Pascal Langer 4a626eaf14 Change XN297 emulation layer
Loads of protocols have been touched by this change. Some testing has been done but please test on all your models.
The XN297 emulation selects in this order:
 - the CC2500 if it is available and bitrate=250K. Configure the option field automatically for RF tune.
 - the NRF for all bitrates if it is available
 - if NRF is not available and bitrate=1M then an invalid protocol is sent automatically to the radio.
CC2500 @250K can now receive normal and enhanced payloads.
OMP protocol supports telemetry on CC2500 and is also for NRF only modules including telemetry.
Separation of E016H (new protocol) from E01X due to different structure.
MJXQ, MT99XX, Q303 and XK: some sub protocols available on CC2500 only.
2021-03-17 17:05:42 +01:00

347 lines
9.1 KiB
C++

/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// compatible with MJX WLH08, X600, X800, H26D, Eachine E010
// Last sync with hexfet new_protocols/mjxq_nrf24l01.c dated 2016-01-17
#if defined(MJXQ_CCNRF_INO)
#include "iface_xn297.h"
#define MJXQ_BIND_COUNT 150
#define MJXQ_PACKET_PERIOD 4000 // Timeout for callback in uSec
#define MJXQ_INITIAL_WAIT 500
#define MJXQ_PACKET_SIZE 16
#define MJXQ_RF_NUM_CHANNELS 4
#define MJXQ_ADDRESS_LENGTH 5
// haven't figured out txid<-->rf channel mapping for MJX models
const uint8_t PROGMEM MJXQ_map_txid[][3] = {
{0xF8, 0x4F, 0x1C},
{0xC8, 0x6E, 0x02},
{0x48, 0x6A, 0x40} };
const uint8_t PROGMEM MJXQ_map_rfchan[][4] = {
{0x0A, 0x46, 0x3A, 0x42},
{0x0A, 0x3C, 0x36, 0x3F},
{0x0A, 0x43, 0x36, 0x3F} };
const uint8_t PROGMEM E010_map_txid[][2] = {
{0x4F, 0x1C},
{0x90, 0x1C},
{0x24, 0x36},
{0x7A, 0x40},
{0x61, 0x31},
{0x5D, 0x37},
{0xFD, 0x4F},
{0x86, 0x3C},
{0x41, 0x22},
{0xEE, 0xB3},
{0x9A, 0xB2},
{0xC0, 0x44},
{0x2A, 0xFE},
{0xD7, 0x6E},
{0x3C, 0xCD}, // for this ID rx_tx_addr[2]=0x01
{0xF5, 0x2B} // for this ID rx_tx_addr[2]=0x02
};
const uint8_t PROGMEM E010_map_rfchan[][2] = {
{0x3A, 0x35},
{0x2E, 0x36},
{0x32, 0x3E},
{0x2E, 0x3C},
{0x2F, 0x3B},
{0x33, 0x3B},
{0x33, 0x3B},
{0x34, 0x3E},
{0x34, 0x2F},
{0x39, 0x3E},
{0x2E, 0x38},
{0x2E, 0x36},
{0x2E, 0x38},
{0x3A, 0x41},
{0x32, 0x3E},
{0x33, 0x3F}
};
#define MJXQ_PAN_TILT_COUNT 16 // for H26D - match stock tx timing
#define MJXQ_PAN_DOWN 0x08
#define MJXQ_PAN_UP 0x04
#define MJXQ_TILT_DOWN 0x20
#define MJXQ_TILT_UP 0x10
static uint8_t __attribute__((unused)) MJXQ_pan_tilt_value()
{
// CH12_SW PAN // H26D
// CH13_SW TILT
uint8_t pan = 0;
packet_count++;
if(packet_count & MJXQ_PAN_TILT_COUNT)
{
if(CH12_SW)
pan=MJXQ_PAN_UP;
if(Channel_data[CH12]<CHANNEL_MIN_COMMAND)
pan=MJXQ_PAN_DOWN;
if(CH13_SW)
pan+=MJXQ_TILT_UP;
if(Channel_data[CH13]<CHANNEL_MIN_COMMAND)
pan+=MJXQ_TILT_DOWN;
}
return pan;
}
#define MJXQ_CHAN2TRIM(X) (((X) & 0x80 ? (X) : 0x7f - (X)) >> 1)
static void __attribute__((unused)) MJXQ_send_packet(uint8_t bind)
{
//RF freq
hopping_frequency_no++;
XN297_Hopping(hopping_frequency_no / 2);
