Pascal Langer 4a626eaf14 Change XN297 emulation layer
Loads of protocols have been touched by this change. Some testing has been done but please test on all your models.
The XN297 emulation selects in this order:
 - the CC2500 if it is available and bitrate=250K. Configure the option field automatically for RF tune.
 - the NRF for all bitrates if it is available
 - if NRF is not available and bitrate=1M then an invalid protocol is sent automatically to the radio.
CC2500 @250K can now receive normal and enhanced payloads.
OMP protocol supports telemetry on CC2500 and is also for NRF only modules including telemetry.
Separation of E016H (new protocol) from E01X due to different structure.
MJXQ, MT99XX, Q303 and XK: some sub protocols available on CC2500 only.
2021-03-17 17:05:42 +01:00

2316 lines
63 KiB
C++

/*********************************************************
Multiprotocol Tx code
by Midelic and Pascal Langer(hpnuts)
http://www.rcgroups.com/forums/showthread.php?t=2165676
https://github.com/pascallanger/DIY-Multiprotocol-TX-Module/edit/master/README.md
Thanks to PhracturedBlue, Hexfet, Goebish, Victzh and all protocol developers
Ported from deviation firmware
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#include <avr/pgmspace.h>
//#define DEBUG_PIN // Use pin TX for AVR and SPI_CS for STM32 => DEBUG_PIN_on, DEBUG_PIN_off, DEBUG_PIN_toggle
//#define DEBUG_SERIAL // Only for STM32_BOARD, compiled with Upload method "Serial"->usart1, "STM32duino bootloader"->USB serial
#ifdef __arm__ // Let's automatically select the board if arm is selected
#define STM32_BOARD
#endif
#if defined (ARDUINO_AVR_XMEGA32D4) || defined (ARDUINO_MULTI_ORANGERX)
#include "MultiOrange.h"
#endif
#include "Multiprotocol.h"
//Multiprotocol module configuration file
#include "_Config.h"
//Personal config file
#if defined(USE_MY_CONFIG)
#include "_MyConfig.h"
#endif
#include "Pins.h"
#include "TX_Def.h"
#include "Validate.h"
#ifndef STM32_BOARD
#include <avr/eeprom.h>
#else
#include <libmaple/usart.h>
#include <libmaple/timer.h>
//#include <libmaple/spi.h>
#include <SPI.h>
#include <EEPROM.h>
HardwareTimer HWTimer2(2);
#ifdef ENABLE_SERIAL
HardwareTimer HWTimer3(3);
void ISR_COMPB();
#endif
void PPM_decode();
extern "C"
{
void __irq_usart2(void);
void __irq_usart3(void);
}
#ifdef SEND_CPPM
HardwareTimer HWTimer1(1) ;
#endif
#endif
//Global constants/variables
uint32_t MProtocol_id;//tx id,
uint32_t MProtocol_id_master;
uint32_t blink=0,last_signal=0;
//
uint16_t counter;
uint8_t channel;
#if defined(ESKY150V2_CC2500_INO)
uint8_t packet[150];
#else
uint8_t packet[50];
#endif
#define NUM_CHN 16
// Servo data
uint16_t Channel_data[NUM_CHN];
uint8_t Channel_AUX;
#ifdef FAILSAFE_ENABLE
uint16_t Failsafe_data[NUM_CHN];
#endif
// Protocol variables
uint8_t cyrfmfg_id[6];//for dsm2 and devo
uint8_t rx_tx_addr[5];
uint8_t rx_id[5];
uint8_t phase;
uint16_t bind_counter;
uint8_t bind_phase;
uint8_t binding_idx;
uint16_t packet_period;
uint8_t packet_count;
uint8_t packet_sent;
uint8_t packet_length;
#if defined(HOTT_CC2500_INO) || defined(ESKY150V2_CC2500_INO) || defined(MLINK_CYRF6936_INO)
uint8_t hopping_frequency[78];
#else
uint8_t hopping_frequency[50];
#endif
uint8_t *hopping_frequency_ptr;
uint8_t hopping_frequency_no=0;
uint8_t rf_ch_num;
uint8_t throttle, rudder, elevator, aileron;
uint8_t flags;
uint16_t crc;
uint16_t crc16_polynomial;
uint8_t crc8;
uint8_t crc8_polynomial;
uint16_t seed;
uint16_t failsafe_count;
uint16_t state;
uint8_t len;
uint8_t armed, arm_flags, arm_channel_previous;
uint8_t num_ch;
uint32_t pps_timer;
uint16_t pps_counter;
#ifdef CC2500_INSTALLED
#ifdef SCANNER_CC2500_INO
uint8_t calData[255];
#elif defined(HOTT_CC2500_INO) || defined(ESKY150V2_CC2500_INO)
uint8_t calData[75];
#else
uint8_t calData[50];
#endif
#endif
#ifdef CHECK_FOR_BOOTLOADER
uint8_t BootTimer ;
uint8_t BootState ;
uint8_t NotBootChecking ;
uint8_t BootCount ;
#define BOOT_WAIT_30_IDLE 0
#define BOOT_WAIT_30_DATA 1
#define BOOT_WAIT_20 2
#define BOOT_READY 3
#endif
//Channel mapping for protocols
uint8_t CH_AETR[]={AILERON, ELEVATOR, THROTTLE, RUDDER, CH5, CH6, CH7, CH8, CH9, CH10, CH11, CH12, CH13, CH14, CH15, CH16};
uint8_t CH_TAER[]={THROTTLE, AILERON, ELEVATOR, RUDDER, CH5, CH6, CH7, CH8, CH9, CH10, CH11, CH12, CH13, CH14, CH15, CH16};
//uint8_t CH_RETA[]={RUDDER, ELEVATOR, THROTTLE, AILERON, CH5, CH6, CH7, CH8, CH9, CH10, CH11, CH12, CH13, CH14, CH15, CH16};
uint8_t CH_EATR[]={ELEVATOR, AILERON, THROTTLE, RUDDER, CH5, CH6, CH7, CH8, CH9, CH10, CH11, CH12, CH13, CH14, CH15, CH16};
// Mode_select variables
uint8_t mode_select;
uint8_t protocol_flags=0,protocol_flags2=0,protocol_flags3=0;
uint8_t option_override;
#ifdef ENABLE_PPM
// PPM variable
volatile uint16_t PPM_data[NUM_CHN];
volatile uint8_t PPM_chan_max=0;
uint32_t chan_order=0;
#endif
#if not defined (ORANGE_TX) && not defined (STM32_BOARD)
//Random variable
volatile uint32_t gWDT_entropy=0;
#endif
//Serial protocol
uint8_t sub_protocol;
uint8_t protocol;
uint8_t option;
uint8_t cur_protocol[3];
uint8_t prev_option;
uint8_t prev_power=0xFD; // unused power value
uint8_t RX_num;
//Serial RX variables
#define BAUD 100000
#define RXBUFFER_SIZE 36 // 26+1+9
volatile uint8_t rx_buff[RXBUFFER_SIZE];
volatile uint8_t rx_ok_buff[RXBUFFER_SIZE];
volatile bool discard_frame = false;
volatile uint8_t rx_idx=0, rx_len=0;
// Callback
uint16_function_t remote_callback = 0;
// Telemetry
#define TELEMETRY_BUFFER_SIZE 32
uint8_t packet_in[TELEMETRY_BUFFER_SIZE];//telemetry receiving packets
#if defined(TELEMETRY)
#ifdef MULTI_SYNC
uint16_t last_serial_input=0;
uint16_t inputRefreshRate=0;
#endif
#ifdef INVERT_TELEMETRY
#if not defined(ORANGE_TX) && not defined(STM32_BOARD)
// enable bit bash for serial
#define BASH_SERIAL 1
#endif
#define INVERT_SERIAL 1
#endif
uint8_t telemetry_in_buffer[TELEMETRY_BUFFER_SIZE];//telemetry receiving packets
#ifdef BASH_SERIAL
// For bit-bashed serial output
#define TXBUFFER_SIZE 192
volatile struct t_serial_bash
{
uint8_t head ;
uint8_t tail ;
uint8_t data[TXBUFFER_SIZE] ;
uint8_t busy ;
uint8_t speed ;
} SerialControl ;
#else
#define TXBUFFER_SIZE 96
volatile uint8_t tx_buff[TXBUFFER_SIZE];
volatile uint8_t tx_head=0;
volatile uint8_t tx_tail=0;
#endif // BASH_SERIAL
uint8_t v_lipo1;
uint8_t v_lipo2;
uint8_t RX_RSSI;
uint8_t TX_RSSI;
uint8_t RX_LQI;
uint8_t TX_LQI;
uint8_t telemetry_link=0;
uint8_t telemetry_counter=0;
uint8_t telemetry_lost;
#ifdef SPORT_SEND
#define MAX_SPORT_BUFFER 64
uint8_t SportData[MAX_SPORT_BUFFER];
uint8_t SportHead=0, SportTail=0;
#endif
