1293 lines
34 KiB
C++

/*********************************************************
Multiprotocol Tx code
by Midelic and Pascal Langer(hpnuts)
http://www.rcgroups.com/forums/showthread.php?t=2165676
https://github.com/pascallanger/DIY-Multiprotocol-TX-Module/edit/master/README.md
Thanks to PhracturedBlue, Hexfet, Goebish, Victzh and all protocol developers
Ported from deviation firmware
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#include <avr/pgmspace.h>
//#define DEBUG_TX
#include "Multiprotocol.h"
//Multiprotocol module configuration file
#include "_Config.h"
#include "Pins.h"
#include "TX_Def.h"
#include "Validate.h"
#ifndef STM32_BOARD
#include <avr/eeprom.h>
#else
#include <arduino.h>
#include <libmaple/usart.h>
#include <libmaple/timer.h>
#include <SPI.h>
#include <EEPROM.h>
HardwareTimer timer(2);
void PPM_decode();
void ISR_COMPB();
extern "C"
{
void __irq_usart2(void);
void __irq_usart3(void);
}
#endif
//Global constants/variables
uint32_t MProtocol_id;//tx id,
uint32_t MProtocol_id_master;
uint32_t blink=0,last_signal=0;
//
uint16_t counter;
uint8_t channel;
uint8_t packet[40];
#define NUM_CHN 16
// Servo data
uint16_t Servo_data[NUM_CHN];
uint8_t Servo_AUX;
uint16_t servo_max_100,servo_min_100,servo_max_125,servo_min_125;
uint16_t servo_mid;
// Protocol variables
uint8_t cyrfmfg_id[6];//for dsm2 and devo
uint8_t rx_tx_addr[5];
uint8_t rx_id[4];
uint8_t phase;
uint16_t bind_counter;
uint8_t bind_phase;
uint8_t binding_idx;
uint16_t packet_period;
uint8_t packet_count;
uint8_t packet_sent;
uint8_t packet_length;
uint8_t hopping_frequency[50];
uint8_t *hopping_frequency_ptr;
uint8_t hopping_frequency_no=0;
uint8_t rf_ch_num;
uint8_t throttle, rudder, elevator, aileron;
uint8_t flags;
uint16_t crc;
uint8_t crc8;
uint16_t seed;
//
uint16_t state;
uint8_t len;
uint8_t RX_num;
#if defined(FRSKYX_CC2500_INO) || defined(SFHSS_CC2500_INO)
uint8_t calData[48];
#endif
//Channel mapping for protocols
const uint8_t CH_AETR[]={AILERON, ELEVATOR, THROTTLE, RUDDER, AUX1, AUX2, AUX3, AUX4, AUX5, AUX6, AUX7, AUX8, AUX9, AUX10};
const uint8_t CH_TAER[]={THROTTLE, AILERON, ELEVATOR, RUDDER, AUX1, AUX2, AUX3, AUX4, AUX5, AUX6, AUX7, AUX8};
const uint8_t CH_RETA[]={RUDDER, ELEVATOR, THROTTLE, AILERON, AUX1, AUX2, AUX3, AUX4, AUX5, AUX6, AUX7, AUX8};
const uint8_t CH_EATR[]={ELEVATOR, AILERON, THROTTLE, RUDDER, AUX1, AUX2, AUX3, AUX4, AUX5, AUX6, AUX7, AUX8};
// Mode_select variables
uint8_t mode_select;
uint8_t protocol_flags=0,protocol_flags2=0;
// PPM variable
volatile uint16_t PPM_data[NUM_CHN];
#ifndef ORANGE_TX
//Random variable
volatile uint32_t gWDT_entropy=0;
#endif
//Serial protocol
uint8_t sub_protocol;
uint8_t protocol;
uint8_t option;
uint8_t cur_protocol[3];
uint8_t prev_option;
uint8_t prev_power=0xFD; // unused power value
//Serial RX variables
#define BAUD 100000
#define RXBUFFER_SIZE 26
volatile uint8_t rx_buff[RXBUFFER_SIZE];
volatile uint8_t rx_ok_buff[RXBUFFER_SIZE];
volatile uint8_t discard_frame = 0;
// Telemetry
#define MAX_PKT 29
uint8_t pkt[MAX_PKT];//telemetry receiving packets
#if defined(TELEMETRY)
#ifdef INVERT_TELEMETRY
#if not defined(ORANGE_TX) && not defined(STM32_BOARD)
// enable bit bash for serial
#define BASH_SERIAL 1
#endif
#define INVERT_SERIAL 1
#endif
uint8_t pass = 0;
uint8_t pktt[MAX_PKT];//telemetry receiving packets
#ifndef BASH_SERIAL
#define TXBUFFER_SIZE 32
volatile uint8_t tx_buff[TXBUFFER_SIZE];
volatile uint8_t tx_head=0;
volatile uint8_t tx_tail=0;
