2016-02-13 15:54:15 +01:00

319 lines
8.7 KiB
C++

/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Deviation is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Deviation. If not, see <http://www.gnu.org/licenses/>.
*/
/* NB: Not implemented
Uncomment define below to enable telemetry. Also add CFlie protocol to TELEMETRY_SetTypeByProtocol to set type to DSM.
#define CFLIE_TELEMETRY
*/
#if defined(CFlie_NRF24L01_INO)
#include "iface_nrf24l01.h"
#define BIND_COUNT 60
// Address size
#define TX_ADDR_SIZE 5
// Timeout for callback in uSec, 10ms=10000us for Crazyflie
#define PACKET_PERIOD 10000
// For code readability
enum {
CHANNEL1 = 0,
CHANNEL2,
CHANNEL3,
CHANNEL4,
CHANNEL5,
CHANNEL6,
CHANNEL7,
CHANNEL8,
CHANNEL9,
CHANNEL10
};
#define PAYLOADSIZE 8 // receive data pipes set to this size, but unused
#define MAX_PACKET_SIZE 9 // YD717 packets have 8-byte payload, Syma X4 is 9
//static uint8_t packet[MAX_PACKET_SIZE];
static uint8_t data_rate, rf_channel;
enum {
CFLIE_INIT_SEARCH = 0,
CFLIE_INIT_DATA,
CFLIE_SEARCH,
CFLIE_DATA
};
#ifdef CFLIE_TELEMETRY
static const char * const cflie_opts[] = {
_tr_noop("Telemetry"), _tr_noop("Off"), _tr_noop("On"), NULL,
NULL
};
enum {
PROTOOPTS_TELEMETRY = 0,
LAST_PROTO_OPT,
};
ctassert(LAST_PROTO_OPT <= NUM_PROTO_OPTS, too_many_protocol_opts);
#define TELEM_OFF 0
#define TELEM_ON 1
#endif
#define PACKET_CHKTIME 500 // time to wait if packet not yet acknowledged or timed out
static uint16_t dbg_cnt = 0;
static uint8_t packet_ack() {
if (++dbg_cnt > 50) { dbg_cnt = 0; }
switch (NRF24L01_ReadReg(NRF24L01_07_STATUS) & (BV(NRF24L01_07_TX_DS) | BV(NRF24L01_07_MAX_RT))) {
case BV(NRF24L01_07_TX_DS):
return PKT_ACKED;
case BV(NRF24L01_07_MAX_RT):
return PKT_TIMEOUT;
}
return PKT_PENDING;
}
static void set_rate_channel(uint8_t rate, uint8_t channel) {
NRF24L01_WriteReg(NRF24L01_05_RF_CH, channel); // Defined by model id
NRF24L01_SetBitrate(rate); // Defined by model id
}
static void send_search_packet() {
uint8_t buf[1];
buf[0] = 0xff;
// clear packet status bits and TX FIFO
NRF24L01_WriteReg(NRF24L01_07_STATUS, (BV(NRF24L01_07_TX_DS) | BV(NRF24L01_07_MAX_RT)));
NRF24L01_FlushTx();
if (rf_channel++ > 125) {
rf_channel = 0;
switch(data_rate) {
case NRF24L01_BR_250K:
data_rate = NRF24L01_BR_1M;
break;
case NRF24L01_BR_1M:
data_rate = NRF24L01_BR_2M;
break;
case NRF24L01_BR_2M:
data_rate = NRF24L01_BR_250K;
break;
}
}
set_rate_channel(data_rate, rf_channel);
NRF24L01_WritePayload(buf, sizeof(buf));
++packet_counter;
}
// Frac 16.16
#define FRAC_MANTISSA 16
#define FRAC_SCALE (1 << FRAC_MANTISSA)
// Convert fractional 16.16 to float32
static void frac2float(uint32_t n, float* res) {
if (n == 0) {
*res = 0.0;
return;
}
uint32_t m = n < 0 ? -n : n;
int i;
for (i = (31-FRAC_MANTISSA); (m & 0x80000000) == 0; i--, m <<= 1) ;
m <<= 1; // Clear implicit leftmost 1
m >>= 9;
uint32_t e = 127 + i;
if (n < 0) m |= 0x80000000;
m |= e << 23;
*((uint32_t *) res) = m;
}
static void send_cmd_packet() {
// Commander packet, 15 bytes
uint8_t buf[15];
float x_roll, x_pitch, yaw;
// Channels in AETR order
// Roll, aka aileron, float +- 50.0 in degrees
// float roll = -(float) Servo_data[AILERON]*50.0/10000;
uint32_t f_roll = -Servo_data[AILERON] * FRAC_SCALE / (10000 / 50);
// Pitch, aka elevator, float +- 50.0 degrees
//float pitch = -(float) Servo_data[ELEVATOR]*50.0/10000;
uint32_t f_pitch = -Servo_data[ELEVATOR] * FRAC_SCALE / (10000 / 50);
// Thrust, aka throttle 0..65535, working range 5535..65535
// No space for overshoot here, hard limit Channel3 by -10000..10000
uint32_t ch = Servo_data[THROTTLE];
if (ch < PPM_MIN) {
ch = PPM_MIN;
} else if (ch > PPM_MAX) {
ch = PPM_MAX;
}
uint16_t thrust = ch*3L + 35535L;
// Yaw, aka rudder, float +- 400.0 deg/s
// float yaw = -(float) Servo_data[RUDDER]*400.0/10000;
uint32_t f_yaw = - Servo_data[RUDDER] * FRAC_SCALE / (10000 / 400);
frac2float(f_yaw, &yaw);
// Convert + to X. 181 / 256 = 0.70703125 ~= sqrt(2) / 2
