Jon Sturm 630c4925db Enable Telemetry on DumbRC receivers
Tested with X6FGv1.1, X6FP, X6DC(G)v1.1

I also tested with multiple X6F receivers and some gave RSSI Telem and some gave nothing.
2 of them had the same PCB as the X6FP and neither gave telemetry.
I had a third with the same PCB with the X6FP which did give RSSI
and of my two with an older PCB one gives RSSI telem and the other does not.

Of the receivers I tried only one set packet_in[6] to match the TX packet[1] and it was the
oldest receiver of the ones I own.
2025-05-09 18:36:12 -05:00

438 lines
11 KiB
C++

/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// Radiolink surface protocol. TXs: RC4GS,RC6GS. Compatible RXs:R7FG(Std),R6FG,R6F,R8EF,R8FM,R8F,R4FGM
#if defined(RLINK_CC2500_INO)
#include "iface_cc2500.h"
//#define RLINK_DEBUG
//#define RLINK_DEBUG_TELEM
//#define RLINK_FORCE_ID
//#define RLINK_RC4G_FORCE_ID
#define RLINK_TX_PACKET_LEN 33
#define RLINK_RX_PACKET_LEN 15
#define RLINK_TX_ID_LEN 4
#define RLINK_HOP 16
enum {
RLINK_DATA = 0x00,
RLINK_RX1 = 0x01,
RLINK_RX2 = 0x02,
};
uint32_t RLINK_rand1;
uint32_t RLINK_rand2;
static uint32_t __attribute__((unused)) RLINK_prng_next(uint32_t r)
{
return 0xA5E2A705 * r + 0x754DB79B;
}
static void __attribute__((unused)) RLINK_init_random(uint32_t id)
{
uint32_t result = id;
RLINK_rand2 = result;
for (uint8_t i=0; i<31; i++)
result = RLINK_prng_next(result);
RLINK_rand1 = result;
}
static uint8_t __attribute__((unused)) RLINK_next_random_swap()
{
uint8_t result = (RLINK_rand2 >> 16) + RLINK_rand2 + (RLINK_rand1 >> 16) + RLINK_rand1;
RLINK_rand2 = RLINK_prng_next(RLINK_rand2);
RLINK_rand1 = RLINK_prng_next(RLINK_rand1);
return result & 0x0F;
}
static uint32_t __attribute__((unused)) RLINK_compute_start_id(uint32_t id)
{
return id * 0xF65EF9F9u + 0x2EDDF6CAu;
}
static void __attribute__((unused)) RLINK_shuffle_freqs(uint32_t seed)
{
RLINK_init_random(seed);
for(uint8_t i=0; i<RLINK_HOP; i++)
{
uint8_t r = RLINK_next_random_swap();
uint8_t tmp = hopping_frequency[r];
hopping_frequency[r] = hopping_frequency[i];
hopping_frequency[i] = tmp;
}
}
static void __attribute__((unused)) RLINK_hop()
{
uint8_t inc=3*(rx_tx_addr[0]&3);
// init hop table
for(uint8_t i=0; i<RLINK_HOP; i++)
hopping_frequency[i] = (12*i) + inc;
// shuffle
RLINK_shuffle_freqs(RLINK_compute_start_id(rx_tx_addr[0] + (rx_tx_addr[1] << 8)));
RLINK_shuffle_freqs(RLINK_compute_start_id(rx_tx_addr[2] + (rx_tx_addr[3] << 8)));
// replace one of the channel randomely
rf_ch_num=random(0xfefefefe)%0x11; // 0x00..0x10
if(inc==9) inc=6; // frequency exception
hopping_frequency[rf_ch_num]=12*16+inc;
}
static void __attribute__((unused)) RLINK_TXID_init()
{
#ifdef RLINK_RC4G_FORCE_ID
//TODO: test any ID
if(sub_protocol==RLINK_RC4G)
{
rx_tx_addr[1]=0x77;
rx_tx_addr[2]=0x00;
rx_tx_addr[3]=0x00;
}
#endif
#ifdef RLINK_FORCE_ID
if(sub_protocol==RLINK_SURFACE)
memcpy(rx_tx_addr,"\x3A\x99\x22\x3A",RLINK_TX_ID_LEN); //surface RC6GS
else
memcpy(rx_tx_addr,"\xFC\x11\x0D\x20",RLINK_TX_ID_LEN); //air T8FB
#endif
// channels order depend on ID
if(sub_protocol!=RLINK_RC4G)
RLINK_hop();
else
