502 lines
12 KiB
C++

/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(WK2x01_CYRF6936_INO)
#include "iface_cyrf6936.h"
#define WK_BIND_COUNT 2980
#define WK_NUM_WAIT_LOOPS (100 / 5) //each loop is ~5us. Do not wait more than 100us
enum {
WK_BIND=0,
WK_BOUND_1,
WK_BOUND_2,
WK_BOUND_3,
WK_BOUND_4,
WK_BOUND_5,
WK_BOUND_6,
WK_BOUND_7,
WK_BOUND_8,
};
static const uint8_t WK_sopcodes[8] = {
/* Note these are in order transmitted (LSB 1st) */
0xDF,0xB1,0xC0,0x49,0x62,0xDF,0xC1,0x49 //0x49C1DF6249C0B1DF
};
static const uint8_t init_2801[] = {0xc5, 0x34, 0x60, 0x00, 0x25};
static const uint8_t init_2601[] = {0xb9, 0x45, 0xb0, 0xf1, 0x3a};
static const uint8_t init_2401[] = {0xa5, 0x23, 0xd0, 0xf0, 0x00};
uint8_t WK_last_beacon;
static void __attribute__((unused)) WK_add_pkt_crc(uint8_t init)
{
uint8_t add = init;
uint8_t xou = init;
for (uint8_t i = 0; i < 14; i++)
{
add += packet[i];
xou ^= packet[i];
}
packet[14] = xou;
packet[15] = add;
}
static void __attribute__((unused)) WK_build_bind_pkt(const uint8_t *init)
{
packet[0] = init[0];
packet[1] = init[1];
packet[2] = hopping_frequency[0];
packet[3] = hopping_frequency[1];
packet[4] = init[2];
packet[5] = hopping_frequency[2];
packet[6] = 0xff;
packet[7] = 0x00;
packet[8] = 0x00;
packet[9] = 0x32;
if (sub_protocol == WK2401)
packet[10] = 0x10 | (rx_tx_addr[0] & 0x0e);
else
packet[10] = rx_tx_addr[0];
packet[11] = rx_tx_addr[1];
packet[12] = rx_tx_addr[2] | packet_count;
packet[13] = init[3];
WK_add_pkt_crc(init[4]);
}
static int16_t __attribute__((unused)) WK_get_channel(uint8_t ch, int32_t scale, int16_t center, int16_t range)
{
int16_t value = convert_channel_16b_nolimit(CH_AETR[ch],-scale,scale)+center;
if (value < center - range) value = center - range;
if (value > center + range) value = center + range;
return value;
}
static void __attribute__((unused)) WK_build_data_pkt_2401()
{
uint16_t msb = 0;
uint8_t offset = 0;
for (uint8_t i = 0; i < 4; i++)
{
if (i == 2)
offset = 1;
int16_t value = WK_get_channel(i, 0x800, 0, 0xA00); //12 bits, allow value to go to 125%
uint16_t base = abs(value) >> 2; //10 bits is the base value
uint16_t trim = abs(value) & 0x03; //lowest 2 bits represent trim
if (base >= 0x200)
{ //if value is > 100%, remainder goes to trim
trim = 4 *(base - 0x200);
base = 0x1ff;
}
base = (value >= 0) ? 0x200 + base : 0x200 - base;
trim = (value >= 0) ? 0x200 + trim : 0x200 - trim;
packet[2*i+offset] = base & 0xff;
packet[2*i+offset+1] = trim & 0xff;
msb = (msb << 4) | ((base >> 6) & 0x0c) | ((trim >> 8) & 0x03);
}
packet[4] = msb >> 8; //Ele/Ail MSB
packet[9] = msb & 0xff; //Thr/Rud MSB
packet[10] = 0xe0 | (rx_tx_addr[0] & 0x0e);
packet[11] = rx_tx_addr[1];
packet[12] = rx_tx_addr[2] | packet_count;
packet[13] = 0xf0; //FIXME - What is this?
