2016-02-04 13:35:16 +01:00

738 lines
19 KiB
C++

/*********************************************************
Multiprotocol Tx code
by Midelic and Pascal Langer(hpnuts)
http://www.rcgroups.com/forums/showthread.php?t=2165676
https://github.com/pascallanger/DIY-Multiprotocol-TX-Module/edit/master/README.md
Thanks to PhracturedBlue, Hexfet, Goebish and all protocol developers
Ported from deviation firmware
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#include <avr/eeprom.h>
#include <avr/pgmspace.h>
#include <util/delay.h>
#include "Multiprotocol.h"
//Multiprotocol module configuration file
#include "_Config.h"
//Global constants/variables
uint32_t MProtocol_id;//tx id,
uint32_t MProtocol_id_master;
uint32_t Model_fixed_id=0;
uint32_t fixed_id;
uint8_t cyrfmfg_id[6];//for dsm2 and devo
uint32_t blink=0;
//
uint16_t counter;
uint8_t channel;
uint8_t packet[40];
#define NUM_CHN 16
// Servo data
uint16_t Servo_data[NUM_CHN];
uint8_t Servo_AUX;
// PPM variable
volatile uint16_t PPM_data[NUM_CHN];
// NRF variables
uint8_t rx_tx_addr[5];
uint8_t phase;
uint16_t bind_counter;
uint8_t bind_phase;
uint8_t binding_idx;
uint32_t packet_counter;
uint16_t packet_period;
uint8_t packet_count;
uint8_t packet_sent;
uint8_t packet_length;
uint8_t hopping_frequency[23];
uint8_t *hopping_frequency_ptr;
uint8_t hopping_frequency_no=0;
uint8_t rf_ch_num;
uint8_t throttle, rudder, elevator, aileron;
uint8_t flags;
//
uint32_t state;
uint8_t len;
uint8_t RX_num;
// Mode_select variables
uint8_t mode_select;
uint8_t protocol_flags=0,protocol_flags2=0;
// Serial variables
#define RXBUFFER_SIZE 25
#define TXBUFFER_SIZE 12
volatile uint8_t rx_buff[RXBUFFER_SIZE];
volatile uint8_t rx_ok_buff[RXBUFFER_SIZE];
volatile uint8_t tx_buff[TXBUFFER_SIZE];
volatile uint8_t idx = 0;
//Serial protocol
uint8_t sub_protocol;
uint8_t option;
uint8_t cur_protocol[2];
uint8_t prev_protocol=0;
// Telemetry
#define MAX_PKT 27
uint8_t pkt[MAX_PKT];//telemetry receiving packets
#if defined(TELEMETRY)
uint8_t pktt[MAX_PKT];//telemetry receiving packets
volatile uint8_t tx_head;
volatile uint8_t tx_tail;
uint8_t v_lipo;
int16_t RSSI_dBm;
//const uint8_t RSSI_offset=72;//69 71.72 values db
uint8_t telemetry_link=0;
#endif
// Callback
typedef uint16_t (*void_function_t) (void);//pointer to a function with no parameters which return an uint16_t integer
void_function_t remote_callback = 0;
static void CheckTimer(uint16_t (*cb)(void));
// Init
void setup()
{
// General pinout
DDRD = (1<<CS_pin)|(1<<SDI_pin)|(1<<SCLK_pin)|(1<<CS_pin)|(1<< CC25_CSN_pin);
DDRC = (1<<CTRL1)|(1<<CTRL2); //output
//DDRC |= (1<<5);//RST pin A5(C5) CYRF output
DDRB = _BV(0)|_BV(1);
PORTB = _BV(2)|_BV(3)|_BV(4)|_BV(5);//pullup 10,11,12 and bind button
PORTC = _BV(0);//A0 high pullup
// Set Chip selects
CS_on;
CC25_CSN_on;
NRF_CSN_on;
CYRF_CSN_on;
// Set SPI lines
SDI_on;
SCK_off;
// Timer1 config
TCCR1A = 0;
TCCR1B = (1 << CS11); //prescaler8, set timer1 to increment every 0.5us(16Mhz) and start timer
// Set servos positions
for(uint8_t i=0;i<NUM_CHN;i++)
Servo_data[i]=1500;
Servo_data[THROTTLE]=PPM_MIN_100;
memcpy((void *)PPM_data,Servo_data, sizeof(Servo_data));
// Read status of bind button
if( (PINB & _BV(5)) == 0x00 )
BIND_BUTTON_FLAG_on; // If bind button pressed save the status for protocol id reset under hubsan