#endif // BASH_SERIAL
uint8_t v_lipo1;
uint8_t v_lipo2;
uint8_t RX_RSSI;
uint8_t TX_RSSI;
uint8_t RX_LQI;
uint8_t TX_LQI;
uint8_t telemetry_link=0;
uint8_t telemetry_counter=0;
uint8_t telemetry_lost;
#endif
// Callback
typedef uint16_t (*void_function_t) (void);//pointer to a function with no parameters which return an uint16_t integer
void_function_t remote_callback = 0;
// Init
void setup()
{
// General pinout
#ifdef ORANGE_TX
//XMEGA
PORTD.OUTSET = 0x17 ;
PORTD.DIRSET = 0xB2 ;
PORTD.DIRCLR = 0x4D ;
PORTD.PIN0CTRL = 0x18 ;
PORTD.PIN2CTRL = 0x18 ;
PORTE.DIRSET = 0x01 ;
PORTE.DIRCLR = 0x02 ;
// Timer1 config
// TCC1 16-bit timer, clocked at 0.5uS
EVSYS.CH3MUX = 0x80 + 0x04 ; // Prescaler of 16
TCC1.CTRLB = 0; TCC1.CTRLC = 0; TCC1.CTRLD = 0; TCC1.CTRLE = 0;
TCC1.INTCTRLA = 0; TIMSK1 = 0;
TCC1.PER = 0xFFFF ;
TCNT1 = 0 ;
TCC1.CTRLA = 0x0B ; // Event3 (prescale of 16)
#elif defined STM32_BOARD
//STM32
pinMode(A7105_CSN_pin,OUTPUT);
pinMode(CC25_CSN_pin,OUTPUT);
pinMode(NRF_CSN_pin,OUTPUT);
pinMode(CYRF_CSN_pin,OUTPUT);
pinMode(CYRF_RST_pin,OUTPUT);
pinMode(PE1_pin,OUTPUT);
pinMode(PE2_pin,OUTPUT);
#if defined TELEMETRY
pinMode(TX_INV_pin,OUTPUT);
pinMode(RX_INV_pin,OUTPUT);
#if defined INVERT_SERIAL
TX_INV_on;//activated inverter for both serial TX and RX signals
RX_INV_on;
#else
TX_INV_off;
RX_INV_off;
#endif
#endif
pinMode(BIND_pin,INPUT_PULLUP);
pinMode(PPM_pin,INPUT);
pinMode(S1_pin,INPUT_PULLUP);//dial switch
pinMode(S2_pin,INPUT_PULLUP);
pinMode(S3_pin,INPUT_PULLUP);
pinMode(S4_pin,INPUT_PULLUP);
//Random pins
pinMode(PB0, INPUT_ANALOG); // set up pin for analog input
pinMode(PB1, INPUT_ANALOG); // set up pin for analog input
//select the counter clock.
start_timer2();//0.5us
#else
//ATMEGA328p
// all inputs
DDRB=0x00;DDRC=0x00;DDRD=0x00;
// outputs
SDI_output;
SCLK_output;
#ifdef A7105_INSTALLED
A7105_CSN_output;
#endif
#ifdef CC2500_INSTALLED
CC25_CSN_output;
#endif
#ifdef CYRF6936_INSTALLED
CYRF_RST_output;
CYRF_CSN_output;
#endif
#ifdef NRF24L01_INSTALLED
NRF_CSN_output;
#endif
PE1_output;
PE2_output;
SERIAL_TX_output;
// pullups
MODE_DIAL1_port |= _BV(MODE_DIAL1_pin);
MODE_DIAL2_port |= _BV(MODE_DIAL2_pin);
MODE_DIAL3_port |= _BV(MODE_DIAL3_pin);
MODE_DIAL4_port |= _BV(MODE_DIAL4_pin);
BIND_port |= _BV(BIND_pin);
// Timer1 config
TCCR1A = 0;
TCCR1B = (1 << CS11); //prescaler8, set timer1 to increment every 0.5us(16Mhz) and start timer
// Random
random_init();
#endif
// Set Chip selects
#ifdef A7105_INSTALLED
A7105_CSN_on;
#endif
#ifdef CC2500_INSTALLED
CC25_CSN_on;
#endif
#ifdef CYRF6936_INSTALLED
CYRF_CSN_on;
#endif
#ifdef NRF24L01_INSTALLED
NRF_CSN_on;
#endif
// Set SPI lines
#ifdef STM32_BOARD
initSPI2();
#else
SDI_on;
SCLK_off;
#endif
// Set servos positions
for(uint8_t i=0;i<NUM_CHN;i++)
Servo_data[i]=1500;
Servo_data[THROTTLE]=servo_min_100;
#ifdef ENABLE_PPM
memcpy((void *)PPM_data,Servo_data, sizeof(Servo_data));
#endif
//Wait for every component to start
delayMilliseconds(100);
// Read status of bind button
if( IS_BIND_BUTTON_on )
BIND_BUTTON_FLAG_on; // If bind button pressed save the status for protocol id reset under hubsan
// Read status of mode select binary switch
// after this mode_select will be one of {0000, 0001, ..., 1111}
#ifndef ENABLE_PPM
mode_select = MODE_SERIAL ; // force serial mode
#elif defined STM32_BOARD
mode_select= 0x0F -(uint8_t)(((GPIOA->regs->IDR)>>4)&0x0F);
#else
mode_select =
((MODE_DIAL1_ipr & _BV(MODE_DIAL1_pin)) ? 0 : 1) +