{//RLINK_RC4G
// Find 2 unused channels
// first channel is a multiple of 3 between 00 and 5D
// second channel is a multiple of 3 between 63 and BD
CC2500_Strobe(CC2500_SIDLE);
CC2500_WriteReg(CC2500_17_MCSM1,0x3C);
CC2500_Strobe(CC2500_SFRX);
CC2500_SetTxRxMode(RX_EN);
CC2500_Strobe(CC2500_SRX);
delayMilliseconds(1); //wait for RX mode
uint16_t val;
uint8_t val_low = 0xFF;
hopping_frequency[0] = 0x00;
hopping_frequency[1] = 0x63;
for(uint8_t ch=0; ch<=0xBD; ch+=3)
{
if(ch==0x63)
val_low = 0xFF; //init for second block
if(ch==0x60)
continue; //skip channel
CC2500_WriteReg(CC2500_0A_CHANNR, ch); //switch channel
delayMicroseconds(370); //wait to read
val = 0;
for(uint8_t i=0;i<16;i++)
val += CC2500_ReadReg(CC2500_34_RSSI | CC2500_READ_BURST);
val >>= 4;
debug("C:%02X RSSI:%02X",ch,val);
if(val_low > val)
{
debug(" OK");
val_low = val;
hopping_frequency[ch<0x63?0:1]=ch; //save best channel
}
debugln("");
}
CC2500_WriteReg(CC2500_17_MCSM1,0x30);
CC2500_Strobe(CC2500_SIDLE);
CC2500_SetTxRxMode(TX_EN);
#ifdef RLINK_RC4G_FORCE_ID
hopping_frequency[0] = 0x03;
hopping_frequency[1] = 0x6F;
#endif
}
#ifdef RLINK_DEBUG
debug("ID:");
for(uint8_t i=0;i<RLINK_TX_ID_LEN;i++)
debug(" 0x%02X",rx_tx_addr[i]);
debugln("");
debug("Hop(%d):", rf_ch_num);
for(uint8_t i=0;i<RLINK_HOP;i++)
debug(" 0x%02X",hopping_frequency[i]);
debugln("");
#endif
}
const PROGMEM uint8_t RLINK_init_values[] = {
/* 00 */ 0x5B, 0x06, 0x5C, 0x07, 0xAB, 0xCD, 0x40, 0x04,
/* 08 */ 0x45, 0x00, 0x00, 0x06, 0x00, 0x5C, 0x62, 0x76,
/* 10 */ 0x7A, 0x7F, 0x13, 0x23, 0xF8, 0x44, 0x07, 0x30,
/* 18 */ 0x18, 0x16, 0x6C, 0x43, 0x40, 0x91, 0x87, 0x6B,
/* 20 */ 0xF8, 0x56, 0x10, 0xA9, 0x0A, 0x00, 0x11
};
static void __attribute__((unused)) RLINK_rf_init()
{
CC2500_Strobe(CC2500_SIDLE);
for (uint8_t i = 0; i < 39; ++i)
CC2500_WriteReg(i, pgm_read_byte_near(&RLINK_init_values[i]));
if(sub_protocol==RLINK_DUMBORC)
{
CC2500_WriteReg(4, 0xBA);
CC2500_WriteReg(5, 0xDC);
}
else if(sub_protocol==RLINK_RC4G)
CC2500_WriteReg(5, 0xA5);
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
CC2500_SetTxRxMode(TX_EN);
}
static void __attribute__((unused)) RLINK_send_packet()
{
static uint32_t pseudo=0;
uint32_t bits = 0;
uint8_t bitsavailable = 0;
uint8_t idx = 6;
CC2500_Strobe(CC2500_SIDLE);
// packet length
packet[0] = RLINK_TX_PACKET_LEN;
// header
if(packet_count>3)
packet[1] = 0x02; // 0x02 telemetry request flag
else
packet[1] = 0x00; // no telemetry
switch(sub_protocol)
{
case RLINK_SURFACE:
packet[1] |= 0x01;
//radiolink additionnal ID which is working only on a small set of RXs
//if(RX_num) packet[1] |= ((RX_num+2)<<4)+4; // RX number limited to 10 values, 0 is a wildcard
break;
case RLINK_AIR:
packet[1] |= 0x21; //air 0x21 on dump but it looks to support telemetry at least RSSI
break;
case RLINK_DUMBORC:
packet[1] |= 0x01; //always 0x00 on dump but does appear to support telemtry on newer transmitters
break;
}
// ID
memcpy(&packet[2],rx_tx_addr,RLINK_TX_ID_LEN);
// pack 16 channels on 11 bits values between 170 and 1876, 1023 middle. The last 8 channels are failsafe values associated to the first 8 values.