hopping_frequency_no %= 2 * MJXQ_RF_NUM_CHANNELS; // channels repeated
//Build packet
packet[0] = convert_channel_8b(THROTTLE);
packet[1] = convert_channel_s8b(RUDDER);
packet[4] = 0x40; // rudder does not work well with dyntrim
packet[2] = 0x80 ^ convert_channel_s8b(ELEVATOR);
packet[5] = (CH9_SW || CH14_SW) ? 0x40 : MJXQ_CHAN2TRIM(packet[2]); // trim elevator
packet[3] = convert_channel_s8b(AILERON);
packet[6] = (CH9_SW || CH14_SW) ? 0x40 : MJXQ_CHAN2TRIM(packet[3]); // trim aileron
packet[7] = rx_tx_addr[0];
packet[8] = rx_tx_addr[1];
packet[9] = rx_tx_addr[2];
packet[10] = 0x00; // overwritten below for feature bits
packet[11] = 0x00; // overwritten below for X600
packet[12] = 0x00;
packet[13] = 0x00;
packet[14] = 0xC0; // bind value
// CH5_SW FLIP
// CH6_SW LED / ARM // H26WH - TDR Phoenix mini
// CH7_SW PICTURE
// CH8_SW VIDEO
// CH9_SW HEADLESS
// CH10_SW RTH
// CH11_SW AUTOFLIP // X800, X600
// CH12_SW PAN
// CH13_SW TILT
// CH14_SW XTRM // Dyntrim, don't use if high.
switch(sub_protocol)
{
case H26WH:
case H26D:
packet[10]=MJXQ_pan_tilt_value();
// fall through on purpose - no break
case WLH08:
case E010:
case PHOENIX:
packet[10] += GET_FLAG(CH10_SW, 0x02) //RTH
| GET_FLAG(CH9_SW, 0x01); //HEADLESS
if (!bind)
{
packet[14] = 0x04
| GET_FLAG(CH5_SW, 0x01) //FLIP
| GET_FLAG(CH7_SW, 0x08) //PICTURE
| GET_FLAG(CH8_SW, 0x10) //VIDEO
| GET_FLAG(!CH6_SW, 0x20); // LED or air/ground mode
if(sub_protocol==PHOENIX)
{
packet[10] |=0x20 //High rate
| GET_FLAG(CH6_SW, 0x80); // arm
packet[14] &= ~0x24; // unset air/ground & arm flags
}
if(sub_protocol==H26WH)
{
packet[10] |=0x40; //High rate
packet[14] &= ~0x24; // unset air/ground & arm flags
packet[14] |= GET_FLAG(CH6_SW, 0x02); // arm
}
}
break;
case X600:
packet[10] = GET_FLAG(!CH6_SW, 0x02); //LED
packet[11] = GET_FLAG(CH10_SW, 0x01); //RTH
if (!bind)
{
packet[14] = 0x02 // always high rates by bit2 = 1
| GET_FLAG(CH5_SW, 0x04) //FLIP
| GET_FLAG(CH11_SW, 0x10) //AUTOFLIP
| GET_FLAG(CH9_SW, 0x20); //HEADLESS
}
break;
case X800:
default:
packet[10] = 0x10
| GET_FLAG(!CH6_SW, 0x02) //LED
| GET_FLAG(CH11_SW, 0x01); //AUTOFLIP
if (!bind)
{
packet[14] = 0x02 // always high rates by bit2 = 1
| GET_FLAG(CH5_SW, 0x04) //FLIP
| GET_FLAG(CH7_SW, 0x08) //PICTURE
| GET_FLAG(CH8_SW, 0x10); //VIDEO
}
break;
}
uint8_t sum = packet[0];
for (uint8_t i=1; i < MJXQ_PACKET_SIZE-1; i++) sum += packet[i];
packet[15] = sum;
// Send
XN297_SetTxRxMode(TX_EN);
XN297_SetPower();
#ifdef NRF24L01_INSTALLED
if (sub_protocol == H26D || sub_protocol == H26WH)
{
//NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency[hopping_frequency_no / 2]);
//NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
//NRF24L01_FlushTx();
//NRF24L01_SetTxRxMode(TX_EN);
//NRF24L01_SetPower();
NRF24L01_WritePayload(packet, MJXQ_PACKET_SIZE);
}
else
#endif
{//E010, PHOENIX, WLH08, X600, X800
XN297_SetFreqOffset();
XN297_WritePayload(packet, MJXQ_PACKET_SIZE);