// Functions definition when required
#ifdef HUB_TELEMETRY
static void __attribute__((unused)) frsky_send_user_frame(uint8_t, uint8_t, uint8_t);
#endif
//RX protocols
#if defined(AFHDS2A_RX_A7105_INO) || defined(FRSKY_RX_CC2500_INO) || defined(BAYANG_RX_NRF24L01_INO) || defined(DSM_RX_CYRF6936_INO)
bool rx_data_started;
bool rx_data_received;
bool rx_disable_lna;
uint16_t rx_rc_chan[16];
#endif
#ifdef HOTT_FW_TELEMETRY
uint8_t HoTT_SerialRX_val=0;
bool HoTT_SerialRX=false;
#endif
#ifdef DSM_FWD_PGM
uint8_t DSM_SerialRX_val[7];
bool DSM_SerialRX=false;
#endif
#ifdef MULTI_CONFIG_INO
uint8_t CONFIG_SerialRX_val[7];
bool CONFIG_SerialRX=false;
#endif
#endif // TELEMETRY
uint8_t multi_protocols_index=0xFF;
// Init
void setup()
{
// Setup diagnostic uart before anything else
#ifdef DEBUG_SERIAL
Serial.begin(115200,SERIAL_8N1);
// Wait up to 30s for a serial connection; double-blink the LED while we wait
unsigned long currMillis = millis();
unsigned long initMillis = currMillis;
pinMode(LED_pin,OUTPUT);
LED_off;
while (!Serial && (currMillis - initMillis) <= 30000) {
LED_on;
delay(100);
LED_off;
delay(100);
LED_on;
delay(100);
LED_off;
delay(500);
currMillis = millis();
}
delay(250); // Brief delay for FTDI debugging
debugln("Multiprotocol version: %d.%d.%d.%d", VERSION_MAJOR, VERSION_MINOR, VERSION_REVISION, VERSION_PATCH_LEVEL);
#endif
// General pinout
#ifdef ORANGE_TX
//XMEGA
PORTD.OUTSET = 0x17 ;
PORTD.DIRSET = 0xB2 ;
PORTD.DIRCLR = 0x4D ;
PORTD.PIN0CTRL = 0x18 ;
PORTD.PIN2CTRL = 0x18 ;
PORTE.DIRSET = 0x01 ;
PORTE.DIRCLR = 0x02 ;
// Timer1 config
// TCC1 16-bit timer, clocked at 0.5uS
EVSYS.CH3MUX = 0x80 + 0x04 ; // Prescaler of 16
TCC1.CTRLB = 0; TCC1.CTRLC = 0; TCC1.CTRLD = 0; TCC1.CTRLE = 0;
TCC1.INTCTRLA = 0; TIMSK1 = 0;
TCC1.PER = 0xFFFF ;
TCNT1 = 0 ;
TCC1.CTRLA = 0x0B ; // Event3 (prescale of 16)
#elif defined STM32_BOARD
//STM32
afio_cfg_debug_ports(AFIO_DEBUG_NONE);
pinMode(LED_pin,OUTPUT);
pinMode(LED2_pin,OUTPUT);
pinMode(A7105_CSN_pin,OUTPUT);
pinMode(CC25_CSN_pin,OUTPUT);
pinMode(NRF_CSN_pin,OUTPUT);
pinMode(CYRF_CSN_pin,OUTPUT);
pinMode(SPI_CSN_pin,OUTPUT);
pinMode(CYRF_RST_pin,OUTPUT);
pinMode(PE1_pin,OUTPUT);
pinMode(PE2_pin,OUTPUT);
pinMode(TX_INV_pin,OUTPUT);
pinMode(RX_INV_pin,OUTPUT);
#if defined TELEMETRY
#if defined INVERT_SERIAL
TX_INV_on; // activate inverter for both serial TX and RX signals
RX_INV_on;
#else
TX_INV_off;
RX_INV_off;
#endif
#endif
pinMode(BIND_pin,INPUT_PULLUP);
pinMode(PPM_pin,INPUT);
pinMode(S1_pin,INPUT_PULLUP); // dial switch
pinMode(S2_pin,INPUT_PULLUP);
pinMode(S3_pin,INPUT_PULLUP);
pinMode(S4_pin,INPUT_PULLUP);
#ifdef MULTI_5IN1_INTERNAL
//pinMode(SX1276_RST_pin,OUTPUT); // already done by LED2_pin
pinMode(SX1276_TXEN_pin,OUTPUT); // PB0
pinMode(SX1276_DIO0_pin,INPUT_PULLUP);
#else
//Random pin
pinMode(RND_pin, INPUT_ANALOG); // set up PB0 pin for analog input
#endif
#if defined ENABLE_DIRECT_INPUTS
#if defined (DI1_PIN)
pinMode(DI1_PIN,INPUT_PULLUP);
#endif
#if defined (DI2_PIN)
pinMode(DI2_PIN,INPUT_PULLUP);
#endif
#if defined (DI3_PIN)
pinMode(DI3_PIN,INPUT_PULLUP);
#endif
#if defined (DI4_PIN)
pinMode(DI4_PIN,INPUT_PULLUP);
#endif
#endif
#ifdef SEND_CPPM
pinMode(PA9,INPUT); // make sure the USART1.TX pin is released for heartbeat use
#endif
//Timers
init_HWTimer(); //0.5us
//Read module flash size
#ifndef DISABLE_FLASH_SIZE_CHECK
unsigned short *flashSize = (unsigned short *) (0x1FFFF7E0);// Address register
debugln("Module Flash size: %dKB",(int)(*flashSize & 0xffff));
if((int)(*flashSize & 0xffff) < MCU_EXPECTED_FLASH_SIZE) // Not supported by this project
while (true) { //SOS
for(uint8_t i=0; i<3;i++)
{
LED_on;
delay(100);
LED_off;
delay(100);
}
for(uint8_t i=0; i<3;i++)
{
LED_on;
delay(500);
LED_off;
delay(100);
}
for(uint8_t i=0; i<3;i++)
{
LED_on;
delay(100);
LED_off;
delay(100);
}
LED_off;
delay(1000);
}
#endif
// Initialize the EEPROM
uint16_t eepromStatus = EEPROM.init();
debugln("EEPROM initialized: %d",eepromStatus);
// If there was no valid EEPROM page the EEPROM is corrupt or uninitialized and should be formatted
if( eepromStatus == EEPROM_NO_VALID_PAGE )
{
EEPROM.format();
debugln("No valid EEPROM page, EEPROM formatted");
}
#else
//ATMEGA328p
// all inputs
DDRB=0x00;DDRC=0x00;DDRD=0x00;
// outputs
SDI_output;
SCLK_output;
#ifdef A7105_CSN_pin
A7105_CSN_output;
#endif
#ifdef CC25_CSN_pin
CC25_CSN_output;
#endif
#ifdef CYRF_CSN_pin
CYRF_RST_output;
CYRF_CSN_output;
#endif
#ifdef NRF_CSN_pin
NRF_CSN_output;
#endif
PE1_output;
PE2_output;
SERIAL_TX_output;
// pullups
PROTO_DIAL1_port |= _BV(PROTO_DIAL1_pin);
PROTO_DIAL2_port |= _BV(PROTO_DIAL2_pin);
PROTO_DIAL3_port |= _BV(PROTO_DIAL3_pin);
PROTO_DIAL4_port |= _BV(PROTO_DIAL4_pin);
BIND_port |= _BV(BIND_pin);
// Timer1 config
TCCR1A = 0;
TCCR1B = (1 << CS11); //prescaler8, set timer1 to increment every 0.5us(16Mhz) and start timer
// Random
random_init();
#endif
LED2_on;
// Set Chip selects
#ifdef A7105_CSN_pin
A7105_CSN_on;
#endif
#ifdef CC25_CSN_pin
CC25_CSN_on;
#endif
#ifdef CYRF_CSN_pin
CYRF_CSN_on;
#endif
#ifdef NRF_CSN_pin
NRF_CSN_on;
#endif
#ifdef SPI_CSN_pin
SPI_CSN_on;
#endif
// Set SPI lines
#ifdef STM32_BOARD
initSPI2();
#else
SDI_on;
SCLK_off;
#endif
//Wait for every component to start
delayMilliseconds(100);
// Read status of bind button
if( IS_BIND_BUTTON_on )
{
BIND_BUTTON_FLAG_on; // If bind button pressed save the status
BIND_IN_PROGRESS; // Request bind
}
else
BIND_DONE;
// Read status of mode select binary switch
// after this mode_select will be one of {0000, 0001, ..., 1111}
#ifndef ENABLE_PPM
mode_select = MODE_SERIAL ; // force serial mode
#elif defined STM32_BOARD
mode_select= 0x0F -(uint8_t)(((GPIOA->regs->IDR)>>4)&0x0F);
#else
mode_select =
((PROTO_DIAL1_ipr & _BV(PROTO_DIAL1_pin)) ? 0 : 1) +
((PROTO_DIAL2_ipr & _BV(PROTO_DIAL2_pin)) ? 0 : 2) +
((PROTO_DIAL3_ipr & _BV(PROTO_DIAL3_pin)) ? 0 : 4) +
((PROTO_DIAL4_ipr & _BV(PROTO_DIAL4_pin)) ? 0 : 8);
#endif
//mode_select=1;
debugln("Protocol selection switch reads as %d", mode_select);
#ifdef ENABLE_PPM
uint8_t bank=bank_switch();
#endif
// Set default channels' value
for(uint8_t i=0;i<NUM_CHN;i++)
Channel_data[i]=1024;
Channel_data[THROTTLE]=0; //0=-125%, 204=-100%
#ifdef ENABLE_PPM
// Set default PPMs' value
for(uint8_t i=0;i<NUM_CHN;i++)
PPM_data[i]=PPM_MAX_100+PPM_MIN_100;
PPM_data[THROTTLE]=PPM_MIN_100*2;
#endif
// Update LED
LED_off;
LED_output;
//Init RF modules
modules_reset();
#ifndef ORANGE_TX
#ifdef STM32_BOARD
uint32_t seed=0;
for(uint8_t i=0;i<4;i++)
#ifdef RND_pin
seed=(seed<<8) | (analogRead(RND_pin)& 0xFF);
#else
//TODO find something to randomize...
