Pascal Langer 4a626eaf14 Change XN297 emulation layer
Loads of protocols have been touched by this change. Some testing has been done but please test on all your models.
The XN297 emulation selects in this order:
 - the CC2500 if it is available and bitrate=250K. Configure the option field automatically for RF tune.
 - the NRF for all bitrates if it is available
 - if NRF is not available and bitrate=1M then an invalid protocol is sent automatically to the radio.
CC2500 @250K can now receive normal and enhanced payloads.
OMP protocol supports telemetry on CC2500 and is also for NRF only modules including telemetry.
Separation of E016H (new protocol) from E01X due to different structure.
MJXQ, MT99XX, Q303 and XK: some sub protocols available on CC2500 only.
2021-03-17 17:05:42 +01:00

245 lines
7.3 KiB
C++

/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// compatible with EAchine 3D X4, CG023/CG031, Attop YD-822/YD-829/YD-829C and H8_3D/JJRC H20/H22
// Merged CG023 and H8_3D protocols
// Last sync with hexfet new_protocols/cg023_nrf24l01.c dated 2015-10-03
// Last sync with hexfet new_protocols/h8_3d_nrf24l01.c dated 2015-11-18
#if defined(H8_3D_NRF24L01_INO)
#include "iface_xn297.h"
#define H8_3D_PACKET_PERIOD 1800
#define H20H_PACKET_PERIOD 9340
#define H20MINI_PACKET_PERIOD 3100
#define H8_3D_INITIAL_WAIT 500
#define H8_3D_PACKET_SIZE 20
#define H8_3D_RF_NUM_CHANNELS 4
#define H20H_BIND_RF 0x49
#define H8_3D_BIND_COUNT 1000
enum H8_3D_FLAGS {
// flags going to packet[17]
H8_3D_FLAG_FLIP = 0x01,
H8_3D_FLAG_RATE_MID = 0x02,
H8_3D_FLAG_RATE_HIGH = 0x04,
H8_3D_FLAG_LIGTH = 0x08, // Light on H22
H8_3D_FLAG_HEADLESS = 0x10, // RTH + headless on H8, headless on JJRC H20, RTH on H22
H8_3D_FLAG_RTH = 0x20, // 360 flip mode on H8 3D and H22, RTH on JJRC H20
};
enum H8_3D_FLAGS_2 {
// flags going to packet[18]
H8_3D_FLAG_VIDEO = 0x80,
H8_3D_FLAG_PICTURE = 0x40,
H8_3D_FLAG_CALIBRATE1 = 0x20, // H8 3D acc calibration, H20,H20H headless calib
H8_3D_FLAG_CALIBRATE2 = 0x10, // H11D, H20, H20H acc calibration
H8_3D_FLAG_CAM_DN = 0x08,
H8_3D_FLAG_CAM_UP = 0x04,
};
static void __attribute__((unused)) H8_3D_send_packet()
{
if(sub_protocol==H20H)
packet[0] = 0x14;
else // H8_3D, H20MINI, H30MINI
packet[0] = 0x13;
packet[1] = rx_tx_addr[0];
packet[2] = rx_tx_addr[1];
packet[3] = rx_tx_addr[2];
packet[4] = rx_tx_addr[3];
packet[8] = rx_tx_addr[0]+rx_tx_addr[1]+rx_tx_addr[2]+rx_tx_addr[3]; // txid checksum
memset(&packet[9], 0, 10);
if (IS_BIND_IN_PROGRESS)
{
packet[5] = 0x00;
packet[6] = 0x00;
packet[7] = 0x01;
}
else
{
packet[5] = hopping_frequency_no;
packet[7] = 0x03;
rudder = convert_channel_16b_limit(RUDDER,0x44,0xBC); // yaw right : 0x80 (neutral) - 0xBC (right)
if(sub_protocol!=H20H)
{ // H8_3D, H20MINI, H30MINI
packet[6] = 0x08;
packet[9] = convert_channel_8b(THROTTLE); // throttle : 0x00 - 0xFF
packet[15] = 0x20; // trims
packet[16] = 0x20; // trims
if (rudder<=0x80)
rudder=0x80-rudder; // yaw left : 0x00 (neutral) - 0x3C (left)
if(rudder==0x01 || rudder==0x81)
rudder=0x00; // Small deadband
}
else
{ //H20H
packet[6] = hopping_frequency_no == 0 ? 8 - packet_count : 16 - packet_count;
packet[9] = convert_channel_16b_limit(THROTTLE, 0x43, 0xBB); // throttle : 0x43 - 0x7F - 0xBB
packet[15]= 0x40; // trims
packet[16]= 0x40; // trims
rudder--; // rudder : 0x43 - 0x7F - 0xBB
if (rudder>=0x7F-1 && rudder<=0x7F+1)
rudder=0x7F; // Small deadband
}
packet[10] = rudder;
packet[11] = convert_channel_16b_limit(ELEVATOR, 0x43, 0xBB); // elevator : 0x43 - 0x7F - 0xBB
