mirror of
https://github.com/pascallanger/DIY-Multiprotocol-TX-Module.git
synced 2025-02-04 20:48:12 +00:00
483 lines
15 KiB
C++
483 lines
15 KiB
C++
/*
|
|
This project is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Multiprotocol is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#if defined(HITEC_CC2500_INO)
|
|
|
|
#include "iface_cc2500.h"
|
|
|
|
//#define HITEC_FORCE_ID //Use the ID and hopping table from the original dump
|
|
|
|
#define HITEC_COARSE 0
|
|
|
|
#define HITEC_PACKET_LEN 13
|
|
#define HITEC_TX_ID_LEN 2
|
|
#define HITEC_BIND_COUNT 444 // 10sec
|
|
#define HITEC_NUM_FREQUENCE 21
|
|
#define HITEC_BIND_NUM_FREQUENCE 14
|
|
|
|
enum {
|
|
HITEC_START = 0x00,
|
|
HITEC_CALIB = 0x01,
|
|
HITEC_PREP = 0x02,
|
|
HITEC_DATA1 = 0x03,
|
|
HITEC_DATA2 = 0x04,
|
|
HITEC_DATA3 = 0x05,
|
|
HITEC_DATA4 = 0x06,
|
|
HITEC_RX1 = 0x07,
|
|
HITEC_RX2 = 0x08,
|
|
};
|
|
|
|
const PROGMEM uint8_t HITEC_init_values[] = {
|
|
/* 00 */ 0x2F, 0x2E, 0x2F, 0x07, 0xD3, 0x91, 0xFF, 0x04,
|
|
/* 08 */ 0x45, 0x00, 0x00, 0x12, 0x00, 0x5C, 0x85, 0xE8 + HITEC_COARSE,
|
|
/* 10 */ 0x3D, 0x3B, 0x73, 0x73, 0x7A, 0x01, 0x07, 0x30,
|
|
/* 18 */ 0x08, 0x1D, 0x1C, 0xC7, 0x40, 0xB0, 0x87, 0x6B,
|
|
/* 20 */ 0xF8, 0xB6, 0x10, 0xEA, 0x0A, 0x00, 0x11
|
|
};
|
|
|
|
static void __attribute__((unused)) HITEC_CC2500_init()
|
|
{
|
|
CC2500_Strobe(CC2500_SIDLE);
|
|
|
|
for (uint8_t i = 0; i < 39; ++i)
|
|
CC2500_WriteReg(i, pgm_read_byte_near(&HITEC_init_values[i]));
|
|
|
|
prev_option = option;
|
|
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
|
|
|
|
CC2500_SetTxRxMode(TX_EN);
|
|
CC2500_SetPower();
|
|
}
|
|
|
|
// Generate RF channels
|
|
static void __attribute__((unused)) HITEC_RF_channels()
|
|
{
|
|
//Normal hopping
|
|
uint8_t idx = 0;
|
|
uint32_t rnd = MProtocol_id;
|
|
|
|
while (idx < HITEC_NUM_FREQUENCE)
|
|
{
|
|
uint8_t i;
|
|
uint8_t count_0_47 = 0, count_48_93 = 0, count_94_140 = 0;
|
|
|
|
rnd = rnd * 0x0019660D + 0x3C6EF35F; // Randomization
|
|
// Use least-significant byte and make sure it's pair.