((MODE_DIAL2_ipr & _BV(MODE_DIAL2_pin)) ? 0 : 2) +
((MODE_DIAL3_ipr & _BV(MODE_DIAL3_pin)) ? 0 : 4) +
((MODE_DIAL4_ipr & _BV(MODE_DIAL4_pin)) ? 0 : 8);
#endif
// Update LED
LED_off;
LED_output;
//Init RF modules
modules_reset();
#ifndef ORANGE_TX
//Init the seed with a random value created from watchdog timer for all protocols requiring random values
#ifdef STM32_BOARD
randomSeed((uint32_t)analogRead(PB0) << 10 | analogRead(PB1));
#else
randomSeed(random_value());
#endif
#endif
// Read or create protocol id
MProtocol_id_master=random_id(10,false);
#ifdef ENABLE_PPM
//Protocol and interrupts initialization
if(mode_select != MODE_SERIAL)
{ // PPM
mode_select--;
protocol = PPM_prot[mode_select].protocol;
cur_protocol[1] = protocol;
sub_protocol = PPM_prot[mode_select].sub_proto;
RX_num = PPM_prot[mode_select].rx_num;
option = PPM_prot[mode_select].option;
if(PPM_prot[mode_select].power) POWER_FLAG_on;
if(PPM_prot[mode_select].autobind) AUTOBIND_FLAG_on;
mode_select++;
servo_max_100=PPM_MAX_100; servo_min_100=PPM_MIN_100;
servo_max_125=PPM_MAX_125; servo_min_125=PPM_MIN_125;
protocol_init();
#ifndef STM32_BOARD
//Configure PPM interrupt
#if PPM_pin == 2
EICRA |= _BV(ISC01); // The rising edge of INT0 pin D2 generates an interrupt request
EIMSK |= _BV(INT0); // INT0 interrupt enable
#elif PPM_pin == 3
EICRA |= _BV(ISC11); // The rising edge of INT1 pin D3 generates an interrupt request
EIMSK |= _BV(INT1); // INT1 interrupt enable
#else
#error PPM pin can only be 2 or 3
#endif
#else
attachInterrupt(PPM_pin,PPM_decode,FALLING);
#endif
#if defined(TELEMETRY)
PPM_Telemetry_serial_init();// Configure serial for telemetry
#endif
}
else
#endif //ENABLE_PPM
{ // Serial
#ifdef ENABLE_SERIAL
for(uint8_t i=0;i<3;i++)
cur_protocol[i]=0;
protocol=0;
servo_max_100=SERIAL_MAX_100; servo_min_100=SERIAL_MIN_100;
servo_max_125=SERIAL_MAX_125; servo_min_125=SERIAL_MIN_125;
Mprotocol_serial_init(); // Configure serial and enable RX interrupt
#endif //ENABLE_SERIAL
}
servo_mid=servo_min_100+servo_max_100; //In fact 2* mid_value
}
// Main
// Protocol scheduler
void loop()
{
uint16_t next_callback,diff=0xFFFF;
while(1)
{
if(remote_callback==0 || diff>2*200)
{
do
{
Update_All();
}
while(remote_callback==0);
}
#ifndef STM32_BOARD
if( (TIFR1 & OCF1A_bm) != 0)
{
cli(); // Disable global int due to RW of 16 bits registers
OCR1A=TCNT1; // Callback should already have been called... Use "now" as new sync point.
sei(); // Enable global int
}
else
while((TIFR1 & OCF1A_bm) == 0); // Wait before callback
#else
if((TIMER2_BASE->SR & TIMER_SR_CC1IF)!=0)
{
cli();
OCR1A = TCNT1;
sei();
}
else
while((TIMER2_BASE->SR & TIMER_SR_CC1IF )==0); // Wait before callback
#endif
do
{
TX_MAIN_PAUSE_on;
tx_pause();
if(IS_INPUT_SIGNAL_on && remote_callback!=0)
next_callback=remote_callback();
else
next_callback=2000; // No PPM/serial signal check again in 2ms...
TX_MAIN_PAUSE_off;
tx_resume();
while(next_callback>4000)
{ // start to wait here as much as we can...
next_callback-=2000; // We will wait below for 2ms
cli(); // Disable global int due to RW of 16 bits registers
OCR1A += 2000*2 ; // set compare A for callback
#ifndef STM32_BOARD
TIFR1=OCF1A_bm; // clear compare A=callback flag
#else
TIMER2_BASE->SR &= ~TIMER_SR_CC1IF; //clear compare Flag
#endif
sei(); // enable global int
if(Update_All()) // Protocol changed?
{
next_callback=0; // Launch new protocol ASAP
break;
}
#ifndef STM32_BOARD
while((TIFR1 & OCF1A_bm) == 0); // wait 2ms...