// Read status of mode select binary switch
// after this mode_select will be one of {0000, 0001, ..., 1111}
mode_select=0x0F - ( ( (PINB>>2)&0x07 ) | ( (PINC<<3)&0x08) );//encoder dip switches 1,2,4,8=>B2,B3,B4,C0
//**********************************
//mode_select=14; // here to test PPM
//**********************************
// Update LED
LED_OFF;
LED_SET_OUTPUT;
// Read or create protocol id
MProtocol_id_master=random_id(10,false);
//Init RF modules
CC2500_Reset();
//Protocol and interrupts initialization
if(mode_select != MODE_SERIAL)
{ // PPM
mode_select--;
cur_protocol[0] = PPM_prot[mode_select].protocol;
sub_protocol = PPM_prot[mode_select].sub_proto;
RX_num = PPM_prot[mode_select].rx_num;
MProtocol_id = RX_num + MProtocol_id_master;
option = PPM_prot[mode_select].option;
if(PPM_prot[mode_select].power) POWER_FLAG_on;
if(PPM_prot[mode_select].autobind) AUTOBIND_FLAG_on;
mode_select++;
protocol_init();
//Configure PPM interrupt
EICRA |=(1<<ISC11); // The rising edge of INT1 pin D3 generates an interrupt request
EIMSK |= (1<<INT1); // INT1 interrupt enable
#if defined(TELEMETRY)
PPM_Telemetry_serial_init(); // Configure serial for telemetry
#endif
}
else
{ // Serial
cur_protocol[0]=0;
cur_protocol[1]=0;
prev_protocol=0;
Mprotocol_serial_init(); // Configure serial and enable RX interrupt
}
}
// Main
void loop()
{
if(mode_select==MODE_SERIAL && IS_RX_FLAG_on) // Serial mode and something has been received
{
update_serial_data(); // Update protocol and data
update_aux_flags();
if(IS_CHANGE_PROTOCOL_FLAG_on)
{ // Protocol needs to be changed
LED_OFF; //led off during protocol init
module_reset(); //reset previous module
protocol_init(); //init new protocol
CHANGE_PROTOCOL_FLAG_off; //done
}
}
if(mode_select!=MODE_SERIAL && IS_PPM_FLAG_on) // PPM mode and a full frame has been received
{
for(uint8_t i=0;i<NUM_CHN;i++)
{ // update servo data without interrupts to prevent bad read in protocols
cli(); // disable global int
Servo_data[i]=PPM_data[i];
sei(); // enable global int
}
update_aux_flags();
PPM_FLAG_off; // wait for next frame before update
}
update_led_status();
#if defined(TELEMETRY)
if( ((cur_protocol[0]&0x1F)==MODE_FRSKY) || ((cur_protocol[0]&0x1F)==MODE_HUBSAN) || ((cur_protocol[0]&0x1F)==MODE_FRSKYX) )
frskyUpdate();
#endif
if (remote_callback != 0)
CheckTimer(remote_callback);
}
// Update Servo_AUX flags based on servo AUX positions
static void update_aux_flags(void)
{
Servo_AUX=0;
for(uint8_t i=0;i<8;i++)
if(Servo_data[AUX1+i]>PPM_SWITCH)
Servo_AUX|=1<<i;
}
// Update led status based on binding and serial
static void update_led_status(void)
{
if(blink<millis())
{
if(cur_protocol[0]==0) // No valid serial received at least once
blink+=BLINK_SERIAL_TIME; //blink slowly while waiting a valid serial input
else
if(remote_callback == 0)
{ // Invalid protocol
if(IS_LED_on) //flash to indicate invalid protocol
blink+=BLINK_BAD_PROTO_TIME_LOW;
else
blink+=BLINK_BAD_PROTO_TIME_HIGH;
}
else
if(IS_BIND_DONE_on)
LED_OFF; //bind completed -> led on
else
blink+=BLINK_BIND_TIME; //blink fastly during binding
LED_TOGGLE;
}
}
// Protocol scheduler
static void CheckTimer(uint16_t (*cb)(void))
{
uint16_t next_callback;
uint32_t prev;
if( (TIFR1 & (1<<OCF1A)) != 0)
{
cli(); // disable global int
OCR1A=TCNT1; // Callback should already have been called... Use "now" as new sync point.
