Pascal Langer 4a626eaf14 Change XN297 emulation layer
Loads of protocols have been touched by this change. Some testing has been done but please test on all your models.
The XN297 emulation selects in this order:
 - the CC2500 if it is available and bitrate=250K. Configure the option field automatically for RF tune.
 - the NRF for all bitrates if it is available
 - if NRF is not available and bitrate=1M then an invalid protocol is sent automatically to the radio.
CC2500 @250K can now receive normal and enhanced payloads.
OMP protocol supports telemetry on CC2500 and is also for NRF only modules including telemetry.
Separation of E016H (new protocol) from E01X due to different structure.
MJXQ, MT99XX, Q303 and XK: some sub protocols available on CC2500 only.
2021-03-17 17:05:42 +01:00

290 lines
9.7 KiB
C++

/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
//-------------------------------
//-------------------------------
//CC2500 SPI routines
//-------------------------------
//-------------------------------
#ifdef CC2500_INSTALLED
#include "iface_cc2500.h"
//----------------------------
void CC2500_WriteReg(uint8_t address, uint8_t data)
{
CC25_CSN_off;
SPI_Write(address);
NOP();
SPI_Write(data);
CC25_CSN_on;
}
//----------------------
static void CC2500_ReadRegisterMulti(uint8_t address, uint8_t data[], uint8_t length)
{
CC25_CSN_off;
SPI_Write(CC2500_READ_BURST | address);
for(uint8_t i = 0; i < length; i++)
data[i] = SPI_Read();
CC25_CSN_on;
}
//--------------------------------------------
static uint8_t CC2500_ReadReg(uint8_t address)
{
uint8_t result;
CC25_CSN_off;
SPI_Write(CC2500_READ_SINGLE | address);
result = SPI_Read();
CC25_CSN_on;
return(result);
}
//------------------------
void CC2500_ReadData(uint8_t *dpbuffer, uint8_t len)
{
CC2500_ReadRegisterMulti(CC2500_3F_RXFIFO, dpbuffer, len);
}
//*********************************************
void CC2500_Strobe(uint8_t state)
{
CC25_CSN_off;
SPI_Write(state);
CC25_CSN_on;
}
static void CC2500_WriteRegisterMulti(uint8_t address, const uint8_t data[], uint8_t length)
{
CC25_CSN_off;
SPI_Write(CC2500_WRITE_BURST | address);
for(uint8_t i = 0; i < length; i++)
SPI_Write(data[i]);
CC25_CSN_on;
}
void CC2500_WriteData(uint8_t *dpbuffer, uint8_t len)
{
CC2500_Strobe(CC2500_SFTX);
CC2500_WriteRegisterMulti(CC2500_3F_TXFIFO, dpbuffer, len);
CC2500_Strobe(CC2500_STX);
}
void CC2500_SetTxRxMode(uint8_t mode)
{
if(mode == TX_EN)
{//from deviation firmware
CC2500_WriteReg(CC2500_00_IOCFG2, 0x2F);
CC2500_WriteReg(CC2500_02_IOCFG0, 0x2F | 0x40);
}
else
if (mode == RX_EN)
{
CC2500_WriteReg(CC2500_02_IOCFG0, 0x2F);
CC2500_WriteReg(CC2500_00_IOCFG2, 0x2F | 0x40);
}
else
{
CC2500_WriteReg(CC2500_02_IOCFG0, 0x2F);
CC2500_WriteReg(CC2500_00_IOCFG2, 0x2F);
}
}
//------------------------
/*static void cc2500_resetChip(void)
{
// Toggle chip select signal
CC25_CSN_on;
delayMicroseconds(30);
CC25_CSN_off;
delayMicroseconds(30);
CC25_CSN_on;
delayMicroseconds(45);
CC2500_Strobe(CC2500_SRES);
_delay_ms(100);
}
*/
uint8_t CC2500_Reset()
{
CC2500_Strobe(CC2500_SRES);
delayMilliseconds(1);
CC2500_SetTxRxMode(TXRX_OFF);
return CC2500_ReadReg(CC2500_0E_FREQ1) == 0xC4;//check if reset
}
/*
static void CC2500_SetPower_Value(uint8_t power)
{