seed=(seed<<8);
#endif
randomSeed(seed);
#else
//Init the seed with a random value created from watchdog timer for all protocols requiring random values
randomSeed(random_value());
#endif
#endif
// Read or create protocol id
MProtocol_id_master=random_id(EEPROM_ID_OFFSET,false);
debugln("Module Id: %lx", MProtocol_id_master);
#ifdef ENABLE_PPM
//Protocol and interrupts initialization
if(mode_select != MODE_SERIAL)
{ // PPM
#ifndef MY_PPM_PROT
const PPM_Parameters *PPM_prot_line=&PPM_prot[bank*14+mode_select-1];
#else
const PPM_Parameters *PPM_prot_line=&My_PPM_prot[bank*14+mode_select-1];
#endif
protocol = PPM_prot_line->protocol;
cur_protocol[1] = protocol;
sub_protocol = PPM_prot_line->sub_proto;
RX_num = PPM_prot_line->rx_num;
chan_order = PPM_prot_line->chan_order;
//Forced frequency tuning values for CC2500 protocols
#if defined(FORCE_FRSKYD_TUNING) && defined(FRSKYD_CC2500_INO)
if(protocol==PROTO_FRSKYD)
option = FORCE_FRSKYD_TUNING; // Use config-defined tuning value for FrSkyD
else
#endif
#if defined(FORCE_FRSKYL_TUNING) && defined(FRSKYL_CC2500_INO)
if(protocol==PROTO_FRSKYL)
option = FORCE_FRSKYL_TUNING; // Use config-defined tuning value for FrSkyL
else
#endif
#if defined(FORCE_FRSKYV_TUNING) && defined(FRSKYV_CC2500_INO)
if(protocol==PROTO_FRSKYV)
option = FORCE_FRSKYV_TUNING; // Use config-defined tuning value for FrSkyV
else
#endif
#if defined(FORCE_FRSKYX_TUNING) && defined(FRSKYX_CC2500_INO)
if(protocol==PROTO_FRSKYX || protocol==PROTO_FRSKYX2)
option = FORCE_FRSKYX_TUNING; // Use config-defined tuning value for FrSkyX
else
#endif
#if defined(FORCE_FUTABA_TUNING) && defined(FUTABA_CC2500_INO)
if (protocol==PROTO_FUTABA)
option = FORCE_FUTABA_TUNING; // Use config-defined tuning value for SFHSS
else
#endif
#if defined(FORCE_CORONA_TUNING) && defined(CORONA_CC2500_INO)
if (protocol==PROTO_CORONA)
option = FORCE_CORONA_TUNING; // Use config-defined tuning value for CORONA
else
#endif
#if defined(FORCE_SKYARTEC_TUNING) && defined(SKYARTEC_CC2500_INO)
if (protocol==PROTO_SKYARTEC)
option = FORCE_SKYARTEC_TUNING; // Use config-defined tuning value for SKYARTEC
else
#endif
#if defined(FORCE_REDPINE_TUNING) && defined(REDPINE_CC2500_INO)
if (protocol==PROTO_REDPINE)
option = FORCE_REDPINE_TUNING; // Use config-defined tuning value for REDPINE
else
#endif
#if defined(FORCE_RADIOLINK_TUNING) && defined(RADIOLINK_CC2500_INO)
if (protocol==PROTO_RADIOLINK)
option = FORCE_RADIOLINK_TUNING; // Use config-defined tuning value for RADIOLINK
else
#endif
#if defined(FORCE_HITEC_TUNING) && defined(HITEC_CC2500_INO)
if (protocol==PROTO_HITEC)
option = FORCE_HITEC_TUNING; // Use config-defined tuning value for HITEC
else
#endif
#if defined(FORCE_HOTT_TUNING) && defined(HOTT_CC2500_INO)
if (protocol==PROTO_HOTT)
option = FORCE_HOTT_TUNING; // Use config-defined tuning value for HOTT
else
#endif
option = (uint8_t)PPM_prot_line->option; // Use radio-defined option value
if(PPM_prot_line->power) POWER_FLAG_on;
if(PPM_prot_line->autobind)
{
AUTOBIND_FLAG_on;
BIND_IN_PROGRESS; // Force a bind at protocol startup
}
protocol_init();
#ifndef STM32_BOARD
//Configure PPM interrupt
#if PPM_pin == 2
EICRA |= _BV(ISC01); // The rising edge of INT0 pin D2 generates an interrupt request
EIMSK |= _BV(INT0); // INT0 interrupt enable
#elif PPM_pin == 3
EICRA |= _BV(ISC11); // The rising edge of INT1 pin D3 generates an interrupt request
EIMSK |= _BV(INT1); // INT1 interrupt enable
#else
#error PPM pin can only be 2 or 3
#endif
#else
attachInterrupt(PPM_pin,PPM_decode,FALLING);
#endif
#if defined(TELEMETRY)
PPM_Telemetry_serial_init();// Configure serial for telemetry
#endif
}
else
#endif //ENABLE_PPM
{ // Serial
#ifdef ENABLE_SERIAL
for(uint8_t i=0;i<3;i++)
cur_protocol[i]=0;
protocol=0;
#ifdef CHECK_FOR_BOOTLOADER
Mprotocol_serial_init(1); // Configure serial and enable RX interrupt
#else
Mprotocol_serial_init(); // Configure serial and enable RX interrupt
#endif
#endif //ENABLE_SERIAL
}
debugln("Init complete");
LED2_on;
}
// Main
// Protocol scheduler
void loop()
{
uint16_t next_callback, diff;
uint8_t count=0;
while(1)
{
while(remote_callback==0 || IS_WAIT_BIND_on || IS_INPUT_SIGNAL_off)
if(!Update_All())
{
cli(); // Disable global int due to RW of 16 bits registers
OCR1A=TCNT1; // Callback should already have been called... Use "now" as new sync point.
sei(); // Enable global int
}
TX_MAIN_PAUSE_on;
tx_pause();
next_callback=remote_callback()<<1;
TX_MAIN_PAUSE_off;
tx_resume();
cli(); // Disable global int due to RW of 16 bits registers
OCR1A+=next_callback; // Calc when next_callback should happen
#ifndef STM32_BOARD
TIFR1=OCF1A_bm; // Clear compare A=callback flag
#else
TIMER2_BASE->SR = 0x1E5F & ~TIMER_SR_CC1IF; // Clear Timer2/Comp1 interrupt flag
#endif
diff=OCR1A-TCNT1; // Calc the time difference
sei(); // Enable global int
if((diff&0x8000) && !(next_callback&0x8000))
{ // Negative result=callback should already have been called...
debugln("Short CB:%d",next_callback);
}
else
{
if(IS_RX_FLAG_on || IS_PPM_FLAG_on)
{ // Serial or PPM is waiting...
if(++count>10)
{ //The protocol does not leave enough time for an update so forcing it
count=0;
debugln("Force update");
Update_All();
}
}
#ifndef STM32_BOARD
while((TIFR1 & OCF1A_bm) == 0)
#else
while((TIMER2_BASE->SR & TIMER_SR_CC1IF )==0)
#endif
{
if(diff>900*2)
{ //If at least 1ms is available update values
if((diff&0x8000) && !(next_callback&0x8000))
{//Should never get here...
debugln("!!!BUG!!!");
break;
}
count=0;
Update_All();
#ifdef DEBUG_SERIAL
if(TIMER2_BASE->SR & TIMER_SR_CC1IF )
debugln("Long update");
#endif
if(remote_callback==0)
break;
cli(); // Disable global int due to RW of 16 bits registers
diff=OCR1A-TCNT1; // Calc the time difference
sei(); // Enable global int
}
}
}
}
}
void End_Bind()
{
//Request protocol to terminate bind
if(protocol==PROTO_FRSKYD || protocol==PROTO_FRSKYL || protocol==PROTO_FRSKYX || protocol==PROTO_FRSKYX2 || protocol==PROTO_FRSKYV || protocol==PROTO_FRSKY_R9
|| protocol==PROTO_DSM_RX || protocol==PROTO_AFHDS2A_RX || protocol==PROTO_FRSKY_RX || protocol==PROTO_BAYANG_RX
|| protocol==PROTO_AFHDS2A || protocol==PROTO_BUGS || protocol==PROTO_BUGSMINI || protocol==PROTO_HOTT || protocol==PROTO_ASSAN)
BIND_DONE;
else
if(bind_counter>2)
bind_counter=2;
}
bool Update_All()
{
#ifdef ENABLE_SERIAL
#ifdef CHECK_FOR_BOOTLOADER
if ( (mode_select==MODE_SERIAL) && (NotBootChecking == 0) )
pollBoot() ;
else
#endif
if(mode_select==MODE_SERIAL && IS_RX_FLAG_on) // Serial mode and something has been received
{
update_serial_data(); // Update protocol and data
update_channels_aux();
INPUT_SIGNAL_on; //valid signal received
last_signal=millis();
}
#endif //ENABLE_SERIAL
#ifdef ENABLE_PPM
if(mode_select!=MODE_SERIAL && IS_PPM_FLAG_on) // PPM mode and a full frame has been received
{
uint32_t chan_or=chan_order;
uint8_t ch;
uint8_t channelsCount = PPM_chan_max;
#ifdef ENABLE_DIRECT_INPUTS
#ifdef DI_CH1_read
PPM_data[channelsCount] = DI_CH1_read;
channelsCount++;
#endif
#ifdef DI_CH2_read
PPM_data[channelsCount] = DI_CH2_read;
channelsCount++;
#endif
#ifdef DI_CH3_read
PPM_data[channelsCount] = DI_CH3_read;
channelsCount++;
#endif
#ifdef DI_CH4_read
PPM_data[channelsCount] = DI_CH4_read;
channelsCount++;
#endif
#endif
for(uint8_t i=0;i<channelsCount;i++)
{ // update servo data without interrupts to prevent bad read
uint16_t val;
cli(); // disable global int
val = PPM_data[i];
sei(); // enable global int
val=map16b(val,PPM_MIN_100*2,PPM_MAX_100*2,CHANNEL_MIN_100,CHANNEL_MAX_100);
if(val&0x8000) val=CHANNEL_MIN_125;
else if(val>CHANNEL_MAX_125) val=CHANNEL_MAX_125;
if(chan_or)
{
ch=chan_or>>28;
if(ch)
Channel_data[ch-1]=val;
else
Channel_data[i]=val;
chan_or<<=4;
}
else
Channel_data[i]=val;
}
PPM_FLAG_off; // wait for next frame before update
#ifdef FAILSAFE_ENABLE
PPM_failsafe();
#endif
update_channels_aux();
INPUT_SIGNAL_on; // valid signal received
last_signal=millis();
}
#endif //ENABLE_PPM
update_led_status();
#ifdef SEND_CPPM
if ( telemetry_link & 0x80 )
{ // Protocol requests telemetry to be disabled
if( protocol == PROTO_FRSKY_RX || protocol == PROTO_AFHDS2A_RX || protocol == PROTO_BAYANG_RX || protocol == PROTO_DSM_RX )
{ // RX protocol
if(RX_LQI == 0)
telemetry_link = 0x00; // restore normal telemetry on connection loss
else if(telemetry_link & 1)
{ // New data available
Send_CCPM_USART1();
telemetry_link &= 0xFE; // update done
}
}
}
else
#endif
#if defined(TELEMETRY)
#ifndef MULTI_TELEMETRY
