Arne Schwabe a196b71d36 Implement Multiprotocol Telemetry
This allows the multi module to tell the TX software (e.g. OpenTX) which telemetry protocol is in use. Also Status of the module and signaling binding/invalid protocol
2016-12-18 15:40:05 +01:00

360 lines
9.4 KiB
C++

/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// Last sync with hexfet new_protocols/flysky_a7105.c dated 2015-09-28
#ifdef AFHDS2A_A7105_INO
#define AFHDS2A_TXPACKET_SIZE 38
#define AFHDS2A_RXPACKET_SIZE 37
#define AFHDS2A_NUMFREQ 16
enum{
AFHDS2A_PACKET_STICKS,
AFHDS2A_PACKET_SETTINGS,
AFHDS2A_PACKET_FAILSAFE,
};
enum{
AFHDS2A_BIND1,
AFHDS2A_BIND2,
AFHDS2A_BIND3,
AFHDS2A_BIND4,
AFHDS2A_DATA,
};
static void AFHDS2A_calc_channels()
{
uint8_t idx = 0;
uint32_t rnd = MProtocol_id;
while (idx < AFHDS2A_NUMFREQ)
{
uint8_t i;
uint8_t count_1_42 = 0, count_43_85 = 0, count_86_128 = 0, count_129_168 = 0;
rnd = rnd * 0x0019660D + 0x3C6EF35F; // Randomization
uint8_t next_ch = ((rnd >> (idx%32)) % 0xa8) + 1;
// Keep the distance 2 between the channels - either odd or even
if (((next_ch ^ MProtocol_id) & 0x01 )== 0)
continue;
// Check that it's not duplicate and spread uniformly
for (i = 0; i < idx; i++)
{
if(hopping_frequency[i] == next_ch)
break;
if(hopping_frequency[i] <= 42)
count_1_42++;
else if (hopping_frequency[i] <= 85)
count_43_85++;
else if (hopping_frequency[i] <= 128)
count_86_128++;
else
count_129_168++;
}
if (i != idx)
continue;
if ((next_ch <= 42 && count_1_42 < 5)
||(next_ch >= 43 && next_ch <= 85 && count_43_85 < 5)
||(next_ch >= 86 && next_ch <=128 && count_86_128 < 5)
||(next_ch >= 129 && count_129_168 < 5))
hopping_frequency[idx++] = next_ch;
}
}
#if defined(AFHDS2A_FW_TELEMETRY) || defined(AFHDS2A_HUB_TELEMETRY)
// telemetry sensors ID
enum{
AFHDS2A_SENSOR_RX_VOLTAGE = 0x00,
AFHDS2A_SENSOR_RX_ERR_RATE = 0xfe,
AFHDS2A_SENSOR_RX_RSSI = 0xfc,
AFHDS2A_SENSOR_RX_NOISE = 0xfb,
AFHDS2A_SENSOR_RX_SNR = 0xfa,
};
static void AFHDS2A_update_telemetry()
{
// AA | TXID | rx_id | sensor id | sensor # | value 16 bit big endian | sensor id ......