sei(); // enable global int
}
else
while((TIFR1 & (1<<OCF1A)) == 0); // wait before callback
prev=micros();
next_callback=cb();
if(prev+next_callback+50 > micros())
{ // Callback did not took more than requested time for next callback
if(next_callback>32000)
{ // next_callback should not be more than 32767 so we will wait here...
delayMicroseconds(next_callback-2000);
cli(); // disable global int
OCR1A=TCNT1+4000;
sei(); // enable global int
}
else
{
cli(); // disable global int
OCR1A+=next_callback*2; // set compare A for callback
sei(); // enable global int
}
TIFR1=(1<<OCF1A); // clear compare A=callback flag
}
}
// Protocol start
static void protocol_init()
{
uint16_t next_callback=0; // Default is immediate call back
remote_callback = 0;
set_rx_tx_addr(MProtocol_id);
blink=millis();
if(IS_BIND_BUTTON_FLAG_on)
AUTOBIND_FLAG_on;
if(IS_AUTOBIND_FLAG_on)
BIND_IN_PROGRESS; // Indicates bind in progress for blinking bind led
else
BIND_DONE;
CTRL1_on; //NRF24L01 antenna RF3 by default
CTRL2_off; //NRF24L01 antenna RF3 by default
switch(cur_protocol[0]&0x1F) // Init the requested protocol
{
#if defined(FLYSKY_A7105_INO)
case MODE_FLYSKY:
CTRL1_off; //antenna RF1
next_callback = initFlySky();
remote_callback = ReadFlySky;
break;
#endif
#if defined(HUBSAN_A7105_INO)
case MODE_HUBSAN:
CTRL1_off; //antenna RF1
if(IS_BIND_BUTTON_FLAG_on) random_id(10,true); // Generate new ID if bind button is pressed.
next_callback = initHubsan();
remote_callback = ReadHubsan;
break;
#endif
#if defined(FRSKY_CC2500_INO)
case MODE_FRSKY:
CTRL1_off; //antenna RF2
CTRL2_on;
next_callback = initFrSky_2way();
remote_callback = ReadFrSky_2way;
break;
#endif
#if defined(FRSKYX_CC2500_INO)
case MODE_FRSKYX:
CTRL1_off; //antenna RF2
CTRL2_on;
next_callback = initFrSkyX();
remote_callback = ReadFrSkyX;
break;
#endif
#if defined(DSM2_CYRF6936_INO)
case MODE_DSM2:
CTRL2_on; //antenna RF4
next_callback = initDsm2();
//Servo_data[2]=1500;//before binding
remote_callback = ReadDsm2;
break;
#endif
#if defined(DEVO_CYRF6936_INO)
case MODE_DEVO:
CTRL2_on; //antenna RF4
next_callback = DevoInit();
remote_callback = devo_callback;
break;
#endif
#if defined(HISKY_NRF24L01_INO)
case MODE_HISKY:
next_callback=initHiSky();
remote_callback = hisky_cb;
break;
#endif
#if defined(V2X2_NRF24L01_INO)
case MODE_V2X2:
next_callback = initV2x2();
remote_callback = ReadV2x2;
break;
#endif
#if defined(YD717_NRF24L01_INO)
case MODE_YD717:
next_callback=initYD717();
remote_callback = yd717_callback;
break;
#endif
#if defined(KN_NRF24L01_INO)
case MODE_KN:
next_callback = initKN();
remote_callback = kn_callback;
break;
#endif
#if defined(SYMAX_NRF24L01_INO)
case MODE_SYMAX:
next_callback = initSymax();
remote_callback = symax_callback;
break;
#endif
#if defined(SLT_NRF24L01_INO)
case MODE_SLT:
next_callback=initSLT();
remote_callback = SLT_callback;
break;
#endif
#if defined(CX10_NRF24L01_INO)
case MODE_CX10:
next_callback=initCX10();
remote_callback = CX10_callback;
break;
#endif
#if defined(CG023_NRF24L01_INO)
case MODE_CG023:
next_callback=initCG023();
