2018-01-03 13:04:58 +01:00

264 lines
7.3 KiB
C++

/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// Last sync with hexfet new_protocols/hisky_nrf24l01.c dated 2015-03-27
#if defined(HISKY_NRF24L01_INO)
#include "iface_nrf24l01.h"
#define HISKY_BIND_COUNT 1000
#define HISKY_TXID_SIZE 5
#define HISKY_FREQUENCE_NUM 20
//
uint8_t bind_buf_arry[4][10];
// HiSky protocol uses TX id as an address for nRF24L01, and uses frequency hopping sequence
// which does not depend on this id and is passed explicitly in binding sequence. So we are free
// to generate this sequence as we wish. It should be in the range [02..77]
static void __attribute__((unused)) calc_fh_channels()
{
uint8_t idx = 0;
uint32_t rnd = MProtocol_id;
while (idx < HISKY_FREQUENCE_NUM)
{
uint8_t i;
uint8_t count_2_26 = 0, count_27_50 = 0, count_51_74 = 0;
rnd = rnd * 0x0019660D + 0x3C6EF35F; // Randomization
// Use least-significant byte. 73 is prime, so channels 76..77 are unused
uint8_t next_ch = ((rnd >> 8) % 73) + 2;
// Keep the distance 2 between the channels - either odd or even
if (((next_ch ^ (uint8_t)rx_tx_addr[3]) & 0x01 )== 0)
continue;
// Check that it's not duplicated and spread uniformly
for (i = 0; i < idx; i++) {
if(hopping_frequency[i] == next_ch)
break;
if(hopping_frequency[i] <= 26)
count_2_26++;
else if (hopping_frequency[i] <= 50)
count_27_50++;
else
count_51_74++;
}
if (i != idx)
continue;
if ( (next_ch <= 26 && count_2_26 < 8) || (next_ch >= 27 && next_ch <= 50 && count_27_50 < 8) || (next_ch >= 51 && count_51_74 < 8) )
hopping_frequency[idx++] = next_ch;//find hopping frequency
}
}
static void __attribute__((unused)) build_binding_packet(void)
{
uint8_t i;
uint16_t sum=0;
uint8_t sum_l,sum_h;
for(i=0;i<5;i++)
sum += rx_tx_addr[i];
sum_l = (uint8_t)sum;//low byte
sum >>= 8;
sum_h = (uint8_t)sum;//high bye
bind_buf_arry[0][0] = 0xff;
bind_buf_arry[0][1] = 0xaa;
bind_buf_arry[0][2] = 0x55;
for(i=3;i<8;i++)
bind_buf_arry[0][i] = rx_tx_addr[i-3];
for(i=1;i<4;i++)
{
bind_buf_arry[i][0] = sum_l;
bind_buf_arry[i][1] = sum_h;
bind_buf_arry[i][2] = i-1;
}
for(i=0;i<7;i++)
{ bind_buf_arry[1][i+3] = hopping_frequency[i];
bind_buf_arry[2][i+3] = hopping_frequency[i+7];
bind_buf_arry[3][i+3] = hopping_frequency[i+14];
}
}
static void __attribute__((unused)) hisky_init()
{
NRF24L01_Initialize();
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowledgement
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable p0 rx
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x03); // 5-byte RX/TX address (byte -2)
NRF24L01_WriteReg(NRF24L01_05_RF_CH, 81); // binding packet must be set in channel 81
NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, rx_tx_addr, 5);
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, rx_tx_addr, 5);
NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, 10); // payload size = 10
if(sub_protocol==HK310)
NRF24L01_SetBitrate(NRF24L01_BR_250K); // 250Kbps
else
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps
NRF24L01_SetPower(); // Set power
NRF24L01_SetTxRxMode(TX_EN); // TX mode, 2-bytes CRC, radio on
}
// HiSky channel sequence: AILE ELEV THRO RUDD GEAR PITCH, channel data value is from 0 to 1000
// Channel 7 - Gyro mode, 0 - 6 axis, 3 - 3 axis
