mirror of
https://github.com/pascallanger/DIY-Multiprotocol-TX-Module.git
synced 2025-02-04 22:58:10 +00:00
6d546094ef
New protocols: - FQ777 for FQ777-124 - MT99xx -> "LS" for 114/124
1139 lines
28 KiB
C++
1139 lines
28 KiB
C++
/*********************************************************
|
|
Multiprotocol Tx code
|
|
by Midelic and Pascal Langer(hpnuts)
|
|
http://www.rcgroups.com/forums/showthread.php?t=2165676
|
|
https://github.com/pascallanger/DIY-Multiprotocol-TX-Module/edit/master/README.md
|
|
|
|
Thanks to PhracturedBlue, Hexfet, Goebish, Victzh and all protocol developers
|
|
Ported from deviation firmware
|
|
|
|
This project is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Multiprotocol is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include <avr/eeprom.h>
|
|
#include <avr/pgmspace.h>
|
|
#include "Multiprotocol.h"
|
|
|
|
//#define DEBUG_TX
|
|
|
|
//Multiprotocol module configuration file
|
|
#include "_Config.h"
|
|
|
|
//Global constants/variables
|
|
uint32_t MProtocol_id;//tx id,
|
|
uint32_t MProtocol_id_master;
|
|
uint32_t Model_fixed_id=0;
|
|
uint32_t fixed_id;
|
|
uint8_t cyrfmfg_id[6];//for dsm2 and devo
|
|
uint32_t blink=0;
|
|
//
|
|
uint16_t counter;
|
|
uint8_t channel;
|
|
uint8_t packet[40];
|
|
|
|
#define NUM_CHN 16
|
|
// Servo data
|
|
uint16_t Servo_data[NUM_CHN];
|
|
uint8_t Servo_AUX;
|
|
|
|
// Protocol variables
|
|
uint8_t rx_tx_addr[5];
|
|
uint8_t phase;
|
|
uint16_t bind_counter;
|
|
uint8_t bind_phase;
|
|
uint8_t binding_idx;
|
|
uint16_t packet_period;
|
|
uint8_t packet_count;
|
|
uint8_t packet_sent;
|
|
uint8_t packet_length;
|
|
uint8_t hopping_frequency[23];
|
|
uint8_t *hopping_frequency_ptr;
|
|
uint8_t hopping_frequency_no=0;
|
|
uint8_t rf_ch_num;
|
|
uint8_t throttle, rudder, elevator, aileron;
|
|
uint8_t flags;
|
|
uint16_t crc;
|
|
//
|
|
uint16_t state;
|
|
uint8_t len;
|
|
uint8_t RX_num;
|
|
|
|
#if defined(FRSKYX_CC2500_INO) || defined(SFHSS_CC2500_INO)
|
|
uint8_t calData[48][3];
|
|
#endif
|
|
|
|
//Channel mapping for protocols
|
|
const uint8_t CH_AETR[]={AILERON, ELEVATOR, THROTTLE, RUDDER, AUX1, AUX2, AUX3, AUX4, AUX5, AUX6, AUX7, AUX8};
|
|
//const uint8_t CH_TAER[]={THROTTLE, AILERON, ELEVATOR, RUDDER, AUX1, AUX2, AUX3, AUX4, AUX5, AUX6, AUX7, AUX8};
|
|
//const uint8_t CH_RETA[]={RUDDER, ELEVATOR, THROTTLE, AILERON, AUX1, AUX2, AUX3, AUX4, AUX5, AUX6, AUX7, AUX8};
|
|
|
|
// Mode_select variables
|
|
uint8_t mode_select;
|
|
uint8_t protocol_flags=0,protocol_flags2=0;
|
|
|
|
// PPM variable
|
|
volatile uint16_t PPM_data[NUM_CHN];
|
|
|
|
// Serial variables
|
|
#define RXBUFFER_SIZE 25
|
|
#define TXBUFFER_SIZE 20
|
|
volatile uint8_t rx_buff[RXBUFFER_SIZE];
|
|
volatile uint8_t rx_ok_buff[RXBUFFER_SIZE];
|
|
volatile uint8_t tx_buff[TXBUFFER_SIZE];
|
|
volatile uint8_t idx = 0;
|
|
|
|
//Serial protocol
|
|
uint8_t sub_protocol;
|
|
uint8_t option;
|
|
uint8_t cur_protocol[2];
|
|
uint8_t prev_protocol=0;
|
|
|
|
// Telemetry
|
|
#define MAX_PKT 27
|
|
uint8_t pkt[MAX_PKT];//telemetry receiving packets
|
|
#if defined(TELEMETRY)
|
|
#if defined DSM2_CYRF6936_INO
|
|
#define DSM_TELEMETRY
|
|
#endif
|
|
#if defined FRSKYX_CC2500_INO
|
|
#define SPORT_TELEMETRY
|
|
#endif
|
|
#if defined FRSKY_CC2500_INO
|
|
#define HUB_TELEMETRY
|
|
#endif
|
|
uint8_t pktt[MAX_PKT];//telemetry receiving packets
|
|
volatile uint8_t tx_head=0;
|
|
volatile uint8_t tx_tail=0;
|
|
uint8_t v_lipo;
|
|
int16_t RSSI_dBm;
|
|
//const uint8_t RSSI_offset=72;//69 71.72 values db
|
|
uint8_t telemetry_link=0;
|
|
uint8_t telemetry_counter=0;
|
|
#endif
|
|
|
|
// Callback
|
|
typedef uint16_t (*void_function_t) (void);//pointer to a function with no parameters which return an uint16_t integer