uint32_t f_x_roll = (f_roll + f_pitch) * 181 / 256;
frac2float(f_x_roll, &x_roll);
uint32_t f_x_pitch = (f_pitch - f_roll) * 181 / 256;
frac2float(f_x_pitch, &x_pitch);
int bufptr = 0;
buf[bufptr++] = 0x30; // Commander packet to channel 0
memcpy(&buf[bufptr], (char*) &x_roll, 4); bufptr += 4;
memcpy(&buf[bufptr], (char*) &x_pitch, 4); bufptr += 4;
memcpy(&buf[bufptr], (char*) &yaw, 4); bufptr += 4;
memcpy(&buf[bufptr], (char*) &thrust, 2); bufptr += 2;
// clear packet status bits and TX FIFO
NRF24L01_WriteReg(NRF24L01_07_STATUS, (BV(NRF24L01_07_TX_DS) | BV(NRF24L01_07_MAX_RT)));
NRF24L01_FlushTx();
NRF24L01_WritePayload(buf, sizeof(buf));
++packet_counter;
NRF24L01_SetPower();
}
static int cflie_init() {
NRF24L01_Initialize();
// CRC, radio on
NRF24L01_SetTxRxMode(TX_EN);
NRF24L01_WriteReg(NRF24L01_00_CONFIG, BV(NRF24L01_00_EN_CRC) | BV(NRF24L01_00_CRCO) | BV(NRF24L01_00_PWR_UP));
// NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowledgement
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x01); // Auto Acknowledgement for data pipe 0
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, TX_ADDR_SIZE-2); // 5-byte RX/TX address
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0x13); // 3 retransmits, 500us delay
NRF24L01_WriteReg(NRF24L01_05_RF_CH, rf_channel); // Defined by model id
NRF24L01_SetBitrate(data_rate); // Defined by model id
NRF24L01_SetPower();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_17_FIFO_STATUS, 0x00); // Just in case, no real bits to write here
// this sequence necessary for module from stock tx
NRF24L01_ReadReg(NRF24L01_1D_FEATURE);
NRF24L01_Activate(0x73); // Activate feature register
NRF24L01_ReadReg(NRF24L01_1D_FEATURE);
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 0x01); // Enable Dynamic Payload Length on pipe 0
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, 0x06); // Enable Dynamic Payload Length, enable Payload with ACK
// NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, rx_tx_addr, TX_ADDR_SIZE);
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, rx_tx_addr, TX_ADDR_SIZE);
NRF24L01_Activate(0x53); // switch bank back
// 50ms delay in callback
return 50000;
}
#ifdef CFLIE_TELEMETRY
static void update_telemetry() {
static uint8_t frameloss = 0;
frameloss += NRF24L01_ReadReg(NRF24L01_08_OBSERVE_TX) >> 4;
NRF24L01_WriteReg(NRF24L01_05_RF_CH, rf_channel); // reset packet loss counter
Telemetry.p.dsm.flog.frameloss = frameloss;
// Telemetry.p.dsm.flog.volt[0] = read battery voltage from ack payload
TELEMETRY_SetUpdated(TELEM_DSM_FLOG_FRAMELOSS);
}
#endif
static uint16_t cflie_callback() {
switch (phase) {
case CFLIE_INIT_SEARCH:
send_search_packet();
phase = CFLIE_SEARCH;
break;
case CFLIE_INIT_DATA:
send_cmd_packet();
phase = CFLIE_DATA;
break;
case CFLIE_SEARCH:
switch (packet_ack()) {
case PKT_PENDING:
return PACKET_CHKTIME; // packet send not yet complete
case PKT_ACKED:
phase = CFLIE_DATA;
BIND_DONE;
break;
case PKT_TIMEOUT:
send_search_packet();
counter = BIND_COUNT;
}
break;
case CFLIE_DATA:
#ifdef CFLIE_TELEMETRY
update_telemetry();
#endif
if (packet_ack() == PKT_PENDING)
return PACKET_CHKTIME; // packet send not yet complete
send_cmd_packet();
break;
}
return PACKET_PERIOD; // Packet at standard protocol interval
}
// Generate address to use from TX id and manufacturer id (STM32 unique id)
static uint8_t initialize_rx_tx_addr() {
rx_tx_addr[0] =
rx_tx_addr[1] =
rx_tx_addr[2] =
rx_tx_addr[3] =
rx_tx_addr[4] = 0xE7; // CFlie uses fixed address
data_rate = NRF24L01_BR_250K;
rf_channel = 0;
return CFLIE_INIT_SEARCH;
// return CFLIE_INIT_DATA;
}
static uint16_t Cflie_setup() {
phase = initialize_rx_tx_addr();
packet_counter = 0;
int delay = cflie_init();
#ifdef CFLIE_TELEMETRY
memset(&Telemetry, 0, sizeof(Telemetry));
TELEMETRY_SetType(TELEM_DSM);
#endif
if (phase == CFLIE_INIT_SEARCH) { BIND_IN_PROGRESS; }
return delay;
}
#endif