2021-02-09 18:23:33 +01:00

277 lines
8.4 KiB
C++

/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(NCC1701_NRF24L01_INO)
#include "iface_nrf24l01.h"
#define NCC_WRITE_WAIT 2000
#define NCC_PACKET_INTERVAL 10333
#define NCC_TX_PACKET_LEN 16
#define NCC_RX_PACKET_LEN 13
enum {
NCC_BIND_TX1=0,
NCC_BIND_RX1,
NCC_BIND_TX2,
NCC_BIND_RX2,
NCC_TX3,
NCC_RX3,
};
static void __attribute__((unused)) NCC_RF_init()
{
NRF24L01_Initialize();
NRF24L01_SetTxRxMode(TX_EN);
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x03); // 5-byte RX/TX address
NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, (uint8_t*)"\xE7\xE7\xC7\xD7\x67",5);
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, (uint8_t*)"\xE7\xE7\xC7\xD7\x67",5);
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowledgment on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, NCC_RX_PACKET_LEN); // Enable rx pipe 0
NRF24L01_SetBitrate(NRF24L01_BR_250K); // NRF24L01_BR_1M, NRF24L01_BR_2M, NRF24L01_BR_250K
NRF24L01_SetPower();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_00_CONFIG, (0 << NRF24L01_00_EN_CRC) // switch to TX mode and disable CRC
| (1 << NRF24L01_00_CRCO)
| (1 << NRF24L01_00_PWR_UP)
| (0 << NRF24L01_00_PRIM_RX));
}
const uint8_t NCC_xor[]={0x80, 0x44, 0x64, 0x75, 0x6C, 0x71, 0x2A, 0x36, 0x7C, 0xF1, 0x6E, 0x52, 0x09, 0x9D};
static void __attribute__((unused)) NCC_Crypt_Packet()
{
crc=0;
for(uint8_t i=0; i< NCC_TX_PACKET_LEN-2; i++)
{
packet[i]^=NCC_xor[i];
crc16_update(packet[i], 8);
}
crc^=0x60DE;
packet[NCC_TX_PACKET_LEN-2]=crc>>8;
packet[NCC_TX_PACKET_LEN-1]=crc;
}
static boolean __attribute__((unused)) NCC_Decrypt_Packet()
{
crc=0;
debug("RX: ");
for(uint8_t i=0; i< NCC_RX_PACKET_LEN-2; i++)
{
crc16_update( packet[i], 8);
packet[i]^=NCC_xor[i];
debug("%02X ",packet[i]);
}
crc^=0xA950;
if( (crc>>8)==packet[NCC_RX_PACKET_LEN-2] && (crc&0xFF)==packet[NCC_RX_PACKET_LEN-1] )
{// CRC match
debugln("OK");
return true;
}
debugln("NOK");
return false;
}
static void __attribute__((unused)) NCC_Write_Packet()
{
packet[0]=0xAA;
packet[1]=rx_tx_addr[0];
packet[2]=rx_tx_addr[1];
packet[3]=rx_id[0];
packet[4]=rx_id[1];
packet[5]=convert_channel_8b(THROTTLE)>>2; // 00-3D
packet[6]=convert_channel_8b(ELEVATOR); // original: 61-80-9F but works with 00-80-FF
packet[7]=convert_channel_8b(AILERON ); // original: 61-80-9F but works with 00-80-FF
packet[8]=convert_channel_8b(RUDDER ); // original: 61-80-9F but works with 00-80-FF
packet[9]=rx_id[2];
packet[10]=rx_id[3];
packet[11]=rx_id[4];
packet[12]=GET_FLAG(CH5_SW, 0x02); // Warp:0x00 -> 0x02
packet[13]=packet[5]+packet[6]+packet[7]+packet[8]+packet[12];
if(phase==NCC_BIND_TX1)
{
packet[0]=0xBB;
packet[5]=0x01;
packet[6]=rx_tx_addr[2];
memset((void *)(packet+7),0x55,7);
hopping_frequency_no^=1;
}
else
{
hopping_frequency_no++;
if(hopping_frequency_no>2) hopping_frequency_no=0;
}
// change frequency
NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency[hopping_frequency_no]);
// switch to TX mode and disable CRC
NRF24L01_SetTxRxMode(TXRX_OFF);
NRF24L01_SetTxRxMode(TX_EN);
NRF24L01_WriteReg(NRF24L01_00_CONFIG, (0 << NRF24L01_00_EN_CRC)
| (1 << NRF24L01_00_CRCO)
| (1 << NRF24L01_00_PWR_UP)
| (0 << NRF24L01_00_PRIM_RX));
// clear packet status bits and TX FIFO
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
// send packet
NCC_Crypt_Packet();
NRF24L01_WritePayload(packet,NCC_TX_PACKET_LEN);
NRF24L01_SetPower();
}
uint16_t NCC_callback()
{
switch(phase)
{
case NCC_BIND_TX1:
if( NRF24L01_ReadReg(NRF24L01_07_STATUS) & _BV(NRF24L01_07_RX_DR))
{ // RX fifo data ready