WK_add_pkt_crc(0x00);
}
#define PCT(pct, max) (((int32_t)(max) * (int32_t)(pct) + 1L) / 1000L)
#define MAXTHR 426 //Measured to provide equal value at +/-0
static void __attribute__((unused)) WK_channels_6plus1_2601(uint8_t frame, int16_t *_v1, int16_t *_v2)
{
int16_t thr = WK_get_channel(2, 1000, 0, 1000);
int16_t v1;
uint8_t thr_rev = 0, pitch_rev = 0;
if(thr > 0)
{
if(thr >= 780)
{ //78%
v1 = 0; //thr = 60% * (x - 78%) / 22% + 40%
thr = PCT(1000-MAXTHR,512) * (thr-PCT(780,1000)) / PCT(220,1000) + PCT(MAXTHR,512);
}
else
{
v1 = 1023 - 1023 * thr / 780;
thr = PCT(MAXTHR, 512); //40%
}
}
else
{
thr = -thr;
thr_rev = 1;
if(thr >= 780)
{ //78%
v1 = 1023; //thr = 60% * (x - 78%) / 22% + 40%
thr = PCT(1000-MAXTHR,512) * (thr-PCT(780,1000)) / PCT(220,1000) + PCT(MAXTHR,512);
}
else
{
v1 = 1023 * thr / 780;
thr = PCT(MAXTHR, 512); //40%
}
}
if (thr >= 512)
thr = 511;
packet[2] = thr & 0xff;
packet[4] = (packet[4] & 0xF3) | ((thr >> 6) & 0x04);
int16_t pitch= WK_get_channel(5, 0x400, 0, 0x400);
if (pitch < 0)
{
pitch_rev = 1;
pitch = -pitch;
}
if (frame == 1)
{
//Pitch curve and range
if (thr > PCT(MAXTHR, 512))
*_v2 = pitch - pitch * 16 * (thr - PCT(MAXTHR, 512)) / PCT(1000 - MAXTHR, 512) / 100;
else
*_v2 = pitch;
*_v1 = 0;
}
else
if (frame == 2)
{
//Throttle curve & Expo
*_v1 = v1;
*_v2 = 512;
}
packet[7] = (thr_rev << 5) | (pitch_rev << 2); //reverse bits
packet[8] = 0;
}
static void __attribute__((unused)) WK_channels_5plus1_2601(uint8_t frame, int16_t *v1, int16_t *v2)
{
(void)v1;
//Zero out pitch, provide ail, ele, thr, rud, gyr + gear
if (frame == 1)
*v2 = 0; //Pitch curve and range
packet[7] = 0;
packet[8] = 0;
}
static void __attribute__((unused)) WK_channels_heli_2601(uint8_t frame, int16_t *v1, int16_t *v2)
{
//pitch is controlled by rx
//we can only control fmode, pit-reverse and pit/thr rate
uint8_t pit_rev = 0;
if (sub_protocol==W6_HEL_I)
pit_rev = 1;
int16_t pit_rate = WK_get_channel(5, 0x400, 0, 0x400);
uint8_t fmode = 1;
if (pit_rate < 0)
{
pit_rate = -pit_rate;
fmode = 0;
}
if (frame == 1)
{
//Pitch curve and range
*v1 = pit_rate;
*v2 = (int16_t)(option) * 0x400 / 100 + 0x400;
}
packet[7] = (pit_rev << 2); //reverse bits
packet[8] = fmode ? 0x02 : 0x00;
}
static void __attribute__((unused)) WK_build_data_pkt_2601()
{
uint8_t msb = 0;
uint8_t frame = (packet_count % 3);
for (uint8_t i = 0; i < 4; i++)
{
int16_t value = WK_get_channel(i, 0x190, 0, 0x1FF);
uint16_t mag = value < 0 ? -value : value;
packet[i] = mag & 0xff;
msb = (msb << 2) | ((mag >> 8) & 0x01) | (value < 0 ? 0x02 : 0x00);
}
packet[4] = msb;
int16_t v1 = 0x200, v2 = 0x200;
if (frame == 0)
{
//Gyro & Rudder mix
v1 = WK_get_channel(6, 0x200, 0x200, 0x200);
v2 = 0;
}
if (sub_protocol == W6_5_1)
WK_channels_5plus1_2601(frame, &v1, &v2);
else if (sub_protocol == W6_6_1)
WK_channels_6plus1_2601(frame, &v1, &v2);
else
WK_channels_heli_2601(frame, &v1, &v2);
if (v1 > 1023)
v1 = 1023;
if (v2 > 1023)