for (uint8_t i = 0; i < 16; i++)
{
uint32_t val = convert_channel_16b_nolimit(i,170,1876,false); // allow extended limits
if (val & 0x8000)
val = 0;
else if (val > 2047)
val=2047;
bits |= val << bitsavailable;
bitsavailable += 11;
while (bitsavailable >= 8) {
packet[idx++] = bits & 0xff;
bits >>= 8;
bitsavailable -= 8;
}
}
// hop
pseudo=((pseudo * 0xAA) + 0x03) % 0x7673; // calc next pseudo random value
CC2500_WriteReg(CC2500_0A_CHANNR, hopping_frequency[pseudo & 0x0F]);
packet[28]= pseudo;
packet[29]= pseudo >> 8;
packet[30]= 0x00; // unknown
packet[31]= 0x00; // unknown
packet[32]= rf_ch_num; // index of value changed in the RF table
// check
uint8_t sum=0;
for(uint8_t i=1;i<33;i++)
sum+=packet[i];
packet[33]=sum;
// send packet
CC2500_WriteData(packet, RLINK_TX_PACKET_LEN+1);
// packets type
packet_count++;
if(packet_count>5) packet_count=0;
#ifdef RLINK_DEBUG
debugln("C= 0x%02X",hopping_frequency[pseudo & 0x0F]);
debug("P=");
for(uint8_t i=1;i<RLINK_TX_PACKET_LEN+1;i++)
debug(" 0x%02X",packet[i]);
debugln("");
#endif
}
#ifndef MULTI_AIR
static void __attribute__((unused)) RLINK_RC4G_send_packet()
{
uint32_t val;
//hop
CC2500_WriteReg(CC2500_0A_CHANNR, hopping_frequency[packet_count>>1]);
#ifdef RLINK_DEBUG
debug("C= 0x%02X ",hopping_frequency[packet_count>>1]);
#endif
// packet length
packet[0] = 0x0F;
//address
memcpy(&packet[1], &rx_tx_addr[1], 3);
//channels
for(uint8_t i=0;i<2;i++)
{
val = Channel_data[2*i ] +400 -24;
packet[4+i*2] = val;
packet[8+i ] = val>>8;
val = Channel_data[2*i+1] +400 -24;
packet[5+i*2] = val;
packet[8+i ] |= (val>>4) & 0xF0;
}
//special channel which is linked to gyro on the orginal TX but allocating it on CH5 here
packet[10] = convert_channel_16b_limit(CH5,0,100);
//failsafe
for(uint8_t i=0;i<4;i++)
packet[11+i] = convert_channel_16b_limit(CH6+i,0,200);
//next hop
packet_count++;
packet_count &= 0x03;
packet[15] = hopping_frequency[packet_count>>1];
// send packet
CC2500_WriteData(packet, 16);
#ifdef RLINK_DEBUG
debug("P=");
for(uint8_t i=1;i<16;i++)
debug(" 0x%02X",packet[i]);
debugln("");
#endif
}
#endif
#define RLINK_TIMING_PROTO 20000-100 // -100 for compatibility with R8EF
#define RLINK_TIMING_RFSEND 10500
#define RLINK_TIMING_CHECK 2000
#define RLINK_RC4G_TIMING_PROTO 14460
uint16_t RLINK_callback()
{
if(sub_protocol == RLINK_RC4G)