// max 7 sensors per packet
#ifdef AFHDS2A_FW_TELEMETRY
if (option & 0x80)
{
// forward telemetry to TX, skip rx and tx id to save space
pkt[0]= TX_RSSI;
for(int i=9;i < AFHDS2A_RXPACKET_SIZE; i++)
pkt[i-8]=packet[i];
telemetry_link=2;
return;
}
#endif
#ifdef AFHDS2A_HUB_TELEMETRY
for(uint8_t sensor=0; sensor<7; sensor++)
{
// Send FrSkyD telemetry to TX
uint8_t index = 9+(4*sensor);
switch(packet[index])
{
case AFHDS2A_SENSOR_RX_VOLTAGE:
//v_lipo1 = packet[index+3]<<8 | packet[index+2];
v_lipo1 = packet[index+2];
telemetry_link=1;
break;
/*case AFHDS2A_SENSOR_RX_ERR_RATE:
// packet[index+2];
break;*/
case AFHDS2A_SENSOR_RX_RSSI:
RSSI_dBm = -packet[index+2];
break;
case 0xff:
return;
/*default:
// unknown sensor ID
break;*/
}
}
#endif
}
#endif
static void AFHDS2A_build_bind_packet()
{
uint8_t ch;
memcpy( &packet[1], rx_tx_addr, 4);
memset( &packet[5], 0xff, 4);
packet[10]= 0x00;
for(ch=0; ch<AFHDS2A_NUMFREQ; ch++)
packet[11+ch] = hopping_frequency[ch];
memset( &packet[27], 0xff, 10);
packet[37] = 0x00;
switch(phase)
{
case AFHDS2A_BIND1:
packet[0] = 0xbb;
packet[9] = 0x01;
break;
case AFHDS2A_BIND2:
case AFHDS2A_BIND3:
case AFHDS2A_BIND4:
packet[0] = 0xbc;
if(phase == AFHDS2A_BIND4)
{
memcpy( &packet[5], &rx_id, 4);
memset( &packet[11], 0xff, 16);
}
packet[9] = phase-1;
if(packet[9] > 0x02)
packet[9] = 0x02;
packet[27]= 0x01;
packet[28]= 0x80;
break;
}
}
static void AFHDS2A_build_packet(uint8_t type)
{
memcpy( &packet[1], rx_tx_addr, 4);
memcpy( &packet[5], rx_id, 4);
switch(type)
{
case AFHDS2A_PACKET_STICKS:
packet[0] = 0x58;
for(uint8_t ch=0; ch<14; ch++)
{
packet[9 + ch*2] = Servo_data[CH_AETR[ch]]&0xFF;
packet[10 + ch*2] = (Servo_data[CH_AETR[ch]]>>8)&0xFF;
}
break;
case AFHDS2A_PACKET_FAILSAFE:
packet[0] = 0x56;
for(uint8_t ch=0; ch<14; ch++)
{
/*if((Model.limits[ch].flags & CH_FAILSAFE_EN))
{
packet[9 + ch*2] = Servo_data[CH_AETR[ch]] & 0xff;
packet[10+ ch*2] = (Servo_data[CH_AETR[ch]] >> 8) & 0xff;
}
else*/
{
packet[9 + ch*2] = 0xff;
packet[10+ ch*2] = 0xff;
}
}
break;
case AFHDS2A_PACKET_SETTINGS:
packet[0] = 0xaa;
packet[9] = 0xfd;
packet[10]= 0xff;
uint16_t val_hz=5*(option & 0x7f)+50; // option value should be between 0 and 70 which gives a value between 50 and 400Hz
if(val_hz<50 || val_hz>400) val_hz=50; // default is 50Hz
packet[11]= val_hz;
packet[12]= val_hz >> 8;
if(sub_protocol == PPM_IBUS || sub_protocol == PPM_SBUS)
packet[13] = 0x01; // PPM output enabled
else
packet[13] = 0x00;
packet[14]= 0x00;
for(uint8_t i=15; i<37; i++)
packet[i] = 0xff;
packet[18] = 0x05; // ?
packet[19] = 0xdc; // ?
packet[20] = 0x05; // ?
if(sub_protocol == PWM_SBUS || sub_protocol == PPM_SBUS)
packet[21] = 0xdd; // SBUS output enabled
else
packet[21] = 0xde; // IBUS
break;
}
packet[37] = 0x00;
}
#define AFHDS2A_WAIT_WRITE 0x80
uint16_t ReadAFHDS2A()
{
static uint8_t packet_type = AFHDS2A_PACKET_STICKS;
static uint16_t packet_counter=0;
uint8_t data_rx;
uint16_t start;
switch(phase)
{
case AFHDS2A_BIND1:
case AFHDS2A_BIND2:
case AFHDS2A_BIND3:
AFHDS2A_build_bind_packet();
A7105_WriteData(AFHDS2A_TXPACKET_SIZE, packet_count%2 ? 0x0d : 0x8c);
if(!(A7105_ReadReg(A7105_00_MODE) & (1<<5 | 1<<6)))