v2 = 1023;
packet[5] = v2 & 0xff;
packet[6] = v1 & 0xff;
//packet[7] handled by channel code
packet[8] |= (WK_get_channel(4, 0x190, 0, 0x1FF) > 0 ? 1 : 0);
packet[9] = ((v1 >> 4) & 0x30) | ((v2 >> 2) & 0xc0) | 0x04 | frame;
packet[10] = rx_tx_addr[0];
packet[11] = rx_tx_addr[1];
packet[12] = rx_tx_addr[2] | packet_count;
packet[13] = 0xff;
WK_add_pkt_crc(0x3A);
}
static void __attribute__((unused)) WK_build_data_pkt_2801()
{
uint16_t msb = 0;
uint8_t offset = 0;
uint8_t sign = 0;
for (uint8_t i = 0; i < 8; i++)
{
if (i == 4) { offset = 1; }
int16_t value = WK_get_channel(i, 0x1C2, 0, 0x3FF);
uint16_t mag = value < 0 ? -value : value;
packet[i+offset] = mag & 0xff;
msb = (msb << 2) | ((mag >> 8) & 0x03);
if (value < 0) { sign |= 1 << i; }
}
packet[4] = msb >> 8;
packet[9] = msb & 0xff;
packet[10] = rx_tx_addr[0];
packet[11] = rx_tx_addr[1];
packet[12] = rx_tx_addr[2] | packet_count;
packet[13] = sign;
WK_add_pkt_crc(0x25);
}
static void __attribute__((unused)) WK_build_beacon_pkt_2801()
{
WK_last_beacon ^= 1;
uint8_t en = 0;
uint8_t bind_state;
#ifdef ENABLE_PPM
if(mode_select && option==0 && IS_BIND_DONE) //PPM mode and option not already set and bind is finished
{
BIND_SET_INPUT;
BIND_SET_PULLUP; // set pullup
if(IS_BIND_BUTTON_on)
{
eeprom_write_byte((EE_ADDR)(MODELMODE_EEPROM_OFFSET+RX_num),0x01); // Set fixed id mode for the current model
option=1;
}
BIND_SET_OUTPUT;
}
#endif //ENABLE_PPM
if(prev_option!=option && IS_BIND_DONE)
{
set_rx_tx_addr(MProtocol_id);
rx_tx_addr[2]=rx_tx_addr[3]<<4; // Make use of RX_num
bind_counter = WK_BIND_COUNT / 8 + 1;
}
if (option)
{
if (bind_counter)
bind_state = 0xe4;
else
bind_state = 0x1b;
}
else
bind_state = 0x99;
for (uint8_t i = 0; i < 4; i++)
{
#ifdef FAILSAFE_ENABLE
uint16_t failsafe=Failsafe_data[CH_AETR[i + WK_last_beacon * 4]];
if(failsafe!=FAILSAFE_CHANNEL_HOLD && IS_FAILSAFE_VALUES_on)
{
packet[i+1] = failsafe>>3; //0..255
en |= 1 << i;
}
else
#endif
packet[i+1] = 0;
}
packet[0] = en;
packet[5] = packet[4];
packet[4] = WK_last_beacon << 6;
packet[6] = hopping_frequency[0];
packet[7] = hopping_frequency[1];
packet[8] = hopping_frequency[2];
packet[9] = bind_state;
packet[10] = rx_tx_addr[0];
packet[11] = rx_tx_addr[1];
packet[12] = rx_tx_addr[2] | packet_count;
packet[13] = 0x00; //Does this matter? in the docs it is the same as the data packet
WK_add_pkt_crc(0x1C);
}
static void __attribute__((unused)) wk2x01_cyrf_init() {
/* Initialize CYRF chip */
CYRF_SetPower(0x28);
CYRF_WriteRegister(CYRF_06_RX_CFG, 0x4A);
CYRF_WriteRegister(CYRF_0B_PWR_CTRL, 0x00);
CYRF_WriteRegister(CYRF_0C_XTAL_CTRL, 0xC0);
CYRF_WriteRegister(CYRF_0D_IO_CFG, 0x04);
CYRF_WriteRegister(CYRF_0F_XACT_CFG, 0x2C);
CYRF_WriteRegister(CYRF_10_FRAMING_CFG, 0xEE);
CYRF_WriteRegister(CYRF_1B_TX_OFFSET_LSB, 0x55);
CYRF_WriteRegister(CYRF_1C_TX_OFFSET_MSB, 0x05);
CYRF_WriteRegister(CYRF_1D_MODE_OVERRIDE, 0x18);
CYRF_WriteRegister(CYRF_32_AUTO_CAL_TIME, 0x3C);