if((protocol == PROTO_BAYANG_RX) || (protocol == PROTO_AFHDS2A_RX) || (protocol == PROTO_FRSKY_RX) || (protocol == PROTO_SCANNER) || (protocol==PROTO_FRSKYD) || (protocol==PROTO_BAYANG) || (protocol==PROTO_NCC1701) || (protocol==PROTO_BUGS) || (protocol==PROTO_BUGSMINI) || (protocol==PROTO_HUBSAN) || (protocol==PROTO_AFHDS2A) || (protocol==PROTO_FRSKYX) || (protocol==PROTO_FRSKYX2) || (protocol==PROTO_DSM) || (protocol==PROTO_CABELL) || (protocol==PROTO_HITEC) || (protocol==PROTO_HOTT) || (protocol==PROTO_PROPEL) || (protocol==PROTO_OMP) || (protocol==PROTO_DEVO) || (protocol==PROTO_DSM_RX) || (protocol==PROTO_FRSKY_R9) || (protocol==PROTO_RLINK) || (protocol==PROTO_WFLY2) || (protocol==PROTO_LOLI) || (protocol==PROTO_MLINK))
#endif
if(IS_DISABLE_TELEM_off)
TelemetryUpdate();
#endif
#ifdef ENABLE_BIND_CH
if(IS_AUTOBIND_FLAG_on && IS_BIND_CH_PREV_off && Channel_data[BIND_CH-1]>CHANNEL_MAX_COMMAND)
{ // Autobind is on and BIND_CH went up
CHANGE_PROTOCOL_FLAG_on; // reload protocol
BIND_IN_PROGRESS; // enable bind
BIND_CH_PREV_on;
}
if(IS_AUTOBIND_FLAG_on && IS_BIND_CH_PREV_on && Channel_data[BIND_CH-1]<CHANNEL_MIN_COMMAND)
{ // Autobind is on and BIND_CH went down
BIND_CH_PREV_off;
End_Bind();
}
#endif //ENABLE_BIND_CH
if(IS_CHANGE_PROTOCOL_FLAG_on)
{ // Protocol needs to be changed or relaunched for bind
protocol_init(); // init new protocol
return true;
}
return false;
}
#if defined(FAILSAFE_ENABLE) && defined(ENABLE_PPM)
void PPM_failsafe()
{
static uint8_t counter=0;
if(IS_BIND_IN_PROGRESS || IS_FAILSAFE_VALUES_on) // bind is not finished yet or Failsafe already being sent
return;
BIND_SET_INPUT;
BIND_SET_PULLUP;
if(IS_BIND_BUTTON_on)
{// bind button pressed
counter++;
if(counter>227)
{ //after 5s with PPM frames @22ms
counter=0;
for(uint8_t i=0;i<NUM_CHN;i++)
Failsafe_data[i]=Channel_data[i];
FAILSAFE_VALUES_on;
}
}
else
counter=0;
BIND_SET_OUTPUT;
}
#endif
// Update channels direction and Channel_AUX flags based on servo AUX positions
static void update_channels_aux(void)
{
//Reverse channels direction
#ifdef REVERSE_AILERON
reverse_channel(AILERON);
#endif
#ifdef REVERSE_ELEVATOR
reverse_channel(ELEVATOR);
#endif
#ifdef REVERSE_THROTTLE
reverse_channel(THROTTLE);
#endif
#ifdef REVERSE_RUDDER
reverse_channel(RUDDER);
#endif
//Calc AUX flags
Channel_AUX=0;
for(uint8_t i=0;i<8;i++)
if(Channel_data[CH5+i]>CHANNEL_SWITCH)
Channel_AUX|=1<<i;
}
// Update led status based on binding and serial
static void update_led_status(void)
{
if(IS_INPUT_SIGNAL_on)
if(millis()-last_signal>70)
{
INPUT_SIGNAL_off; //no valid signal (PPM or Serial) received for 70ms
debugln("No input signal");
}
if(blink<millis())
{
if(IS_INPUT_SIGNAL_off)
{
if(mode_select==MODE_SERIAL)
blink+=BLINK_SERIAL_TIME; //blink slowly if no valid serial input
else
blink+=BLINK_PPM_TIME; //blink more slowly if no valid PPM input
}
else
if(remote_callback == 0)
{ // Invalid protocol
if(IS_LED_on) //flash to indicate invalid protocol
blink+=BLINK_BAD_PROTO_TIME_LOW;
else
blink+=BLINK_BAD_PROTO_TIME_HIGH;
}
else
{
if(IS_WAIT_BIND_on)
{
if(IS_LED_on) //flash to indicate WAIT_BIND
blink+=BLINK_WAIT_BIND_TIME_LOW;
else
blink+=BLINK_WAIT_BIND_TIME_HIGH;
}
else
{
if(IS_BIND_DONE)
LED_off; //bind completed force led on
blink+=BLINK_BIND_TIME; //blink fastly during binding
}
}
LED_toggle;
}
}
#ifdef ENABLE_PPM
uint8_t bank_switch(void)
{
uint8_t bank=eeprom_read_byte((EE_ADDR)EEPROM_BANK_OFFSET);
if(bank>=NBR_BANKS)
{ // Wrong number of bank
eeprom_write_byte((EE_ADDR)EEPROM_BANK_OFFSET,0x00); // set bank to 0
bank=0;
}
debugln("Using bank %d", bank);
phase=3;
uint32_t check=millis();
blink=millis();
while(mode_select==15)
{ //loop here if the dial is on position 15 for user to select the bank
if(blink<millis())
{
switch(phase & 0x03)
{ // Flash bank number of times
case 0:
LED_on;
blink+=BLINK_BANK_TIME_HIGH;
phase++;
break;
case 1:
LED_off;
blink+=BLINK_BANK_TIME_LOW;
phase++;
break;
case 2:
if( (phase>>2) >= bank)
{
phase=0;
blink+=BLINK_BANK_REPEAT;
}
else
phase+=2;
break;
case 3:
LED_output;
LED_off;
blink+=BLINK_BANK_TIME_LOW;
phase=0;
break;
}
}
if(check<millis())
{
//Test bind button: for AVR it's shared with the LED so some extra work is needed to check it...
#ifndef STM32_BOARD
bool led=IS_LED_on;
BIND_SET_INPUT;
BIND_SET_PULLUP;
#endif
bool test_bind=IS_BIND_BUTTON_on;
#ifndef STM32_BOARD
if(led)
LED_on;
else
LED_off;
LED_output;
#endif
if( test_bind )
{ // Increase bank
LED_on;
bank++;
if(bank>=NBR_BANKS)
bank=0;
eeprom_write_byte((EE_ADDR)EEPROM_BANK_OFFSET,bank);
debugln("Using bank %d", bank);
phase=3;
blink+=BLINK_BANK_REPEAT;
check+=2*BLINK_BANK_REPEAT;
}
check+=1;
}
}
return bank;
}
#endif
inline void tx_pause()
{
#ifdef TELEMETRY
// Pause telemetry by disabling transmitter interrupt
#ifdef ORANGE_TX
USARTC0.CTRLA &= ~0x03 ;
#else
#ifndef BASH_SERIAL
#ifdef STM32_BOARD
USART3_BASE->CR1 &= ~ USART_CR1_TXEIE;
#else
UCSR0B &= ~_BV(UDRIE0);
#endif
#endif
#endif
#endif
}
inline void tx_resume()
{
#ifdef TELEMETRY
// Resume telemetry by enabling transmitter interrupt
if(IS_TX_PAUSE_off)
{
#ifdef ORANGE_TX
cli() ;
USARTC0.CTRLA = (USARTC0.CTRLA & 0xFC) | 0x01 ;
sei() ;
#else
#ifndef BASH_SERIAL
#ifdef STM32_BOARD
USART3_BASE->CR1 |= USART_CR1_TXEIE;
#else
UCSR0B |= _BV(UDRIE0);
#endif
#else
resumeBashSerial();
#endif
#endif
}
#endif
}
void rf_switch(uint8_t comp)
{
PE1_off;
PE2_off;
switch(comp)
{
case SW_CC2500:
PE2_on;
break;
case SW_CYRF:
PE2_on;
case SW_NRF:
PE1_on;
break;
}
}
// Protocol start
static void protocol_init()
{
if(IS_WAIT_BIND_off)
{
remote_callback = 0; // No protocol
LED_off; // Led off during protocol init
modules_reset(); // Reset all modules
crc16_polynomial = 0x1021; // Default CRC crc16_polynomial
crc8_polynomial = 0x31; // Default CRC crc8_polynomial
prev_option = option;
// reset telemetry
#ifdef TELEMETRY
#ifdef MULTI_SYNC
inputRefreshRate = 0; // Don't do it unless the protocol asks for it
#endif
multi_protocols_index = 0xFF;
tx_pause();
init_frskyd_link_telemetry();
pps_timer=millis();
pps_counter=0;
#ifdef BASH_SERIAL
TIMSK0 = 0 ; // Stop all timer 0 interrupts
#ifdef INVERT_SERIAL
SERIAL_TX_off;
#else
SERIAL_TX_on;
#endif
SerialControl.tail=0;
SerialControl.head=0;
SerialControl.busy=0;
#else
tx_tail=0;
tx_head=0;
#endif
TX_RX_PAUSE_off;
TX_MAIN_PAUSE_off;
tx_resume();
#if defined(AFHDS2A_RX_A7105_INO) || defined(FRSKY_RX_CC2500_INO) || defined(BAYANG_RX_NRF24L01_INO)
for(uint8_t ch=0; ch<16; ch++)
rx_rc_chan[ch] = 1024;
#endif
#endif
binding_idx=0;
//Stop CPPM if it was previously running
#ifdef SEND_CPPM
release_trainer_ppm();
#endif
//Set global ID and rx_tx_addr
MProtocol_id = RX_num + MProtocol_id_master;
set_rx_tx_addr(MProtocol_id);
#ifdef FAILSAFE_ENABLE
FAILSAFE_VALUES_off;
#endif
DATA_BUFFER_LOW_off;
SUB_PROTO_VALID;
option_override = 0xFF;
blink=millis();
debugln("Protocol selected: %d, sub proto %d, rxnum %d, option %d", protocol, sub_protocol, RX_num, option);
uint8_t index=0;
#if defined(FRSKYX_CC2500_INO) && defined(EU_MODULE)
if( ! ( (protocol == PROTO_FRSKYX || protocol == PROTO_FRSKYX2) && sub_protocol < 2 ) )
#endif
while(multi_protocols[index].protocol != 0)
{
if(multi_protocols[index].protocol==protocol)
{
//Save index
multi_protocols_index = index;
//Set the RF switch
rf_switch(multi_protocols[multi_protocols_index].rfSwitch);
//Init protocol
multi_protocols[multi_protocols_index].Init();
//Save call back function address
remote_callback = multi_protocols[multi_protocols_index].CallBack;
//Send a telemetry status right now
SEND_MULTI_STATUS_on;
#ifdef DEBUG_SERIAL
debug("Proto=%s",multi_protocols[multi_protocols_index].ProtoString);
uint8_t nbr=multi_protocols[multi_protocols_index].nbrSubProto;
debug(", nbr_sub=%d, Sub=",nbr);
if(nbr && (sub_protocol&0x07)<nbr)
{
uint8_t len=multi_protocols[multi_protocols_index].SubProtoString[0];
uint8_t offset=len*(sub_protocol&0x07)+1;
for(uint8_t j=0;j<len;j++)
debug("%c",multi_protocols[multi_protocols_index].SubProtoString[j+offset]);
}
debug(", Opt=%d",multi_protocols[multi_protocols_index].optionType);
debug(", FS=%d",multi_protocols[multi_protocols_index].failSafe);
debug(", CHMap=%d",multi_protocols[multi_protocols_index].chMap);
debugln(", rfSw=%d",multi_protocols[multi_protocols_index].rfSwitch);
#endif
break;
}
index++;
}
}
#if defined(WAIT_FOR_BIND) && defined(ENABLE_BIND_CH)
if( IS_AUTOBIND_FLAG_on && IS_BIND_CH_PREV_off && (cur_protocol[1]&0x80)==0 && mode_select == MODE_SERIAL)
{ // Autobind is active but no bind requested by either BIND_CH or BIND. But do not wait if in PPM mode...