{ // FECF+CRCF Ok
A7105_ReadData(AFHDS2A_RXPACKET_SIZE);
if(packet[0] == 0xbc && packet[9] == 0x01)
{
uint8_t temp=50+RX_num*4;
uint8_t i;
for(i=0; i<4; i++)
{
rx_id[i] = packet[5+i];
eeprom_write_byte((EE_ADDR)(temp+i),rx_id[i]);
}
phase = AFHDS2A_BIND4;
packet_count++;
return 3850;
}
}
packet_count++;
phase |= AFHDS2A_WAIT_WRITE;
return 1700;
case AFHDS2A_BIND1|AFHDS2A_WAIT_WRITE:
case AFHDS2A_BIND2|AFHDS2A_WAIT_WRITE:
case AFHDS2A_BIND3|AFHDS2A_WAIT_WRITE:
//Wait for TX completion
start=micros();
while ((uint16_t)micros()-start < 700) // Wait max 700µs, using serial+telemetry exit in about 120µs
if(!(A7105_ReadReg(A7105_00_MODE) & 0x01))
break;
A7105_SetTxRxMode(RX_EN);
A7105_Strobe(A7105_RX);
phase &= ~AFHDS2A_WAIT_WRITE;
phase++;
if(phase > AFHDS2A_BIND3)
phase = AFHDS2A_BIND1;
return 2150;
case AFHDS2A_BIND4:
AFHDS2A_build_bind_packet();
A7105_WriteData(AFHDS2A_TXPACKET_SIZE, packet_count%2 ? 0x0d : 0x8c);
packet_count++;
bind_phase++;
if(bind_phase>=4)
{
packet_counter=0;
packet_type = AFHDS2A_PACKET_STICKS;
hopping_frequency_no=1;
phase = AFHDS2A_DATA;
BIND_DONE;
}
return 3850;
case AFHDS2A_DATA:
AFHDS2A_build_packet(packet_type);
if((A7105_ReadReg(A7105_00_MODE) & 0x01)) // Check if something has been received...
data_rx=0;
else
data_rx=1; // Yes
A7105_WriteData(AFHDS2A_TXPACKET_SIZE, hopping_frequency[hopping_frequency_no++]);
if(hopping_frequency_no >= AFHDS2A_NUMFREQ)
hopping_frequency_no = 0;
if(!(packet_counter % 1313))
packet_type = AFHDS2A_PACKET_SETTINGS;
else if(!(packet_counter % 1569))
packet_type = AFHDS2A_PACKET_FAILSAFE;
else
packet_type = AFHDS2A_PACKET_STICKS; // todo : check for settings changes
if(!(A7105_ReadReg(A7105_00_MODE) & (1<<5 | 1<<6)) && data_rx==1)
{ // RX+FECF+CRCF Ok
A7105_ReadData(AFHDS2A_RXPACKET_SIZE);
if(packet[0] == 0xaa)
{
if(packet[9] == 0xfc)
packet_type=AFHDS2A_PACKET_SETTINGS; // RX is asking for settings
#if defined(AFHDS2A_FW_TELEMETRY) || defined(AFHDS2A_HUB_TELEMETRY)
else
{
// Read TX RSSI
int16_t temp=256-(A7105_ReadReg(A7105_1D_RSSI_THOLD)*8)/5; // value from A7105 is between 8 for maximum signal strength to 160 or less
if(temp<0) temp=0;
else if(temp>255) temp=255;
TX_RSSI=temp;
AFHDS2A_update_telemetry();
}
#endif
}
}
packet_counter++;
phase |= AFHDS2A_WAIT_WRITE;
return 1700;
case AFHDS2A_DATA|AFHDS2A_WAIT_WRITE:
//Wait for TX completion
start=micros();
while ((uint16_t)micros()-start < 700) // Wait max 700µs, using serial+telemetry exit in about 120µs
if(!(A7105_ReadReg(A7105_00_MODE) & 0x01))
break;
A7105_SetTxRxMode(RX_EN);
A7105_Strobe(A7105_RX);
phase &= ~AFHDS2A_WAIT_WRITE;
return 2150;
}
return 3850; // never reached, please the compiler
}
uint16_t initAFHDS2A()
{
A7105_Init();
AFHDS2A_calc_channels();
packet_count = 0;
bind_phase = 0;
if(IS_AUTOBIND_FLAG_on)
phase = AFHDS2A_BIND1;
else
{
phase = AFHDS2A_DATA;
//Read RX ID from EEPROM based on RX_num, RX_num must be uniq for each RX
uint8_t temp=50+RX_num*4;
for(uint8_t i=0;i<4;i++)
rx_id[i]=eeprom_read_byte((EE_ADDR)(temp+i));
}
hopping_frequency_no = 0;
#if defined(AFHDS2A_FW_TELEMETRY) || defined(AFHDS2A_HUB_TELEMETRY)
init_hub_telemetry();
#endif
return 50000;
}
#endif