#else
while((TIMER2_BASE->SR & TIMER_SR_CC1IF)==0);//2ms wait
#endif
}
// at this point we have a maximum of 4ms in next_callback
next_callback *= 2 ;
cli(); // Disable global int due to RW of 16 bits registers
OCR1A+= next_callback ; // set compare A for callback
#ifndef STM32_BOARD
TIFR1=OCF1A_bm; // clear compare A=callback flag
#else
TIMER2_BASE->SR &= ~TIMER_SR_CC1IF; //clear compare Flag write zero
#endif
diff=OCR1A-TCNT1; // compare timer and comparator
sei(); // enable global int
}
while(diff&0x8000); // Callback did not took more than requested time for next callback
// so we can launch Update_All before next callback
}
}
uint8_t Update_All()
{
#ifdef ENABLE_SERIAL
if(mode_select==MODE_SERIAL && IS_RX_FLAG_on) // Serial mode and something has been received
{
update_serial_data(); // Update protocol and data
INPUT_SIGNAL_on; //valid signal received
last_signal=millis();
}
#endif //ENABLE_SERIAL
#ifdef ENABLE_PPM
if(mode_select!=MODE_SERIAL && IS_PPM_FLAG_on) // PPM mode and a full frame has been received
{
for(uint8_t i=0;i<NUM_CHN;i++)
{ // update servo data without interrupts to prevent bad read in protocols
uint16_t temp_ppm ;
cli(); // disable global int
temp_ppm = PPM_data[i] ;
sei(); // enable global int
if(temp_ppm<PPM_MIN_125) temp_ppm=PPM_MIN_125;
else if(temp_ppm>PPM_MAX_125) temp_ppm=PPM_MAX_125;
Servo_data[i]= temp_ppm ;
}
PPM_FLAG_off; // wait for next frame before update
INPUT_SIGNAL_on; //valid signal received
last_signal=millis();
}
#endif //ENABLE_PPM
update_channels_aux();
#ifdef ENABLE_BIND_CH
if(IS_AUTOBIND_FLAG_on && IS_BIND_CH_PREV_off && Servo_data[BIND_CH-1]>PPM_MAX_COMMAND && Servo_data[THROTTLE]<(servo_min_100+25))
{ // Autobind is on and BIND_CH went up and Throttle is low
CHANGE_PROTOCOL_FLAG_on; //reload protocol to rebind
BIND_CH_PREV_on;
}
if(IS_BIND_CH_PREV_on && Servo_data[BIND_CH-1]<PPM_MIN_COMMAND)
BIND_CH_PREV_off;
#endif //ENABLE_BIND_CH
if(IS_CHANGE_PROTOCOL_FLAG_on)
{ // Protocol needs to be changed or relaunched for bind
LED_off; //led off during protocol init
modules_reset(); //reset all modules
protocol_init(); //init new protocol
return 1;
}
#if defined(TELEMETRY)
#if ( !( defined(MULTI_TELEMETRY) || defined(MULTI_STATUS) ) )
if((protocol==MODE_FRSKYD) || (protocol==MODE_BAYANG) || (protocol==MODE_HUBSAN) || (protocol==MODE_AFHDS2A) || (protocol==MODE_FRSKYX) || (protocol==MODE_DSM) )
#endif
TelemetryUpdate();
#endif
update_led_status();
return 0;
}
// Update channels direction and Servo_AUX flags based on servo AUX positions
static void update_channels_aux(void)
{
//Reverse channels direction
#ifdef REVERSE_AILERON
Servo_data[AILERON]=servo_mid-Servo_data[AILERON];
#endif
#ifdef REVERSE_ELEVATOR
Servo_data[ELEVATOR]=servo_mid-Servo_data[ELEVATOR];
#endif
#ifdef REVERSE_THROTTLE
Servo_data[THROTTLE]=servo_mid-Servo_data[THROTTLE];
#endif
#ifdef REVERSE_RUDDER
Servo_data[RUDDER]=servo_mid-Servo_data[RUDDER];
#endif
//Calc AUX flags
Servo_AUX=0;
for(uint8_t i=0;i<8;i++)
if(Servo_data[AUX1+i]>PPM_SWITCH)
Servo_AUX|=1<<i;
}
// Update led status based on binding and serial
static void update_led_status(void)
{
if(IS_INPUT_SIGNAL_on)
if(millis()-last_signal>70)
INPUT_SIGNAL_off; //no valid signal (PPM or Serial) received for 70ms
if(blink<millis())
{
if(IS_INPUT_SIGNAL_off)
{
if(mode_select==MODE_SERIAL)
blink+=BLINK_SERIAL_TIME; //blink slowly if no valid serial input
else
blink+=BLINK_PPM_TIME; //blink more slowly if no valid PPM input
}
else
if(remote_callback == 0)
{ // Invalid protocol
if(IS_LED_on) //flash to indicate invalid protocol
blink+=BLINK_BAD_PROTO_TIME_LOW;
else
blink+=BLINK_BAD_PROTO_TIME_HIGH;
}
else
{
if(IS_BIND_DONE_on)
LED_off; //bind completed force led on
blink+=BLINK_BIND_TIME; //blink fastly during binding
}
LED_toggle;
}
}
inline void tx_pause()
{
#ifdef TELEMETRY
// Pause telemetry by disabling transmitter interrupt
#ifdef ORANGE_TX
USARTC0.CTRLA &= ~0x03 ;
#else
#ifndef BASH_SERIAL
#ifdef STM32_BOARD
USART3_BASE->CR1 &= ~ USART_CR1_TXEIE;
#else
UCSR0B &= ~_BV(UDRIE0);
#endif
#endif
#endif
#endif
}
inline void tx_resume()
{
#ifdef TELEMETRY
// Resume telemetry by enabling transmitter interrupt
if(!IS_TX_PAUSE_on)
{
#ifdef ORANGE_TX
cli() ;
USARTC0.CTRLA = (USARTC0.CTRLA & 0xFC) | 0x01 ;
sei() ;
#else
#ifndef BASH_SERIAL
#ifdef STM32_BOARD
USART3_BASE->CR1 |= USART_CR1_TXEIE;
#else
UCSR0B |= _BV(UDRIE0);
#endif
#else
resumeBashSerial();
#endif
#endif
}
#endif
}
#ifdef STM32_BOARD
void start_timer2()
{
// Pause the timer while we're configuring it
timer.pause();
TIMER2_BASE->PSC = 35; //36-1;for 72 MHZ /0.5sec/(35+1)
TIMER2_BASE->ARR = 0xFFFF; //count till max
timer.setMode(TIMER_CH1, TIMER_OUTPUT_COMPARE);
timer.setMode(TIMER_CH2, TIMER_OUTPUT_COMPARE);
// Refresh the timer's count, prescale, and overflow
timer.refresh();
timer.resume();
}
#endif
// Protocol start
static void protocol_init()
{
uint16_t next_callback=0; // Default is immediate call back
remote_callback = 0;
CHANGE_PROTOCOL_FLAG_off;
// reset telemetry
#ifdef TELEMETRY
tx_pause();
pass=0;
telemetry_link=0;
telemetry_lost=1;
#ifndef BASH_SERIAL
tx_tail=0;
tx_head=0;
#endif
TX_RX_PAUSE_off;
TX_MAIN_PAUSE_off;
#endif
//Set global ID and rx_tx_addr
MProtocol_id = RX_num + MProtocol_id_master;
set_rx_tx_addr(MProtocol_id);
blink=millis();
if(IS_BIND_BUTTON_FLAG_on)
AUTOBIND_FLAG_on;
if(IS_AUTOBIND_FLAG_on)
BIND_IN_PROGRESS; // Indicates bind in progress for blinking bind led
else
BIND_DONE;
PE1_on; //NRF24L01 antenna RF3 by default
PE2_off; //NRF24L01 antenna RF3 by default
switch(protocol) // Init the requested protocol
{
#ifdef A7105_INSTALLED
#if defined(FLYSKY_A7105_INO)
case MODE_FLYSKY:
PE1_off; //antenna RF1
next_callback = initFlySky();
remote_callback = ReadFlySky;
break;
#endif
#if defined(AFHDS2A_A7105_INO)
case MODE_AFHDS2A:
PE1_off; //antenna RF1
next_callback = initAFHDS2A();
remote_callback = ReadAFHDS2A;
break;
#endif
#if defined(HUBSAN_A7105_INO)
case MODE_HUBSAN:
PE1_off; //antenna RF1
if(IS_BIND_BUTTON_FLAG_on) random_id(10,true); // Generate new ID if bind button is pressed.