WAIT_BIND_on;
return;
}
#endif
WAIT_BIND_off;
CHANGE_PROTOCOL_FLAG_off;
//Wait 5ms after protocol init
cli(); // disable global int
OCR1A = TCNT1 + 5000*2; // set compare A for callback
#ifndef STM32_BOARD
TIFR1 = OCF1A_bm ; // clear compare A flag
#else
TIMER2_BASE->SR = 0x1E5F & ~TIMER_SR_CC1IF; // Clear Timer2/Comp1 interrupt flag
#endif
sei(); // enable global int
BIND_BUTTON_FLAG_off; // do not bind/reset id anymore even if protocol change
}
void update_serial_data()
{
static bool prev_ch_mapping=false;
#if defined(TELEMETRY) && defined(INVERT_TELEMETRY_TX)
#ifdef INVERT_TELEMETRY
static bool prev_inv_telem=true;
#else
static bool prev_inv_telem=false;
#endif
#endif
RX_DONOTUPDATE_on;
RX_FLAG_off; //data is being processed
#ifdef SAMSON // Extremely dangerous, do not enable this unless you know what you are doing...
if( rx_ok_buff[0]==0x55 && (rx_ok_buff[1]&0x1F)==PROTO_FRSKYD && rx_ok_buff[2]==0x7F && rx_ok_buff[24]==217 && rx_ok_buff[25]==202 )
{//proto==FRSKYD+sub==7+rx_num==7+CH15==73%+CH16==73%
rx_ok_buff[1]=(rx_ok_buff[1]&0xE0) | PROTO_FLYSKY; // change the protocol to Flysky
memcpy((void*)(rx_ok_buff+4),(void*)(rx_ok_buff+4+11),11); // reassign channels 9-16 to 1-8
}
#endif
#ifdef BONI // Extremely dangerous, do not enable this!!! This is really for a special case...
if(CH14_SW)
rx_ok_buff[2]=(rx_ok_buff[2]&0xF0)|((rx_ok_buff[2]+1)&0x0F);
#endif
if(rx_ok_buff[1]&0x20) //check range
RANGE_FLAG_on;
else
RANGE_FLAG_off;
if(rx_ok_buff[1]&0x40) //check autobind
AUTOBIND_FLAG_on;
else
AUTOBIND_FLAG_off;
if(rx_ok_buff[2]&0x80) //if rx_ok_buff[2] ==1,power is low ,0-power high
POWER_FLAG_off; //power low
else
POWER_FLAG_on; //power high
//Forced frequency tuning values for CC2500 protocols
#if defined(FORCE_FRSKYD_TUNING) && defined(FRSKYD_CC2500_INO)
if(protocol==PROTO_FRSKYD)
option=FORCE_FRSKYD_TUNING; // Use config-defined tuning value for FrSkyD
else
#endif
#if defined(FORCE_FRSKYL_TUNING) && defined(FRSKYL_CC2500_INO)
if(protocol==PROTO_FRSKYL)
option=FORCE_FRSKYL_TUNING; // Use config-defined tuning value for FrSkyL
else
#endif
#if defined(FORCE_FRSKYV_TUNING) && defined(FRSKYV_CC2500_INO)
if(protocol==PROTO_FRSKYV)
option=FORCE_FRSKYV_TUNING; // Use config-defined tuning value for FrSkyV
else
#endif
#if defined(FORCE_FRSKYX_TUNING) && defined(FRSKYX_CC2500_INO)
if(protocol==PROTO_FRSKYX || protocol==PROTO_FRSKYX2)
option=FORCE_FRSKYX_TUNING; // Use config-defined tuning value for FrSkyX
else
#endif
#if defined(FORCE_FUTABA_TUNING) && defined(FUTABA_CC2500_INO)
if (protocol==PROTO_FUTABA)
option=FORCE_FUTABA_TUNING; // Use config-defined tuning value for SFHSS
else
#endif
#if defined(FORCE_CORONA_TUNING) && defined(CORONA_CC2500_INO)
if (protocol==PROTO_CORONA)
option=FORCE_CORONA_TUNING; // Use config-defined tuning value for CORONA
else
#endif
#if defined(FORCE_SKYARTEC_TUNING) && defined(SKYARTEC_CC2500_INO)
if (protocol==PROTO_SKYARTEC)
option=FORCE_SKYARTEC_TUNING; // Use config-defined tuning value for SKYARTEC
else
#endif
#if defined(FORCE_REDPINE_TUNING) && defined(REDPINE_CC2500_INO)
if (protocol==PROTO_REDPINE)
option=FORCE_REDPINE_TUNING; // Use config-defined tuning value for REDPINE
else
#endif
#if defined(FORCE_RADIOLINK_TUNING) && defined(RADIOLINK_CC2500_INO)
if (protocol==PROTO_RADIOLINK)
option = FORCE_RADIOLINK_TUNING; // Use config-defined tuning value for RADIOLINK
else
#endif
#if defined(FORCE_HITEC_TUNING) && defined(HITEC_CC2500_INO)
if (protocol==PROTO_HITEC)
option=FORCE_HITEC_TUNING; // Use config-defined tuning value for HITEC
else
#endif
#if defined(FORCE_HOTT_TUNING) && defined(HOTT_CC2500_INO)
if (protocol==PROTO_HOTT)
option=FORCE_HOTT_TUNING; // Use config-defined tuning value for HOTT
else
#endif
option=rx_ok_buff[3]; // Use radio-defined option value
#ifdef FAILSAFE_ENABLE
bool failsafe=false;
if(rx_ok_buff[0]&0x02)
{ // Packet contains failsafe instead of channels
failsafe=true;
rx_ok_buff[0]&=0xFD; // Remove the failsafe flag
FAILSAFE_VALUES_on; // Failsafe data has been received
debugln("Failsafe received");
}
#endif
DISABLE_CH_MAP_off;
DISABLE_TELEM_off;
if(rx_len>26)
{//Additional flag received at the end
rx_ok_buff[0]=(rx_ok_buff[26]&0xF0) | (rx_ok_buff[0]&0x0F); // Additional protocol numbers and RX_Num available -> store them in rx_ok_buff[0]
if(rx_ok_buff[26]&0x02)
DISABLE_TELEM_on;
if(rx_ok_buff[26]&0x01)
DISABLE_CH_MAP_on;
#if defined(TELEMETRY) && defined(INVERT_TELEMETRY_TX)
if(((rx_ok_buff[26]&0x08)!=0) ^ prev_inv_telem)
{ //value changed
if(rx_ok_buff[26]&0x08)
{ // Invert telemetry
debugln("Invert telem %d,%d",rx_ok_buff[26]&0x01,prev_inv_telem);
#if defined (ORANGE_TX)
PORTC.PIN3CTRL |= 0x40 ;
#elif defined (STM32_BOARD)
TX_INV_on;
RX_INV_on;
#endif
}
else
{ // Normal telemetry
debugln("Normal telem %d,%d",rx_ok_buff[26]&0x01,prev_inv_telem);
#if defined (ORANGE_TX)
PORTC.PIN3CTRL &= 0xBF ;
#elif defined (STM32_BOARD)
TX_INV_off;
RX_INV_off;
#endif
}
prev_inv_telem=rx_ok_buff[26]&0x08;
}
#endif
}
if( (rx_ok_buff[0] != cur_protocol[0]) || ((rx_ok_buff[1]&0x5F) != (cur_protocol[1]&0x5F)) || ( (rx_ok_buff[2]&0x7F) != (cur_protocol[2]&0x7F) ) )
{ // New model has been selected
CHANGE_PROTOCOL_FLAG_on; //change protocol
WAIT_BIND_off;
if((rx_ok_buff[1]&0x80)!=0 || IS_AUTOBIND_FLAG_on)
BIND_IN_PROGRESS; //launch bind right away if in autobind mode or bind is set
else
BIND_DONE;
protocol=rx_ok_buff[1]&0x1F; //protocol no (0-31)
if(!(rx_ok_buff[0]&1))
protocol+=32; //protocol no (0-63)
if(rx_len>26)
protocol|=rx_ok_buff[26]&0xC0; //protocol no (0-255)
sub_protocol=(rx_ok_buff[2]>>4)& 0x07; //subprotocol no (0-7) bits 4-6
RX_num=rx_ok_buff[2]& 0x0F; //rx_num no (0-15)
if(rx_len>26)
RX_num|=rx_ok_buff[26]&0x30; //rx_num no (0-63)
}
else
if( ((rx_ok_buff[1]&0x80)!=0) && ((cur_protocol[1]&0x80)==0) ) // Bind flag has been set
{ // Restart protocol with bind
CHANGE_PROTOCOL_FLAG_on;
BIND_IN_PROGRESS;
}
else
if( ((rx_ok_buff[1]&0x80)==0) && ((cur_protocol[1]&0x80)!=0) ) // Bind flag has been reset
{ // Request protocol to end bind
End_Bind();
}
//store current protocol values
for(uint8_t i=0;i<3;i++)
cur_protocol[i] = rx_ok_buff[i];
//disable channel mapping
if(multi_protocols[multi_protocols_index].chMap == 0)
DISABLE_CH_MAP_off; //not a protocol supporting ch map to be disabled
if(prev_ch_mapping!=IS_DISABLE_CH_MAP_on)
{
prev_ch_mapping=IS_DISABLE_CH_MAP_on;
if(IS_DISABLE_CH_MAP_on)
{
for(uint8_t i=0;i<4;i++)
CH_AETR[i]=CH_TAER[i]=CH_EATR[i]=i;
debugln("DISABLE_CH_MAP_on");
}
else
{
CH_AETR[0]=AILERON;CH_AETR[1]=ELEVATOR;CH_AETR[2]=THROTTLE;CH_AETR[3]=RUDDER;
CH_TAER[0]=THROTTLE;CH_TAER[1]=AILERON;CH_TAER[2]=ELEVATOR;CH_TAER[3]=RUDDER;
CH_EATR[0]=ELEVATOR;CH_EATR[1]=AILERON;CH_EATR[2]=THROTTLE;CH_EATR[3]=RUDDER;
debugln("DISABLE_CH_MAP_off");
}
}
// decode channel/failsafe values
volatile uint8_t *p=rx_ok_buff+3;
uint8_t dec=-3;
for(uint8_t i=0;i<NUM_CHN;i++)
{
dec+=3;
if(dec>=8)
{
dec-=8;
p++;
}
p++;
uint16_t temp=((*((uint32_t *)p))>>dec)&0x7FF;
#ifdef FAILSAFE_ENABLE
if(failsafe)
Failsafe_data[i]=temp; //value range 0..2047, 0=no pulse, 2047=hold
else
#endif
Channel_data[i]=temp; //value range 0..2047, 0=-125%, 2047=+125%
}
#ifdef HOTT_FW_TELEMETRY
HoTT_SerialRX=false;
#endif
if(rx_len>27)
{ // Data available for the current protocol
