/* This project is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Multiprotocol is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Multiprotocol. If not, see . */ /********************/ /** A7105 routines **/ /********************/ #ifdef A7105_INSTALLED #include "iface_a7105.h" void A7105_WriteData(uint8_t len, uint8_t channel) { uint8_t i; A7105_CSN_off; SPI_Write(A7105_RST_WRPTR); SPI_Write(A7105_05_FIFO_DATA); for (i = 0; i < len; i++) SPI_Write(packet[i]); A7105_CSN_on; if(protocol!=MODE_FLYSKY) { A7105_Strobe(A7105_STANDBY); //Force standby mode, ie cancel any TX or RX... A7105_SetTxRxMode(TX_EN); //Switch to PA } A7105_WriteReg(A7105_0F_PLL_I, channel); A7105_Strobe(A7105_TX); } void A7105_ReadData(uint8_t len) { uint8_t i; A7105_Strobe(A7105_RST_RDPTR); A7105_CSN_off; SPI_Write(0x40 | A7105_05_FIFO_DATA); //bit 6 =1 for reading for (i=0;i RXSW and RX_EN -> TXSW //This means that sleep mode is wired as RX_EN = 1 and TX_EN = 1 //If there are other amps in use, we'll need to fix this A7105_WriteReg(A7105_0B_GPIO1_PIN1, 0x33); A7105_WriteReg(A7105_0C_GPIO2_PIN_II, 0x33); } } //------------------------ uint8_t A7105_Reset() { uint8_t result; A7105_WriteReg(A7105_00_MODE, 0x00); delayMilliseconds(1); A7105_SetTxRxMode(TXRX_OFF); //Set both GPIO as output and low result=A7105_ReadReg(A7105_10_PLL_II) == 0x9E; //check if is reset. A7105_Strobe(A7105_STANDBY); return result; } void A7105_WriteID(uint32_t ida) { A7105_CSN_off; SPI_Write(A7105_06_ID_DATA); //ex id=0x5475c52a ;txid3txid2txid1txid0 SPI_Write((ida>>24)&0xff); //53 SPI_Write((ida>>16)&0xff); //75 SPI_Write((ida>>8)&0xff); //c5 SPI_Write((ida>>0)&0xff); //2a A7105_CSN_on; } /* static void A7105_SetPower_Value(int power) { //Power amp is ~+16dBm so: //TXPOWER_100uW = -23dBm == PAC=0 TBG=0 //TXPOWER_300uW = -20dBm == PAC=0 TBG=1 //TXPOWER_1mW = -16dBm == PAC=0 TBG=2 //TXPOWER_3mW = -11dBm == PAC=0 TBG=4 //TXPOWER_10mW = -6dBm == PAC=1 TBG=5 //TXPOWER_30mW = 0dBm == PAC=2 TBG=7 //TXPOWER_100mW = 1dBm == PAC=3 TBG=7 //TXPOWER_150mW = 1dBm == PAC=3 TBG=7 uint8_t pac, tbg; switch(power) { case 0: pac = 0; tbg = 0; break; case 1: pac = 0; tbg = 1; break; case 2: pac = 0; tbg = 2; break; case 3: pac = 0; tbg = 4; break; case 4: pac = 1; tbg = 5; break; case 5: pac = 2; tbg = 7; break; case 6: pac = 3; tbg = 7; break; case 7: pac = 3; tbg = 7; break; default: pac = 0; tbg = 0; break; }; A7105_WriteReg(0x28, (pac << 3) | tbg); } */ void A7105_SetPower() { uint8_t power=A7105_BIND_POWER; if(IS_BIND_DONE) #ifdef A7105_ENABLE_LOW_POWER power=IS_POWER_FLAG_on?A7105_HIGH_POWER:A7105_LOW_POWER; #else power=A7105_HIGH_POWER; #endif if(IS_RANGE_FLAG_on) power=A7105_RANGE_POWER; if(prev_power != power) { A7105_WriteReg(A7105_28_TX_TEST, power); prev_power=power; } } void A7105_Strobe(uint8_t address) { A7105_CSN_off; SPI_Write(address); A7105_CSN_on; } // Fine tune A7105 LO base frequency // this is required for some A7105 modules and/or RXs with inaccurate crystal oscillator void A7105_AdjustLOBaseFreq(uint8_t cmd) { static int16_t old_offset=2048; int16_t offset=1024; if(cmd==0) { // Called at init of the A7105 old_offset=2048; switch(protocol) { case MODE_HUBSAN: #ifdef FORCE_HUBSAN_TUNING offset=(int16_t)FORCE_HUBSAN_TUNING; #endif break; case MODE_FLYSKY: #ifdef FORCE_FLYSKY_TUNING offset=(int16_t)FORCE_FLYSKY_TUNING; #endif break; case MODE_AFHDS2A: #ifdef FORCE_AFHDS2A_TUNING offset=(int16_t)FORCE_AFHDS2A_TUNING; #endif break; } } if(offset==1024) // Use channel 15 as an input offset=convert_channel_16b_nolimit(CH15,-300,300); if(old_offset==offset) // offset is the same as before... return; old_offset=offset; // LO base frequency = 32e6*(bip+(bfp/(2^16))) uint8_t