next_callback = initHubsan();
remote_callback = ReadHubsan;
break;
#endif
#endif
#ifdef CC2500_INSTALLED
#if defined(FRSKYD_CC2500_INO)
case MODE_FRSKYD:
PE1_off; //antenna RF2
PE2_on;
next_callback = initFrSky_2way();
remote_callback = ReadFrSky_2way;
break;
#endif
#if defined(FRSKYV_CC2500_INO)
case MODE_FRSKYV:
PE1_off; //antenna RF2
PE2_on;
next_callback = initFRSKYV();
remote_callback = ReadFRSKYV;
break;
#endif
#if defined(FRSKYX_CC2500_INO)
case MODE_FRSKYX:
PE1_off; //antenna RF2
PE2_on;
next_callback = initFrSkyX();
remote_callback = ReadFrSkyX;
break;
#endif
#if defined(SFHSS_CC2500_INO)
case MODE_SFHSS:
PE1_off; //antenna RF2
PE2_on;
next_callback = initSFHSS();
remote_callback = ReadSFHSS;
break;
#endif
#endif
#ifdef CYRF6936_INSTALLED
#if defined(DSM_CYRF6936_INO)
case MODE_DSM:
PE2_on; //antenna RF4
next_callback = initDsm();
//Servo_data[2]=1500;//before binding
remote_callback = ReadDsm;
break;
#endif
#if defined(DEVO_CYRF6936_INO)
case MODE_DEVO:
#ifdef ENABLE_PPM
if(mode_select) //PPM mode
{
if(IS_BIND_BUTTON_FLAG_on)
{
eeprom_write_byte((EE_ADDR)(30+mode_select),0x00); // reset to autobind mode for the current model
option=0;
}
else
{
option=eeprom_read_byte((EE_ADDR)(30+mode_select)); // load previous mode: autobind or fixed id
if(option!=1) option=0; // if not fixed id mode then it should be autobind
}
}
#endif //ENABLE_PPM
PE2_on; //antenna RF4
next_callback = DevoInit();
remote_callback = devo_callback;
break;
#endif
#if defined(WK2x01_CYRF6936_INO)
case MODE_WK2x01:
#ifdef ENABLE_PPM
if(mode_select) //PPM mode
{
if(IS_BIND_BUTTON_FLAG_on)
{
eeprom_write_byte((EE_ADDR)(30+mode_select),0x00); // reset to autobind mode for the current model
option=0;
}
else
{
option=eeprom_read_byte((EE_ADDR)(30+mode_select)); // load previous mode: autobind or fixed id
if(option!=1) option=0; // if not fixed id mode then it should be autobind
}
}
#endif //ENABLE_PPM
PE2_on; //antenna RF4
next_callback = WK_setup();
remote_callback = WK_cb;
break;
#endif
#if defined(J6PRO_CYRF6936_INO)
case MODE_J6PRO:
PE2_on; //antenna RF4
next_callback = initJ6Pro();
remote_callback = ReadJ6Pro;
break;
#endif
#endif
#ifdef NRF24L01_INSTALLED
#if defined(HISKY_NRF24L01_INO)
case MODE_HISKY:
next_callback=initHiSky();
remote_callback = hisky_cb;
break;
#endif
#if defined(V2X2_NRF24L01_INO)
case MODE_V2X2:
next_callback = initV2x2();
remote_callback = ReadV2x2;
break;
#endif
#if defined(YD717_NRF24L01_INO)
case MODE_YD717:
next_callback=initYD717();
remote_callback = yd717_callback;
break;
#endif
#if defined(KN_NRF24L01_INO)
case MODE_KN:
next_callback = initKN();
remote_callback = kn_callback;
break;
#endif
#if defined(SYMAX_NRF24L01_INO)
case MODE_SYMAX:
next_callback = initSymax();
remote_callback = symax_callback;
break;
#endif
#if defined(SLT_NRF24L01_INO)
case MODE_SLT:
next_callback=initSLT();
remote_callback = SLT_callback;
break;
#endif
#if defined(CX10_NRF24L01_INO)
case MODE_Q2X2:
sub_protocol|=0x08; // Increase the number of sub_protocols for CX-10
case MODE_CX10:
next_callback=initCX10();
remote_callback = CX10_callback;
break;
#endif
#if defined(CG023_NRF24L01_INO)
case MODE_CG023:
next_callback=initCG023();
remote_callback = CG023_callback;
break;
#endif
#if defined(BAYANG_NRF24L01_INO)
case MODE_BAYANG:
next_callback=initBAYANG();
remote_callback = BAYANG_callback;
break;
#endif
#if defined(ESKY_NRF24L01_INO)