remote_callback = CG023_callback;
break;
#endif
#if defined(BAYANG_NRF24L01_INO)
case MODE_BAYANG:
next_callback=initBAYANG();
remote_callback = BAYANG_callback;
break;
#endif
#if defined(ESKY_NRF24L01_INO)
case MODE_ESKY:
next_callback=initESKY();
remote_callback = ESKY_callback;
break;
#endif
#if defined(MT99XX_NRF24L01_INO)
case MODE_MT99XX:
next_callback=initMT99XX();
remote_callback = MT99XX_callback;
break;
#endif
#if defined(MJXQ_NRF24L01_INO)
case MODE_MJXQ:
next_callback=initMJXQ();
remote_callback = MJXQ_callback;
break;
#endif
}
if(next_callback>32000)
{ // next_callback should not be more than 32767 so we will wait here...
delayMicroseconds(next_callback-2000);
next_callback=2000;
}
cli(); // disable global int
OCR1A=TCNT1+next_callback*2; // set compare A for callback
sei(); // enable global int
TIFR1=(1<<OCF1A); // clear compare A flag
BIND_BUTTON_FLAG_off; // do not bind/reset id anymore even if protocol change
}
static void update_serial_data()
{
if(rx_ok_buff[0]&0x20) //check range
RANGE_FLAG_on;
else
RANGE_FLAG_off;
if(rx_ok_buff[0]&0xC0) //check autobind(0x40) & bind(0x80) together
AUTOBIND_FLAG_on;
else
AUTOBIND_FLAG_off;
if(rx_ok_buff[1]&0x80) //if rx_ok_buff[1] ==1,power is low ,0-power high
POWER_FLAG_off; //power low
else
POWER_FLAG_on; //power high
option=rx_ok_buff[2];
if( ((rx_ok_buff[0]&0x5F) != (cur_protocol[0]&0x5F)) || ( (rx_ok_buff[1]&0x7F) != cur_protocol[1] ) )
{ // New model has been selected
prev_protocol=cur_protocol[0]&0x1F; //store previous protocol so we can reset the module
cur_protocol[1] = rx_ok_buff[1]&0x7F; //store current protocol
CHANGE_PROTOCOL_FLAG_on; //change protocol
sub_protocol=(rx_ok_buff[1]>>4)& 0x07; //subprotocol no (0-7) bits 4-6
RX_num=rx_ok_buff[1]& 0x0F;
MProtocol_id=MProtocol_id_master+RX_num; //personalized RX bind + rx num // rx_num bits 0---3
}
else
if( ((rx_ok_buff[0]&0x80)!=0) && ((cur_protocol[0]&0x80)==0) ) // Bind flag has been set
CHANGE_PROTOCOL_FLAG_on; //restart protocol with bind
cur_protocol[0] = rx_ok_buff[0]; //store current protocol
// decode channel values
volatile uint8_t *p=rx_ok_buff+2;
uint8_t dec=-3;
for(uint8_t i=0;i<NUM_CHN;i++)
{
dec+=3;
if(dec>=8)
{
dec-=8;
p++;
}
p++;
Servo_data[i]=((((*((uint32_t *)p))>>dec)&0x7FF)*5)/8+860; //value range 860<->2140 -125%<->+125%
}
RX_FLAG_off; //data has been processed
}
static void module_reset()
{
if(remote_callback)
{ // previous protocol loaded
remote_callback = 0;
switch(prev_protocol)
{
case MODE_FLYSKY:
case MODE_HUBSAN:
A7105_Reset();
break;
case MODE_FRSKY:
case MODE_FRSKYX:
CC2500_Reset();
break;
case MODE_DSM2:
case MODE_DEVO:
CYRF_Reset();
break;
default: // MODE_HISKY, MODE_V2X2, MODE_YD717, MODE_KN, MODE_SYMAX, MODE_SLT, MODE_CX10, MODE_CG023, MODE_BAYANG, MODE_ESKY, MODE_MT99XX, MODE_MJXQ
NRF24L01_Reset();
break;
}
}
}
// Channel value is converted to 8bit values full scale
uint8_t convert_channel_8b(uint8_t num)
{
return (uint8_t) (map(limit_channel_100(num),PPM_MIN_100,PPM_MAX_100,0,255));
}
// Channel value is converted to 8bit values to provided values scale
