/* This project is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Multiprotocol is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Multiprotocol. If not, see . */ #ifdef CYRF6936_INSTALLED #include "iface_cyrf6936.h" void CYRF_WriteRegister(uint8_t address, uint8_t data) { CYRF_CSN_off; SPI_Write(0x80 | address); SPI_Write(data); CYRF_CSN_on; } static void CYRF_WriteRegisterMulti(uint8_t address, const uint8_t data[], uint8_t length) { uint8_t i; CYRF_CSN_off; SPI_Write(0x80 | address); for(i = 0; i < length; i++) SPI_Write(data[i]); CYRF_CSN_on; } static void CYRF_ReadRegisterMulti(uint8_t address, uint8_t data[], uint8_t length) { uint8_t i; CYRF_CSN_off; SPI_Write(address); for(i = 0; i < length; i++) data[i] = SPI_Read(); CYRF_CSN_on; } uint8_t CYRF_ReadRegister(uint8_t address) { uint8_t data; CYRF_CSN_off; SPI_Write(address); data = SPI_Read(); CYRF_CSN_on; return data; } // uint8_t CYRF_Reset() { #ifdef CYRF_RST_HI CYRF_RST_HI; //Hardware reset delayMicroseconds(100); CYRF_RST_LO; delayMicroseconds(100); #endif CYRF_WriteRegister(CYRF_1D_MODE_OVERRIDE, 0x01); //Software reset delayMicroseconds(200); CYRF_WriteRegister(CYRF_0C_XTAL_CTRL, 0xC0); //Enable XOUT as GPIO CYRF_WriteRegister(CYRF_0D_IO_CFG, 0x04); //Enable PACTL as GPIO CYRF_SetTxRxMode(TXRX_OFF); //Verify the CYRF chip is responding return (CYRF_ReadRegister(CYRF_10_FRAMING_CFG) == 0xa5); } /* * */ void CYRF_GetMfgData(uint8_t data[]) { #ifndef FORCE_CYRF_ID if(eeprom_read_byte((EE_ADDR)EEPROM_CID_INIT_OFFSET)==0xf0) {//read Cyrf ID from EEPROM for(uint8_t i=0;i<6;i++) data[i] = eeprom_read_byte((EE_ADDR)EEPROM_CID_OFFSET+i); } else {//read Cyrf ID and store it EEPROM /* Fuses power on */ CYRF_WriteRegister(CYRF_25_MFG_ID, 0xFF); CYRF_ReadRegisterMulti(CYRF_25_MFG_ID, data, 6); for(uint8_t i=0;i<6;i++) eeprom_write_byte((EE_ADDR)EEPROM_CID_OFFSET+i, data[i]); eeprom_write_byte((EE_ADDR)EEPROM_CID_INIT_OFFSET, 0xf0); /* Fuses power off */ CYRF_WriteRegister(CYRF_25_MFG_ID, 0x00); } #else memcpy(data,FORCE_CYRF_ID,6); #endif } /* * 1 - Tx else Rx */ void CYRF_SetTxRxMode(uint8_t mode) { if(mode==TXRX_OFF) { if( protocol!=PROTO_WFLY && protocol!=PROTO_MLINK ) CYRF_WriteRegister(CYRF_0F_XACT_CFG, 0x24); // 4=IDLE, 8=TX, C=RX CYRF_WriteRegister(CYRF_0E_GPIO_CTRL,0x00); // XOUT=0 PACTL=0 } else { //Set the post tx/rx state if( protocol!=PROTO_WFLY && protocol!=PROTO_MLINK ) CYRF_WriteRegister(CYRF_0F_XACT_CFG, mode == TX_EN ? 