static void __attribute__((unused)) build_ch_data()
{
uint16_t temp;
uint8_t i,j;
for (i = 0; i< 8; i++) {
j=CH_AETR[i];
temp=map(limit_channel_100(j),servo_min_100,servo_max_100,0,1000);
if (j == THROTTLE) // It is clear that hisky's throttle stick is made reversely, so I adjust it here on purpose
temp = 1000 -temp;
if (j == AUX3)
temp = temp < 400 ? 0 : 3; // Gyro mode, 0 - 6 axis, 3 - 3 axis
packet[i] = (uint8_t)(temp&0xFF);
packet[i<4?8:9]>>=2;
packet[i<4?8:9]|=(temp>>2)&0xc0;
}
}
uint16_t hisky_cb()
{
phase++;
if(sub_protocol==HK310)
switch(phase)
{
case 1:
NRF24L01_SetPower();
phase=2;
break;
case 3:
if (! bind_counter)
NRF24L01_WritePayload(packet,10); // 2 packets per 5ms
break;
case 4:
phase=6;
break;
case 7: // build packet
#ifdef FAILSAFE_ENABLE
if(IS_FAILSAFE_VALUES_on && hopping_frequency_no==0)
{ // send failsafe every 100ms
convert_failsafe_HK310(RUDDER, &packet[0],&packet[1]);
convert_failsafe_HK310(THROTTLE,&packet[2],&packet[3]);
convert_failsafe_HK310(AUX1, &packet[4],&packet[5]);
packet[7]=0xAA;
packet[8]=0x5A;
}
else
#endif
{
convert_channel_HK310(RUDDER, &packet[0],&packet[1]);
convert_channel_HK310(THROTTLE,&packet[2],&packet[3]);
convert_channel_HK310(AUX1, &packet[4],&packet[5]);
packet[7]=0x55;
packet[8]=0x67;
}
phase=8;
break;
}
switch(phase)
{
case 1:
NRF24L01_FlushTx();
break;
case 2:
if (bind_counter != 0)
{
//Set TX id and channel for bind packet
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, (uint8_t *)"\x12\x23\x23\x45\x78", 5);
NRF24L01_WriteReg(NRF24L01_05_RF_CH, 81);
}
break;
case 3:
if (bind_counter != 0)
{
bind_counter--;//
if (! bind_counter) //Binding complete
BIND_DONE;//
//Send bind packet
NRF24L01_WritePayload(bind_buf_arry[binding_idx],10);
binding_idx++;
if (binding_idx >= 4)
binding_idx = 0;
}
break;
case 4:
if (bind_counter != 0)
NRF24L01_FlushTx();
break;
case 5:
//Set TX power
NRF24L01_SetPower();
break;
case 6:
//Set TX id and channel for normal packet
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, rx_tx_addr, 5);
NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency[hopping_frequency_no]);
hopping_frequency_no++;
if (hopping_frequency_no >= HISKY_FREQUENCE_NUM)
hopping_frequency_no = 0;
break;
case 7:
//Build normal packet
build_ch_data();
break;
case 8:
break;
default:
//Send normal packet
phase = 0;
NRF24L01_WritePayload(packet,10);
break;
}
return 1000; // send 1 binding packet and 1 data packet per 9ms
}
static void __attribute__((unused)) initialize_tx_id()
{
//Generate frequency hopping table
if(sub_protocol==HK310)
{
// for HiSky surface protocol, the transmitter always generates hop channels in sequential order.
// The transmitter only generates the first hop channel between 0 and 49. So the channel range is from 0 to 69.
hopping_frequency_no=rx_tx_addr[0]%50;
for(uint8_t i=0;i<HISKY_FREQUENCE_NUM;i++)
hopping_frequency[i]=hopping_frequency_no++; // Sequential order hop channels...
}
else
calc_fh_channels();
}
uint16_t initHiSky()
{
initialize_tx_id();
build_binding_packet();
hisky_init();
phase = 0;
hopping_frequency_no = 0;
binding_idx = 0;
if(IS_BIND_IN_PROGRESS)
bind_counter = HISKY_BIND_COUNT;
else
bind_counter = 0;
return 1000;
}
#endif