uint8_t convert_channel_8b_scale(uint8_t num,uint8_t min,uint8_t max)
{
return (uint8_t) (map(limit_channel_100(num),PPM_MIN_100,PPM_MAX_100,min,max));
}
// Channel value is converted sign + magnitude 8bit values
uint8_t convert_channel_s8b(uint8_t num)
{
uint8_t ch;
ch = convert_channel_8b(num);
return (ch < 128 ? 127-ch : ch);
}
// Channel value is converted to 10bit values
uint16_t convert_channel_10b(uint8_t num)
{
return (uint16_t) (map(limit_channel_100(num),PPM_MIN_100,PPM_MAX_100,1,1023));
}
// Channel value is multiplied by 1.5
uint16_t convert_channel_frsky(uint8_t num)
{
return Servo_data[num] + Servo_data[num]/2;
}
// Channel value is converted for HK310
void convert_channel_HK310(uint8_t num, uint8_t *low, uint8_t *high)
{
uint16_t temp=0xFFFF-(4*Servo_data[num])/3;
*low=(uint8_t)(temp&0xFF);
*high=(uint8_t)(temp>>8);
}
// Channel value is limited to PPM_100
uint16_t limit_channel_100(uint8_t ch)
{
if(Servo_data[ch]>PPM_MAX_100)
return PPM_MAX_100;
else
if (Servo_data[ch]<PPM_MIN_100)
return PPM_MIN_100;
return Servo_data[ch];
}
#if defined(TELEMETRY)
void Serial_write(uint8_t data)
{
cli(); // disable global int
if(++tx_head>=TXBUFFER_SIZE)
tx_head=0;
tx_buff[tx_head]=data;
sei(); // enable global int
UCSR0B |= (1<<UDRIE0);//enable UDRE interrupt
}
#endif
static void Mprotocol_serial_init()
{
#define BAUD 100000
#include <util/setbaud.h>
UBRR0H = UBRRH_VALUE;
UBRR0L = UBRRL_VALUE;
//Set frame format to 8 data bits, even parity, 2 stop bits
UCSR0C |= (1<<UPM01)|(1<<USBS0)|(1<<UCSZ01)|(1<<UCSZ00);
while ( UCSR0A & (1 << RXC0) )//flush receive buffer
UDR0;
//enable reception and RC complete interrupt
UCSR0B |= (1<<RXEN0)|(1<<RXCIE0);//rx enable and interrupt
UCSR0B |= (1<<TXEN0);//tx enable
}
#if defined(TELEMETRY)
static void PPM_Telemetry_serial_init()
{
//9600 bauds
UBRR0H = 0x00;
UBRR0L = 0x67;
//Set frame format to 8 data bits, none, 1 stop bit
UCSR0C |= (1<<UCSZ01)|(1<<UCSZ00);
UCSR0B |= (1<<TXEN0);//tx enable
}
#endif
// Convert 32b id to rx_tx_addr
static void set_rx_tx_addr(uint32_t id)
{ // Used by almost all protocols
rx_tx_addr[0] = (id >> 24) & 0xFF;
rx_tx_addr[1] = (id >> 16) & 0xFF;
rx_tx_addr[2] = (id >> 8) & 0xFF;
rx_tx_addr[3] = (id >> 0) & 0xFF;
rx_tx_addr[4] = 0xC1; // for YD717: always uses first data port
}
static uint32_t random_id(uint16_t adress, uint8_t create_new)
{
uint32_t id;
uint8_t txid[4];
if (eeprom_read_byte((uint8_t*)(adress+10))==0xf0 && !create_new)
{ // TXID exists in EEPROM
eeprom_read_block((void*)txid,(const void*)adress,4);
id=(txid[0] | ((uint32_t)txid[1]<<8) | ((uint32_t)txid[2]<<16) | ((uint32_t)txid[3]<<24));
}
else
{ // if not generate a random ID
randomSeed((uint32_t)analogRead(A6)<<10|analogRead(A7));//seed
//
id = random(0xfefefefe) + ((uint32_t)random(0xfefefefe) << 16);
txid[0]= (id &0xFF);
txid[1] = ((id >> 8) & 0xFF);
txid[2] = ((id >> 16) & 0xFF);
txid[3] = ((id >> 24) & 0xFF);
eeprom_write_block((const void*)txid,(void*)adress,4);
eeprom_write_byte((uint8_t*)(adress+10),0xf0);//write bind flag in eeprom.
