/********************************************************* Multiprotocol Tx code by Midelic and Pascal Langer(hpnuts) http://www.rcgroups.com/forums/showthread.php?t=2165676 https://github.com/pascallanger/DIY-Multiprotocol-TX-Module/edit/master/README.md Thanks to PhracturedBlue, Hexfet, Goebish, Victzh and all protocol developers Ported from deviation firmware This project is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Multiprotocol is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Multiprotocol. If not, see . */ #include //#define DEBUG_PIN // Use pin TX for AVR and SPI_CS for STM32 => DEBUG_PIN_on, DEBUG_PIN_off, DEBUG_PIN_toggle //#define DEBUG_SERIAL // Only for STM32_BOARD compiled with Upload method "Serial"->usart1, "STM32duino bootloader"->USB serial #ifdef __arm__ // Let's automatically select the board if arm is selected #define STM32_BOARD #endif #if defined (ARDUINO_AVR_XMEGA32D4) || defined (ARDUINO_MULTI_ORANGERX) #include "MultiOrange.h" #endif #include "Multiprotocol.h" //Multiprotocol module configuration file #include "_Config.h" //Personal config file #if __has_include("_MyConfig.h") || defined(USE_MY_CONFIG) #include "_MyConfig.h" #endif #include "Pins.h" #include "TX_Def.h" #include "Validate.h" #ifndef STM32_BOARD #include #else #include #include //#include #include #include HardwareTimer HWTimer2(2); void PPM_decode(); void ISR_COMPB(); extern "C" { void __irq_usart2(void); void __irq_usart3(void); } #endif //Global constants/variables uint32_t MProtocol_id;//tx id, uint32_t MProtocol_id_master; uint32_t blink=0,last_signal=0; // uint16_t counter; uint8_t channel; uint8_t packet[40]; #define NUM_CHN 16 // Servo data uint16_t Channel_data[NUM_CHN]; uint8_t Channel_AUX; #ifdef FAILSAFE_ENABLE uint16_t Failsafe_data[NUM_CHN]; #endif // Protocol variables uint8_t cyrfmfg_id[6];//for dsm2 and devo uint8_t rx_tx_addr[5]; uint8_t rx_id[4]; uint8_t phase; uint16_t bind_counter; uint8_t bind_phase; uint8_t binding_idx; uint16_t packet_period; uint8_t packet_count; uint8_t packet_sent; uint8_t packet_length; uint8_t hopping_frequency[50]; uint8_t *hopping_frequency_ptr; uint8_t hopping_frequency_no=0; uint8_t rf_ch_num; uint8_t throttle, rudder, elevator, aileron; uint8_t flags; uint16_t crc; uint8_t crc8; uint16_t seed; uint16_t failsafe_count; // uint16_t state; uint8_t len; uint8_t RX_num; #if defined(FRSKYX_CC2500_INO) || defined(SFHSS_CC2500_INO) uint8_t calData[48]; #endif #ifdef CHECK_FOR_BOOTLOADER uint8_t BootTimer ; uint8_t BootState ; uint8_t NotBootChecking ; uint8_t BootCount ; #define BOOT_WAIT_30_IDLE 0 #define BOOT_WAIT_30_DATA 1 #define BOOT_WAIT_20 2 #define BOOT_READY 3 #endif //Channel mapping for protocols const uint8_t CH_AETR[]={AILERON, ELEVATOR, THROTTLE, RUDDER, CH5, CH6, CH7, CH8, CH9, CH10, CH11, CH12, CH13, CH14, CH15, CH16}; const uint8_t CH_TAER[]={THROTTLE, AILERON, ELEVATOR, RUDDER, CH5, CH6, CH7, CH8, CH9, CH10, CH11, CH12, CH13, CH14, CH15, CH16}; const uint8_t CH_RETA[]={RUDDER, ELEVATOR, THROTTLE, AILERON, CH5, CH6, CH7, CH8, CH9, CH10, CH11, CH12, CH13, CH14, CH15, CH16}; const uint8_t CH_EATR[]={ELEVATOR, AILERON, THROTTLE, RUDDER, CH5, CH6, CH7, CH8, CH9, CH10, CH11, CH12, CH13, CH14, CH15, CH16}; // Mode_select variables uint8_t mode_select; uint8_t protocol_flags=0,protocol_flags2=0; #ifdef ENABLE_PPM // PPM variable volatile uint16_t