/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see .
*/
// Radiolink surface protocol. TXs: RC4GS,RC6GS. Compatible RXs:R7FG(Std),R6FG,R6F,R8EF,R8FM,R8F,R4FGM
#if defined(RLINK_CC2500_INO)
#include "iface_cc2500.h"
//#define RLINK_DEBUG
//#define RLINK_DEBUG_TELEM
//#define RLINK_FORCE_ID
//#define RLINK_RC4G_FORCE_ID
#define RLINK_TX_PACKET_LEN 33
#define RLINK_RX_PACKET_LEN 15
#define RLINK_TX_ID_LEN 4
#define RLINK_HOP 16
enum {
RLINK_DATA = 0x00,
RLINK_RX1 = 0x01,
RLINK_RX2 = 0x02,
};
uint32_t RLINK_rand1;
uint32_t RLINK_rand2;
static uint32_t __attribute__((unused)) RLINK_prng_next(uint32_t r)
{
return 0xA5E2A705 * r + 0x754DB79B;
}
static void __attribute__((unused)) RLINK_init_random(uint32_t id)
{
uint32_t result = id;
RLINK_rand2 = result;
for (uint8_t i=0; i<31; i++)
result = RLINK_prng_next(result);
RLINK_rand1 = result;
}
static uint8_t __attribute__((unused)) RLINK_next_random_swap()
{
uint8_t result = (RLINK_rand2 >> 16) + RLINK_rand2 + (RLINK_rand1 >> 16) + RLINK_rand1;
RLINK_rand2 = RLINK_prng_next(RLINK_rand2);
RLINK_rand1 = RLINK_prng_next(RLINK_rand1);
return result & 0x0F;
}
static uint32_t __attribute__((unused)) RLINK_compute_start_id(uint32_t id)
{
return id * 0xF65EF9F9u + 0x2EDDF6CAu;
}
static void __attribute__((unused)) RLINK_shuffle_freqs(uint32_t seed)
{
RLINK_init_random(seed);
for(uint8_t i=0; i>= 4;
debug("C:%02X RSSI:%02X",ch,val);
if(val_low > val)
{
debug(" OK");
val_low = val;
hopping_frequency[ch<0x63?0:1]=ch; //save best channel
}
debugln("");
}
CC2500_WriteReg(CC2500_17_MCSM1,0x30);
CC2500_Strobe(CC2500_SIDLE);
CC2500_SetTxRxMode(TX_EN);
#ifdef RLINK_RC4G_FORCE_ID
hopping_frequency[0] = 0x03;
hopping_frequency[1] = 0x6F;
#endif
}
#ifdef RLINK_DEBUG
debug("ID:");
for(uint8_t i=0;i3)
packet[1] = 0x02; // 0x02 telemetry request flag
else
packet[1] = 0x00; // no telemetry
switch(sub_protocol)
{
case RLINK_SURFACE:
packet[1] |= 0x01;
//radiolink additionnal ID which is working only on a small set of RXs
//if(RX_num) packet[1] |= ((RX_num+2)<<4)+4; // RX number limited to 10 values, 0 is a wildcard
break;
case RLINK_AIR:
packet[1] |= 0x21; //air 0x21 on dump but it looks to support telemetry at least RSSI
break;
case RLINK_DUMBORC:
packet[1] = 0x00; //always 0x00 on dump
break;
}
// ID
memcpy(&packet[2],rx_tx_addr,RLINK_TX_ID_LEN);
// pack 16 channels on 11 bits values between 170 and 1876, 1023 middle. The last 8 channels are failsafe values associated to the first 8 values.
