAG_RTH 0x04
// E016H flags packet[7]
#define E016H_FLAG_TAKEOFF 0x80
#define E016H_FLAG_HIGHRATE 0x08
static void __attribute__((unused)) E016H_send_packet()
{
uint8_t can_flip = 0, calibrate = 1;
if(IS_BIND_IN_PROGRESS)
{
memcpy(packet, &rx_tx_addr[1], 4);
memcpy(&packet[4], hopping_frequency, 4);
packet[8] = 0x23;
}
else
{
// trim commands
packet[0] = 0;
// aileron
uint16_t val = convert_channel_16b_limit(AILERON, 0, 0x3ff);
can_flip |= (val < 0x100) || (val > 0x300);
packet[1] = val >> 8;
packet[2] = val & 0xff;
if(val < 0x300) calibrate = 0;
// elevator
val = convert_channel_16b_limit(ELEVATOR, 0x3ff, 0);
can_flip |= (val < 0x100) || (val > 0x300);
packet[3] = val >> 8;
packet[4] = val & 0xff;
if(val < 0x300) calibrate = 0;
// throttle
val = convert_channel_16b_limit(THROTTLE, 0, 0x3ff);
packet[5] = val >> 8;
packet[6] = val & 0xff;
if(val > 0x100) calibrate = 0;
// rudder
val = convert_channel_16b_limit(RUDDER, 0, 0x3ff);
packet[7] = val >> 8;
packet[8] = val & 0xff;
if(val > 0x100) calibrate = 0;
// flags
packet[1] |= GET_FLAG(E016H_STOP_SW, E016H_FLAG_STOP)
| (can_flip ? GET_FLAG(E016H_FLIP_SW, E016H_FLAG_FLIP) : 0)
| (calibrate ? E016H_FLAG_CALIBRATE : 0);
packet[3] |= GET_FLAG(E016H_HEADLESS_SW, E016H_FLAG_HEADLESS)
| GET_FLAG(E016H_RTH_SW, E016H_FLAG_RTH);
packet[7] |= E016H_FLAG_HIGHRATE;
// frequency hopping
XN297_Hopping(hopping_frequency_no++ & 0x03);
}
// checksum
packet[9] = packet[0];
for (uint8_t i=1; i < E016H_PACKET_SIZE-1; i++)
packet[9] += packet[i];
// Send
XN297_SetPower();
XN297_SetTxRxMode(TX_EN);
XN297_WritePayload(packet, E016H_PACKET_SIZE);
}
static void __attribute__((unused)) E016H_RF_init()
{
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_1M);
XN297_SetTXAddr((uint8_t *)"\x5a\x53\x46\x30\x31", 5); // bind address
//XN297_HoppingCalib(E016H_NUM_CHANNELS);
XN297_RFChannel(E016H_BIND_CHANNEL);
}
uint16_t E016H_callback()
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
if(bind_counter)
{
bind_counter--;
if (bind_counter == 0)
{
XN297_SetTXAddr(rx_tx_addr, E016H_ADDRESS_LENGTH);
BIND_DONE;
}
}
E016H_send_packet();
return E016H_PACKET_PERIOD;
}
static void __attribute__((unused)) E016H_initialize_txid()
{
// tx id
rx_tx_addr[0] = 0xa5;
rx_tx_addr[1] = 0x00;
// rf channels
uint32_t lfsr=random(0xfefefefe);
for(uint8_t i=0; i<E016H_NUM_CHANNELS; i++)
{
hopping_frequency[i] = (lfsr & 0xFF) % 80;
lfsr>>=8;
}
}
void E016H_init()
{
BIND_IN_PROGRESS;
E016H_initialize_txid();
E016H_RF_init();
bind_counter = E016H_BIND_COUNT;
hopping_frequency_no = 0;
}
#endif