const unsigned char patable[8]= {
0xC5, // -12dbm
0x97, // -10dbm
0x6E, // -8dbm
0x7F, // -6dbm
0xA9, // -4dbm
0xBB, // -2dbm
0xFE, // 0dbm
0xFF // 1.5dbm
};
if (power > 7)
power = 7;
CC2500_WriteReg(CC2500_3E_PATABLE, patable[power]);
}
*/
void CC2500_SetPower()
{
uint8_t power=CC2500_BIND_POWER;
if(IS_BIND_DONE)
#ifdef CC2500_ENABLE_LOW_POWER
power=IS_POWER_FLAG_on?CC2500_HIGH_POWER:CC2500_LOW_POWER;
#else
power=CC2500_HIGH_POWER;
#endif
if(IS_LBT_POWER_on)
{
power=CC2500_LBT_POWER;
LBT_POWER_off; // Only accept once
}
if(IS_RANGE_FLAG_on)
power=CC2500_RANGE_POWER;
if(prev_power != power)
{
CC2500_WriteReg(CC2500_3E_PATABLE, power);
prev_power=power;
}
}
void __attribute__((unused)) CC2500_SetFreqOffset()
{
if(prev_option != option)
{
prev_option = option;
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
}
}
void __attribute__((unused)) CC2500_250K_Init()
{
CC2500_Strobe(CC2500_SIDLE);
// Address Config = No address check
// Base Frequency = 2400
// CRC Autoflush = false
// CRC Enable = false
// Channel Spacing = 333.251953
// Data Format = Normal mode
// Data Rate = 249.939
// Deviation = 126.953125
// Device Address = 0
// Manchester Enable = false
// Modulated = true
// Modulation Format = GFSK
// Packet Length Mode = Variable packet length mode. Packet length configured by the first byte after sync word
// RX Filter BW = 203.125000
// Sync Word Qualifier Mode = No preamble/sync
// TX Power = 0
// Whitening = false
// Fast Frequency Hopping - no PLL auto calibration
/* //Previous config
CC2500_WriteReg(CC2500_08_PKTCTRL0, 0x01); // Packet Automation Control
CC2500_WriteReg(CC2500_0B_FSCTRL1, 0x0A); // Frequency Synthesizer Control
CC2500_WriteReg(CC2500_0C_FSCTRL0, option); // Frequency offset hack
CC2500_WriteReg(CC2500_0D_FREQ2, 0x5C); // Frequency Control Word, High Byte
CC2500_WriteReg(CC2500_0E_FREQ1, 0x4E); // Frequency Control Word, Middle Byte
CC2500_WriteReg(CC2500_0F_FREQ0, 0xC3); // Frequency Control Word, Low Byte
CC2500_WriteReg(CC2500_10_MDMCFG4, 0x8D); // Modem Configuration
CC2500_WriteReg(CC2500_11_MDMCFG3, 0x3B); // Modem Configuration
CC2500_WriteReg(CC2500_12_MDMCFG2, 0x10); // Modem Configuration
CC2500_WriteReg(CC2500_13_MDMCFG1, 0x23); // Modem Configuration
CC2500_WriteReg(CC2500_14_MDMCFG0, 0xA4); // Modem Configuration
CC2500_WriteReg(CC2500_15_DEVIATN, 0x62); // Modem Deviation Setting
CC2500_WriteReg(CC2500_18_MCSM0, 0x08); // Main Radio Control State Machine Configuration
CC2500_WriteReg(CC2500_19_FOCCFG, 0x1D); // Frequency Offset Compensation Configuration
CC2500_WriteReg(CC2500_1A_BSCFG, 0x1C); // Bit Synchronization Configuration
CC2500_WriteReg(CC2500_1B_AGCCTRL2, 0xC7); // AGC Control
CC2500_WriteReg(CC2500_1C_AGCCTRL1, 0x00); // AGC Control
CC2500_WriteReg(CC2500_1D_AGCCTRL0, 0xB0); // AGC Control
CC2500_WriteReg(CC2500_21_FREND1, 0xB6); // Front End RX Configuration
CC2500_WriteReg(CC2500_23_FSCAL3, 0xEA); // Frequency Synthesizer Calibration
CC2500_WriteReg(CC2500_25_FSCAL1, 0x00); // Frequency Synthesizer Calibration
CC2500_WriteReg(CC2500_26_FSCAL0, 0x11); // Frequency Synthesizer Calibration
*/
CC2500_WriteReg(CC2500_07_PKTCTRL1, 0x05); // Packet Automation Control, address check true auto append RSSI & LQI