CYRF_WriteRegister(CYRF_35_AUTOCAL_OFFSET, 0x14);
CYRF_WriteRegister(CYRF_1E_RX_OVERRIDE, 0x90);
CYRF_WriteRegister(CYRF_1F_TX_OVERRIDE, 0x00);
CYRF_WriteRegister(CYRF_01_TX_LENGTH, 0x10);
CYRF_WriteRegister(CYRF_0F_XACT_CFG, 0x2C);
CYRF_WriteRegister(CYRF_28_CLK_EN, 0x02);
CYRF_WriteRegister(CYRF_27_CLK_OVERRIDE, 0x02);
CYRF_ConfigSOPCode(WK_sopcodes);
CYRF_WriteRegister(CYRF_0F_XACT_CFG, 0x28);
CYRF_WriteRegister(CYRF_1E_RX_OVERRIDE, 0x10);
CYRF_WriteRegister(CYRF_0E_GPIO_CTRL, 0x20);
CYRF_WriteRegister(CYRF_0F_XACT_CFG, 0x2C);
}
static void __attribute__((unused)) WK_BuildPacket_2801()
{
switch(phase) {
case WK_BIND:
bind_counter--;
WK_build_bind_pkt(init_2801);
if (bind_counter == 0)
{
BIND_DONE;
phase++;
}
break;
case WK_BOUND_1:
case WK_BOUND_2:
case WK_BOUND_3:
case WK_BOUND_4:
case WK_BOUND_5:
case WK_BOUND_6:
case WK_BOUND_7:
WK_build_data_pkt_2801();
phase++;
break;
case WK_BOUND_8:
WK_build_beacon_pkt_2801();
phase = WK_BOUND_1;
if (bind_counter)
{
bind_counter--;
if (bind_counter == 0)
BIND_DONE;
}
break;
}
}
static void __attribute__((unused)) WK_BuildPacket_2601()
{
if (bind_counter)
{
bind_counter--;
WK_build_bind_pkt(init_2601);
if (bind_counter == 0)
BIND_DONE;
}
else
WK_build_data_pkt_2601();
}
static void __attribute__((unused)) WK_BuildPacket_2401()
{
if (bind_counter)
{
bind_counter--;
WK_build_bind_pkt(init_2401);
if(bind_counter == 0)
BIND_DONE;
}
else
WK_build_data_pkt_2401();
}
uint16_t WK_cb()
{
if (packet_sent == 0)
{
packet_sent = 1;
if(sub_protocol == WK2801)
WK_BuildPacket_2801();
else if(sub_protocol == WK2401)
WK_BuildPacket_2401();
else
WK_BuildPacket_2601();
packet_count = (packet_count + 1) % 12;
CYRF_WriteDataPacket(packet);
return 1600;
}
packet_sent = 0;
uint8_t start=micros();
while ((uint8_t)micros()-start < 100) // Wait max 100µs
if(CYRF_ReadRegister(CYRF_04_TX_IRQ_STATUS) & 0x02)
break;
if((packet_count & 0x03) == 0)
{
hopping_frequency_no++;
hopping_frequency_no%=3;
CYRF_ConfigRFChannel(hopping_frequency[hopping_frequency_no]);
//Keep transmit power updated
CYRF_SetPower(0x28);
}
return 1200;
}
uint16_t WK_setup()
{
wk2x01_cyrf_init();
CYRF_SetTxRxMode(TX_EN);
hopping_frequency_no=0;
CYRF_FindBestChannels(hopping_frequency, 3, 4, 4, 80);
CYRF_ConfigRFChannel(hopping_frequency[0]);
packet_count = 0;
packet_sent = 0;
WK_last_beacon = 0;
prev_option=option;
if(sub_protocol!=WK2801 || option==0)
{
CYRF_GetMfgData(cyrfmfg_id);
rx_tx_addr[2]=(hopping_frequency[0] ^ cyrfmfg_id[0] ^ cyrfmfg_id[3])<<4;
rx_tx_addr[1]=hopping_frequency[1] ^ cyrfmfg_id[1] ^ cyrfmfg_id[4];
rx_tx_addr[0]=hopping_frequency[2] ^ cyrfmfg_id[2] ^ cyrfmfg_id[5];
if(sub_protocol == WK2401)
rx_tx_addr[0] |= 0x01; //ID must be odd for 2401
bind_counter = WK_BIND_COUNT;
phase = WK_BIND;
BIND_IN_PROGRESS;
}
else
{
rx_tx_addr[2]=rx_tx_addr[3]<<4; // Make use of RX_num
bind_counter = 0;
phase = WK_BOUND_1;
BIND_DONE;
}
return 2800;
}
#endif