Pascal Langer 984aa3f413 Switch all protocols to use a resolution of 2048
- Change how PPM is handled with a resolution of 2048 and scaled to match serial input range. PPM is now fully scaled for all protocols which was not the case before. If you are using PPM, you might have to adjust the end points depending on the protocols.
 - Change all range conversions to use 2048 where possible
 - Updated all protocols with new range functions
 - Protocols which are taking advantage of 2048 are Assan, FrSky V/D/X, DSM, Devo, WK2x01
 - Renamed AUX xto CHx for code readbility
2018-01-08 19:37:14 +01:00

353 lines
9.4 KiB
C++

/* **************************
* By Midelic on RCGroups *
**************************
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(FRSKYX_CC2500_INO)
#include "iface_cc2500.h"
uint8_t FrX_chanskip;
uint8_t FrX_send_seq ;
uint8_t FrX_receive_seq ;
#define FRX_FAILSAFE_TIMEOUT 1032
static void __attribute__((unused)) frskyX_set_start(uint8_t ch )
{
CC2500_Strobe(CC2500_SIDLE);
CC2500_WriteReg(CC2500_25_FSCAL1, calData[ch]);
CC2500_WriteReg(CC2500_0A_CHANNR, hopping_frequency[ch]);
}
static void __attribute__((unused)) frskyX_init()
{
FRSKY_init_cc2500((sub_protocol&2)?FRSKYXEU_cc2500_conf:FRSKYX_cc2500_conf); // LBT or FCC
//
for(uint8_t c=0;c < 48;c++)
{//calibrate hop channels
CC2500_Strobe(CC2500_SIDLE);
CC2500_WriteReg(CC2500_0A_CHANNR,hopping_frequency[c]);
CC2500_Strobe(CC2500_SCAL);
delayMicroseconds(900);//
calData[c] = CC2500_ReadReg(CC2500_25_FSCAL1);
}
//#######END INIT########
}
static void __attribute__((unused)) frskyX_initialize_data(uint8_t adr)
{
CC2500_WriteReg(CC2500_0C_FSCTRL0,option); // Frequency offset hack
CC2500_WriteReg(CC2500_18_MCSM0, 0x8);
CC2500_WriteReg(CC2500_09_ADDR, adr ? 0x03 : rx_tx_addr[3]);
CC2500_WriteReg(CC2500_07_PKTCTRL1,0x05);
}
//**CRC**
const uint16_t PROGMEM frskyX_CRC_Short[]={
0x0000, 0x1189, 0x2312, 0x329B, 0x4624, 0x57AD, 0x6536, 0x74BF,
0x8C48, 0x9DC1, 0xAF5A, 0xBED3, 0xCA6C, 0xDBE5, 0xE97E, 0xF8F7 };
static uint16_t __attribute__((unused)) frskyX_CRCTable(uint8_t val)
{
uint16_t word ;
word = pgm_read_word(&frskyX_CRC_Short[val&0x0F]) ;
val /= 16 ;
return word ^ (0x1081 * val) ;
}
static uint16_t __attribute__((unused)) frskyX_crc_x(uint8_t *data, uint8_t len)
{
uint16_t crc = 0;
for(uint8_t i=0; i < len; i++)
crc = (crc<<8) ^ frskyX_CRCTable((uint8_t)(crc>>8) ^ *data++);
return crc;
}
static void __attribute__((unused)) frskyX_build_bind_packet()
{
packet[0] = (sub_protocol & 2 ) ? 0x20 : 0x1D ; // LBT or FCC
packet[1] = 0x03;
packet[2] = 0x01;
//
packet[3] = rx_tx_addr[3];
packet[4] = rx_tx_addr[2];
int idx = ((state -FRSKY_BIND) % 10) * 5;
packet[5] = idx;
packet[6] = hopping_frequency[idx++];
packet[7] = hopping_frequency[idx++];
packet[8] = hopping_frequency[idx++];
packet[9] = hopping_frequency[idx++];
packet[10] = hopping_frequency[idx++];
packet[11] = 0x02;
packet[12] = RX_num;
//
uint8_t limit = (sub_protocol & 2 ) ? 31 : 28 ;
memset(&packet[13], 0, limit - 13);