bip; // LO base frequency integer part uint16_t bfp; // LO base frequency fractional part offset++; // as per datasheet, not sure why recommended, but that's a +1kHz drift only ... offset<<=1; if(offset < 0) { bip = 0x4a; // 2368 MHz bfp = 0xffff + offset; } else { bip = 0x4b; // 2400 MHz (default) bfp = offset; } A7105_WriteReg( A7105_11_PLL_III, bip); A7105_WriteReg( A7105_12_PLL_IV, (bfp >> 8) & 0xff); A7105_WriteReg( A7105_13_PLL_V, bfp & 0xff); //debugln("Channel: %d, offset: %d, bip: %2x, bfp: %4x", Channel_data[14], offset, bip, bfp); } #ifdef HUBSAN_A7105_INO const uint8_t PROGMEM HUBSAN_A7105_regs[] = { 0xFF, 0x63, 0xFF, 0x0F, 0xFF, 0xFF, 0xFF ,0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x05, 0x04, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2B, 0xFF, 0xFF, 0x62, 0x80, 0xFF, 0xFF, 0x0A, 0xFF, 0xFF, 0x07, 0x17, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x47, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; #endif #ifdef FLYSKY_A7105_INO const uint8_t PROGMEM FLYSKY_A7105_regs[] = { 0xff, 0x42, 0x00, 0x14, 0x00, 0xff, 0xff ,0x00, 0x00, 0x00, 0x00, 0x01, 0x21, 0x05, 0x00, 0x50, 0x9e, 0x4b, 0x00, 0x02, 0x16, 0x2b, 0x12, 0x00, 0x62, 0x80, 0x80, 0x00, 0x0a, 0x32, 0xc3, 0x0f, 0x13, 0xc3, 0x00, 0xff, 0x00, 0x00, 0x3b, 0x00, 0x17, 0x47, 0x80, 0x03, 0x01, 0x45, 0x18, 0x00, 0x01, 0x0f }; #endif #ifdef AFHDS2A_A7105_INO const uint8_t PROGMEM AFHDS2A_A7105_regs[] = { 0xFF, 0x42 | (1<<5), 0x00, 0x25, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x01, 0x3c, 0x05, 0x00, 0x50, // 00 - 0f 0x9e, 0x4b, 0x00, 0x02, 0x16, 0x2b, 0x12, 0x4f, 0x62, 0x80, 0xFF, 0xFF, 0x2a, 0x32, 0xc3, 0x1f, // 10 - 1f 0x1e, 0xFF, 0x00, 0xFF, 0x00, 0x00, 0x3b, 0x00, 0x17, 0x47, 0x80, 0x03, 0x01, 0x45, 0x18, 0x00, // 20 - 2f 0x01, 0x0f // 30 - 31 }; #endif #define ID_NORMAL 0x55201041 #define ID_PLUS 0xAA201041 void A7105_Init(void) { uint8_t *A7105_Regs=0; #ifdef HUBSAN_A7105_INO if(protocol==MODE_HUBSAN) { A7105_WriteID(ID_NORMAL); A7105_Regs=(uint8_t*)HUBSAN_A7105_regs; } else #endif { A7105_WriteID(0x5475c52A);//0x2Ac57554 #ifdef FLYSKY_A7105_INO if(protocol==MODE_FLYSKY) A7105_Regs=(uint8_t*)FLYSKY_A7105_regs; else #endif { #ifdef AFHDS2A_A7105_INO A7105_Regs=(uint8_t*)AFHDS2A_A7105_regs; #endif } } for (uint8_t i = 0; i < 0x32; i++) { uint8_t val=pgm_read_byte_near(&A7105_Regs[i]); #ifdef FLYSKY_A7105_INO if(protocol==MODE_FLYSKY && sub_protocol==CX20) { if(i==0x0E) val=0x01; if(i==0x1F) val=0x1F; if(i==0x20) val=0x1E; } #endif if( val != 0xFF) A7105_WriteReg(i, val); } A7105_Strobe(A7105_STANDBY); //IF Filter Bank Calibration A7105_WriteReg(A7105_02_CALC,1); while(A7105_ReadReg(A7105_02_CALC)); // Wait for calibration to end // A7105_ReadReg(A7105_22_IF_CALIB_I); // A7105_ReadReg(A7105_24_VCO_CURCAL); if(protocol!=MODE_HUBSAN) { //VCO Current Calibration A7105_WriteReg(A7105_24_VCO_CURCAL,0x13); //Recommended calibration from A7105 Datasheet //VCO Bank Calibration A7105_WriteReg(A7105_26_VCO_SBCAL_II,0x3b); //Recommended calibration from A7105 Datasheet } //VCO Bank Calibrate channel 0 A7105_WriteReg(A7105_0F_CHANNEL, 0); A7105_WriteReg(A7105_02_CALC,2); while(A7105_ReadReg(A7105_02_CALC)); // Wait for calibration to end // A7105_ReadReg(A7105_25_VCO_SBCAL_I); //VCO Bank Calibrate channel A0 A7105_WriteReg(A7105_0F_CHANNEL, 0xa0); A7105_WriteReg(A7105_02_CALC, 2); while(A7105_ReadReg(A7105_02_CALC)); // Wait for calibration to end // A7105_ReadReg(A7105_25_VCO_SBCAL_I); //Reset VCO Band calibration if(protocol!=MODE_HUBSAN) A7105_WriteReg(A7105_25_VCO_SBCAL_I,protocol==MODE_FLYSKY?0x08:0x0A); A7105_SetTxRxMode(TX_EN); A7105_SetPower(); A7105_AdjustLOBaseFreq(0); A7105_Strobe(A7105_STANDBY); } #endif