for (uint8_t i = 0; i < 16; i++)
{
uint32_t val = convert_channel_16b_nolimit(i,170,1876,false); // allow extended limits
if (val & 0x8000)
val = 0;
else if (val > 2047)
val=2047;
bits |= val << bitsavailable;
bitsavailable += 11;
while (bitsavailable >= 8) {
packet[idx++] = bits & 0xff;
bits >>= 8;
bitsavailable -= 8;
}
}
// hop
pseudo=((pseudo * 0xAA) + 0x03) % 0x7673; // calc next pseudo random value
CC2500_WriteReg(CC2500_0A_CHANNR, hopping_frequency[pseudo & 0x0F]);
packet[28]= pseudo;
packet[29]= pseudo >> 8;
packet[30]= 0x00; // unknown
packet[31]= 0x00; // unknown
packet[32]= rf_ch_num; // index of value changed in the RF table
// check
uint8_t sum=0;
for(uint8_t i=1;i<33;i++)
sum+=packet[i];
packet[33]=sum;
// send packet
CC2500_WriteData(packet, RLINK_TX_PACKET_LEN+1);
// packets type
packet_count++;
if(packet_count>5) packet_count=0;
#ifdef RLINK_DEBUG
debugln("C= 0x%02X",hopping_frequency[pseudo & 0x0F]);
debug("P=");
for(uint8_t i=1;i>1]);
#ifdef RLINK_DEBUG
debug("C= 0x%02X ",hopping_frequency[packet_count>>1]);
#endif
// packet length
packet[0] = 0x0F;
//address
memcpy(&packet[1], &rx_tx_addr[1], 3);
//channels
for(uint8_t i=0;i<2;i++)
{
val = Channel_data[2*i ] +400 -24;
packet[4+i*2] = val;
packet[8+i ] = val>>8;
val = Channel_data[2*i+1] +400 -24;
packet[5+i*2] = val;
packet[8+i ] |= (val>>4) & 0xF0;
}
//special channel which is linked to gyro on the orginal TX but allocating it on CH5 here
packet[10] = convert_channel_16b_limit(CH5,0,100);
//failsafe
for(uint8_t i=0;i<4;i++)
packet[11+i] = convert_channel_16b_limit(CH6+i,0,200);
//next hop
packet_count++;
packet_count &= 0x03;
packet[15] = hopping_frequency[packet_count>>1];
// send packet
CC2500_WriteData(packet, 16);
#ifdef RLINK_DEBUG
debug("P=");
for(uint8_t i=1;i<16;i++)
debug(" 0x%02X",packet[i]);
debugln("");
#endif
}
#endif
#define RLINK_TIMING_PROTO 20000-100 // -100 for compatibility with R8EF
#define RLINK_TIMING_RFSEND 10500
#define RLINK_TIMING_CHECK 2000
#define RLINK_RC4G_TIMING_PROTO 14460
uint16_t RLINK_callback()
{
if(sub_protocol == RLINK_RC4G)
{
#ifndef MULTI_AIR
#ifdef MULTI_SYNC
telemetry_set_input_sync(RLINK_RC4G_TIMING_PROTO);
#endif
CC2500_SetPower();
CC2500_SetFreqOffset();
RLINK_RC4G_send_packet();
#else
SUB_PROTO_INVALID;
#endif
return RLINK_RC4G_TIMING_PROTO;
}
switch(phase)
{
case RLINK_DATA:
#ifdef MULTI_SYNC
telemetry_set_input_sync(RLINK_TIMING_PROTO);
#endif
CC2500_SetPower();
CC2500_SetFreqOffset();
RLINK_send_packet();
#if not defined RLINK_HUB_TELEMETRY
return RLINK_TIMING_PROTO;
#else
if(!(packet[1]&0x02))
return RLINK_TIMING_PROTO; //Normal packet
//Telemetry packet
phase++; // RX1
return RLINK_TIMING_RFSEND;
case RLINK_RX1:
CC2500_Strobe(CC2500_SIDLE);
CC2500_Strobe(CC2500_SFRX);
CC2500_SetTxRxMode(RX_EN);
CC2500_Strobe(CC2500_SRX);
phase++; // RX2
return RLINK_TIMING_PROTO-RLINK_TIMING_RFSEND-RLINK_TIMING_CHECK;
case RLINK_RX2:
len = CC2500_ReadReg(CC2500_3B_RXBYTES | CC2500_READ_BURST) & 0x7F;
if (len == RLINK_RX_PACKET_LEN + 1 + 2) //Telemetry frame is 15 bytes + 1 byte for length + 2 bytes for RSSI&LQI&CRC
{
#ifdef RLINK_DEBUG_TELEM
debug("Telem:");
#endif
CC2500_ReadData(packet_in, len);
if(packet_in[0]==RLINK_RX_PACKET_LEN && (packet_in[len-1] & 0x80) && memcmp(&packet[2],rx_tx_addr,RLINK_TX_ID_LEN)==0 && packet_in[6]==packet[1])
{//Correct telemetry received: length, CRC, ID and type
#ifdef RLINK_DEBUG_TELEM
for(uint8_t i=0;i=128)
TX_RSSI -= 128;
else
TX_RSSI += 128;
RX_RSSI=packet_in[7]&0x7F; //Should be packet_in[7]-256 but since it's an uint8_t...
v_lipo1=packet_in[8]<<1; //RX Batt
v_lipo2=packet_in[9]; //Batt
telemetry_link=1; //Send telemetry out
pps_counter++;
packet_count=0;
}
#ifdef RLINK_DEBUG_TELEM
debugln("");
#endif
}
if (millis() - pps_timer >= 2000)
{//1 telemetry packet every 100ms
pps_timer = millis();
if(pps_counter<20)
pps_counter*=5;
else
pps_counter=100;
debugln("%d pps", pps_counter);
TX_LQI = pps_counter; //0..100%
pps_counter = 0;
}
CC2500_SetTxRxMode(TX_EN);
phase=RLINK_DATA; // DATA
return RLINK_TIMING_CHECK;
#endif
}
return 0;
}
void RLINK_init()
{
BIND_DONE; // Not a TX bind protocol
RLINK_TXID_init();
RLINK_rf_init();
packet_count = 0;
phase = RLINK_DATA;
}
#endif