NRF24L01_ReadPayload(packet, NCC_RX_PACKET_LEN);
if(NCC_Decrypt_Packet() && packet[1]==rx_tx_addr[0] && packet[2]==rx_tx_addr[1])
{
rx_id[0]=packet[3];
rx_id[1]=packet[4];
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
phase=NCC_BIND_TX2;
return NCC_PACKET_INTERVAL;
}
}
NCC_Write_Packet();
phase = NCC_BIND_RX1;
return NCC_WRITE_WAIT;
case NCC_BIND_RX1:
// switch to RX mode and disable CRC
NRF24L01_SetTxRxMode(TXRX_OFF);
NRF24L01_SetTxRxMode(RX_EN);
NRF24L01_WriteReg(NRF24L01_00_CONFIG, (0 << NRF24L01_00_EN_CRC)
| (1 << NRF24L01_00_CRCO)
| (1 << NRF24L01_00_PWR_UP)
| (1 << NRF24L01_00_PRIM_RX));
NRF24L01_FlushRx();
phase = NCC_BIND_TX1;
return NCC_PACKET_INTERVAL - NCC_WRITE_WAIT;
case NCC_BIND_TX2:
if( NRF24L01_ReadReg(NRF24L01_07_STATUS) & _BV(NRF24L01_07_RX_DR))
{ // RX fifo data ready
NRF24L01_ReadPayload(packet, NCC_RX_PACKET_LEN);
if(NCC_Decrypt_Packet() && packet[1]==rx_tx_addr[0] && packet[2]==rx_tx_addr[1] && packet[3]==rx_id[0] && packet[4]==rx_id[1])
{
rx_id[2]=packet[8];
rx_id[3]=packet[9];
rx_id[4]=packet[10];
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
BIND_DONE;
phase=NCC_TX3;
return NCC_PACKET_INTERVAL;
}
}
NCC_Write_Packet();
phase = NCC_BIND_RX2;
return NCC_WRITE_WAIT;
case NCC_BIND_RX2:
// switch to RX mode and disable CRC
NRF24L01_SetTxRxMode(TXRX_OFF);
NRF24L01_SetTxRxMode(RX_EN);
NRF24L01_WriteReg(NRF24L01_00_CONFIG, (0 << NRF24L01_00_EN_CRC)
| (1 << NRF24L01_00_CRCO)
| (1 << NRF24L01_00_PWR_UP)
| (1 << NRF24L01_00_PRIM_RX));
NRF24L01_FlushRx();
phase = NCC_BIND_TX2;
return NCC_PACKET_INTERVAL - NCC_WRITE_WAIT;
case NCC_TX3:
#ifdef MULTI_SYNC
telemetry_set_input_sync(NCC_PACKET_INTERVAL);
#endif
if( NRF24L01_ReadReg(NRF24L01_07_STATUS) & _BV(NRF24L01_07_RX_DR))
{ // RX fifo data ready
NRF24L01_ReadPayload(packet, NCC_RX_PACKET_LEN);
if(NCC_Decrypt_Packet() && packet[1]==rx_tx_addr[0] && packet[2]==rx_tx_addr[1] && packet[3]==rx_id[0] && packet[4]==rx_id[1])
{
//Telemetry
//packet[5] and packet[7] roll angle
//packet[6] crash detect: 0x00 no crash, 0x02 crash
#ifdef NCC1701_HUB_TELEMETRY
v_lipo1 = packet[6]?0xFF:0x00; // Crash indication
v_lipo2 = 0x00;
RX_RSSI = 0x7F; // Dummy RSSI
TX_RSSI = 0x7F; // Dummy RSSI
telemetry_link=1;
#endif
}
}
NCC_Write_Packet();
phase = NCC_RX3;
return NCC_WRITE_WAIT;
case NCC_RX3:
// switch to RX mode and disable CRC
NRF24L01_SetTxRxMode(TXRX_OFF);
NRF24L01_SetTxRxMode(RX_EN);
NRF24L01_WriteReg(NRF24L01_00_CONFIG, (0 << NRF24L01_00_EN_CRC)
| (1 << NRF24L01_00_CRCO)
| (1 << NRF24L01_00_PWR_UP)
| (1 << NRF24L01_00_PRIM_RX));
NRF24L01_FlushRx();
phase = NCC_TX3;
return NCC_PACKET_INTERVAL - NCC_WRITE_WAIT;
}
return 0;
}
const uint8_t PROGMEM NCC_TX_DATA[][6]= {
{ 0x6D, 0x97, 0x04, 0x48, 0x43, 0x26 },
{ 0x35, 0x4B, 0x80, 0x44, 0x4C, 0x0B },
{ 0x50, 0xE2, 0x32, 0x2D, 0x4B, 0x0A },
{ 0xBF, 0x34, 0xF3, 0x45, 0x4D, 0x0D },
{ 0xDD, 0x7D, 0x5A, 0x46, 0x28, 0x23 },
{ 0xED, 0x19, 0x06, 0x2C, 0x4A, 0x09 },
{ 0xE9, 0xA8, 0x91, 0x2B, 0x49, 0x07 },
{ 0x66, 0x17, 0x7D, 0x48, 0x43, 0x26 },
{ 0xC2, 0x93, 0x55, 0x44, 0x4C, 0x0B },
};
void NCC_init(void)
{
BIND_IN_PROGRESS; // autobind protocol
// Load TX data
uint8_t rand=rx_tx_addr[3]%9;
for(uint8_t i=0; i<3; i++)
{
rx_tx_addr[i]=pgm_read_byte_near(&NCC_TX_DATA[rand][i]);
hopping_frequency[i]=pgm_read_byte_near(&NCC_TX_DATA[rand][i+3]);
}
// RX data is acquired during bind
rx_id[0]=0x00;
rx_id[1]=0x00;
rx_id[2]=0x20;
rx_id[3]=0x20;
rx_id[4]=0x20;
hopping_frequency[4]=0x08; // bind channel 1
hopping_frequency[5]=0x2A; // bind channel 2
hopping_frequency_no=4; // start with bind
NCC_RF_init();
phase=NCC_BIND_TX1;
}
#endif