|
|
uint8_t next_ch = ((rnd >> 8) % 141) & 0xFE;
|
|
// Check that it's not duplicated and spread uniformly
|
|
for (i = 0; i < idx; i++) {
|
|
if(hopping_frequency[i] == next_ch)
|
|
break;
|
|
if(hopping_frequency[i] <= 47)
|
|
count_0_47++;
|
|
else if (hopping_frequency[i] <= 93)
|
|
count_48_93++;
|
|
else
|
|
count_94_140++;
|
|
}
|
|
if (i != idx)
|
|
continue;
|
|
if ( (next_ch <= 47 && count_0_47 < 8) || (next_ch >= 48 && next_ch <= 93 && count_48_93 < 8) || (next_ch >= 94 && count_94_140 < 8) )
|
|
hopping_frequency[idx++] = next_ch;//find hopping frequency
|
|
}
|
|
}
|
|
|
|
static void __attribute__((unused)) HITEC_tune_chan()
|
|
{
|
|
CC2500_Strobe(CC2500_SIDLE);
|
|
if(IS_BIND_IN_PROGRESS)
|
|
CC2500_WriteReg(CC2500_0A_CHANNR, hopping_frequency_no*10);
|
|
else
|
|
CC2500_WriteReg(CC2500_0A_CHANNR, hopping_frequency[hopping_frequency_no]);
|
|
CC2500_Strobe(CC2500_SFTX);
|
|
CC2500_Strobe(CC2500_SCAL);
|
|
CC2500_Strobe(CC2500_STX);
|
|
}
|
|
|
|
static void __attribute__((unused)) HITEC_change_chan_fast()
|
|
{
|
|
CC2500_Strobe(CC2500_SIDLE);
|
|
if(IS_BIND_IN_PROGRESS)
|
|
CC2500_WriteReg(CC2500_0A_CHANNR, hopping_frequency_no*10);
|
|
else
|
|
CC2500_WriteReg(CC2500_0A_CHANNR, hopping_frequency[hopping_frequency_no]);
|
|
CC2500_WriteReg(CC2500_25_FSCAL1, calData[hopping_frequency_no]);
|
|
}
|
|
|
|
static void __attribute__((unused)) HITEC_build_packet()
|
|
{
|
|
static boolean F5_frame=false;
|
|
static uint8_t F5_counter=0;
|
|
uint8_t offset;
|
|
|
|
packet[1] = rx_tx_addr[1];
|
|
packet[2] = rx_tx_addr[2];
|
|
packet[3] = rx_tx_addr[3];
|
|
packet[22] = 0xEE; // unknown always 0xEE
|
|
if(IS_BIND_IN_PROGRESS)
|
|
{
|
|
packet[0] = 0x16; // 22 bytes to follow
|
|
memset(packet+5,0x00,14);
|
|
switch(bind_phase)
|
|
{
|
|
case 0x72: // first part of the hopping table
|
|
for(uint8_t i=0;i<14;i++)
|
|
packet[5+i]=hopping_frequency[i]>>1;
|
|
break;
|
|
case 0x73: // second part of the hopping table
|
|
for(uint8_t i=0;i<7;i++)
|
|
packet[5+i]=hopping_frequency[i+14]>>1;
|
|
break;
|
|
case 0x74:
|
|
packet[7]=0x55; // unknown but bind does not complete if not there
|
|
packet[8]=0x55; // unknown but bind does not complete if not there
|
|
break;
|
|
case 0x7B:
|
|
packet[5]=hopping_frequency[13]>>1; // if not there the Optima link is jerky...
|
|
packet[14]=0x2A;
|
|
packet[15]=0x46; // unknown but if 0x45 then 17=0x46, if 0x46 then 17=0x46 or 0x47, if 0x47 then 0x45 or 0x46
|
|
packet[16]=0x2A;
|
|
packet[17]=0x47;
|
|
packet[18]=0x2A;
|
|
break;
|
|
}
|
|
if(sub_protocol==MINIMA)
|
|
packet[4] = bind_phase+0x10;
|
|
else
|
|
packet[4] = bind_phase; // Optima: increments based on RX answer
|
|
packet[19] = 0x08; // packet sequence
|
|
offset=20; // packet[20] and [21]
|
|
}
|
|
else
|
|
{
|
|
packet[0] = 0x1A; // 26 bytes to follow
|
|
for(uint8_t i=0;i<9;i++)
|
|
{
|
|
uint16_t ch = convert_channel_16b_nolimit(i,0x1B87,0x3905);
|
|
packet[4+2*i] = ch >> 8;
|
|
packet[5+2*i] = ch & 0xFF;
|
|
}
|
|
packet[23] = 0x80; // packet sequence
|
|
offset=24; // packet[24] and [25]
|
|
packet[26] = 0x00; // unknown always 0 and the RX doesn't seem to care about the value?