{
#ifndef MULTI_AIR
#ifdef MULTI_SYNC
telemetry_set_input_sync(RLINK_RC4G_TIMING_PROTO);
#endif
CC2500_SetPower();
CC2500_SetFreqOffset();
RLINK_RC4G_send_packet();
#else
SUB_PROTO_INVALID;
#endif
return RLINK_RC4G_TIMING_PROTO;
}
switch(phase)
{
case RLINK_DATA:
#ifdef MULTI_SYNC
telemetry_set_input_sync(RLINK_TIMING_PROTO);
#endif
CC2500_SetPower();
CC2500_SetFreqOffset();
RLINK_send_packet();
#if not defined RLINK_HUB_TELEMETRY
return RLINK_TIMING_PROTO;
#else
if(!(packet[1]&0x02))
return RLINK_TIMING_PROTO; //Normal packet
//Telemetry packet
phase++; // RX1
return RLINK_TIMING_RFSEND;
case RLINK_RX1:
CC2500_Strobe(CC2500_SIDLE);
CC2500_Strobe(CC2500_SFRX);
CC2500_SetTxRxMode(RX_EN);
CC2500_Strobe(CC2500_SRX);
phase++; // RX2
return RLINK_TIMING_PROTO-RLINK_TIMING_RFSEND-RLINK_TIMING_CHECK;
case RLINK_RX2:
len = CC2500_ReadReg(CC2500_3B_RXBYTES | CC2500_READ_BURST) & 0x7F;
if (len == RLINK_RX_PACKET_LEN + 1 + 2) //Telemetry frame is 15 bytes + 1 byte for length + 2 bytes for RSSI&LQI&CRC
{
#ifdef RLINK_DEBUG_TELEM
debug("Telem:");
#endif
CC2500_ReadData(packet_in, len);
if(packet_in[0]==RLINK_RX_PACKET_LEN && (packet_in[len-1] & 0x80) && memcmp(&packet[2],rx_tx_addr,RLINK_TX_ID_LEN)==0 && (packet_in[6]==packet[1] || sub_protocol == RLINK_DUMBORC))
{//Correct telemetry received: length, CRC, ID and type
//packet_in[6] is 0x00 on almost all DumboRC RX so assume it is always valid
#ifdef RLINK_DEBUG_TELEM
for(uint8_t i=0;i<len;i++)
debug(" %02X",packet_in[i]);
#endif
TX_RSSI = packet_in[len-2];
if(TX_RSSI >=128)
TX_RSSI -= 128;
else
TX_RSSI += 128;
RX_RSSI=packet_in[7]&0x7F; //Should be packet_in[7]-256 but since it's an uint8_t...
v_lipo1=packet_in[8]<<1; //RX Batt
v_lipo2=packet_in[9]; //Batt
telemetry_link=1; //Send telemetry out
pps_counter++;
packet_count=0;
}
#ifdef RLINK_DEBUG_TELEM
debugln("");
#endif
}
if (millis() - pps_timer >= 2000)
{//1 telemetry packet every 100ms
pps_timer = millis();
if(pps_counter<20)
pps_counter*=5;
else
pps_counter=100;
debugln("%d pps", pps_counter);
TX_LQI = pps_counter; //0..100%
pps_counter = 0;
}
CC2500_SetTxRxMode(TX_EN);
phase=RLINK_DATA; // DATA
return RLINK_TIMING_CHECK;
#endif
}
return 0;
}
void RLINK_init()
{
BIND_DONE; // Not a TX bind protocol
RLINK_TXID_init();
RLINK_rf_init();
packet_count = 0;
phase = RLINK_DATA;
}
#endif