}
return id;
}
/**************************/
/**************************/
/** Interrupt routines **/
/**************************/
/**************************/
//PPM
ISR(INT1_vect)
{ // Interrupt on PPM pin
static int8_t chan=-1;
static uint16_t Prev_TCNT1=0;
uint16_t Cur_TCNT1;
Cur_TCNT1=TCNT1-Prev_TCNT1; // Capture current Timer1 value
if(Cur_TCNT1<1000)
chan=-1; // bad frame
else
if(Cur_TCNT1>4840)
{
chan=0; // start of frame
PPM_FLAG_on; // full frame present (even at startup since PPM_data has been initialized)
}
else
if(chan!=-1) // need to wait for start of frame
{ //servo values between 500us and 2420us will end up here
uint16_t a = Cur_TCNT1>>1;
if(a<PPM_MIN) a=PPM_MIN;
else if(a>PPM_MAX) a=PPM_MAX;
PPM_data[chan]=a;
if(chan++>=NUM_CHN)
chan=-1; // don't accept any new channels
}
Prev_TCNT1+=Cur_TCNT1;
}
//Serial RX
ISR(USART_RX_vect)
{ // RX interrupt
if((UCSR0A&0x1C)==0) // Check frame error, data overrun and parity error
{ // received byte is ok to process
if(idx==0)
{ // Let's try to sync at this point
if(UDR0==0x55) // If 1st byte is 0x55 it looks ok
{
idx++;
OCR1B=TCNT1+6500L; // Full message should be received within timer of 3250us
TIFR1=(1<<OCF1B); // clear OCR1B match flag
TIMSK1 |=(1<<OCIE1B); // enable interrupt on compare B match
}
}
else
{
rx_buff[(idx++)-1]=UDR0; // Store received byte
if(idx>RXBUFFER_SIZE)
{ // A full frame has been received
TIMSK1 &=~(1<<OCIE1B); // disable interrupt on compare B match
if(!IS_RX_FLAG_on)
{ //Good frame received and main has finished with previous buffer
for(idx=0;idx<RXBUFFER_SIZE;idx++)
rx_ok_buff[idx]=rx_buff[idx]; // Duplicate the buffer
RX_FLAG_on; //flag for main to process servo data
}
idx=0; // start again
}
}
}
else
{
idx=UDR0; // Dummy read
idx=0; // Error encountered discard full frame...
}
}
//Serial timer
ISR(TIMER1_COMPB_vect)
{ // Timer1 compare B interrupt
idx=0;
}
#if defined(TELEMETRY)
//Serial TX
ISR(USART_UDRE_vect)
{ // Transmit interrupt
uint8_t t = tx_tail;
if(tx_head!=t)
{
if(++t>=TXBUFFER_SIZE)//head
t=0;
UDR0=tx_buff[t];
tx_tail=t;
}
if (t == tx_head)
UCSR0B &= ~(1<<UDRIE0); // Check if all data is transmitted . if yes disable transmitter UDRE interrupt
}
#endif