|
|
}
|
|
|
|
if(F5_frame)
|
|
{// No idea what it is but Minima RXs are expecting these frames to work to work
|
|
packet[offset] = 0xF5;
|
|
packet[offset+1] = 0xDF;
|
|
if((F5_counter%9)==0)
|
|
packet[offset+1] -= 0x04; // every 8 packets send 0xDB
|
|
F5_counter++;
|
|
F5_counter%=59; // every 6 0xDB packets wait only 4 to resend instead of 8
|
|
F5_frame=false; // alternate
|
|
if(IS_BIND_IN_PROGRESS)
|
|
packet[offset+1]++; // when binding the values are 0xE0 and 0xDC
|
|
}
|
|
else
|
|
{
|
|
packet[offset] = 0x00;
|
|
packet[offset+1] = 0x00;
|
|
F5_frame=true; // alternate
|
|
}
|
|
/* debug("P:");
|
|
for(uint8_t i=0;i<packet[0]+1;i++)
|
|
debug("%02X,",packet[i]);
|
|
debugln("");
|
|
*/
|
|
}
|
|
|
|
static void __attribute__((unused)) HITEC_send_packet()
|
|
{
|
|
CC2500_WriteData(packet, packet[0]+1);
|
|
if(IS_BIND_IN_PROGRESS)
|
|
{
|
|
packet[19] >>= 1; // packet sequence
|
|
if( (packet[4] & 0xFE) ==0x82 )
|
|
{ // Minima
|
|
packet[4] ^= 1; // alternate 0x82 and 0x83
|
|
if( packet[4] & 0x01 )
|
|
for(uint8_t i=0;i<7;i++) // 0x83
|
|
packet[5+i]=hopping_frequency[i+14]>>1;
|
|
else
|
|
for(uint8_t i=0;i<14;i++) // 0x82
|
|
packet[5+i]=hopping_frequency[i]>>1;
|
|
}
|
|
}
|
|
else
|
|
packet[23] >>= 1; // packet sequence
|
|
}
|
|
|
|
uint16_t ReadHITEC()
|
|
{
|
|
switch(phase)
|
|
{
|
|
case HITEC_START:
|
|
HITEC_CC2500_init();
|
|
bind_phase=0x72;
|
|
if(IS_BIND_IN_PROGRESS)
|
|
{
|
|
bind_counter = HITEC_BIND_COUNT;
|
|
rf_ch_num=HITEC_BIND_NUM_FREQUENCE;
|
|
}
|
|
else
|
|
{
|
|
bind_counter=0;
|
|
rf_ch_num=HITEC_NUM_FREQUENCE;
|
|
//Set TXID
|
|
CC2500_WriteReg(CC2500_05_SYNC0,rx_tx_addr[2]);
|
|
CC2500_WriteReg(CC2500_04_SYNC1,rx_tx_addr[3]);
|
|
}
|
|
hopping_frequency_no=0;
|
|
HITEC_tune_chan();
|
|
phase = HITEC_CALIB;
|
|
return 2000;
|
|
case HITEC_CALIB:
|
|
calData[hopping_frequency_no]=CC2500_ReadReg(CC2500_25_FSCAL1);
|
|
hopping_frequency_no++;
|
|
if (hopping_frequency_no < rf_ch_num)
|
|
HITEC_tune_chan();
|
|
else
|
|
{
|
|
hopping_frequency_no = 0;
|
|
phase = HITEC_PREP;
|
|
}
|
|
return 2000;
|
|
|
|
/* Work cycle: 22.5ms */
|
|
#define HITEC_PACKET_PERIOD 22500
|
|
#define HITEC_PREP_TIMING 462
|
|
#define HITEC_DATA_TIMING 2736
|
|
#define HITEC_RX1_TIMING 4636
|
|
case HITEC_PREP:
|
|
if ( prev_option == option )
|
|
{ // No user frequency change
|
|
#ifdef MULTI_SYNC
|
|
telemetry_set_input_sync(HITEC_PACKET_PERIOD);
|
|
#endif
|
|
HITEC_change_chan_fast();
|
|