#if defined(FRSKYX_CC2500_INO) || defined(FRSKYR9_SX1276_INO)
if((protocol==PROTO_FRSKYX || protocol==PROTO_FRSKYX2 || protocol==PROTO_FRSKY_R9) && rx_len==28)
{//Protocol waiting for 1 byte during bind
binding_idx=rx_ok_buff[27];
}
#endif
#ifdef SPORT_SEND
if((protocol==PROTO_FRSKYX || protocol==PROTO_FRSKYX2 || protocol==PROTO_FRSKY_R9) && rx_len==27+8)
{//Protocol waiting for 8 bytes
#define BYTE_STUFF 0x7D
#define STUFF_MASK 0x20
//debug("SPort_in: ");
boolean sport_valid=false;
for(uint8_t i=28;i<28+7;i++)
if(rx_ok_buff[i]!=0) sport_valid=true; //Check that the payload is not full of 0
if((rx_ok_buff[27]&0x1F) > 0x1B) //Check 1st byte validity
sport_valid=false;
if(sport_valid)
{
SportData[SportTail]=0x7E;
SportTail = (SportTail+1) & (MAX_SPORT_BUFFER-1);
SportData[SportTail]=rx_ok_buff[27]&0x1F;
SportTail = (SportTail+1) & (MAX_SPORT_BUFFER-1);
for(uint8_t i=28;i<28+7;i++)
{
if( (rx_ok_buff[i]==BYTE_STUFF) || (rx_ok_buff[i]==0x7E) )
{//stuff
SportData[SportTail]=BYTE_STUFF;
SportTail = (SportTail+1) & (MAX_SPORT_BUFFER-1);
SportData[SportTail]=rx_ok_buff[i]^STUFF_MASK;
}
else
SportData[SportTail]=rx_ok_buff[i];
//debug("%02X ",SportData[SportTail]);
SportTail = (SportTail+1) & (MAX_SPORT_BUFFER-1);
}
uint8_t used = SportTail;
if ( SportHead > SportTail )
used += MAX_SPORT_BUFFER - SportHead ;
else
used -= SportHead ;
if ( used >= MAX_SPORT_BUFFER-(MAX_SPORT_BUFFER>>2) )
{
DATA_BUFFER_LOW_on;
SEND_MULTI_STATUS_on; //Send Multi Status ASAP to inform the TX
debugln("Low buf=%d,h=%d,t=%d",used,SportHead,SportTail);
}
}
}
#endif //SPORT_SEND
#ifdef HOTT_FW_TELEMETRY
if(protocol==PROTO_HOTT && rx_len==27+1)
{//Protocol waiting for 1 byte
HoTT_SerialRX_val=rx_ok_buff[27];
HoTT_SerialRX=true;
}
#endif
#ifdef DSM_FWD_PGM
if(protocol==PROTO_DSM && rx_len==27+7)
{//Protocol waiting for 7 bytes
memcpy(DSM_SerialRX_val, (const void *)&rx_ok_buff[27],7);
DSM_SerialRX=true;
}
#endif
#ifdef MULTI_CONFIG_INO
if(protocol==PROTO_CONFIG && rx_len==27+7)
{//Protocol waiting for 7 bytes
memcpy(CONFIG_SerialRX_val, (const void *)&rx_ok_buff[27],7);
CONFIG_SerialRX=true;
}
#endif
}
RX_DONOTUPDATE_off;
#ifdef ORANGE_TX
cli();
#else
UCSR0B &= ~_BV(RXCIE0); // RX interrupt disable
#endif
if(IS_RX_MISSED_BUFF_on) // If the buffer is still valid
{
if(rx_idx>=26 && rx_idx<RXBUFFER_SIZE)
{
rx_len=rx_idx;
memcpy((void*)rx_ok_buff,(const void*)rx_buff,rx_len);// Duplicate the buffer
RX_FLAG_on; // Data to be processed next time...
}
RX_MISSED_BUFF_off;
}
#ifdef ORANGE_TX
sei();
#else
UCSR0B |= _BV(RXCIE0) ; // RX interrupt enable
#endif
}
void modules_reset()
{
#ifdef CC2500_INSTALLED
CC2500_Reset();
#endif
#ifdef A7105_INSTALLED
A7105_Reset();
#endif
#ifdef CYRF6936_INSTALLED
CYRF_Reset();
#endif
#ifdef NRF24L01_INSTALLED
NRF24L01_Reset();
#endif
#ifdef SX1276_INSTALLED
SX1276_Reset();
#endif
//Wait for every component to reset
delayMilliseconds(100);
prev_power=0xFD; // unused power value
}
#ifdef CHECK_FOR_BOOTLOADER
void Mprotocol_serial_init( uint8_t boot )
#else
void Mprotocol_serial_init()
#endif
{
#ifdef ORANGE_TX
PORTC.OUTSET = 0x08 ;
PORTC.DIRSET = 0x08 ;
USARTC0.BAUDCTRLA = 19 ;
USARTC0.BAUDCTRLB = 0 ;
USARTC0.CTRLB = 0x18 ;
USARTC0.CTRLA = (USARTC0.CTRLA & 0xCC) | 0x11 ;
USARTC0.CTRLC = 0x2B ;
UDR0 ;
#ifdef INVERT_SERIAL
PORTC.PIN3CTRL |= 0x40 ;
#endif
#ifdef CHECK_FOR_BOOTLOADER
if ( boot )
{
USARTC0.BAUDCTRLB = 0 ;
USARTC0.BAUDCTRLA = 33 ; // 57600
USARTC0.CTRLA = (USARTC0.CTRLA & 0xC0) ;
USARTC0.CTRLC = 0x03 ; // 8 bit, no parity, 1 stop
USARTC0.CTRLB = 0x18 ; // Enable Tx and Rx
PORTC.PIN3CTRL &= ~0x40 ;
}
#endif // CHECK_FOR_BOOTLOADER
#elif defined STM32_BOARD
#ifdef CHECK_FOR_BOOTLOADER
if ( boot )
{
usart2_begin(57600,SERIAL_8N1);
USART2_BASE->CR1 &= ~USART_CR1_RXNEIE ;
(void)UDR0 ;
}
else
#endif // CHECK_FOR_BOOTLOADER
{
usart2_begin(100000,SERIAL_8E2);
USART2_BASE->CR1 |= USART_CR1_PCE_BIT;
}
USART2_BASE->CR1 &= ~ USART_CR1_TE; //disable transmit
usart3_begin(100000,SERIAL_8E2);
#else
//ATMEGA328p
#include <util/setbaud.h>
UBRR0H = UBRRH_VALUE;
UBRR0L = UBRRL_VALUE;
UCSR0A = 0 ; // Clear X2 bit
//Set frame format to 8 data bits, even parity, 2 stop bits
UCSR0C = _BV(UPM01)|_BV(USBS0)|_BV(UCSZ01)|_BV(UCSZ00);
while ( UCSR0A & (1 << RXC0) ) //flush receive buffer
UDR0;
//enable reception and RC complete interrupt
UCSR0B = _BV(RXEN0)|_BV(RXCIE0);//rx enable and interrupt
#ifndef DEBUG_PIN
#if defined(TELEMETRY)
initTXSerial( SPEED_100K ) ;
#endif //TELEMETRY
#endif //DEBUG_PIN
#ifdef CHECK_FOR_BOOTLOADER
if ( boot )
{
UBRR0H = 0;
UBRR0L = 33; // 57600
UCSR0C &= ~_BV(UPM01); // No parity
UCSR0B &= ~_BV(RXCIE0); // No rx interrupt
UCSR0A |= _BV(U2X0); // Double speed mode USART0
}
#endif // CHECK_FOR_BOOTLOADER
#endif //ORANGE_TX
}
#ifdef STM32_BOARD
void usart2_begin(uint32_t baud,uint32_t config )
{
usart_init(USART2);
usart_config_gpios_async(USART2,GPIOA,PIN_MAP[PA3].gpio_bit,GPIOA,PIN_MAP[PA2].gpio_bit,config);
LED2_output;
usart_set_baud_rate(USART2, STM32_PCLK1, baud);
usart_enable(USART2);
}
void usart3_begin(uint32_t baud,uint32_t config )
{
usart_init(USART3);
usart_config_gpios_async(USART3,GPIOB,PIN_MAP[PB11].gpio_bit,GPIOB,PIN_MAP[PB10].gpio_bit,config);
usart_set_baud_rate(USART3, STM32_PCLK1, baud);
USART3_BASE->CR3 &= ~USART_CR3_EIE & ~USART_CR3_CTSIE; // Disable receive
USART3_BASE->CR1 &= ~USART_CR1_RE & ~USART_CR1_RXNEIE & ~USART_CR1_PEIE & ~USART_CR1_IDLEIE ; // Disable RX and interrupts
USART3_BASE->CR1 |= (USART_CR1_TE | USART_CR1_UE); // Enable USART3 and TX
}
void init_HWTimer()
{
HWTimer2.pause(); // Pause the timer2 while we're configuring it
TIMER2_BASE->PSC = 35; // 36-1;for 72 MHZ /0.5sec/(35+1)
TIMER2_BASE->ARR = 0xFFFF; // Count until 0xFFFF
HWTimer2.setMode(TIMER_CH1, TIMER_OUTPUT_COMPARE); // Main scheduler
TIMER2_BASE->SR = 0x1E5F & ~TIMER_SR_CC2IF; // Clear Timer2/Comp2 interrupt flag
TIMER2_BASE->DIER &= ~TIMER_DIER_CC2IE; // Disable Timer2/Comp2 interrupt
HWTimer2.refresh(); // Refresh the timer's count, prescale, and overflow
HWTimer2.resume();
#ifdef ENABLE_SERIAL
HWTimer3.pause(); // Pause the timer3 while we're configuring it
TIMER3_BASE->PSC = 35; // 36-1;for 72 MHZ /0.5sec/(35+1)
TIMER3_BASE->ARR = 0xFFFF; // Count until 0xFFFF
HWTimer3.setMode(TIMER_CH2, TIMER_OUTPUT_COMPARE); // Serial check
TIMER3_BASE->SR = 0x1E5F & ~TIMER_SR_CC2IF; // Clear Timer3/Comp2 interrupt flag
HWTimer3.attachInterrupt(TIMER_CH2,ISR_COMPB); // Assign function to Timer3/Comp2 interrupt
TIMER3_BASE->DIER &= ~TIMER_DIER_CC2IE; // Disable Timer3/Comp2 interrupt
HWTimer3.refresh(); // Refresh the timer's count, prescale, and overflow
HWTimer3.resume();
#endif
}
#endif
#ifdef CHECK_FOR_BOOTLOADER
void pollBoot()
{
uint8_t rxchar ;
uint8_t lState = BootState ;
uint8_t millisTime = millis(); // Call this once only
#ifdef ORANGE_TX
if ( USARTC0.STATUS & USART_RXCIF_bm )
#elif defined STM32_BOARD
if ( USART2_BASE->SR & USART_SR_RXNE )
#else
if ( UCSR0A & ( 1 << RXC0 ) )
#endif
{
rxchar = UDR0 ;
BootCount += 1 ;
if ( ( lState == BOOT_WAIT_30_IDLE ) || ( lState == BOOT_WAIT_30_DATA ) )
{
if ( lState == BOOT_WAIT_30_IDLE ) // Waiting for 0x30
BootTimer = millisTime ; // Start timeout
if ( rxchar == 0x30 )
lState = BOOT_WAIT_20 ;
else
lState = BOOT_WAIT_30_DATA ;
}
else
if ( lState == BOOT_WAIT_20 && rxchar == 0x20 ) // Waiting for 0x20