|
|
void_function_t remote_callback = 0;
|
|
static void CheckTimer(uint16_t (*cb)(void));
|
|
|
|
// Init
|
|
void setup()
|
|
{
|
|
#ifdef XMEGA
|
|
PORTD.OUTSET = 0x17 ;
|
|
PORTD.DIRSET = 0xB2 ;
|
|
PORTD.DIRCLR = 0x4D ;
|
|
PORTD.PIN0CTRL = 0x18 ;
|
|
PORTD.PIN2CTRL = 0x18 ;
|
|
PORTE.DIRSET = 0x01 ;
|
|
PORTE.DIRCLR = 0x02 ;
|
|
PORTE.OUTSET = 0x01 ;
|
|
|
|
for ( uint8_t count = 0 ; count < 20 ; count += 1 )
|
|
asm("nop") ;
|
|
PORTE.OUTCLR = 0x01 ;
|
|
#else
|
|
// General pinout
|
|
DDRD = (1<<CS_pin)|(1<<SDI_pin)|(1<<SCLK_pin)|(1<<CS_pin)|(1<< CC25_CSN_pin);
|
|
DDRC = (1<<CTRL1)|(1<<CTRL2); //output
|
|
//DDRC |= (1<<5);//RST pin A5(C5) CYRF output
|
|
DDRB = _BV(0)|_BV(1);
|
|
PORTB = _BV(2)|_BV(3)|_BV(4)|_BV(5);//pullup 10,11,12 and bind button
|
|
PORTC = _BV(0);//A0 high pullup
|
|
#endif
|
|
|
|
// Set Chip selects
|
|
CS_on;
|
|
CC25_CSN_on;
|
|
NRF_CSN_on;
|
|
CYRF_CSN_on;
|
|
// Set SPI lines
|
|
SDI_on;
|
|
SCK_off;
|
|
|
|
//#ifdef XMEGA
|
|
// // SPI enable, master, prescale of 16
|
|
// SPID.CTRL = SPI_ENABLE_bm | SPI_MASTER_bm | SPI_PRESCALER0_bm ;
|
|
//#endif
|
|
|
|
// Timer1 config
|
|
#ifdef XMEGA
|
|
// TCC1 16-bit timer, clocked at 0.5uS
|
|
EVSYS.CH3MUX = 0x80 + 0x04 ; // Prescaler of 16
|
|
TCC1.CTRLB = 0; TCC1.CTRLC = 0; TCC1.CTRLD = 0; TCC1.CTRLE = 0;
|
|
TCC1.INTCTRLA = 0; TCC1.INTCTRLB = 0;
|
|
TCC1.PER = 0xFFFF ;
|
|
TCC1.CNT = 0 ;
|
|
TCC1.CTRLA = 0x0B ; // Event3 (prescale of 16)
|
|
#else
|
|
TCCR1A = 0;
|
|
TCCR1B = (1 << CS11); //prescaler8, set timer1 to increment every 0.5us(16Mhz) and start timer
|
|
#endif
|
|
|
|
// Set servos positions
|
|
for(uint8_t i=0;i<NUM_CHN;i++)
|
|
Servo_data[i]=1500;
|
|
Servo_data[THROTTLE]=PPM_MIN_100;
|
|
memcpy((void *)PPM_data,Servo_data, sizeof(Servo_data));
|
|
|
|
//Wait for every component to start
|
|
delay(100);
|
|
|
|
// Read status of bind button
|
|
#ifdef XMEGA
|
|
if( (PORTD.IN & _BV(2)) == 0x00 )
|
|
#else
|
|
if( (PINB & _BV(5)) == 0x00 )
|
|
#endif
|
|
BIND_BUTTON_FLAG_on; // If bind button pressed save the status for protocol id reset under hubsan
|
|
|
|
// Read status of mode select binary switch
|
|
// after this mode_select will be one of {0000, 0001, ..., 1111}
|
|
#ifdef XMEGA
|
|
mode_select=0x0F - ( PORTA.IN & 0x0F ) ; //encoder dip switches 1,2,4,8=>B2,B3,B4,C0
|
|
mode_select = MODE_SERIAL ;
|
|
#else
|
|
mode_select=0x0F - ( ( (PINB>>2)&0x07 ) | ( (PINC<<3)&0x08) );//encoder dip switches 1,2,4,8=>B2,B3,B4,C0
|
|
#endif
|
|
//**********************************
|
|
//mode_select=1; // here to test PPM
|
|
//**********************************
|
|
|
|
// Update LED
|
|
LED_OFF;
|
|
LED_SET_OUTPUT;
|
|
|
|
// Read or create protocol id
|
|
MProtocol_id_master=random_id(10,false);
|
|
|
|
//Init RF modules
|
|
#ifdef CC2500_INSTALLED
|
|
CC2500_Reset();
|
|
#endif
|
|
#ifdef A7105_INSTALLED
|
|
A7105_Reset();
|
|
#endif
|
|
#ifdef CYRF6936_INSTALLED
|
|
CYRF_Reset();
|
|
#endif
|
|
#ifdef NFR24L01_INSTALLED
|
|
NRF24L01_Reset();
|
|
#endif
|
|
|
|
//Protocol and interrupts initialization
|
|
if(mode_select != MODE_SERIAL)
|
|
{ // PPM
|
|
mode_select--;
|
|
cur_protocol[0] = PPM_prot[mode_select].protocol;
|
|
sub_protocol = PPM_prot[mode_select].sub_proto;
|
|
RX_num = PPM_prot[mode_select].rx_num;
|
|
MProtocol_id = RX_num + MProtocol_id_master;
|
|
option = PPM_prot[mode_select].option;
|
|
if(PPM_prot[mode_select].power) POWER_FLAG_on;
|
|
if(PPM_prot[mode_select].autobind) AUTOBIND_FLAG_on;
|
|
mode_select++;
|
|
|
|
protocol_init();
|
|
|
|
#ifndef XMEGA
|
|
//Configure PPM interrupt
|
|
EICRA |=(1<<ISC11); // The rising edge of INT1 pin D3 generates an interrupt request
|
|
EIMSK |= (1<<INT1); // INT1 interrupt enable
|
|
#endif
|
|