uint16_t lcrc = frskyX_crc_x(&packet[3], limit-3);
//
packet[limit++] = lcrc >> 8;
packet[limit] = lcrc;
//
}
// 0-2047, 0 = 817, 1024 = 1500, 2047 = 2182
//64=860,1024=1500,1984=2140//Taranis 125%
static uint16_t __attribute__((unused)) frskyX_scaleForPXX( uint8_t i )
{ //mapped 860,2140(125%) range to 64,1984(PXX values);
uint16_t chan_val=convert_channel_frsky(i)-1226;
if(i>7) chan_val|=2048; // upper channels offset
return chan_val;
}
#ifdef FAILSAFE_ENABLE
static uint16_t __attribute__((unused)) frskyX_scaleForPXX_FS( uint8_t i )
{ //mapped 1,2046(125%) range to 64,1984(PXX values);
uint16_t chan_val=((Failsafe_data[i]*15)>>4)+64;
if(Failsafe_data[i]==FAILSAFE_CHANNEL_NOPULSES)
chan_val=FAILSAFE_CHANNEL_NOPULSES;
else if(Failsafe_data[i]==FAILSAFE_CHANNEL_HOLD)
chan_val=FAILSAFE_CHANNEL_HOLD;
if(i>7) chan_val|=2048; // upper channels offset
return chan_val;
}
#endif
#define FRX_FAILSAFE_TIME 1032
static void __attribute__((unused)) frskyX_data_frame()
{
//0x1D 0xB3 0xFD 0x02 0x56 0x07 0x15 0x00 0x00 0x00 0x04 0x40 0x00 0x04 0x40 0x00 0x04 0x40 0x00 0x04 0x40 0x08 0x00 0x00 0x00 0x00 0x00 0x00 0x96 0x12
//
static uint8_t chan_offset=0;
uint16_t chan_0 ;
uint16_t chan_1 ;
//
// data frames sent every 9ms; failsafe every 9 seconds
#ifdef FAILSAFE_ENABLE
static uint16_t failsafe_count=0;
static uint8_t FS_flag=0,failsafe_chan=0;
if (FS_flag == 0 && failsafe_count > FRX_FAILSAFE_TIME && chan_offset == 0 && IS_FAILSAFE_VALUES_on)
{
FS_flag = 0x10;
failsafe_chan = 0;
} else if (FS_flag & 0x10 && failsafe_chan < (sub_protocol & 0x01 ? 8-1:16-1))
{
FS_flag = 0x10 | ((FS_flag + 2) & 0x0F); //10, 12, 14, 16, 18, 1A, 1C, 1E - failsafe packet
failsafe_chan ++;
} else if (FS_flag & 0x10)
{
FS_flag = 0;
failsafe_count = 0;
}
failsafe_count++;
#endif
packet[0] = (sub_protocol & 0x02 ) ? 0x20 : 0x1D ; // LBT or FCC
packet[1] = rx_tx_addr[3];
packet[2] = rx_tx_addr[2];
packet[3] = 0x02;
//
packet[4] = (FrX_chanskip<<6)|hopping_frequency_no;
packet[5] = FrX_chanskip>>2;
packet[6] = RX_num;
//packet[7] = FLAGS 00 - standard packet
//10, 12, 14, 16, 18, 1A, 1C, 1E - failsafe packet
//20 - range check packet
#ifdef FAILSAFE_ENABLE
packet[7] = FS_flag;
#else
packet[7] = 0;
#endif
packet[8] = 0;
//
uint8_t startChan = chan_offset; for(uint8_t i = 0; i <12 ; i+=3)
{//12 bytes of channel data
#ifdef FAILSAFE_ENABLE
if( (FS_flag & 0x10) && ((failsafe_chan & 0x07) == (startChan & 0x07)) )
chan_0 = frskyX_scaleForPXX_FS(failsafe_chan);
else
#endif
chan_0 = frskyX_scaleForPXX(startChan);
startChan++;
//
#ifdef FAILSAFE_ENABLE
if( (FS_flag & 0x10) && ((failsafe_chan & 0x07) == (startChan & 0x07)) )
chan_1 = frskyX_scaleForPXX_FS(failsafe_chan);
else
#endif
chan_1 = frskyX_scaleForPXX(startChan);
startChan++;
//
packet[9+i] = lowByte(chan_0); //3 bytes*4
packet[9+i+1]=(((chan_0>>8) & 0x0F)|(chan_1 << 4));
packet[9+i+2]=chan_1>>4;
}
packet[21] = (FrX_receive_seq << 4) | FrX_send_seq ;//8 at start
if(sub_protocol & 0x01 ) // in X8 mode send only 8ch every 9ms
chan_offset = 0 ;
else
