Pascal Langer 984aa3f413 Switch all protocols to use a resolution of 2048
- Change how PPM is handled with a resolution of 2048 and scaled to match serial input range. PPM is now fully scaled for all protocols which was not the case before. If you are using PPM, you might have to adjust the end points depending on the protocols.
 - Change all range conversions to use 2048 where possible
 - Updated all protocols with new range functions
 - Protocols which are taking advantage of 2048 are Assan, FrSky V/D/X, DSM, Devo, WK2x01
 - Renamed AUX xto CHx for code readbility
2018-01-08 19:37:14 +01:00

171 lines
5.4 KiB
C++

/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// Last sync with hexfet new_protocols/esky_nrf24l01.c dated 2015-02-13
#if defined(ESKY_NRF24L01_INO)
#include "iface_nrf24l01.h"
#define ESKY_BIND_COUNT 1000
#define ESKY_PACKET_PERIOD 3333
#define ESKY_PAYLOAD_SIZE 13
#define ESKY_PACKET_CHKTIME 100 // Time to wait for packet to be sent (no ACK, so very short)
static void __attribute__((unused)) ESKY_set_data_address()
{
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x02); // 4-byte RX/TX address for regular packets
NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, rx_tx_addr, 4);
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, rx_tx_addr, 4);
}
static void __attribute__((unused)) ESKY_init(uint8_t bind)
{
NRF24L01_Initialize();
// 2-bytes CRC, radio off
NRF24L01_WriteReg(NRF24L01_00_CONFIG, _BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO));
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowledgement
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0
if (bind)
{
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x01); // 3-byte RX/TX address for bind packets
NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, (uint8_t*)"\x00\x00\x00", 3);
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, (uint8_t*)"\x00\x00\x00", 3);
}
else
ESKY_set_data_address();
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0); // No auto retransmission
NRF24L01_WriteReg(NRF24L01_05_RF_CH, 50); // Channel 50 for bind packets
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps
NRF24L01_SetPower();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, ESKY_PAYLOAD_SIZE); // bytes of data payload for pipe 0
NRF24L01_WriteReg(NRF24L01_12_RX_PW_P1, ESKY_PAYLOAD_SIZE);
NRF24L01_WriteReg(NRF24L01_13_RX_PW_P2, ESKY_PAYLOAD_SIZE);
NRF24L01_WriteReg(NRF24L01_14_RX_PW_P3, ESKY_PAYLOAD_SIZE);
NRF24L01_WriteReg(NRF24L01_15_RX_PW_P4, ESKY_PAYLOAD_SIZE);
NRF24L01_WriteReg(NRF24L01_16_RX_PW_P5, ESKY_PAYLOAD_SIZE);
NRF24L01_WriteReg(NRF24L01_17_FIFO_STATUS, 0x00); // Just in case, no real bits to write here
}
static void __attribute__((unused)) ESKY_init2()
{
NRF24L01_FlushTx();
packet_sent = 0;
hopping_frequency_no = 0;
uint16_t channel_ord = rx_tx_addr[0] % 74;
hopping_frequency[12] = 10 + (uint8_t)channel_ord; //channel_code
uint8_t channel1, channel2;
channel1 = 10 + (uint8_t)((37 + channel_ord*5) % 74);
channel2 = 10 + (uint8_t)(( channel_ord*5) % 74) ;
hopping_frequency[0] = channel1;
hopping_frequency[1] = channel1;
hopping_frequency[2] = channel1;
hopping_frequency[3] = channel2;
hopping_frequency[4] = channel2;
hopping_frequency[5] = channel2;
//end_bytes
hopping_frequency[6] = 6;
hopping_frequency[7] = channel1*2;
hopping_frequency[8] = channel2*2;
hopping_frequency[9] = 6;
hopping_frequency[10] = channel1*2;
hopping_frequency[11] = channel2*2;
// Turn radio power on
NRF24L01_SetTxRxMode(TX_EN);
}
static void __attribute__((unused)) ESKY_send_packet(uint8_t bind)
{
uint8_t rf_ch = 50; // bind channel
if (bind)
{
// Bind packet
packet[0] = rx_tx_addr[2];
packet[1] = rx_tx_addr[1];
packet[2] = rx_tx_addr[0];
packet[3] = hopping_frequency[12]; // channel_code encodes pair of channels to transmit on
packet[4] = 0x18;
packet[5] = 0x29;
packet[6] = 0;
packet[7] = 0;
packet[8] = 0;
packet[9] = 0;
packet[10] = 0;
packet[11] = 0;
packet[12] = 0;
}
else
{
// Regular packet
// Each data packet is repeated 3 times on one channel, and 3 times on another channel
// For arithmetic simplicity, channels are repeated in rf_channels array
if (hopping_frequency_no == 0)
{
for (uint8_t i = 0; i < 6; i++)
{
uint16_t val=convert_channel_ppm(CH_AETR[i]);
packet[i*2] = val>>8; //high byte of servo timing(1000-2000us)
packet[i*2+1] = val&0xFF; //low byte of servo timing(1000-2000us)
}
}
rf_ch = hopping_frequency[hopping_frequency_no];
packet[12] = hopping_frequency[hopping_frequency_no+6]; // end_bytes
hopping_frequency_no++;
if (hopping_frequency_no > 6) hopping_frequency_no = 0;
}
NRF24L01_WriteReg(NRF24L01_05_RF_CH, rf_ch);
NRF24L01_FlushTx();
NRF24L01_WritePayload(packet, ESKY_PAYLOAD_SIZE);
packet_sent = 1;
if (! rf_ch_num)
NRF24L01_SetPower(); //Keep transmit power updated
}
uint16_t ESKY_callback()
{
if(IS_BIND_DONE)
{
if (packet_sent && NRF24L01_packet_ack() != PKT_ACKED)
return ESKY_PACKET_CHKTIME;
ESKY_send_packet(0);
}
else
{
if (packet_sent && NRF24L01_packet_ack() != PKT_ACKED)
return ESKY_PACKET_CHKTIME;
ESKY_send_packet(1);
if (--bind_counter == 0)
{
ESKY_set_data_address();
BIND_DONE;
}
}
return ESKY_PACKET_PERIOD;
}
uint16_t initESKY(void)
{
bind_counter = ESKY_BIND_COUNT;
rx_tx_addr[3] = 0xBB;
ESKY_init(IS_BIND_IN_PROGRESS);
ESKY_init2();
return 50000;
}
#endif