|
|
#if defined(TELEMETRY)
|
|
PPM_Telemetry_serial_init(); // Configure serial for telemetry
|
|
#endif
|
|
}
|
|
else
|
|
{ // Serial
|
|
cur_protocol[0]=0;
|
|
cur_protocol[1]=0;
|
|
prev_protocol=0;
|
|
Mprotocol_serial_init(); // Configure serial and enable RX interrupt
|
|
}
|
|
}
|
|
|
|
// Main
|
|
void loop()
|
|
{
|
|
if(mode_select==MODE_SERIAL && IS_RX_FLAG_on) // Serial mode and something has been received
|
|
{
|
|
update_serial_data(); // Update protocol and data
|
|
update_aux_flags();
|
|
if(IS_CHANGE_PROTOCOL_FLAG_on)
|
|
{ // Protocol needs to be changed
|
|
LED_OFF; //led off during protocol init
|
|
module_reset(); //reset previous module
|
|
protocol_init(); //init new protocol
|
|
CHANGE_PROTOCOL_FLAG_off; //done
|
|
}
|
|
}
|
|
if(mode_select!=MODE_SERIAL && IS_PPM_FLAG_on) // PPM mode and a full frame has been received
|
|
{
|
|
for(uint8_t i=0;i<NUM_CHN;i++)
|
|
{ // update servo data without interrupts to prevent bad read in protocols
|
|
cli(); // disable global int
|
|
Servo_data[i]=PPM_data[i];
|
|
sei(); // enable global int
|
|
}
|
|
update_aux_flags();
|
|
PPM_FLAG_off; // wait for next frame before update
|
|
}
|
|
update_led_status();
|
|
#if defined(TELEMETRY)
|
|
if( ((cur_protocol[0]&0x1F)==MODE_FRSKY) || ((cur_protocol[0]&0x1F)==MODE_HUBSAN) || ((cur_protocol[0]&0x1F)==MODE_FRSKYX) || ((cur_protocol[0]&0x1F)==MODE_DSM2) )
|
|
frskyUpdate();
|
|
#endif
|
|
if (remote_callback != 0)
|
|
CheckTimer(remote_callback);
|
|
}
|
|
|
|
// Update Servo_AUX flags based on servo AUX positions
|
|
static void update_aux_flags(void)
|
|
{
|
|
Servo_AUX=0;
|
|
for(uint8_t i=0;i<8;i++)
|
|
if(Servo_data[AUX1+i]>PPM_SWITCH)
|
|
Servo_AUX|=1<<i;
|
|
}
|
|
|
|
// Update led status based on binding and serial
|
|
static void update_led_status(void)
|
|
{
|
|
if(blink<millis())
|
|
{
|
|
if(cur_protocol[0]==0) // No valid serial received at least once
|
|
blink+=BLINK_SERIAL_TIME; //blink slowly while waiting a valid serial input
|
|
else
|
|
if(remote_callback == 0)
|
|
{ // Invalid protocol
|
|
if(IS_LED_on) //flash to indicate invalid protocol
|
|
blink+=BLINK_BAD_PROTO_TIME_LOW;
|
|
else
|
|
blink+=BLINK_BAD_PROTO_TIME_HIGH;
|
|
}
|
|
else
|
|
if(IS_BIND_DONE_on)
|
|
LED_OFF; //bind completed -> led on
|
|
else
|
|
blink+=BLINK_BIND_TIME; //blink fastly during binding
|
|
LED_TOGGLE;
|
|
}
|
|
}
|
|
|
|
// Protocol scheduler
|
|
static void CheckTimer(uint16_t (*cb)(void))
|
|
{
|
|
uint16_t next_callback,diff;
|
|
#ifdef XMEGA
|
|
if( (TCC1.INTFLAGS & TC1_CCAIF_bm) != 0)
|
|
{
|
|
cli(); // disable global int
|
|
TCC1.CCA = TCC1.CNT ; // Callback should already have been called... Use "now" as new sync point.
|
|
sei(); // enable global int
|
|
}
|
|
else
|
|
while((TCC1.INTFLAGS & TC1_CCAIF_bm) == 0); // wait before callback
|
|
#else
|
|
if( (TIFR1 & (1<<OCF1A)) != 0)
|
|
{
|
|
cli(); // disable global int
|
|
OCR1A=TCNT1; // Callback should already have been called... Use "now" as new sync point.
|
|
sei(); // enable global int
|
|
}
|
|
else
|
|
while((TIFR1 & (1<<OCF1A)) == 0); // wait before callback
|
|
#endif
|
|
do
|
|
{
|
|
next_callback=cb();
|
|
while(next_callback>4000)
|
|
{ // start to wait here as much as we can...
|
|
next_callback=next_callback-2000;
|
|
cli(); // disable global int
|
|
#ifdef XMEGA
|
|
TCC1.CCA +=2000*2; // set compare A for callback
|
|
TCC1.INTFLAGS = TC1_CCAIF_bm ; // clear compare A=callback flag
|
|
sei(); // enable global int
|
|
while((TCC1.INTFLAGS & TC1_CCAIF_bm) == 0); // wait 2ms...
|
|
#else
|
|
OCR1A+=2000*2; // set compare A for callback
|
|
TIFR1=(1<<OCF1A); // clear compare A=callback flag
|
|
sei(); // enable global int
|
|
while((TIFR1 & (1<<OCF1A)) == 0); // wait 2ms...