hopping_frequency_no++;
|
|
if(hopping_frequency_no>=rf_ch_num)
|
|
hopping_frequency_no=0;
|
|
CC2500_SetPower();
|
|
CC2500_SetTxRxMode(TX_EN);
|
|
HITEC_build_packet();
|
|
phase++;
|
|
}
|
|
else
|
|
phase = HITEC_START; // Restart the tune process if option is changed to get good tuned values
|
|
return HITEC_PREP_TIMING;
|
|
case HITEC_DATA1:
|
|
case HITEC_DATA2:
|
|
case HITEC_DATA3:
|
|
case HITEC_DATA4:
|
|
HITEC_send_packet();
|
|
phase++;
|
|
return HITEC_DATA_TIMING;
|
|
case HITEC_RX1:
|
|
CC2500_SetTxRxMode(RX_EN);
|
|
CC2500_Strobe(CC2500_SRX); // Turn RX ON
|
|
phase++;
|
|
return HITEC_RX1_TIMING;
|
|
case HITEC_RX2:
|
|
uint8_t len=CC2500_ReadReg(CC2500_3B_RXBYTES | CC2500_READ_BURST) & 0x7F;
|
|
if(len && len<TELEMETRY_BUFFER_SIZE)
|
|
{ // Something has been received
|
|
CC2500_ReadData(packet_in, len);
|
|
if( (packet_in[len-1] & 0x80) && packet_in[0]==len-3 && packet_in[1]==rx_tx_addr[1] && packet_in[2]==rx_tx_addr[2] && packet_in[3]==rx_tx_addr[3])
|
|
{ //valid crc && length ok && tx_id ok
|
|
debug("RX:l=%d",len);
|
|
for(uint8_t i=0;i<len;i++)
|
|
debug(",%02X",packet_in[i]);
|
|
if(IS_BIND_IN_PROGRESS)
|
|
{
|
|
if(len==13) // Bind packets have a length of 13
|
|
{ // bind packet: 0A,00,E5,F2,7X,05,06,07,08,09,00
|
|
debug(",bind");
|
|
boolean check=true;
|
|
for(uint8_t i=5;i<10;i++)
|
|
if(packet_in[i]!=i) check=false;
|
|
if((packet_in[4]&0xF0)==0x70 && check)
|
|
{
|
|
bind_phase=packet_in[4]+1;
|
|
if(bind_phase==0x7B)
|
|
bind_counter=164; // in dumps the RX stops to reply at 0x7B so wait a little and exit
|
|
}
|
|
}
|
|
}
|
|
else
|
|
if( len==15 && packet_in[4]==0 && packet_in[12]==0 )
|
|
{ // Valid telemetry packets
|
|
// no station:
|
|
// 0C,1C,A1,2B,00,00,00,00,00,00,00,8D,00,64,8E -> 00 8D=>RX battery voltage 0x008D/28=5.03V
|
|
// with HTS-SS:
|
|
// 0C,1C,A1,2B,00,11,AF,00,2D,00,8D,11,00,4D,96 -> 00 8D=>RX battery voltage 0x008D/28=5.03V
|
|
// 0C,1C,A1,2B,00,12,00,00,00,00,00,12,00,52,93
|
|
// 0C,1C,A1,2B,00,13,00,00,00,00,46,13,00,52,8B -> 46=>temperature2 0x46-0x28=30°C
|
|
// 0C,1C,A1,2B,00,14,00,00,00,00,41,14,00,2C,93 -> 41=>temperature1 0x41-0x28=25°C
|
|
// 0C,1C,A1,2B,00,15,00,2A,00,0E,00,15,00,44,96 -> 2A 00=>rpm1=420, 0E 00=>rpm2=140
|
|
// 0C,1C,A1,2B,00,16,00,00,00,00,00,16,00,2C,8E
|
|
// 0C,1C,A1,2B,00,17,00,00,00,42,44,17,00,48,8D -> 42=>temperature3 0x42-0x28=26°C,44=>temperature4 0x44-0x28=28°C
|
|
// 0C,1C,A1,2B,00,18,00,00,00,00,00,18,00,50,92
