2015-12-30 01:41:12 +01:00

275 lines
7.2 KiB
C++

/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(KN_NRF24L01_INO)
#include "iface_nrf24l01.h"
#define KN_BIND_COUNT 1000 // for KN 2sec every 2ms - 1000 packets
// Timeout for callback in uSec, 2ms=2000us for KN
#define KN_PACKET_PERIOD 2000
#define KN_PACKET_CHKTIME 100 // Time to wait for packet to be sent (no ACK, so very short)
//#define PAYLOADSIZE 16
#define NFREQCHANNELS 4
#define KN_TXID_SIZE 4
enum {
KN_FLAG_DR = 0x01, // Dual Rate
KN_FLAG_TH = 0x02, // Throttle Hold
KN_FLAG_IDLEUP = 0x04, // Idle up
KN_FLAG_RES1 = 0x08,
KN_FLAG_RES2 = 0x10,
KN_FLAG_RES3 = 0x20,
KN_FLAG_GYRO3 = 0x40, // 00 - 6G mode, 01 - 3G mode
KN_FLAG_GYROR = 0x80 // Always 0 so far
};
//
enum {
KN_INIT2 = 0,
KN_INIT2_NO_BIND,
KN_BIND,
KN_DATA
};
/*enum {
USE1MBPS_NO = 0,
USE1MBPS_YES = 1,
};*/
// 2-bytes CRC
#define CRC_CONFIG (BV(NRF24L01_00_EN_CRC) | BV(NRF24L01_00_CRCO))
void kn_init()
{
NRF24L01_Initialize();
NRF24L01_WriteReg(NRF24L01_00_CONFIG, CRC_CONFIG);
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknoledgement
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x03); // 5-byte RX/TX address
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0); // Disable retransmit
NRF24L01_SetPower();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, 0x20); // bytes of data payload for pipe 0
NRF24L01_Activate(0x73); // Activate feature register
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 1); // Dynamic payload for data pipe 0
// Enable: Dynamic Payload Length, Payload with ACK , W_TX_PAYLOAD_NOACK
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, BV(NRF2401_1D_EN_DPL) | BV(NRF2401_1D_EN_ACK_PAY) | BV(NRF2401_1D_EN_DYN_ACK));
NRF24L01_Activate(0x73);
}
uint16_t kn_init2()
{
NRF24L01_FlushTx();
NRF24L01_FlushRx();
packet_sent = 0;
packet_count = 0;
hopping_frequency_no = 0;
// Turn radio power on
NRF24L01_SetTxRxMode(TX_EN);
NRF24L01_WriteReg(NRF24L01_00_CONFIG, CRC_CONFIG | BV(NRF24L01_00_PWR_UP));
return 150;
}
void set_tx_for_bind()
{
NRF24L01_WriteReg(NRF24L01_05_RF_CH, 83);
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps for binding
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, (uint8_t *) "KNDZK", 5);
}
void set_tx_for_data()
{
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, rx_tx_addr, 5);
}
void kn_calc_fh_channels(uint32_t seed)
{
uint8_t idx = 0;
uint32_t rnd = seed;
while (idx < NFREQCHANNELS) {
uint8_t i;
rnd = rnd * 0x0019660D + 0x3C6EF35F; // Randomization
// Use least-significant byte. 73 is prime, so channels 76..77 are unused
uint8_t next_ch = ((rnd >> 8) % 73) + 2;
// Keep the distance 2 between the channels - either odd or even
if (((next_ch ^ seed) & 0x01 )== 0)
continue;
// Check that it's not duplicate and spread uniformly
for (i = 0; i < idx; i++) {
if(hopping_frequency[i] == next_ch)
break;
}
if (i != idx)
continue;
hopping_frequency[idx++] = next_ch;
}
}
void kn_initialize_tx_id()
{
rx_tx_addr[4] = 'K';
kn_calc_fh_channels(MProtocol_id);
}
#define PACKET_COUNT_SHIFT 5
#define RF_CHANNEL_SHIFT 2
void kn_send_packet(uint8_t bind)
{
uint8_t rf_ch;
if (bind) {
rf_ch = 83;
packet[0] = 'K';
packet[1] = 'N';
packet[2] = 'D';
packet[3] = 'Z';
packet[4] = rx_tx_addr[0];
packet[5] = rx_tx_addr[1];
packet[6] = rx_tx_addr[2];
packet[7] = rx_tx_addr[3];
packet[8] = hopping_frequency[0];
packet[9] = hopping_frequency[1];
packet[10] = hopping_frequency[2];
packet[11] = hopping_frequency[3];
packet[12] = 0x00;
packet[13] = 0x00;
packet[14] = 0x00;
packet[15] = 0x01; //mode_bitrate == USE1MBPS_YES ? 0x01 : 0x00;
} else {
rf_ch = hopping_frequency[hopping_frequency_no];
// Each packet is repeated 4 times on the same channel
// We're not strictly repeating them, rather we
// send new packet on the same frequency, so the
// receiver gets the freshest command. As receiver
// hops to a new frequency as soon as valid packet
// received it does not matter that the packet is
// not the same one repeated twice - nobody checks this
// NB! packet_count overflow is handled and used in
// callback.