case MODE_ESKY:
next_callback=initESKY();
remote_callback = ESKY_callback;
break;
#endif
#if defined(MT99XX_NRF24L01_INO)
case MODE_MT99XX:
next_callback=initMT99XX();
remote_callback = MT99XX_callback;
break;
#endif
#if defined(MJXQ_NRF24L01_INO)
case MODE_MJXQ:
next_callback=initMJXQ();
remote_callback = MJXQ_callback;
break;
#endif
#if defined(SHENQI_NRF24L01_INO)
case MODE_SHENQI:
next_callback=initSHENQI();
remote_callback = SHENQI_callback;
break;
#endif
#if defined(FY326_NRF24L01_INO)
case MODE_FY326:
next_callback=initFY326();
remote_callback = FY326_callback;
break;
#endif
#if defined(FQ777_NRF24L01_INO)
case MODE_FQ777:
next_callback=initFQ777();
remote_callback = FQ777_callback;
break;
#endif
#if defined(ASSAN_NRF24L01_INO)
case MODE_ASSAN:
next_callback=initASSAN();
remote_callback = ASSAN_callback;
break;
#endif
#if defined(HONTAI_NRF24L01_INO)
case MODE_HONTAI:
next_callback=initHONTAI();
remote_callback = HONTAI_callback;
break;
#endif
#if defined(Q303_NRF24L01_INO)
case MODE_Q303:
next_callback=initQ303();
remote_callback = Q303_callback;
break;
#endif
#endif
}
if(next_callback>32000)
{ // next_callback should not be more than 32767 so we will wait here...
uint16_t temp=(next_callback>>10)-2;
delayMilliseconds(temp);
next_callback-=temp<<10; // between 2-3ms left at this stage
}
cli(); // disable global int
OCR1A = TCNT1 + next_callback*2; // set compare A for callback
sei(); // enable global int
#ifndef STM32_BOARD
TIFR1 = OCF1A_bm ; // clear compare A flag
#else
TIMER2_BASE->SR &= ~TIMER_SR_CC1IF; //clear compare Flag write zero
#endif
BIND_BUTTON_FLAG_off; // do not bind/reset id anymore even if protocol change
}
void update_serial_data()
{
RX_DONOTUPDTAE_on;
RX_FLAG_off; //data is being processed
if(rx_ok_buff[1]&0x20) //check range
RANGE_FLAG_on;
else
RANGE_FLAG_off;
if(rx_ok_buff[1]&0xC0) //check autobind(0x40) & bind(0x80) together
AUTOBIND_FLAG_on;
else
AUTOBIND_FLAG_off;
if(rx_ok_buff[2]&0x80) //if rx_ok_buff[2] ==1,power is low ,0-power high
POWER_FLAG_off; //power low
else
POWER_FLAG_on; //power high
option=rx_ok_buff[3];
if( (rx_ok_buff[0] != cur_protocol[0]) || ((rx_ok_buff[1]&0x5F) != (cur_protocol[1]&0x5F)) || ( (rx_ok_buff[2]&0x7F) != (cur_protocol[2]&0x7F) ) )
{ // New model has been selected
CHANGE_PROTOCOL_FLAG_on; //change protocol
protocol=(rx_ok_buff[0]==0x55?0:32) + (rx_ok_buff[1]&0x1F); //protocol no (0-63) bits 4-6 of buff[1] and bit 0 of buf[0]
sub_protocol=(rx_ok_buff[2]>>4)& 0x07; //subprotocol no (0-7) bits 4-6
RX_num=rx_ok_buff[2]& 0x0F; // rx_num bits 0---3
}
else
if( ((rx_ok_buff[1]&0x80)!=0) && ((cur_protocol[1]&0x80)==0) ) // Bind flag has been set
CHANGE_PROTOCOL_FLAG_on; //restart protocol with bind
else
CHANGE_PROTOCOL_FLAG_off; //no need to restart
//store current protocol values
for(uint8_t i=0;i<3;i++)
cur_protocol[i] = rx_ok_buff[i];
// decode channel values
volatile uint8_t *p=rx_ok_buff+3;
uint8_t dec=-3;
for(uint8_t i=0;i<NUM_CHN;i++)
{
dec+=3;
if(dec>=8)
{
dec-=8;
p++;
}
p++;
Servo_data[i]=((((*((uint32_t *)p))>>dec)&0x7FF)*5)/8+860; //value range 860<->2140 -125%<->+125%
}
RX_DONOTUPDTAE_off;
#ifdef ORANGE_TX
cli();
#else
UCSR0B &= ~_BV(RXCIE0); // RX interrupt disable
#endif
if(IS_RX_MISSED_BUFF_on) // If the buffer is still valid
{ memcpy((void*)rx_ok_buff,(const void*)rx_buff,RXBUFFER_SIZE);// Duplicate the buffer
RX_FLAG_on; // data to be processed next time...