lState = BOOT_READY ;
}
else // No byte received
{
if ( lState != BOOT_WAIT_30_IDLE ) // Something received
{
uint8_t time = millisTime - BootTimer ;
if ( time > 5 )
{
#ifdef STM32_BOARD
if ( BootCount > 4 )
#else
if ( BootCount > 2 )
#endif
{ // Run normally
NotBootChecking = 0xFF ;
Mprotocol_serial_init( 0 ) ;
}
else if ( lState == BOOT_READY )
{
#ifdef STM32_BOARD
nvic_sys_reset();
while(1); /* wait until reset */
#else
cli(); // Disable global int due to RW of 16 bits registers
void (*p)();
#ifndef ORANGE_TX
p = (void (*)())0x3F00 ; // Word address (0x7E00 byte)
#else
p = (void (*)())0x4000 ; // Word address (0x8000 byte)
#endif
(*p)() ; // go to boot
#endif
}
else
{
lState = BOOT_WAIT_30_IDLE ;
BootCount = 0 ;
}
}
}
}
BootState = lState ;
}
#endif //CHECK_FOR_BOOTLOADER
#if defined(TELEMETRY)
void PPM_Telemetry_serial_init()
{
if( (protocol==PROTO_FRSKYD) || (protocol==PROTO_HUBSAN) || (protocol==PROTO_AFHDS2A) || (protocol==PROTO_BAYANG)|| (protocol==PROTO_NCC1701) || (protocol==PROTO_CABELL) || (protocol==PROTO_HITEC) || (protocol==PROTO_BUGS) || (protocol==PROTO_BUGSMINI) || (protocol==PROTO_PROPEL) || (protocol==PROTO_OMP) || (protocol==PROTO_RLINK) || (protocol==PROTO_WFLY2) || (protocol==PROTO_LOLI)
#ifdef TELEMETRY_FRSKYX_TO_FRSKYD
|| (protocol==PROTO_FRSKYX) || (protocol==PROTO_FRSKYX2)
#endif
)
initTXSerial( SPEED_9600 ) ;
#ifndef TELEMETRY_FRSKYX_TO_FRSKYD
if(protocol==PROTO_FRSKYX || protocol==PROTO_FRSKYX2)
initTXSerial( SPEED_57600 ) ;
#endif
if(protocol==PROTO_DSM)
initTXSerial( SPEED_125K ) ;
}
#endif
// Convert 32b id to rx_tx_addr
static void set_rx_tx_addr(uint32_t id)
{ // Used by almost all protocols
rx_tx_addr[0] = (id >> 24) & 0xFF;
rx_tx_addr[1] = (id >> 16) & 0xFF;
rx_tx_addr[2] = (id >> 8) & 0xFF;
rx_tx_addr[3] = (id >> 0) & 0xFF;
rx_tx_addr[4] = (rx_tx_addr[2]&0xF0)|(rx_tx_addr[3]&0x0F);
}
static uint32_t random_id(uint16_t address, uint8_t create_new)
{
#ifndef FORCE_GLOBAL_ID
uint32_t id=0;
if(eeprom_read_byte((EE_ADDR)(address+10))==0xf0 && !create_new)
{ // TXID exists in EEPROM
for(uint8_t i=4;i>0;i--)
{
id<<=8;
id|=eeprom_read_byte((EE_ADDR)address+i-1);
}
if(id!=0x2AD141A7) //ID with seed=0
{
debugln("Read ID from EEPROM");
return id;
}
}
// Generate a random ID
#if defined STM32_BOARD
#define STM32_UUID ((uint32_t *)0x1FFFF7E8)
if (!create_new)
{
id = STM32_UUID[0] ^ STM32_UUID[1] ^ STM32_UUID[2];
debugln("Generated ID from STM32 UUID");
}
else
#endif
id = random(0xfefefefe) + ((uint32_t)random(0xfefefefe) << 16);
for(uint8_t i=0;i<4;i++)
eeprom_write_byte((EE_ADDR)address+i,id >> (i*8));
eeprom_write_byte((EE_ADDR)(address+10),0xf0);//write bind flag in eeprom.
return id;
#else
(void)address;
(void)create_new;
return FORCE_GLOBAL_ID;
#endif
}
// Generate frequency hopping sequence in the range [02..77]
static void __attribute__((unused)) calc_fh_channels(uint8_t num_ch)
{
uint8_t idx = 0;
uint32_t rnd = MProtocol_id;
uint8_t max=(num_ch/3)+2;
while (idx < num_ch)
{
uint8_t i;
uint8_t count_2_26 = 0, count_27_50 = 0, count_51_74 = 0;
rnd = rnd * 0x0019660D + 0x3C6EF35F; // Randomization
// Use least-significant byte. 73 is prime, so channels 76..77 are unused
uint8_t next_ch = ((rnd >> 8) % 73) + 2;
// Keep a distance of 5 between consecutive channels
if (idx !=0)
{
if(hopping_frequency[idx-1]>next_ch)
{
if(hopping_frequency[idx-1]-next_ch<5)
continue;
}
else
if(next_ch-hopping_frequency[idx-1]<5)
continue;
}
// Check that it's not duplicated and spread uniformly
for (i = 0; i < idx; i++) {
if(hopping_frequency[i] == next_ch)
break;
if(hopping_frequency[i] <= 26)
count_2_26++;
else if (hopping_frequency[i] <= 50)
count_27_50++;
else
count_51_74++;
}
if (i != idx)
continue;
if ( (next_ch <= 26 && count_2_26 < max) || (next_ch >= 27 && next_ch <= 50 && count_27_50 < max) || (next_ch >= 51 && count_51_74 < max) )
hopping_frequency[idx++] = next_ch;//find hopping frequency
}
}
static uint8_t __attribute__((unused)) bit_reverse(uint8_t b_in)
{
uint8_t b_out = 0;
for (uint8_t i = 0; i < 8; ++i)
{
b_out = (b_out << 1) | (b_in & 1);
b_in >>= 1;
}
return b_out;
}
static void __attribute__((unused)) crc16_update(uint8_t a, uint8_t bits)
{
crc ^= a << 8;
while(bits--)
if (crc & 0x8000)
crc = (crc << 1) ^ crc16_polynomial;
else
crc = crc << 1;
}
static void __attribute__((unused)) crc8_update(uint8_t byte)
{
crc8 = crc8 ^ byte;
for ( uint8_t j = 0; j < 8; j++ )
if ( crc8 & 0x80 )
crc8 = (crc8<<1) ^ crc8_polynomial;
else
crc8 <<= 1;
}
/**************************/
/**************************/
/** Interrupt routines **/
/**************************/
/**************************/
//PPM
#ifdef ENABLE_PPM
#ifdef ORANGE_TX
#if PPM_pin == 2
ISR(PORTD_INT0_vect)
#else
ISR(PORTD_INT1_vect)
#endif
#elif defined STM32_BOARD
void PPM_decode()
#else
#if PPM_pin == 2
ISR(INT0_vect, ISR_NOBLOCK)
#else
ISR(INT1_vect, ISR_NOBLOCK)
#endif
#endif
{ // Interrupt on PPM pin
static int8_t chan=0,bad_frame=1;
static uint16_t Prev_TCNT1=0;
uint16_t Cur_TCNT1;
Cur_TCNT1 = TCNT1 - Prev_TCNT1 ; // Capture current Timer1 value
if(Cur_TCNT1<1600)
bad_frame=1; // bad frame
else
if(Cur_TCNT1>4400)
{ //start of frame
if(chan>=MIN_PPM_CHANNELS)
{
PPM_FLAG_on; // good frame received if at least 4 channels have been seen
if(chan>PPM_chan_max) PPM_chan_max=chan; // Saving the number of channels received
}
chan=0; // reset channel counter
bad_frame=0;
}
else
if(bad_frame==0) // need to wait for start of frame
{ //servo values between 800us and 2200us will end up here
PPM_data[chan]=Cur_TCNT1;
if(chan++>=MAX_PPM_CHANNELS)
bad_frame=1; // don't accept any new channels
}
Prev_TCNT1+=Cur_TCNT1;
}
#endif //ENABLE_PPM
//Serial RX
#ifdef ENABLE_SERIAL
#ifdef ORANGE_TX
ISR(USARTC0_RXC_vect)
#elif defined STM32_BOARD
void __irq_usart2()
#else
ISR(USART_RX_vect)
#endif
{ // RX interrupt
#ifdef ORANGE_TX
if((USARTC0.STATUS & 0x1C)==0) // Check frame error, data overrun and parity error
#elif defined STM32_BOARD
if((USART2_BASE->SR & USART_SR_RXNE) && (USART2_BASE->SR &0x0F)==0)
#else
UCSR0B &= ~_BV(RXCIE0) ; // RX interrupt disable
sei() ;
if((UCSR0A&0x1C)==0) // Check frame error, data overrun and parity error
#endif
{ // received byte is ok to process
if(rx_idx==0||discard_frame==true)
{ // Let's try to sync at this point
RX_MISSED_BUFF_off; // If rx_buff was good it's not anymore...
rx_idx=0;discard_frame=false;
rx_buff[0]=UDR0;
#ifdef FAILSAFE_ENABLE
if((rx_buff[0]&0xFC)==0x54) // If 1st byte is 0x54, 0x55, 0x56 or 0x57 it looks ok
#else
if((rx_buff[0]&0xFE)==0x54) // If 1st byte is 0x54 or 0x55 it looks ok
#endif
{
#if defined STM32_BOARD
TIMER3_BASE->CCR2=TIMER3_BASE->CNT + 500; // Next byte should show up within 250us (1 byte = 120us)
TIMER3_BASE->SR = 0x1E5F & ~TIMER_SR_CC2IF; // Clear Timer3/Comp2 interrupt flag
TIMER3_BASE->DIER |= TIMER_DIER_CC2IE; // Enable Timer3/Comp2 interrupt
#else
TX_RX_PAUSE_on;
tx_pause();
cli(); // Disable global int due to RW of 16 bits registers
OCR1B = TCNT1 + 500; // Next byte should show up within 250us (1 byte = 120us)
sei(); // Enable global int
TIFR1 = OCF1B_bm ; // clear OCR1B match flag
SET_TIMSK1_OCIE1B ; // enable interrupt on compare B match
#endif
rx_idx++;
}
}
else
{
if(rx_idx>=RXBUFFER_SIZE)
{
discard_frame=true; // Too many bytes being received...