|
|
#endif
|
|
}
|
|
// at this point we have between 2ms and 4ms in next_callback
|
|
cli(); // disable global int
|
|
#ifdef XMEGA
|
|
TCC1.CCA +=next_callback*2; // set compare A for callback
|
|
TCC1.INTFLAGS = TC1_CCAIF_bm ; // clear compare A=callback flag
|
|
diff=TCC1.CCA-TCC1.CNT; // compare timer and comparator
|
|
sei(); // enable global int
|
|
#else
|
|
OCR1A+=next_callback*2; // set compare A for callback
|
|
TIFR1=(1<<OCF1A); // clear compare A=callback flag
|
|
diff=OCR1A-TCNT1; // compare timer and comparator
|
|
sei(); // enable global int
|
|
#endif
|
|
}
|
|
while(diff&0x8000); // Callback did not took more than requested time for next callback
|
|
// so we can let main do its stuff before next callback
|
|
}
|
|
|
|
// Protocol start
|
|
static void protocol_init()
|
|
{
|
|
uint16_t next_callback=0; // Default is immediate call back
|
|
remote_callback = 0;
|
|
|
|
set_rx_tx_addr(MProtocol_id);
|
|
blink=millis();
|
|
if(IS_BIND_BUTTON_FLAG_on)
|
|
AUTOBIND_FLAG_on;
|
|
if(IS_AUTOBIND_FLAG_on)
|
|
BIND_IN_PROGRESS; // Indicates bind in progress for blinking bind led
|
|
else
|
|
BIND_DONE;
|
|
|
|
CTRL1_on; //NRF24L01 antenna RF3 by default
|
|
CTRL2_off; //NRF24L01 antenna RF3 by default
|
|
|
|
switch(cur_protocol[0]&0x1F) // Init the requested protocol
|
|
{
|
|
#if defined(FLYSKY_A7105_INO)
|
|
case MODE_FLYSKY:
|
|
CTRL1_off; //antenna RF1
|
|
next_callback = initFlySky();
|
|
remote_callback = ReadFlySky;
|
|
break;
|
|
#endif
|
|
#if defined(HUBSAN_A7105_INO)
|
|
case MODE_HUBSAN:
|
|
CTRL1_off; //antenna RF1
|
|
if(IS_BIND_BUTTON_FLAG_on) random_id(10,true); // Generate new ID if bind button is pressed.
|
|
next_callback = initHubsan();
|
|
remote_callback = ReadHubsan;
|
|
break;
|
|
#endif
|
|
#if defined(FRSKY_CC2500_INO)
|
|
case MODE_FRSKY:
|
|
CTRL1_off; //antenna RF2
|
|
CTRL2_on;
|
|
next_callback = initFrSky_2way();
|
|
remote_callback = ReadFrSky_2way;
|
|
break;
|
|
#endif
|
|
#if defined(FRSKYX_CC2500_INO)
|
|
case MODE_FRSKYX:
|
|
CTRL1_off; //antenna RF2
|
|
CTRL2_on;
|
|
next_callback = initFrSkyX();
|
|
remote_callback = ReadFrSkyX;
|
|
break;
|
|
#endif
|
|
#if defined(SFHSS_CC2500_INO)
|
|
case MODE_SFHSS:
|
|
CTRL1_off; //antenna RF2
|
|
CTRL2_on;
|
|
next_callback = initSFHSS();
|
|
remote_callback = ReadSFHSS;
|
|
break;
|
|
#endif
|
|
#if defined(DSM2_CYRF6936_INO)
|
|
case MODE_DSM2:
|
|
CTRL2_on; //antenna RF4
|
|
next_callback = initDsm2();
|
|
//Servo_data[2]=1500;//before binding
|
|
remote_callback = ReadDsm2;
|
|
break;
|
|
#endif
|
|
#if defined(DEVO_CYRF6936_INO)
|
|
case MODE_DEVO:
|
|
CTRL2_on; //antenna RF4
|
|
next_callback = DevoInit();
|
|
remote_callback = devo_callback;
|
|
break;
|
|
#endif
|
|
#if defined(J6PRO_CYRF6936_INO)
|
|
case MODE_J6PRO:
|
|
CTRL2_on; //antenna RF4
|
|
next_callback = initJ6Pro();
|
|
remote_callback = ReadJ6Pro;
|
|
break;
|
|
#endif
|
|
#if defined(HISKY_NRF24L01_INO)
|
|
case MODE_HISKY:
|
|
next_callback=initHiSky();
|
|
remote_callback = hisky_cb;
|
|
break;
|
|
#endif
|
|
#if defined(V2X2_NRF24L01_INO)
|
|
case MODE_V2X2:
|
|
next_callback = initV2x2();
|
|
remote_callback = ReadV2x2;
|
|
break;
|
|
#endif
|
|
#if defined(YD717_NRF24L01_INO)
|
|
case MODE_YD717:
|
|
next_callback=initYD717();
|
|
remote_callback = yd717_callback;
|
|
break;
|
|
#endif
|
|
#if defined(KN_NRF24L01_INO)
|
|
case MODE_KN:
|
|
next_callback = initKN();
|
|
remote_callback = kn_callback;
|
|
break;
|
|
#endif
|
|
#if defined(SYMAX_NRF24L01_INO)
|
|
case MODE_SYMAX:
|
|
next_callback = initSymax();
|
|
remote_callback = symax_callback;
|
|
break;
|
|
#endif
|
|
#if defined(SLT_NRF24L01_INO)
|
|
case MODE_SLT:
|
|
next_callback=initSLT();
|
|
remote_callback = SLT_callback;
|
|
break;
|
|
#endif
|
|
#if defined(CX10_NRF24L01_INO)
|
|
case MODE_CX10:
|
|
next_callback=initCX10();
|
|
remote_callback = CX10_callback;
|
|
break;
|
|
#endif
|
|
#if defined(CG023_NRF24L01_INO)
|
|
case MODE_CG023:
|
|
next_callback=initCG023();
|
|
remote_callback = CG023_callback;
|
|
break;
|
|
#endif
|
|
#if defined(BAYANG_NRF24L01_INO)
|
|
case MODE_BAYANG:
|
|
next_callback=initBAYANG();
|
|
remote_callback = BAYANG_callback;
|
|
break;
|
|
#endif
|
|
#if defined(ESKY_NRF24L01_INO)
|
|
case MODE_ESKY:
|
|
next_callback=initESKY();
|
|
remote_callback = ESKY_callback;
|
|
break;
|
|
#endif
|
|
#if defined(MT99XX_NRF24L01_INO)
|
|
case MODE_MT99XX:
|
|
next_callback=initMT99XX();
|
|
remote_callback = MT99XX_callback;
|
|
break;
|
|
#endif
|
|
#if defined(MJXQ_NRF24L01_INO)
|
|
case MODE_MJXQ:
|
|
next_callback=initMJXQ();
|
|
remote_callback = MJXQ_callback;
|
|
break;
|
|
#endif
|
|
#if defined(SHENQI_NRF24L01_INO)
|
|
case MODE_SHENQI:
|
|
next_callback=initSHENQI();
|
|
remote_callback = SHENQI_callback;
|
|
break;
|
|
#endif
|
|
#if defined(FY326_NRF24L01_INO)
|
|
case MODE_FY326:
|
|
next_callback=initFY326();
|
|
remote_callback = FY326_callback;
|
|
break;
|
|
#endif
|
|
#if defined(FQ777_NRF24L01_INO)
|
|
case MODE_FQ777:
|
|
next_callback=initFQ777();
|
|
remote_callback = FQ777_callback;
|
|
break;
|
|
#endif
|
|
}
|
|
|
|
if(next_callback>32000)
|
|
{ // next_callback should not be more than 32767 so we will wait here...