RX_MISSED_BUFF_off;
}
#ifdef ORANGE_TX
sei();
#else
UCSR0B |= _BV(RXCIE0) ; // RX interrupt enable
#endif
}
void modules_reset()
{
#ifdef CC2500_INSTALLED
CC2500_Reset();
#endif
#ifdef A7105_INSTALLED
A7105_Reset();
#endif
#ifdef CYRF6936_INSTALLED
CYRF_Reset();
#endif
#ifdef NRF24L01_INSTALLED
NRF24L01_Reset();
#endif
//Wait for every component to reset
delayMilliseconds(100);
prev_power=0xFD; // unused power value
}
void Mprotocol_serial_init()
{
#ifdef ORANGE_TX
PORTC.OUTSET = 0x08 ;
PORTC.DIRSET = 0x08 ;
USARTC0.BAUDCTRLA = 19 ;
USARTC0.BAUDCTRLB = 0 ;
USARTC0.CTRLB = 0x18 ;
USARTC0.CTRLA = (USARTC0.CTRLA & 0xCF) | 0x10 ;
USARTC0.CTRLC = 0x2B ;
UDR0 ;
#ifdef INVERT_SERIAL
PORTC.PIN3CTRL |= 0x40 ;
#endif
#elif defined STM32_BOARD
usart2_begin(100000,SERIAL_8E2);
usart3_begin(100000,SERIAL_8E2);
USART2_BASE->CR1 |= USART_CR1_PCE_BIT;
USART3_BASE->CR1 &= ~ USART_CR1_RE;//disable
USART2_BASE->CR1 &= ~ USART_CR1_TE;//disable transmit
#else
//ATMEGA328p
#include <util/setbaud.h>
UBRR0H = UBRRH_VALUE;
UBRR0L = UBRRL_VALUE;
UCSR0A = 0 ; // Clear X2 bit
//Set frame format to 8 data bits, even parity, 2 stop bits
UCSR0C = _BV(UPM01)|_BV(USBS0)|_BV(UCSZ01)|_BV(UCSZ00);
while ( UCSR0A & (1 << RXC0) )//flush receive buffer
UDR0;
//enable reception and RC complete interrupt
UCSR0B = _BV(RXEN0)|_BV(RXCIE0);//rx enable and interrupt
#ifndef DEBUG_TX
#if defined(TELEMETRY)
initTXSerial( SPEED_100K ) ;
#endif //TELEMETRY
#endif //DEBUG_TX
#endif //ORANGE_TX
}
#if defined(TELEMETRY)
void PPM_Telemetry_serial_init()
{
if( (protocol==MODE_FRSKYD) || (protocol==MODE_HUBSAN) || (protocol==MODE_AFHDS2A) || (protocol==MODE_BAYANG) )
initTXSerial( SPEED_9600 ) ;
if(protocol==MODE_FRSKYX)
initTXSerial( SPEED_57600 ) ;
if(protocol==MODE_DSM)
initTXSerial( SPEED_125K ) ;
}
#endif
// Convert 32b id to rx_tx_addr
static void set_rx_tx_addr(uint32_t id)
{ // Used by almost all protocols
rx_tx_addr[0] = (id >> 24) & 0xFF;
rx_tx_addr[1] = (id >> 16) & 0xFF;
rx_tx_addr[2] = (id >> 8) & 0xFF;
rx_tx_addr[3] = (id >> 0) & 0xFF;
rx_tx_addr[4] = (rx_tx_addr[2]&0xF0)|(rx_tx_addr[3]&0x0F);
}
#if not defined (ORANGE_TX) && not defined (STM32_BOARD)
static void random_init(void)
{
cli(); // Temporarily turn off interrupts, until WDT configured
MCUSR = 0; // Use the MCU status register to reset flags for WDR, BOR, EXTR, and POWR
WDTCSR |= _BV(WDCE); // WDT control register, This sets the Watchdog Change Enable (WDCE) flag, which is needed to set the prescaler
WDTCSR = _BV(WDIE); // Watchdog interrupt enable (WDIE)
sei(); // Turn interupts on
}
static uint32_t random_value(void)
{
while (!gWDT_entropy);
return gWDT_entropy;
}
#endif
static uint32_t random_id(uint16_t adress, uint8_t create_new)
{
uint32_t id=0;
if(eeprom_read_byte((EE_ADDR)(adress+10))==0xf0 && !create_new)
{ // TXID exists in EEPROM
for(uint8_t i=4;i>0;i--)
{
id<<=8;
id|=eeprom_read_byte((EE_ADDR)adress+i-1);
}
if(id!=0x2AD141A7) //ID with seed=0
return id;
}
// Generate a random ID
#if defined STM32_BOARD
#define STM32_UUID ((uint32_t *)0x1FFFF7E8)
if (!create_new)
id = STM32_UUID[0] ^ STM32_UUID[1] ^ STM32_UUID[2];
#else
id = random(0xfefefefe) + ((uint32_t)random(0xfefefefe) << 16);
#endif
for(uint8_t i=0;i<4;i++)
{
eeprom_write_byte((EE_ADDR)adress+i,id);
id>>=8;
}
eeprom_write_byte((EE_ADDR)(adress+10),0xf0);//write bind flag in eeprom.