}
}
static void __attribute__((unused)) MJXQ_RF_init()
{
uint8_t addr[MJXQ_ADDRESS_LENGTH];
memcpy(addr, "\x6d\x6a\x77\x77\x77", MJXQ_ADDRESS_LENGTH);
if (sub_protocol == WLH08)
memcpy(hopping_frequency, "\x12\x22\x32\x42", MJXQ_RF_NUM_CHANNELS);
else
if (sub_protocol == H26D || sub_protocol == H26WH || sub_protocol == E010 || sub_protocol == PHOENIX)
memcpy(hopping_frequency, "\x2e\x36\x3e\x46", MJXQ_RF_NUM_CHANNELS);
else
{
memcpy(hopping_frequency, "\x0a\x35\x42\x3d", MJXQ_RF_NUM_CHANNELS);
memcpy(addr, "\x6d\x6a\x73\x73\x73", MJXQ_ADDRESS_LENGTH);
}
if (sub_protocol == E010 || sub_protocol == PHOENIX)
{
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_250K);
XN297_SetTXAddr(addr, MJXQ_ADDRESS_LENGTH);
XN297_HoppingCalib(MJXQ_RF_NUM_CHANNELS);
}
else
{
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_1M); // this will select the nrf and initialize it, therefore both H26 sub protocols can use common instructions
#ifdef NRF24L01_INSTALLED
if (sub_protocol == H26D || sub_protocol == H26WH)
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, addr, MJXQ_ADDRESS_LENGTH);
else
#endif
XN297_SetTXAddr(addr, MJXQ_ADDRESS_LENGTH);
//NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, MJXQ_PACKET_SIZE); // no RX???
}
}
static void __attribute__((unused)) MJXQ_init2()
{
switch(sub_protocol)
{
case H26D:
memcpy(hopping_frequency, "\x32\x3e\x42\x4e", MJXQ_RF_NUM_CHANNELS);
break;
case H26WH:
memcpy(hopping_frequency, "\x37\x32\x47\x42", MJXQ_RF_NUM_CHANNELS);
break;
case E010:
case PHOENIX:
for(uint8_t i=0;i<2;i++)
{
hopping_frequency[i]=pgm_read_byte_near( &E010_map_rfchan[rx_tx_addr[3]&0x0F][i] );
hopping_frequency[i+2]=hopping_frequency[i]+0x10;
}
XN297_HoppingCalib(MJXQ_RF_NUM_CHANNELS);
break;
case WLH08:
// do nothing
break;
default:
for(uint8_t i=0;i<MJXQ_RF_NUM_CHANNELS;i++)
hopping_frequency[i]=pgm_read_byte_near( &MJXQ_map_rfchan[rx_tx_addr[3]%3][i] );
break;
}
}
static void __attribute__((unused)) MJXQ_initialize_txid()
{
switch(sub_protocol)
{
case H26WH:
memcpy(rx_tx_addr, "\xa4\x03\x00", 3);
break;
case E010:
case PHOENIX:
for(uint8_t i=0;i<2;i++)
rx_tx_addr[i]=pgm_read_byte_near( &E010_map_txid[rx_tx_addr[3]&0x0F][i] );
if((rx_tx_addr[3]&0x0E) == 0x0E)
rx_tx_addr[2]=(rx_tx_addr[3]&0x01)+1;
else
rx_tx_addr[2]=0;
break;
case WLH08:
rx_tx_addr[0]&=0xF8;
rx_tx_addr[2]=rx_tx_addr[3]; // Make use of RX_Num
break;
default:
for(uint8_t i=0;i<3;i++)
rx_tx_addr[i]=pgm_read_byte_near( &MJXQ_map_txid[rx_tx_addr[3]%3][i] );
break;
}
}
uint16_t MJXQ_callback()
{
if(IS_BIND_DONE)
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(MJXQ_PACKET_PERIOD);
#endif
MJXQ_send_packet(0);
}
else
{
if (bind_counter == 0)
{
MJXQ_init2();
BIND_DONE;
}
else
{
bind_counter--;
MJXQ_send_packet(1);
}
}
return MJXQ_PACKET_PERIOD;
}
void MJXQ_init(void)
{
BIND_IN_PROGRESS; // autobind protocol
bind_counter = MJXQ_BIND_COUNT;
MJXQ_initialize_txid();
MJXQ_RF_init();
packet_count=0;
}
#endif