CC2500_WriteReg(CC2500_08_PKTCTRL0, 0x00); // Packet Automation Control, fixed packet len
CC2500_WriteReg(CC2500_0B_FSCTRL1, 0x0A); // Frequency Synthesizer Control (IF Frequency)
CC2500_WriteReg(CC2500_0C_FSCTRL0, 0x00); // Frequency Synthesizer Control
CC2500_WriteReg(CC2500_0D_FREQ2, 0x5C); // Frequency Control Word, High Byte
CC2500_WriteReg(CC2500_0E_FREQ1, 0x4E); // Frequency Control Word, Middle Byte
CC2500_WriteReg(CC2500_0F_FREQ0, 0xC5); // Frequency Control Word, Low Byte
CC2500_WriteReg(CC2500_10_MDMCFG4, 0x3D); // Modem Configuration Set to 406kHz BW filter
CC2500_WriteReg(CC2500_11_MDMCFG3, 0x3B); // Modem Configuration
CC2500_WriteReg(CC2500_12_MDMCFG2, 0x10); // Modem Configuration, GFSK, no preambule and no sync word -> TX by default
CC2500_WriteReg(CC2500_13_MDMCFG1, 0x03); // Modem Configuration, 2 bytes of preamble
CC2500_WriteReg(CC2500_14_MDMCFG0, 0xA4); // Modem Configuration
CC2500_WriteReg(CC2500_15_DEVIATN, 0x62); // Modem Deviation Setting
CC2500_WriteReg(CC2500_18_MCSM0, 0x08); // Main Radio Control State Machine Configuration
CC2500_WriteReg(CC2500_19_FOCCFG, 0x1D); // Frequency Offset Compensation Configuration
CC2500_WriteReg(CC2500_1A_BSCFG, 0x1C); // Bit Synchronization Configuration
CC2500_WriteReg(CC2500_1B_AGCCTRL2, 0xC7); // AGC Control
CC2500_WriteReg(CC2500_1C_AGCCTRL1, 0x00); // AGC Control
CC2500_WriteReg(CC2500_1D_AGCCTRL0, 0xB0); // AGC Control
CC2500_WriteReg(CC2500_21_FREND1, 0xB6); // Front End RX Configuration
CC2500_WriteReg(CC2500_23_FSCAL3, 0xEA); // Frequency Synthesizer Calibration
CC2500_WriteReg(CC2500_25_FSCAL1, 0x00); // Frequency Synthesizer Calibration
CC2500_WriteReg(CC2500_26_FSCAL0, 0x11); // Frequency Synthesizer Calibration
//Prep RX
// Set first 3 bytes of rx addr in [0]->SYNC1, [1]->SYNC0 and [2]->ADDR
// CC2500_WriteReg(CC2500_04_SYNC1, [0]); // Sync word, high byte
// CC2500_WriteReg(CC2500_05_SYNC0, [1]); // Sync word, low byte
// CC2500_WriteReg(CC2500_09_ADDR, [2]); // Set addr
//RX
// CC2500_WriteReg(CC2500_12_MDMCFG2, 0x12); // Modem Configuration, GFSK, 16/16 Sync Word TX&RX
//TX
// CC2500_WriteReg(CC2500_12_MDMCFG2, 0x10); // Modem Configuration, GFSK, no preambule and no sync word
// need to set packet length before sending/receiving
// CC2500_WriteReg(CC2500_06_PKTLEN, cc2500_packet_len); // Packet len, fix packet len
CC2500_SetTxRxMode(TX_EN);
CC2500_SetPower();
}
void __attribute__((unused)) CC2500_250K_HoppingCalib(uint8_t num_freq)
{
for (uint8_t i = 0; i < num_freq; i++)
{
CC2500_Strobe(CC2500_SIDLE);
// spacing is 333.25 kHz, must multiply channel by 3
CC2500_WriteReg(CC2500_0A_CHANNR, hopping_frequency[i]*3);
// calibrate
CC2500_Strobe(CC2500_SCAL);
delayMicroseconds(900);
calData[i]=CC2500_ReadReg(CC2500_25_FSCAL1);
}
}
void __attribute__((unused)) CC2500_250K_Hopping(uint8_t index)
{
// spacing is 333.25 kHz, must multiply channel by 3
CC2500_WriteReg(CC2500_0A_CHANNR, hopping_frequency[index] * 3);
// set PLL calibration
CC2500_WriteReg(CC2500_25_FSCAL1, calData[index]);
}
void __attribute__((unused)) CC2500_250K_RFChannel(uint8_t number)
{
CC2500_Strobe(CC2500_SIDLE);
// spacing is 333.25 kHz, must multiply channel by 3
CC2500_WriteReg(CC2500_0A_CHANNR, number*3);
// calibrate
CC2500_Strobe(CC2500_SCAL);
delayMicroseconds(900);
}
#endif