if (++packet_count == 4)
hopping_frequency_no = (hopping_frequency_no + 1) & 0x03;
uint16_t kn_throttle, kn_rudder, kn_elevator, kn_aileron;
kn_throttle = convert_channel_10b(THROTTLE);
kn_aileron = convert_channel_10b(AILERON);
kn_elevator = convert_channel_10b(ELEVATOR);
kn_rudder = convert_channel_10b(RUDDER);
packet[0] = (kn_throttle >> 8) & 0xFF;
packet[1] = kn_throttle & 0xFF;
packet[2] = (kn_aileron >> 8) & 0xFF;
packet[3] = kn_aileron & 0xFF;
packet[4] = (kn_elevator >> 8) & 0xFF;
packet[5] = kn_elevator & 0xFF;
packet[6] = (kn_rudder >> 8) & 0xFF;
packet[7] = kn_rudder & 0xFF;
// Trims, middle is 0x64 (100) 0-200
packet[8] = 0x64; // T
packet[9] = 0x64; // A
packet[10] = 0x64; // E
packet[11] = 0x64; // R
if (Servo_data[AUX1] > PPM_SWITCH)
flags |= KN_FLAG_DR;
else
flags=0;
if (Servo_data[AUX2] > PPM_SWITCH)
flags |= KN_FLAG_TH;
if (Servo_data[AUX3] > PPM_SWITCH)
flags |= KN_FLAG_IDLEUP;
if (Servo_data[AUX4] > PPM_SWITCH)
flags |= KN_FLAG_GYRO3;
packet[12] = flags;
packet[13] = (packet_count << PACKET_COUNT_SHIFT) | (hopping_frequency_no << RF_CHANNEL_SHIFT);
packet[14] = 0x00;
packet[15] = 0x00;
}
packet_sent = 0;
NRF24L01_WriteReg(NRF24L01_05_RF_CH, rf_ch);
NRF24L01_FlushTx();
NRF24L01_WritePayload(packet, 16);
//++total_packets;
packet_sent = 1;
if (! hopping_frequency_no) {
//Keep transmit power updated
NRF24L01_SetPower();
}
}
uint16_t kn_callback()
{
uint16_t timeout = KN_PACKET_PERIOD;
switch (phase)
{
case KN_INIT2:
bind_counter = KN_BIND_COUNT;
timeout = kn_init2();
phase = KN_BIND;
set_tx_for_bind();
break;
case KN_INIT2_NO_BIND:
timeout = kn_init2();
phase = KN_DATA;
set_tx_for_data();
break;
case KN_BIND:
if (packet_sent && NRF24L01_packet_ack() != PKT_ACKED)
return KN_PACKET_CHKTIME;
kn_send_packet(1);
if (--bind_counter == 0) {
phase = KN_DATA;
set_tx_for_data();
BIND_DONE;
}
break;
case KN_DATA:
if (packet_count == 4)
packet_count = 0;
else {
if (packet_sent && NRF24L01_packet_ack() != PKT_ACKED)
return KN_PACKET_CHKTIME;
kn_send_packet(0);
}
break;
}
return timeout;
}
uint16_t initKN(){
//total_packets = 0;
//mode_bitrate=USE1MBPS_YES;
kn_init();
phase = IS_AUTOBIND_FLAG_on ? KN_INIT2 : KN_INIT2_NO_BIND;
kn_initialize_tx_id();
// Call callback in 50ms
return 50000;
}
#endif