chan_offset^=0x08;
uint8_t limit = (sub_protocol & 2 ) ? 31 : 28 ;
for (uint8_t i=22;i<limit;i++)
packet[i]=0;
#if defined SPORT_POLLING
uint8_t idxs=0;
if(ok_to_send)
for (uint8_t i=23;i<limit;i++)
{//
if(sport_index==sport_idx)
{//no new data
ok_to_send=false;
break;
}
packet[i]=SportData[sport_index];
sport_index= (sport_index+1)& (MAX_SPORT_BUFFER-1);
idxs++;
}
packet[22]= idxs;
#ifdef DEBUG_SERIAL
for(uint8_t i=0;i<idxs;i++)
{
Serial.print(packet[23+i],HEX);
Serial.print(" ");
}
Serial.println(" ");
#endif
#endif // SPORT_POLLING
uint16_t lcrc = frskyX_crc_x(&packet[3], limit-3);
packet[limit++]=lcrc>>8;//high byte
packet[limit]=lcrc;//low byte
}
uint16_t ReadFrSkyX()
{
switch(state)
{
default:
frskyX_set_start(47);
CC2500_SetPower();
CC2500_Strobe(CC2500_SFRX);
//
frskyX_build_bind_packet();
CC2500_Strobe(CC2500_SIDLE);
CC2500_WriteData(packet, packet[0]+1);
if(IS_BIND_DONE)
state = FRSKY_BIND_DONE;
else
state++;
return 9000;
case FRSKY_BIND_DONE:
frskyX_initialize_data(0);
hopping_frequency_no=0;
BIND_DONE;
state++;
break;
case FRSKY_DATA1:
if ( prev_option != option )
{
CC2500_WriteReg(CC2500_0C_FSCTRL0,option); // Frequency offset hack
prev_option = option ;
}
CC2500_SetTxRxMode(TX_EN);
frskyX_set_start(hopping_frequency_no);
CC2500_SetPower();
CC2500_Strobe(CC2500_SFRX);
hopping_frequency_no = (hopping_frequency_no+FrX_chanskip)%47;
CC2500_Strobe(CC2500_SIDLE);
CC2500_WriteData(packet, packet[0]+1);
//
// frskyX_data_frame();
state++;
return 5200;
case FRSKY_DATA2:
CC2500_SetTxRxMode(RX_EN);
CC2500_Strobe(CC2500_SIDLE);
state++;
return 200;
case FRSKY_DATA3:
CC2500_Strobe(CC2500_SRX);
state++;
return 3100;
case FRSKY_DATA4:
len = CC2500_ReadReg(CC2500_3B_RXBYTES | CC2500_READ_BURST) & 0x7F;
if (len && (len<=(0x0E + 3))) //Telemetry frame is 17
{
packet_count=0;
CC2500_ReadData(pkt, len);
#if defined TELEMETRY
frsky_check_telemetry(pkt,len); //check if valid telemetry packets
//parse telemetry packets here
//The same telemetry function used by FrSky(D8).
#endif
}
else
{
packet_count++;
// restart sequence on missed packet - might need count or timeout instead of one missed
if(packet_count>100)
{//~1sec
// seq_last_sent = 0;
// seq_last_rcvd = 8;
FrX_send_seq = 0x08 ;
// FrX_receive_seq = 0 ;
packet_count=0;
#if defined TELEMETRY
telemetry_lost=1;
#endif
}
CC2500_Strobe(CC2500_SFRX); //flush the RXFIFO
}
frskyX_data_frame();
if ( FrX_send_seq != 0x08 )
{
FrX_send_seq = ( FrX_send_seq + 1 ) & 0x03 ;
}
state = FRSKY_DATA1;
return 500;
}
return 1;
}
uint16_t initFrSkyX()
{
set_rx_tx_addr(MProtocol_id_master);
Frsky_init_hop();
packet_count=0;
while(!FrX_chanskip)
FrX_chanskip=random(0xfefefefe)%47;
//for test***************
//rx_tx_addr[3]=0xB3;
//rx_tx_addr[2]=0xFD;
//************************
frskyX_init();
//
if(IS_BIND_IN_PROGRESS)
{
state = FRSKY_BIND;
frskyX_initialize_data(1);
}
else
{
state = FRSKY_DATA1;
frskyX_initialize_data(0);
}
// seq_last_sent = 0;
// seq_last_rcvd = 8;
FrX_send_seq = 0x08 ;
FrX_receive_seq = 0 ;
return 10000;
}
#endif