|
|
delayMicroseconds(next_callback-2000);
|
|
next_callback=2000;
|
|
}
|
|
cli(); // disable global int
|
|
#ifdef XMEGA
|
|
TCC1.CCA = TCC1.CNT + next_callback*2; // set compare A for callback
|
|
sei(); // enable global int
|
|
TCC1.INTFLAGS = TC1_CCAIF_bm ; // clear compare A flag
|
|
#else
|
|
OCR1A=TCNT1+next_callback*2; // set compare A for callback
|
|
sei(); // enable global int
|
|
TIFR1=(1<<OCF1A); // clear compare A flag
|
|
#endif
|
|
BIND_BUTTON_FLAG_off; // do not bind/reset id anymore even if protocol change
|
|
}
|
|
|
|
static void update_serial_data()
|
|
{
|
|
if(rx_ok_buff[0]&0x20) //check range
|
|
RANGE_FLAG_on;
|
|
else
|
|
RANGE_FLAG_off;
|
|
if(rx_ok_buff[0]&0xC0) //check autobind(0x40) & bind(0x80) together
|
|
AUTOBIND_FLAG_on;
|
|
else
|
|
AUTOBIND_FLAG_off;
|
|
if(rx_ok_buff[1]&0x80) //if rx_ok_buff[1] ==1,power is low ,0-power high
|
|
POWER_FLAG_off; //power low
|
|
else
|
|
POWER_FLAG_on; //power high
|
|
|
|
option=rx_ok_buff[2];
|
|
|
|
if( ((rx_ok_buff[0]&0x5F) != (cur_protocol[0]&0x5F)) || ( (rx_ok_buff[1]&0x7F) != cur_protocol[1] ) )
|
|
{ // New model has been selected
|
|
prev_protocol=cur_protocol[0]&0x1F; //store previous protocol so we can reset the module
|
|
cur_protocol[1] = rx_ok_buff[1]&0x7F; //store current protocol
|
|
CHANGE_PROTOCOL_FLAG_on; //change protocol
|
|
sub_protocol=(rx_ok_buff[1]>>4)& 0x07; //subprotocol no (0-7) bits 4-6
|
|
RX_num=rx_ok_buff[1]& 0x0F;
|
|
MProtocol_id=MProtocol_id_master+RX_num; //personalized RX bind + rx num // rx_num bits 0---3
|
|
}
|
|
else
|
|
if( ((rx_ok_buff[0]&0x80)!=0) && ((cur_protocol[0]&0x80)==0) ) // Bind flag has been set
|
|
CHANGE_PROTOCOL_FLAG_on; //restart protocol with bind
|
|
cur_protocol[0] = rx_ok_buff[0]; //store current protocol
|
|
|
|
// decode channel values
|
|
volatile uint8_t *p=rx_ok_buff+2;
|
|
uint8_t dec=-3;
|
|
for(uint8_t i=0;i<NUM_CHN;i++)
|
|
{
|
|
dec+=3;
|
|
if(dec>=8)
|
|
{
|
|
dec-=8;
|
|
p++;
|
|
}
|
|
p++;
|
|
Servo_data[i]=((((*((uint32_t *)p))>>dec)&0x7FF)*5)/8+860; //value range 860<->2140 -125%<->+125%
|
|
}
|
|
RX_FLAG_off; //data has been processed
|
|
}
|
|
|
|
static void module_reset()
|
|
{
|
|
if(remote_callback)
|
|
{ // previous protocol loaded
|
|
remote_callback = 0;
|
|
switch(prev_protocol)
|
|
{
|
|
case MODE_FLYSKY:
|
|
case MODE_HUBSAN:
|
|
A7105_Reset();
|
|
break;
|
|
case MODE_FRSKY:
|
|
case MODE_FRSKYX:
|
|
case MODE_SFHSS:
|
|
CC2500_Reset();
|
|
break;
|
|
case MODE_DSM2:
|
|
case MODE_DEVO:
|
|
case MODE_J6PRO:
|
|
CYRF_Reset();
|
|
break;
|
|
default: // MODE_HISKY, MODE_V2X2, MODE_YD717, MODE_KN, MODE_SYMAX, MODE_SLT, MODE_CX10, MODE_CG023, MODE_BAYANG, MODE_ESKY, MODE_MT99XX, MODE_MJXQ, MODE_SHENQI, MODE_FY326, MODE_FQ777
|
|
NRF24L01_Reset();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
int16_t map( int16_t x, int16_t in_min, int16_t in_max, int16_t out_min, int16_t out_max)
|
|
{
|
|
// return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
|
|
long y ;
|
|
x -= in_min ;
|
|
y = out_max - out_min ;
|
|
y *= x ;
|
|
x = y / (in_max - in_min) ;
|
|
return x + out_min ;
|
|
}
|
|
|
|
// Channel value is converted to 8bit values full scale
|
|
uint8_t convert_channel_8b(uint8_t num)
|
|
{
|
|
return (uint8_t) (map(limit_channel_100(num),PPM_MIN_100,PPM_MAX_100,0,255));
|
|
}
|
|
|
|
// Channel value is converted to 8bit values to provided values scale
|
|
uint8_t convert_channel_8b_scale(uint8_t num,uint8_t min,uint8_t max)
|
|
{
|
|
return (uint8_t) (map(limit_channel_100(num),PPM_MIN_100,PPM_MAX_100,min,max));
|
|
}
|
|
|
|
// Channel value is converted sign + magnitude 8bit values
|
|
uint8_t convert_channel_s8b(uint8_t num)
|
|
{
|
|
uint8_t ch;
|
|
ch = convert_channel_8b(num);
|
|
return (ch < 128 ? 127-ch : ch);
|
|
}
|
|
|
|