0x28 : 0x2C); // 4=IDLE, 8=TX, C=RX if(mode == TX_EN) #ifdef ORANGE_TX_BLUE CYRF_WriteRegister(CYRF_0E_GPIO_CTRL,0x20); // XOUT=1, PACTL=0 else CYRF_WriteRegister(CYRF_0E_GPIO_CTRL,0x80); // XOUT=0, PACTL=1 #else CYRF_WriteRegister(CYRF_0E_GPIO_CTRL,0x80); // XOUT=1, PACTL=0 else CYRF_WriteRegister(CYRF_0E_GPIO_CTRL,0x20); // XOUT=0, PACTL=1 #endif } } /* * */ void CYRF_ConfigRFChannel(uint8_t ch) { CYRF_WriteRegister(CYRF_00_CHANNEL,ch); } /* static void CYRF_SetPower_Value(uint8_t power) { uint8_t val = CYRF_ReadRegister(CYRF_03_TX_CFG) & 0xF8; CYRF_WriteRegister(CYRF_03_TX_CFG, val | (power & 0x07)); } */ void CYRF_SetPower(uint8_t val) { uint8_t power=CYRF_BIND_POWER; if(IS_BIND_DONE) #ifdef CYRF6936_ENABLE_LOW_POWER power=IS_POWER_FLAG_on?CYRF_HIGH_POWER:CYRF_LOW_POWER; #else power=CYRF_HIGH_POWER; #endif if(IS_RANGE_FLAG_on) power=CYRF_RANGE_POWER; power|=val; if(prev_power != power) { CYRF_WriteRegister(CYRF_03_TX_CFG,power); prev_power=power; } #ifdef USE_CYRF6936_CH15_TUNING static uint16_t Channel15=1024; if(Channel15!=Channel_data[CH15]) { // adjust frequency Channel15=Channel_data[CH15]+0x155; // default value is 0x555 = 0x400 + 0x155 CYRF_WriteRegister(CYRF_1B_TX_OFFSET_LSB, Channel15&0xFF); CYRF_WriteRegister(CYRF_1C_TX_OFFSET_MSB, Channel15>>8); Channel15-=0x155; } #endif } /* * */ void CYRF_ConfigCRCSeed(uint16_t crc_seed) { CYRF_WriteRegister(CYRF_15_CRC_SEED_LSB,crc_seed & 0xff); CYRF_WriteRegister(CYRF_16_CRC_SEED_MSB,crc_seed >> 8); } /* * these are the recommended sop codes from Cyrpress * See "WirelessUSB LP/LPstar and PRoC LP/LPstar Technical Reference Manual" */ void CYRF_ConfigSOPCode(const uint8_t *sopcodes) { //NOTE: This can also be implemented as: //for(i = 0; i < 8; i++) WriteRegister)0x23, sopcodes[i]; CYRF_WriteRegisterMulti(CYRF_22_SOP_CODE, sopcodes, 8); } void CYRF_ConfigDataCode(const uint8_t *datacodes, uint8_t len) { //NOTE: This can also be implemented as: //for(i = 0; i < len; i++) WriteRegister)0x23, datacodes[i]; CYRF_WriteRegisterMulti(CYRF_23_DATA_CODE, datacodes, len); } void CYRF_WritePreamble(uint32_t preamble) { CYRF_CSN_off; SPI_Write(0x80 | 0x24); SPI_Write(preamble & 0xff); SPI_Write((preamble >> 8) & 0xff); SPI_Write((preamble >> 16) & 0xff); CYRF_CSN_on; } /* * */ /*static void CYRF_ReadDataPacket(uint8_t dpbuffer[]) { CYRF_ReadRegisterMulti(CYRF_21_RX_BUFFER, dpbuffer, 0x10); } */ void CYRF_ReadDataPacketLen(uint8_t dpbuffer[], uint8_t length) { CYRF_ReadRegisterMulti(CYRF_21_RX_BUFFER, dpbuffer, length); } static void CYRF_WriteDataPacketLen(const uint8_t dpbuffer[], uint8_t len) { CYRF_WriteRegister(CYRF_01_TX_LENGTH, len); CYRF_WriteRegister(CYRF_02_TX_CTRL, 0x43); // 0x40 CYRF_WriteRegisterMulti(CYRF_20_TX_BUFFER, dpbuffer, len); CYRF_WriteRegister(CYRF_02_TX_CTRL, 0x83); // 0xBF } void CYRF_WriteDataPacket(const uint8_t dpbuffer[]) { CYRF_WriteDataPacketLen(dpbuffer, 16); } /*static uint8_t CYRF_ReadRSSI(uint8_t dodummyread) { uint8_t result; if(dodummyread) CYRF_ReadRegister(CYRF_13_RSSI); result = CYRF_ReadRegister(CYRF_13_RSSI); if(result & 0x80) result = CYRF_ReadRegister(CYRF_13_RSSI); return (result & 0x0F); } */ //NOTE: This routine will reset the CRC Seed