debugln("RX frame too long");
}
else
{
rx_buff[rx_idx++]=UDR0; // Store received byte
#if defined STM32_BOARD
TIMER3_BASE->CCR2=TIMER3_BASE->CNT + 500; // Next byte should show up within 250us (1 byte = 120us)
#else
cli(); // Disable global int due to RW of 16 bits registers
OCR1B = TCNT1 + 500; // Next byte should show up within 250us (1 byte = 120us)
sei(); // Enable global int
#endif
}
}
}
else
{
rx_idx=UDR0; // Dummy read
rx_idx=0;
discard_frame=true; // Error encountered discard full frame...
debugln("Bad frame RX");
}
if(discard_frame==true)
{
#ifdef STM32_BOARD
TIMER3_BASE->DIER &= ~TIMER_DIER_CC2IE; // Disable Timer3/Comp2 interrupt
#else
CLR_TIMSK1_OCIE1B; // Disable interrupt on compare B match
TX_RX_PAUSE_off;
tx_resume();
#endif
}
#if not defined (ORANGE_TX) && not defined (STM32_BOARD)
cli() ;
UCSR0B |= _BV(RXCIE0) ; // RX interrupt enable
#endif
}
//Serial timer
#ifdef ORANGE_TX
ISR(TCC1_CCB_vect)
#elif defined STM32_BOARD
void ISR_COMPB()
#else
ISR(TIMER1_COMPB_vect)
#endif
{ // Timer1 compare B interrupt
if(rx_idx>=26 && rx_idx<=RXBUFFER_SIZE)
{
// A full frame has been received
if(!IS_RX_DONOTUPDATE_on)
{ //Good frame received and main is not working on the buffer
rx_len=rx_idx;
memcpy((void*)rx_ok_buff,(const void*)rx_buff,rx_idx); // Duplicate the buffer
RX_FLAG_on; // Flag for main to process data
}
else
RX_MISSED_BUFF_on; // Notify that rx_buff is good
#ifdef MULTI_SYNC
cli();
last_serial_input=TCNT1;
sei();
#endif
}
#ifdef DEBUG_SERIAL
else
debugln("RX frame size incorrect");
#endif
discard_frame=true;
#ifdef STM32_BOARD
TIMER3_BASE->DIER &= ~TIMER_DIER_CC2IE; // Disable Timer3/Comp2 interrupt
#else
CLR_TIMSK1_OCIE1B; // Disable interrupt on compare B match
TX_RX_PAUSE_off;
tx_resume();
#endif
}
#endif //ENABLE_SERIAL
/**************************/
/**************************/
/** CPPM routines **/
/**************************/
/**************************/
#ifdef SEND_CPPM
#define PPM_CENTER 1500*2
uint32_t TrainerTimer ;
bool CppmInitialised = false;
uint16_t *TrainerPulsePtr ;
uint16_t TrainerPpmStream[10] ;
int16_t CppmChannels[8] ;
void setupTrainerPulses()
{
uint32_t i ;
uint32_t total ;
uint32_t pulse ;
uint16_t *ptr ;
uint32_t p = 8 ;
int16_t PPM_range = 512*2 ; //range of 0.7..1.7msec
ptr = TrainerPpmStream ;
total = 22500u*2; //Minimum Framelen=22.5 ms
if ( (millis() - TrainerTimer) < 400 )
{
for ( i = 0 ; i < p ; i += 1 )
{
pulse = max( (int)min(CppmChannels[i],PPM_range),-PPM_range) + PPM_CENTER ;
total -= pulse ;
*ptr++ = pulse ;
}
}
*ptr++ = total ;
*ptr = 0 ;
TIMER1_BASE->CCR1 = total - 1500 ; // Update time
TIMER1_BASE->CCR2 = 300*2 ;
}
void init_trainer_ppm()
{
// Timer 1, channel 2 on PA9
RCC_BASE->APB2ENR |= RCC_APB2ENR_TIM1EN ; // Enable clock
setupTrainerPulses() ;
RCC_BASE->APB2ENR |= RCC_APB2ENR_IOPAEN ; // Enable portA clock
RCC_BASE->APB2ENR &= ~RCC_APB2ENR_USART1EN ; // Disable USART1
GPIOA_BASE->CRH &= ~0x00F0 ;
GPIOA_BASE->CRH |= 0x00A0 ; // AF PP OP2MHz
HWTimer1.pause() ; // Pause the timer1 while we're configuring it
TIMER1_BASE->ARR = *TrainerPulsePtr++ ;
TIMER1_BASE->PSC = 72000000 / 2000000 - 1 ; // 0.5uS
TIMER1_BASE->CCR2 = 600 ; // 300 uS pulse
TIMER1_BASE->CCR1 = 5000 ; // 2500 uS pulse
TIMER1_BASE->CCMR1 = 0x6000 ; // PWM mode 1 (header file has incorrect bits)
TIMER1_BASE->EGR = 1 ;
TIMER1_BASE->CCER = TIMER_CCER_CC2E ;
TIMER1_BASE->DIER |= TIMER_DIER_UIE ;
TIMER1_BASE->CR1 = TIMER_CR1_CEN ;
nvic_irq_set_priority(NVIC_TIMER1_CC, 4 ) ;
nvic_irq_set_priority(NVIC_TIMER1_UP, 4 ) ;
HWTimer1.attachInterrupt(TIMER_UPDATE_INTERRUPT,tim1_up); // Assign function to Timer1/Comp2 interrupt
HWTimer1.attachInterrupt(TIMER_CH1,tim1_cc); // Assign function to Timer1/Comp2 interrupt
CppmInitialised = true ;
HWTimer1.resume() ;
}
void release_trainer_ppm()
{
if ( CppmInitialised )
{
TIMER1_BASE->CR1 = 0 ;
pinMode(PA9,INPUT) ;
CppmInitialised = false ;
}
}
void tim1_up()
{
#define TIMER1_SR_MASK 0x1FFF
// PPM out update interrupt
if ( (TIMER1_BASE->DIER & TIMER_DIER_UIE) && ( TIMER1_BASE->SR & TIMER_SR_UIF ) )
{
GPIOA_BASE->BRR = 0x0200 ;
TIMER1_BASE->SR = TIMER1_SR_MASK & ~TIMER_SR_UIF ; // Clear flag
TIMER1_BASE->ARR = *TrainerPulsePtr++ ;
if ( *TrainerPulsePtr == 0 )
{
TIMER1_BASE->SR = 0x1FFF & ~TIMER_SR_CC1IF ; // Clear this flag
TIMER1_BASE->DIER |= TIMER_DIER_CC1IE ; // Enable this interrupt
TIMER1_BASE->DIER &= ~TIMER_DIER_UIE ; // Stop this interrupt
}
}
}
void tim1_cc()
{
if ( ( TIMER1_BASE->DIER & TIMER_DIER_CC1IE ) && ( TIMER1_BASE->SR & TIMER_SR_CC1IF ) )
{
// compare interrupt
TIMER1_BASE->DIER &= ~TIMER_DIER_CC1IE ; // Stop this interrupt
TIMER1_BASE->SR = 0x1FFF & ~TIMER_SR_CC1IF ; // Clear flag
setupTrainerPulses() ;
TrainerPulsePtr = TrainerPpmStream ;
TIMER1_BASE->SR = 0x1FFF & ~TIMER_SR_UIF ; // Clear this flag
TIMER1_BASE->DIER |= TIMER_DIER_UIE ; // Enable this interrupt
}
}
void Send_CCPM_USART1()
{
if ( CppmInitialised == false )
init_trainer_ppm() ;
TrainerTimer = millis() ;
len = packet_in[3] ;
uint32_t bitsavailable = 0 ;
uint32_t bits = 0 ; ;
uint32_t i ;
int16_t value ;
uint8_t *packet ;
packet = &packet_in[4] ;
i = packet_in[2] ; // Start channel
// Load changed channels
while ( len )
{
while ( bitsavailable < 11 )
{
bits |= *packet++ << bitsavailable ;
bitsavailable += 8 ;
}
value = bits & 0x07FF ;
value -= 0x0400 ;
bitsavailable -= 11 ;
bits >>= 11 ;
if ( i < 8 )
CppmChannels[i] = value * 5 / 4 ;
i++ ;
len-- ;
}
}
#endif
/**************************/
/**************************/
/** Arduino random **/
/**************************/
/**************************/
#if not defined (ORANGE_TX) && not defined (STM32_BOARD)
static void random_init(void)
{
cli(); // Temporarily turn off interrupts, until WDT configured
MCUSR = 0; // Use the MCU status register to reset flags for WDR, BOR, EXTR, and POWR
WDTCSR |= _BV(WDCE); // WDT control register, This sets the Watchdog Change Enable (WDCE) flag, which is needed to set the prescaler
WDTCSR = _BV(WDIE); // Watchdog interrupt enable (WDIE)
sei(); // Turn interupts on
}
static uint32_t random_value(void)
{
while (!gWDT_entropy);
return gWDT_entropy;
}
// Random interrupt service routine called every time the WDT interrupt is triggered.
// It is only enabled at startup to generate a seed.
ISR(WDT_vect)
{
static uint8_t gWDT_buffer_position=0;
#define gWDT_buffer_SIZE 32
static uint8_t gWDT_buffer[gWDT_buffer_SIZE];
gWDT_buffer[gWDT_buffer_position] = TCNT1L; // Record the Timer 1 low byte (only one needed)
gWDT_buffer_position++; // every time the WDT interrupt is triggered
if (gWDT_buffer_position >= gWDT_buffer_SIZE)
{
// The following code is an implementation of Jenkin's one at a time hash
for(uint8_t gWDT_loop_counter = 0; gWDT_loop_counter < gWDT_buffer_SIZE; ++gWDT_loop_counter)
{
gWDT_entropy += gWDT_buffer[gWDT_loop_counter];
gWDT_entropy += (gWDT_entropy << 10);
gWDT_entropy ^= (gWDT_entropy >> 6);
}
gWDT_entropy += (gWDT_entropy << 3);
gWDT_entropy ^= (gWDT_entropy >> 11);
gWDT_entropy += (gWDT_entropy << 15);
WDTCSR = 0; // Disable Watchdog interrupt
}
}
#endif