|
|
debug(",telem,%02x",packet_in[14]&0x7F);
|
|
#if defined(HITEC_FW_TELEMETRY) || defined(HITEC_HUB_TELEMETRY)
|
|
TX_RSSI = packet_in[13];
|
|
if(TX_RSSI >=128)
|
|
TX_RSSI -= 128;
|
|
else
|
|
TX_RSSI += 128;
|
|
TX_LQI = packet_in[14]&0x7F;
|
|
#endif
|
|
#if defined(HITEC_FW_TELEMETRY)
|
|
if(sub_protocol==OPT_FW)
|
|
{
|
|
// 8 bytes telemetry packets => see at the end of this file how to fully decode it
|
|
packet_in[0]=TX_RSSI; // TX RSSI
|
|
packet_in[1]=TX_LQI; // TX LQI
|
|
uint8_t offset=packet_in[5]==0?1:0;
|
|
for(uint8_t i=5;i < 11; i++)
|
|
packet_in[i-3]=packet_in[i+offset]; // frame number followed by 5 bytes of data
|
|
telemetry_link=2; // telemetry forward available
|
|
}
|
|
#endif
|
|
#if defined(HITEC_HUB_TELEMETRY)
|
|
if(sub_protocol==OPT_HUB)
|
|
{
|
|
switch(packet_in[5]) // telemetry frame number
|
|
{
|
|
case 0x00:
|
|
v_lipo1 = (packet_in[10])<<5 | (packet_in[11])>>3; // calculation in float is volt=(packet_in[10]<<8+packet_in[11])/28
|
|
break;
|
|
case 0x11:
|
|
v_lipo1 = (packet_in[9])<<5 | (packet_in[10])>>3; // calculation in float is volt=(packet_in[9]<<8+packet_in[10])/28
|
|
break;
|
|
case 0x18:
|
|
v_lipo2 = (packet_in[6])<<5 | (packet_in[7])>>3; // calculation in float is volt=(packet_in[6]<<8+packet_in[7])/10
|
|
break;
|
|
}
|
|
telemetry_link=1; // telemetry hub available
|
|
}
|
|
#endif
|
|
}
|
|
debugln("");
|
|
}
|
|
}
|
|
CC2500_Strobe(CC2500_SFRX); // Flush the RX FIFO buffer
|
|
phase = HITEC_PREP;
|
|
if(bind_counter)
|
|
{
|
|
bind_counter--;
|
|
if(!bind_counter)
|
|
{
|
|
BIND_DONE;
|
|
phase=HITEC_START;
|
|
}
|
|
}
|
|
return (HITEC_PACKET_PERIOD -HITEC_PREP_TIMING -4*HITEC_DATA_TIMING -HITEC_RX1_TIMING);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
uint16_t initHITEC()
|
|
{
|
|
HITEC_RF_channels();
|
|
#ifdef HITEC_FORCE_ID // ID and channels taken from dump
|
|
rx_tx_addr[1]=0x00;
|
|
rx_tx_addr[2]=0x03;
|
|
rx_tx_addr[3]=0x6A;
|
|
memcpy((void *)hopping_frequency,(void *)"\x00\x3A\x4A\x32\x0C\x58\x2A\x10\x26\x20\x08\x60\x68\x70\x78\x80\x88\x56\x5E\x66\x6E",HITEC_NUM_FREQUENCE);
|
|
#endif
|
|
phase = HITEC_START;
|
|
return 10000;
|
|
}
|
|
|
|
/* Full telemetry
|
|
packet[0] = TX RSSI value
|
|
packet[1] = TX LQI value
|
|
packet[2] = frame number
|
|
packet[3-7] telemetry data
|
|
|
|
The frame number takes the following values: 0x00, 0x11, 0x12, ..., 0x1C. The frames can be present or not, they also do not have to follow each others.