// Channel value is converted to 10bit values
|
|
uint16_t convert_channel_10b(uint8_t num)
|
|
{
|
|
return (uint16_t) (map(limit_channel_100(num),PPM_MIN_100,PPM_MAX_100,1,1023));
|
|
}
|
|
|
|
// Channel value is multiplied by 1.5
|
|
uint16_t convert_channel_frsky(uint8_t num)
|
|
{
|
|
return Servo_data[num] + Servo_data[num]/2;
|
|
}
|
|
|
|
// Channel value is converted for HK310
|
|
void convert_channel_HK310(uint8_t num, uint8_t *low, uint8_t *high)
|
|
{
|
|
uint16_t temp=0xFFFF-(4*Servo_data[num])/3;
|
|
*low=(uint8_t)(temp&0xFF);
|
|
*high=(uint8_t)(temp>>8);
|
|
}
|
|
|
|
// Channel value is limited to PPM_100
|
|
uint16_t limit_channel_100(uint8_t ch)
|
|
{
|
|
if(Servo_data[ch]>PPM_MAX_100)
|
|
return PPM_MAX_100;
|
|
else
|
|
if (Servo_data[ch]<PPM_MIN_100)
|
|
return PPM_MIN_100;
|
|
return Servo_data[ch];
|
|
}
|
|
|
|
#if defined(TELEMETRY)
|
|
void Serial_write(uint8_t data)
|
|
{
|
|
cli(); // disable global int
|
|
if(++tx_head>=TXBUFFER_SIZE)
|
|
tx_head=0;
|
|
tx_buff[tx_head]=data;
|
|
#ifdef XMEGA
|
|
USARTC0.CTRLA = (USARTC0.CTRLA & 0xFC) | 0x01 ;
|
|
#else
|
|
UCSR0B |= (1<<UDRIE0);//enable UDRE interrupt
|
|
#endif
|
|
sei(); // enable global int
|
|
}
|
|
#endif
|
|
|
|
static void Mprotocol_serial_init()
|
|
{
|
|
#ifdef XMEGA
|
|
|
|
PORTC.OUTSET = 0x08 ;
|
|
PORTC.DIRSET = 0x08 ;
|
|
|
|
USARTC0.BAUDCTRLA = 19 ;
|
|
USARTC0.BAUDCTRLB = 0 ;
|
|
|
|
USARTC0.CTRLB = 0x18 ;
|
|
USARTC0.CTRLA = (USARTC0.CTRLA & 0xCF) | 0x10 ;
|
|
USARTC0.CTRLC = 0x2B ;
|
|
USARTC0.DATA ;
|
|
#else
|
|
|
|
#include <util/setbaud.h>
|
|
UBRR0H = UBRRH_VALUE;
|
|
UBRR0L = UBRRL_VALUE;
|
|
UCSR0A = 0 ; // Clear X2 bit
|
|
//Set frame format to 8 data bits, even parity, 2 stop bits
|
|
UCSR0C = (1<<UPM01)|(1<<USBS0)|(1<<UCSZ01)|(1<<UCSZ00);
|
|
while ( UCSR0A & (1 << RXC0) )//flush receive buffer
|
|
UDR0;
|
|
//enable reception and RC complete interrupt
|
|
UCSR0B = (1<<RXEN0)|(1<<RXCIE0);//rx enable and interrupt
|
|
#ifdef DEBUG_TX
|
|
TX_SET_OUTPUT;
|
|
#else
|
|
UCSR0B |= (1<<TXEN0);//tx enable
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
#if defined(TELEMETRY)
|
|
static void PPM_Telemetry_serial_init()
|
|
{
|
|
#ifdef XMEGA
|
|
USARTC0.BAUDCTRLA = 207 ;
|
|
USARTC0.BAUDCTRLB = 0 ;
|
|
|
|
USARTC0.CTRLB = 0x18 ;
|
|
USARTC0.CTRLA = (USARTC0.CTRLA & 0xCF) | 0x10 ;
|
|
USARTC0.CTRLC = 0x03 ;
|
|
#else
|
|
//9600 bauds
|
|
UBRR0H = 0x00;
|
|
UBRR0L = 0x67;
|
|
UCSR0A = 0 ; // Clear X2 bit
|
|
//Set frame format to 8 data bits, none, 1 stop bit
|
|
UCSR0C = (1<<UCSZ01)|(1<<UCSZ00);
|
|
UCSR0B = (1<<TXEN0);//tx enable
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
// Convert 32b id to rx_tx_addr
|
|
static void set_rx_tx_addr(uint32_t id)
|
|
{ // Used by almost all protocols
|
|
rx_tx_addr[0] = (id >> 24) & 0xFF;
|
|
rx_tx_addr[1] = (id >> 16) & 0xFF;
|
|
rx_tx_addr[2] = (id >> 8) & 0xFF;
|
|
rx_tx_addr[3] = (id >> 0) & 0xFF;
|
|
rx_tx_addr[4] = 0xC1; // for YD717: always uses first data port
|
|
}
|
|
|
|
static uint32_t random_id(uint16_t adress, uint8_t create_new)
|
|
{
|
|
uint32_t id;
|
|
uint8_t txid[4];
|
|
|
|
if (eeprom_read_byte((uint8_t*)(adress+10))==0xf0 && !create_new)
|
|
{ // TXID exists in EEPROM
|
|
eeprom_read_block((void*)txid,(const void*)adress,4);
|
|
id=(txid[0] | ((uint32_t)txid[1]<<8) | ((uint32_t)txid[2]<<16) | ((uint32_t)txid[3]<<24));
|
|
}
|
|
else
|
|
{ // if not generate a random ID
|
|
randomSeed((uint32_t)analogRead(A6)<<10|analogRead(A7));//seed
|
|
//
|
|
id = random(0xfefefefe) + ((uint32_t)random(0xfefefefe) << 16);
|
|
txid[0]= (id &0xFF);
|
|
txid[1] = ((id >> 8) & 0xFF);
|
|
txid[2] = ((id >> 16) & 0xFF);
|
|
txid[3] = ((id >> 24) & 0xFF);
|
|
eeprom_write_block((const void*)txid,(void*)adress,4);
|
|
eeprom_write_byte((uint8_t*)(adress+10),0xf0);//write bind flag in eeprom.