return id;
}
/**************************/
/**************************/
/** Interrupt routines **/
/**************************/
/**************************/
//PPM
#ifdef ENABLE_PPM
#ifdef ORANGE_TX
#if PPM_pin == 2
ISR(PORTD_INT0_vect)
#else
ISR(PORTD_INT1_vect)
#endif
#elif defined STM32_BOARD
void PPM_decode()
#else
#if PPM_pin == 2
ISR(INT0_vect, ISR_NOBLOCK)
#else
ISR(INT1_vect, ISR_NOBLOCK)
#endif
#endif
{ // Interrupt on PPM pin
static int8_t chan=0,bad_frame=1;
static uint16_t Prev_TCNT1=0;
uint16_t Cur_TCNT1;
Cur_TCNT1 = TCNT1 - Prev_TCNT1 ; // Capture current Timer1 value
if(Cur_TCNT1<1000)
bad_frame=1; // bad frame
else
if(Cur_TCNT1>4840)
{ //start of frame
if(chan>3)
PPM_FLAG_on; // good frame received if at least 4 channels have been seen
chan=0; // reset channel counter
bad_frame=0;
}
else
if(bad_frame==0) // need to wait for start of frame
{ //servo values between 500us and 2420us will end up here
PPM_data[chan]= Cur_TCNT1>>1;;
if(chan++>=NUM_CHN)
bad_frame=1; // don't accept any new channels
}
Prev_TCNT1+=Cur_TCNT1;
}
#endif //ENABLE_PPM
//Serial RX
#ifdef ENABLE_SERIAL
#ifdef ORANGE_TX
ISR(USARTC0_RXC_vect)
#elif defined STM32_BOARD
void __irq_usart2()
#else
ISR(USART_RX_vect)
#endif
{ // RX interrupt
static uint8_t idx=0;
#ifdef ORANGE_TX
if((USARTC0.STATUS & 0x1C)==0) // Check frame error, data overrun and parity error
#elif defined STM32_BOARD
if((USART2_BASE->SR & USART_SR_RXNE) && (USART2_BASE->SR &0x0F)==0)
#else
UCSR0B &= ~_BV(RXCIE0) ; // RX interrupt disable
sei() ;
if((UCSR0A&0x1C)==0) // Check frame error, data overrun and parity error
#endif
{ // received byte is ok to process
if(idx==0||discard_frame==1)
{ // Let's try to sync at this point
idx=0;discard_frame=0;
RX_MISSED_BUFF_off; // If rx_buff was good it's not anymore...
rx_buff[0]=UDR0;
if((rx_buff[0]&0xFE)==0x54) // If 1st byte is 0x54 or 0x55 it looks ok
{
TX_RX_PAUSE_on;
tx_pause();
#if defined STM32_BOARD
uint16_t OCR1B;
OCR1B =TCNT1+(6500L);
timer.setCompare(TIMER_CH2,OCR1B);
timer.attachCompare2Interrupt(ISR_COMPB);
#else
OCR1B = TCNT1+(6500L) ; // Full message should be received within timer of 3250us
TIFR1 = OCF1B_bm ; // clear OCR1B match flag
SET_TIMSK1_OCIE1B ; // enable interrupt on compare B match
#endif
idx++;
}
}
else
{
rx_buff[idx++]=UDR0; // Store received byte
if(idx>=RXBUFFER_SIZE)
{ // A full frame has been received
if(!IS_RX_DONOTUPDTAE_on)
{ //Good frame received and main is not working on the buffer
memcpy((void*)rx_ok_buff,(const void*)rx_buff,RXBUFFER_SIZE);// Duplicate the buffer
RX_FLAG_on; // flag for main to process servo data
}
else
RX_MISSED_BUFF_on; // notify that rx_buff is good
discard_frame=1; // start again
}
}
}
else
{
idx=UDR0; // Dummy read
discard_frame=1; // Error encountered discard full frame...
}
if(discard_frame==1)
{
#ifdef STM32_BOARD
detachInterrupt(2); // Disable interrupt on ch2
#else
CLR_TIMSK1_OCIE1B; // Disable interrupt on compare B match
#endif
TX_RX_PAUSE_off;
tx_resume();
}
#if not defined (ORANGE_TX) && not defined (STM32_BOARD)
cli() ;
UCSR0B |= _BV(RXCIE0) ; // RX interrupt enable
#endif
}
//Serial timer
#ifdef ORANGE_TX
ISR(TCC1_CCB_vect)
#elif defined STM32_BOARD
void ISR_COMPB()
#else
ISR(TIMER1_COMPB_vect, ISR_NOBLOCK )
#endif
{ // Timer1 compare B interrupt
discard_frame=1;
#ifdef STM32_BOARD
detachInterrupt(2); // Disable interrupt on ch2
#else
CLR_TIMSK1_OCIE1B; // Disable interrupt on compare B match
#endif
tx_resume();
}
#endif //ENABLE_SERIAL
#if not defined (ORANGE_TX) && not defined (STM32_BOARD)
// Random interrupt service routine called every time the WDT interrupt is triggered.
// It is only enabled at startup to generate a seed.
ISR(WDT_vect)
{
static uint8_t gWDT_buffer_position=0;
#define gWDT_buffer_SIZE 32
static uint8_t gWDT_buffer[gWDT_buffer_SIZE];
gWDT_buffer[gWDT_buffer_position] = TCNT1L; // Record the Timer 1 low byte (only one needed)
gWDT_buffer_position++; // every time the WDT interrupt is triggered
if (gWDT_buffer_position >= gWDT_buffer_SIZE)
{
// The following code is an implementation of Jenkin's one at a time hash
for(uint8_t gWDT_loop_counter = 0; gWDT_loop_counter < gWDT_buffer_SIZE; ++gWDT_loop_counter)
{
gWDT_entropy += gWDT_buffer[gWDT_loop_counter];
gWDT_entropy += (gWDT_entropy << 10);
gWDT_entropy ^= (gWDT_entropy >> 6);
}
gWDT_entropy += (gWDT_entropy << 3);
gWDT_entropy ^= (gWDT_entropy >> 11);
gWDT_entropy += (gWDT_entropy << 15);
WDTCSR = 0; // Disable Watchdog interrupt
}
}
#endif