|
|
Here is a description of the telemetry data for each frame number:
|
|
- frame 0x00
|
|
data byte 0 -> 0x00 unknown
|
|
data byte 1 -> 0x00 unknown
|
|
data byte 2 -> 0x00 unknown
|
|
data byte 3 -> RX Batt Volt_H
|
|
data byte 4 -> RX Batt Volt_L => RX Batt=(Volt_H*256+Volt_L)/28
|
|
- frame 0x11
|
|
data byte 0 -> 0xAF start of frame
|
|
data byte 1 -> 0x00 unknown
|
|
data byte 2 -> 0x2D station type 0x2D=standard station nitro or electric, 0xAC=advanced station
|
|
data byte 3 -> RX Batt Volt_H
|
|
data byte 4 -> RX Batt Volt_L => RX Batt=(Volt_H*256+Volt_L)/28
|
|
- frame 0x12
|
|
data byte 0 -> Lat_sec_H GPS : latitude second
|
|
data byte 1 -> Lat_sec_L signed int : 1/100 of second
|
|
data byte 2 -> Lat_deg_min_H GPS : latitude degree.minute
|
|
data byte 3 -> Lat_deg_min_L signed int : +=North, - = south
|
|
data byte 4 -> Time_second GPS Time
|
|
- frame 0x13
|
|
data byte 0 -> GPS Longitude second
|
|
data byte 1 -> signed int : 1/100 of second
|
|
data byte 2 -> GPS Longitude degree.minute
|
|
data byte 3 -> signed int : +=Est, - = west
|
|
data byte 4 -> Temp2 Temperature2=Temp2-40°C
|
|
- frame 0x14
|
|
data byte 0 -> Speed_H
|
|
data byte 1 -> Speed_L GPS Speed=Speed_H*256+Speed_L km/h
|
|
data byte 2 -> Alti_sea_H
|
|
data byte 3 -> Alti_sea_L GPS Altitude=Alti_sea_H*256+Alti_sea_L m
|
|
data byte 4 -> Temp1 Temperature1=Temp1-40°C
|
|
- frame 0x15
|
|
data byte 0 -> FUEL
|
|
data byte 1 -> RPM1_L
|
|
data byte 2 -> RPM1_H RPM1=RPM1_H*256+RPM1_L
|
|
data byte 3 -> RPM2_L
|
|
data byte 4 -> RPM2_H RPM2=RPM2_H*256+RPM2_L
|
|
- frame 0x16
|
|
data byte 0 -> Date_year GPS Date
|
|
data byte 1 -> Date_month
|
|
data byte 2 -> Date_day
|
|
data byte 3 -> Time_hour GPS Time
|
|
data byte 4 -> Time_min
|
|
- frame 0x17
|
|
data byte 0 -> COURSEH
|
|
data byte 1 -> COURSEL GPS heading = COURSEH*256+COURSEL in degrees
|
|
data byte 2 -> Count GPS satellites
|
|
data byte 3 -> Temp3 Temperature3=Temp2-40°C
|
|
data byte 4 -> Temp4 Temperature4=Temp3-40°C
|
|
- frame 0x18
|
|
data byte 0 -> Volt_L Volt=(Volt_H*256+Volt_L)/10 V
|
|
data byte 1 -> Volt_H
|
|
data byte 2 -> AMP_L
|
|
data byte 3 -> AMP_H Amp=(AMP1_*256+AMP_L -180)/14 in signed A
|
|
- frame 0x19 Servo sensor
|
|
data byte 0 -> AMP_Servo1 Amp=AMP_Servo1/10 in A
|
|
data byte 1 -> AMP_Servo2 Amp=AMP_Servo2/10 in A
|
|
data byte 2 -> AMP_Servo3 Amp=AMP_Servo3/10 in A
|
|
data byte 3 -> AMP_Servo4 Amp=AMP_Servo4/10 in A
|
|
- frame 0x1A
|
|
data byte 2 -> ASpeed_H Air speed=ASpeed_H*256+ASpeed_L km/h
|
|
data byte 3 -> ASpeed_L
|
|
- frame 0x1B Variometer sensor
|
|
data byte 0 -> Alti1H
|
|
data byte 1 -> Alti1L Altitude unfiltered
|
|
data byte 2 -> Alti2H
|
|
data byte 3 -> Alti2L Altitude filtered
|
|
- frame 0x1C Unknown
|
|
- frame 0x22 Unknown
|
|
*/
|
|
#endif |