void CYRF_FindBestChannels(uint8_t *channels, uint8_t len, uint8_t minspace, uint8_t min, uint8_t max) { #define NUM_FREQ 80 #define FREQ_OFFSET 4 uint8_t rssi[NUM_FREQ]; if (min < FREQ_OFFSET) min = FREQ_OFFSET; if (max > NUM_FREQ) max = NUM_FREQ; uint8_t i; int8_t j; memset(channels, 0, sizeof(uint8_t) * len); CYRF_ConfigCRCSeed(0x0000); CYRF_SetTxRxMode(RX_EN); //Wait for pre-amp to switch from send to receive delayMilliseconds(1); for(i = 0; i < NUM_FREQ; i++) { CYRF_ConfigRFChannel(protocol==PROTO_LOSI?i|1:i); delayMicroseconds(270); //slow channel require 270usec for synthesizer to settle if( !(CYRF_ReadRegister(CYRF_05_RX_CTRL) & 0x80)) { CYRF_WriteRegister(CYRF_05_RX_CTRL, 0x80); //Prepare to receive delayMicroseconds(15); CYRF_ReadRegister(CYRF_13_RSSI); //dummy read delayMicroseconds(15); //The conversion can occur as often as once every 12us } rssi[i] = CYRF_ReadRegister(CYRF_13_RSSI)&0x1F; } for (i = 0; i < len; i++) { channels[i] = min; for (j = min; j < max; j++) if (rssi[j] < rssi[channels[i]]) channels[i] = j; for (j = channels[i] - minspace; j < channels[i] + minspace; j++) { //Ensure we don't reuse any channels within minspace of the selected channel again if (j < 0 || j >= NUM_FREQ) continue; rssi[j] = 0xff; } } CYRF_WriteRegister(CYRF_29_RX_ABORT, 0x20); // Abort RX operation CYRF_SetTxRxMode(TX_EN); CYRF_WriteRegister(CYRF_29_RX_ABORT, 0x00); // Clear abort RX } #if defined(DEVO_CYRF6936_INO) || defined(J6PRO_CYRF6936_INO) const uint8_t PROGMEM DEVO_j6pro_sopcodes[][8] = { /* Note these are in order transmitted (LSB 1st) */ {0x3C, 0x37, 0xCC, 0x91, 0xE2, 0xF8, 0xCC, 0x91}, {0x9B, 0xC5, 0xA1, 0x0F, 0xAD, 0x39, 0xA2, 0x0F}, {0xEF, 0x64, 0xB0, 0x2A, 0xD2, 0x8F, 0xB1, 0x2A}, {0x66, 0xCD, 0x7C, 0x50, 0xDD, 0x26, 0x7C, 0x50}, {0x5C, 0xE1, 0xF6, 0x44, 0xAD, 0x16, 0xF6, 0x44}, {0x5A, 0xCC, 0xAE, 0x46, 0xB6, 0x31, 0xAE, 0x46}, {0xA1, 0x78, 0xDC, 0x3C, 0x9E, 0x82, 0xDC, 0x3C}, {0xB9, 0x8E, 0x19, 0x74, 0x6F, 0x65, 0x18, 0x74}, {0xDF, 0xB1, 0xC0, 0x49, 0x62, 0xDF, 0xC1, 0x49}, {0x97, 0xE5, 0x14, 0x72, 0x7F, 0x1A, 0x14, 0x72}, #if defined(J6PRO_CYRF6936_INO) {0x82, 0xC7, 0x90, 0x36, 0x21, 0x03, 0xFF, 0x17}, {0xE2, 0xF8, 0xCC, 0x91, 0x3C, 0x37, 0xCC, 0x91}, //Note: the '03' was '9E' in the Cypress recommended table {0xAD, 0x39, 0xA2, 0x0F, 0x9B, 0xC5, 0xA1, 0x0F}, //The following are the same as the 1st 8 above, {0xD2, 0x8F, 0xB1, 0x2A, 0xEF, 0x64, 0xB0, 0x2A}, //but with the upper and lower word swapped {0xDD, 0x26, 0x7C, 0x50, 0x66, 0xCD, 0x7C, 0x50}, {0xAD, 0x16, 0xF6, 0x44, 0x5C, 0xE1, 0xF6, 0x44}, {0xB6, 0x31, 0xAE, 0x46, 0x5A, 0xCC, 0xAE, 0x46}, {0x9E, 0x82, 0xDC, 0x3C, 0xA1, 0x78, 0xDC, 0x3C}, {0x6F, 0x65, 0x18, 0x74, 0xB9, 0x8E, 0x19, 0x74}, #endif }; #endif static void __attribute__((unused)) CYRF_PROGMEM_ConfigSOPCode(const uint8_t *data) { uint8_t code[8]; for(uint8_t i=0;i<8;i++) code[i]=pgm_read_byte_near(&data[i]); CYRF_ConfigSOPCode(code); } //CYRF GFSK 1Mb functions const uint8_t PROGMEM CYRF_GFSK1M_init_vals[][2] = { {CYRF_02_TX_CTRL, 0x00}, // transmit err & complete interrupts disabled {CYRF_05_RX_CTRL, 0x00}, // receive err & complete interrupts disabled {CYRF_28_CLK_EN, 0x02}, // Force Receive Clock Enable, MUST be set {CYRF_32_AUTO_CAL_TIME, 0x3c}, // must be set to 3C {CYRF_35_AUTOCAL_OFFSET, 0x14}, // must be set to 14 {CYRF_06_RX_CFG, 0x48}, // LNA manual control, Rx Fast Turn Mode Enable {CYRF_1B_TX_OFFSET_LSB, 0x00}, // Tx frequency offset LSB {CYRF_1C_TX_OFFSET_MSB, 0x00}, // Tx frequency offset MSB {CYRF_0F_XACT_CFG, 0x24}, // Force End State, transaction end state = idle {CYRF_03_TX_CFG, 0x00}, // GFSK mode {CYRF_12_DATA64_THOLD, 0x0a}, // 64 Chip Data PN Code Correlator Threshold = 10 {CYRF_0F_XACT_CFG, 0x04}, // Transaction End State = idle {CYRF_39_ANALOG_CTRL, 0x01}, // synth setting time for all channels is the same as for slow channels {CYRF_0F_XACT_CFG, 0x24}, //Force IDLE {CYRF_29_RX_ABORT, 0x00}, //Clear RX abort {CYRF_12_DATA64_THOLD, 0x0a}, //set pn correlation threshold {CYRF_10_FRAMING_CFG, 0x4a}, //set sop len and threshold {CYRF_29_RX_ABORT, 0x0f}, //Clear RX abort? {CYRF_03_TX_CFG, 0x00}, // GFSK mode {CYRF_10_FRAMING_CFG, 0x4a}, // 0b11000000 //set sop len and threshold {CYRF_1F_TX_OVERRIDE, 0x04}, //disable tx CRC {CYRF_1E_RX_OVERRIDE, 0x14}, //disable rx crc {CYRF_14_EOP_CTRL, 0x00}, //set EOP sync == 0 }; static void __attribute__((unused)) CYRF_GFSK1M_Init(uint8_t payload_length, uint8_t preamble_len) { for(uint8_t i = 0; i < sizeof(CYRF_GFSK1M_init_vals) / 2; i++) CYRF_WriteRegister(pgm_read_byte_near(&CYRF_GFSK1M_init_vals[i][0]), pgm_read_byte_near(&CYRF_GFSK1M_init_vals[i][1])); CYRF_WriteRegister(CYRF_01_TX_LENGTH, payload_length); CYRF_WritePreamble(0xAAAA00 | preamble_len); CYRF_SetPower(0x00); CYRF_SetTxRxMode(TX_EN); } static void __attribute__((unused)) CYRF_GFSK1M_SendPayload(uint8_t *buffer, uint8_t len) { uint8_t send=len>16 ? 16 : len; CYRF_WriteRegister(CYRF_02_TX_CTRL, 0x40); CYRF_WriteRegisterMulti(CYRF_20_TX_BUFFER, buffer, send); // Fill the buffer with 16 bytes max CYRF_WriteRegister(CYRF_02_TX_CTRL, 0x80); // Start send buffer += send; len -= send; while(len>8) { while((CYRF_ReadRegister(CYRF_04_TX_IRQ_STATUS)&0x10) == 0); // Wait that half of the buffer is empty CYRF_WriteRegisterMulti(CYRF_20_TX_BUFFER, buffer, 8); // Add 8 bytes to the buffer buffer+=8; len-=8; } if(len) { while((CYRF_ReadRegister(CYRF_04_TX_IRQ_STATUS)&0x10) == 0); // Wait that half of the buffer is empty CYRF_WriteRegisterMulti(CYRF_20_TX_BUFFER, buffer, len); // Add the remaining bytes to the buffer } } #define CYRF_GFSK1M_SetPower() CYRF_SetPower(0x00) #endif