|
|
}
|
|
return id;
|
|
}
|
|
|
|
/********************/
|
|
/** SPI routines **/
|
|
/********************/
|
|
void SPI_Write(uint8_t command)
|
|
{
|
|
uint8_t n=8;
|
|
|
|
SCK_off;//SCK start low
|
|
SDI_off;
|
|
do
|
|
{
|
|
if(command&0x80)
|
|
SDI_on;
|
|
else
|
|
SDI_off;
|
|
SCK_on;
|
|
command = command << 1;
|
|
SCK_off;
|
|
}
|
|
while(--n) ;
|
|
SDI_on;
|
|
}
|
|
|
|
uint8_t SPI_Read(void)
|
|
{
|
|
uint8_t result;
|
|
uint8_t i;
|
|
for(i=0;i<8;i++)
|
|
{
|
|
result=result<<1;
|
|
if(SDO_1)
|
|
result |= 0x01;
|
|
SCK_on;
|
|
NOP();
|
|
SCK_off;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/************************************/
|
|
/** Arduino replacement routines **/
|
|
/************************************/
|
|
// replacement millis() and micros()
|
|
// These work polled, no interrupts
|
|
// micros() MUST be called at least once every 32 milliseconds
|
|
uint16_t MillisPrecount ;
|
|
uint16_t lastTimerValue ;
|
|
uint32_t TotalMicros ;
|
|
uint32_t TotalMillis ;
|
|
uint8_t Correction ;
|
|
|
|
uint32_t micros()
|
|
{
|
|
uint16_t elapsed ;
|
|
uint8_t millisToAdd ;
|
|
uint8_t oldSREG = SREG ;
|
|
cli() ;
|
|
uint16_t time = TCNT1 ; // Read timer 1
|
|
SREG = oldSREG ;
|
|
|
|
elapsed = time - lastTimerValue ;
|
|
elapsed += Correction ;
|
|
Correction = elapsed & 0x01 ;
|
|
elapsed >>= 1 ;
|
|
|
|
uint32_t ltime = TotalMicros ;
|
|
ltime += elapsed ;
|
|
cli() ;
|
|
TotalMicros = ltime ; // Done this way for RPM to work correctly
|
|
lastTimerValue = time ;
|
|
SREG = oldSREG ; // Still valid from above
|
|
|
|
elapsed += MillisPrecount;
|
|
millisToAdd = 0 ;
|
|
|
|
if ( elapsed > 15999 )
|
|
{
|
|
millisToAdd = 16 ;
|
|
elapsed -= 16000 ;
|
|
}
|
|
if ( elapsed > 7999 )
|
|
{
|
|
millisToAdd += 8 ;
|
|
elapsed -= 8000 ;
|
|
}
|
|
if ( elapsed > 3999 )
|
|
{
|
|
millisToAdd += 4 ;
|
|
elapsed -= 4000 ;
|
|
}
|
|
if ( elapsed > 1999 )
|
|
{
|
|
millisToAdd += 2 ;
|
|
elapsed -= 2000 ;
|
|
}
|
|
if ( elapsed > 999 )
|
|
{
|
|
millisToAdd += 1 ;
|
|
elapsed -= 1000 ;
|
|
}
|
|
TotalMillis += millisToAdd ;
|
|
MillisPrecount = elapsed ;
|
|
return TotalMicros ;
|
|
}
|
|
|
|
uint32_t millis()
|
|
{
|
|
micros() ;
|
|
return TotalMillis ;
|
|
}
|
|
|
|
void delay(unsigned long ms)
|
|
{
|
|
uint16_t start = (uint16_t)micros();
|
|
uint16_t lms = ms ;
|
|
|
|
while (lms > 0) {
|
|
if (((uint16_t)micros() - start) >= 1000) {
|
|
lms--;
|
|
start += 1000;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Delay for the given number of microseconds. Assumes a 8 or 16 MHz clock. */
|
|
void delayMicroseconds(unsigned int us)
|
|
{
|
|
// calling avrlib's delay_us() function with low values (e.g. 1 or
|
|
// 2 microseconds) gives delays longer than desired.
|
|
//delay_us(us);
|
|
|
|
// for the 16 MHz clock on most Arduino boards
|
|
|
|
// for a one-microsecond delay, simply return. the overhead
|
|
// of the function call yields a delay of approximately 1 1/8 us.
|
|
if (--us == 0)
|
|
return;
|
|
|
|
// the following loop takes a quarter of a microsecond (4 cycles)
|
|
// per iteration, so execute it four times for each microsecond of
|
|
// delay requested.
|
|
us <<= 2;
|
|
|
|
// account for the time taken in the preceeding commands.