packet[12] = convert_channel_16b_limit(AILERON, 0x43, 0xBB); // aileron : 0x43 - 0x7F - 0xBB
// neutral trims
packet[13] = 0x20;
packet[14] = 0x20;
// flags
packet[17] = H8_3D_FLAG_RATE_HIGH
| GET_FLAG(CH5_SW,H8_3D_FLAG_FLIP)
| GET_FLAG(CH6_SW,H8_3D_FLAG_LIGTH) //H22 light
| GET_FLAG(CH9_SW,H8_3D_FLAG_HEADLESS)
| GET_FLAG(CH10_SW,H8_3D_FLAG_RTH); // 180/360 flip mode on H8 3D
packet[18] = GET_FLAG(CH7_SW,H8_3D_FLAG_PICTURE)
| GET_FLAG(CH8_SW,H8_3D_FLAG_VIDEO)
| GET_FLAG(CH11_SW,H8_3D_FLAG_CALIBRATE1)
| GET_FLAG(CH12_SW,H8_3D_FLAG_CALIBRATE2);
if(Channel_data[CH13]<CHANNEL_MIN_COMMAND)
packet[18] |= H8_3D_FLAG_CAM_DN;
if(CH13_SW)
packet[18] |= H8_3D_FLAG_CAM_UP;
}
uint8_t sum = packet[9];
for (uint8_t i=10; i < H8_3D_PACKET_SIZE-1; i++)
sum += packet[i];
packet[19] = sum; // data checksum
// RF channel
if(sub_protocol!=H20H)
{ // H8_3D, H20MINI, H30MINI
XN297_RFChannel(IS_BIND_IN_PROGRESS ? hopping_frequency[0] : hopping_frequency[hopping_frequency_no++]);
hopping_frequency_no %= H8_3D_RF_NUM_CHANNELS;
}
else
{ // H20H
XN297_RFChannel(IS_BIND_IN_PROGRESS ? H20H_BIND_RF : hopping_frequency[packet_count>>3]);
if(IS_BIND_DONE)
{
packet_count++;
if(packet_count>15)
{
packet_count = 0;
hopping_frequency_no = 0;
}
else
if(packet_count > 7)
hopping_frequency_no = 1;
}
}
// Send
XN297_SetPower();
XN297_SetTxRxMode(TX_EN);
XN297_WritePayload(packet, H8_3D_PACKET_SIZE);
}
static void __attribute__((unused)) H8_3D_RF_init()
{
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_1M);
if(sub_protocol==H20H)
XN297_SetTXAddr((uint8_t *)"\xEE\xDD\xCC\xBB\x11", 5);
else // H8_3D, H20MINI, H30MINI
XN297_SetTXAddr((uint8_t *)"\xC4\x57\x09\x65\x21", 5);
}
uint16_t H8_3D_callback()
{
if(bind_counter)
{
bind_counter--;
if (bind_counter == 0)
{
BIND_DONE;
packet_count=0;
}
}
#ifdef MULTI_SYNC
else
telemetry_set_input_sync(packet_period);
#endif
H8_3D_send_packet();
return packet_period;
}
// captured from H20H stock transmitters
const uint8_t PROGMEM h20h_tx_rf_map[3][6] = {{/*ID*/0x83, 0x3c, 0x60, 0x00, /*RF*/0x47, 0x3e},
{/*ID*/0x5c, 0x2b, 0x60, 0x00, /*RF*/0x4a, 0x3c},
{/*ID*/0x57, 0x07, 0x00, 0x00, /*RF*/0x41, 0x48} };
// captured from H20 Mini / H30 Mini stock transmitters
const uint8_t PROGMEM h20mini_tx_rf_map[4][8] = {{/*ID*/0xb4, 0xbb, 0x09, 0x00, /*RF*/0x3e, 0x45, 0x47, 0x4a},
{/*ID*/0x94, 0x9d, 0x0b, 0x00, /*RF*/0x3e, 0x43, 0x49, 0x4a},
{/*ID*/0xd1, 0xd0, 0x00, 0x00, /*RF*/0x3f, 0x42, 0x46, 0x4a},
{/*ID*/0xcb, 0xcd, 0x04, 0x00, /*RF*/0x41, 0x43, 0x46, 0x4a}};
static void __attribute__((unused)) H8_3D_initialize_txid()
{
uint8_t id_num=rx_tx_addr[4];
switch(sub_protocol)
{
case H8_3D:
for(uint8_t i=0; i<4; i++)
hopping_frequency[i] = 6 + (0x0f*i) + (((rx_tx_addr[i] >> 4) + (rx_tx_addr[i] & 0x0f)) % 0x0f);
break;
case H20H:
id_num%=3; // 3 different IDs
for(uint8_t i=0; i<4; i++)
{
rx_tx_addr[i] = pgm_read_byte_near(&h20h_tx_rf_map[id_num][i]);
if(i<2)
hopping_frequency[i] = pgm_read_byte_near(&h20h_tx_rf_map[id_num][i+4]);
}
break;
case H20MINI:
case H30MINI:
id_num%=4; // 4 different IDs
for(uint8_t i=0; i<4; i++)
{
rx_tx_addr[i] = pgm_read_byte_near(&h20mini_tx_rf_map[id_num][i]);
hopping_frequency[i] = pgm_read_byte_near(&h20mini_tx_rf_map[id_num][i+4]);
}
break;
}
}
void H8_3D_init(void)
{
BIND_IN_PROGRESS; // autobind protocol
bind_counter = H8_3D_BIND_COUNT;
H8_3D_initialize_txid();
H8_3D_RF_init();
switch(sub_protocol)
{
case H8_3D:
packet_period=H8_3D_PACKET_PERIOD;
break;
case H20H:
packet_period=H20H_PACKET_PERIOD;
break;
case H20MINI:
case H30MINI:
packet_period=H20MINI_PACKET_PERIOD;
break;
}
}
#endif