|
|
us -= 2;
|
|
|
|
// busy wait
|
|
__asm__ __volatile__ (
|
|
"1: sbiw %0,1" "\n\t" // 2 cycles
|
|
"brne 1b" : "=w" (us) : "0" (us) // 2 cycles
|
|
);
|
|
}
|
|
|
|
void init()
|
|
{
|
|
// this needs to be called before setup() or some functions won't
|
|
// work there
|
|
sei();
|
|
}
|
|
|
|
/**************************/
|
|
/**************************/
|
|
/** Interrupt routines **/
|
|
/**************************/
|
|
/**************************/
|
|
|
|
//PPM
|
|
#ifdef XMEGA
|
|
ISR(PORTD_INT0_vect)
|
|
#else
|
|
ISR(INT1_vect)
|
|
#endif
|
|
{ // Interrupt on PPM pin
|
|
static int8_t chan=-1;
|
|
static uint16_t Prev_TCNT1=0;
|
|
uint16_t Cur_TCNT1;
|
|
|
|
#ifdef XMEGA
|
|
Cur_TCNT1 = TCC1.CNT - Prev_TCNT1 ; // Capture current Timer1 value
|
|
#else
|
|
Cur_TCNT1=TCNT1-Prev_TCNT1; // Capture current Timer1 value
|
|
#endif
|
|
if(Cur_TCNT1<1000)
|
|
chan=-1; // bad frame
|
|
else
|
|
if(Cur_TCNT1>4840)
|
|
{
|
|
chan=0; // start of frame
|
|
PPM_FLAG_on; // full frame present (even at startup since PPM_data has been initialized)
|
|
}
|
|
else
|
|
if(chan!=-1) // need to wait for start of frame
|
|
{ //servo values between 500us and 2420us will end up here
|
|
uint16_t a = Cur_TCNT1>>1;
|
|
if(a<PPM_MIN) a=PPM_MIN;
|
|
else if(a>PPM_MAX) a=PPM_MAX;
|
|
PPM_data[chan]=a;
|
|
if(chan++>=NUM_CHN)
|
|
chan=-1; // don't accept any new channels
|
|
}
|
|
Prev_TCNT1+=Cur_TCNT1;
|
|
}
|
|
|
|
//Serial RX
|
|
#ifdef XMEGA
|
|
ISR(USARTC0_RXC_vect)
|
|
#else
|
|
ISR(USART_RX_vect)
|
|
#endif
|
|
{ // RX interrupt
|
|
#ifdef XMEGA
|
|
if((USARTC0.STATUS & 0x1C)==0) // Check frame error, data overrun and parity error
|
|
#else
|
|
if((UCSR0A&0x1C)==0) // Check frame error, data overrun and parity error
|
|
#endif
|
|
{ // received byte is ok to process
|
|
if(idx==0)
|
|
{ // Let's try to sync at this point
|
|
#ifdef XMEGA
|
|
if(USARTC0.DATA==0x55) // If 1st byte is 0x55 it looks ok
|
|
#else
|
|
if(UDR0==0x55) // If 1st byte is 0x55 it looks ok
|
|
#endif
|
|
{
|
|
idx++;
|
|
#ifdef XMEGA
|
|
TCC1.CCB = TCC1.CNT+(6500L) ; // Full message should be received within timer of 3250us
|
|
TCC1.INTFLAGS = TC1_CCBIF_bm ; // clear OCR1B match flag
|
|
TCC1.INTCTRLB = (TCC1.INTCTRLB & 0xF3) | 0x04 ; // enable interrupt on compare B match
|
|
#else
|
|
OCR1B=TCNT1+6500L; // Full message should be received within timer of 3250us
|
|
TIFR1=(1<<OCF1B); // clear OCR1B match flag
|
|
TIMSK1 |=(1<<OCIE1B); // enable interrupt on compare B match
|
|
#endif
|
|
}
|
|
}
|
|
else
|
|
{
|
|
#ifdef XMEGA
|
|
rx_buff[(idx++)-1]=USARTC0.DATA; // Store received byte
|
|
#else
|
|
rx_buff[(idx++)-1]=UDR0; // Store received byte
|
|
#endif
|
|
if(idx>RXBUFFER_SIZE)
|
|
{ // A full frame has been received
|
|
#ifdef XMEGA
|
|
TCC1.INTCTRLB &=0xF3; // disable interrupt on compare B match
|
|
#else
|
|
TIMSK1 &=~(1<<OCIE1B); // disable interrupt on compare B match
|
|
#endif
|
|
if(!IS_RX_FLAG_on)
|
|
{ //Good frame received and main has finished with previous buffer
|
|
for(idx=0;idx<RXBUFFER_SIZE;idx++)
|
|
rx_ok_buff[idx]=rx_buff[idx]; // Duplicate the buffer
|
|
RX_FLAG_on; // flag for main to process servo data
|
|
}
|
|
idx=0; // start again
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
#ifdef XMEGA
|
|
idx = USARTC0.DATA ; // Dummy read
|
|
#else
|
|
idx=UDR0; // Dummy read
|
|
#endif
|
|
idx=0; // Error encountered discard full frame...
|
|
}
|
|
}
|
|
|
|
//Serial timer
|
|
#ifdef XMEGA
|
|
ISR(TCC1_CCB_vect)
|
|
#else
|
|
ISR(TIMER1_COMPB_vect)
|
|
#endif
|
|
{ // Timer1 compare B interrupt
|
|
idx=0;
|
|
}
|
|
|
|
#if defined(TELEMETRY)
|
|
//Serial TX
|
|
|
|
#ifdef XMEGA
|
|
ISR(USARTC0_DRE_vect)
|
|
#else
|
|
ISR(USART_UDRE_vect)
|
|
#endif
|
|
{ // Transmit interrupt
|
|
if(tx_head!=tx_tail)
|
|
{
|
|
if(++tx_tail>=TXBUFFER_SIZE)//head
|
|
tx_tail=0;
|
|
#ifdef XMEGA
|
|
USARTC0.DATA = tx_buff[tx_tail] ;
|
|
#else
|
|
UDR0=tx_buff[tx_tail];
|
|
#endif
|
|
}
|
|
if (tx_tail == tx_head)
|
|
#ifdef XMEGA
|
|
USARTC0.CTRLA &= ~0x03 ;
|
|
#else
|
|
UCSR0B &= ~(1<<UDRIE0); // Check if all data is transmitted . if yes disable transmitter UDRE interrupt
|
|
#endif
|
|
}
|
|
#endif
|