PPM_data[NUM_CHN]; volatile uint8_t PPM_chan_max=0; #endif #if not defined (ORANGE_TX) && not defined (STM32_BOARD) //Random variable volatile uint32_t gWDT_entropy=0; #endif //Serial protocol uint8_t sub_protocol; uint8_t protocol; uint8_t option; uint8_t cur_protocol[3]; uint8_t prev_option; uint8_t prev_power=0xFD; // unused power value //Serial RX variables #define BAUD 100000 #define RXBUFFER_SIZE 26 volatile uint8_t rx_buff[RXBUFFER_SIZE]; volatile uint8_t rx_ok_buff[RXBUFFER_SIZE]; volatile uint8_t discard_frame = 0; // Telemetry #define MAX_PKT 29 uint8_t pkt[MAX_PKT];//telemetry receiving packets #if defined(TELEMETRY) #ifdef INVERT_TELEMETRY #if not defined(ORANGE_TX) && not defined(STM32_BOARD) // enable bit bash for serial #define BASH_SERIAL 1 #endif #define INVERT_SERIAL 1 #endif uint8_t pass = 0; uint8_t pktt[MAX_PKT];//telemetry receiving packets #ifdef BASH_SERIAL // For bit-bashed serial output #define TXBUFFER_SIZE 192 volatile struct t_serial_bash { uint8_t head ; uint8_t tail ; uint8_t data[TXBUFFER_SIZE] ; uint8_t busy ; uint8_t speed ; } SerialControl ; #else #define TXBUFFER_SIZE 96 volatile uint8_t tx_buff[TXBUFFER_SIZE]; volatile uint8_t tx_head=0; volatile uint8_t tx_tail=0; #endif // BASH_SERIAL uint8_t v_lipo1; uint8_t v_lipo2; uint8_t RX_RSSI; uint8_t TX_RSSI; uint8_t RX_LQI; uint8_t TX_LQI; uint8_t telemetry_link=0; uint8_t telemetry_counter=0; uint8_t telemetry_lost; #ifdef SPORT_POLLING #define MAX_SPORT_BUFFER 64 uint8_t SportData[MAX_SPORT_BUFFER]; bool ok_to_send = false; uint8_t sport_idx = 0; uint8_t sport_index = 0; #endif #endif // TELEMETRY // Callback typedef uint16_t (*void_function_t) (void);//pointer to a function with no parameters which return an uint16_t integer void_function_t remote_callback = 0; // Init void setup() { // Setup diagnostic uart before anything else #ifdef DEBUG_SERIAL Serial.begin(115200,SERIAL_8N1); while (!Serial); // Wait for ever for the serial port to connect... debugln("Multiprotocol version: %d.%d.%d.%d", VERSION_MAJOR, VERSION_MINOR, VERSION_REVISION, VERSION_PATCH_LEVEL); #endif // General pinout #ifdef ORANGE_TX //XMEGA PORTD.OUTSET = 0x17 ; PORTD.DIRSET = 0xB2 ; PORTD.DIRCLR = 0x4D ; PORTD.PIN0CTRL = 0x18 ; PORTD.PIN2CTRL = 0x18 ; PORTE.DIRSET = 0x01 ; PORTE.DIRCLR = 0x02 ; // Timer1 config // TCC1 16-bit timer, clocked at 0.5uS EVSYS.CH3MUX = 0x80 + 0x04 ; // Prescaler of 16 TCC1.CTRLB = 0; TCC1.CTRLC = 0; TCC1.CTRLD = 0; TCC1.CTRLE = 0; TCC1.INTCTRLA = 0; TIMSK1 = 0; TCC1.PER = 0xFFFF ; TCNT1 = 0 ; TCC1.CTRLA = 0x0B ; // Event3 (prescale of 16) #elif defined STM32_BOARD //STM32 afio_cfg_debug_ports(AFIO_DEBUG_NONE); pinMode(A7105_CSN_pin,OUTPUT); pinMode(CC25_CSN_pin,OUTPUT); pinMode(NRF_CSN_pin,OUTPUT); pinMode(CYRF_CSN_pin,OUTPUT); pinMode(SPI_CSN_pin,OUTPUT); pinMode(CYRF_RST_pin,OUTPUT); pinMode(PE1_pin,OUTPUT); pinMode(PE2_pin,OUTPUT); pinMode(TX_INV_pin,OUTPUT); pinMode(RX_INV_pin,OUTPUT); #if defined TELEMETRY #if defined INVERT_SERIAL TX_INV_on; //activate inverter for both serial TX and RX signals RX_INV_on; #else TX_INV_off; RX_INV_off; #endif #endif pinMode(BIND_pin,INPUT_PULLUP); pinMode(PPM_pin,INPUT); pinMode(S1_pin,INPUT_PULLUP);//dial switch pinMode(S2_pin,INPUT_PULLUP); pinMode(S3_pin,INPUT_PULLUP); pinMode(S4_pin,INPUT_PULLUP); //Random pins pinMode(PB0, INPUT_ANALOG); // set up pin for analog input pinMode(PB1, INPUT_ANALOG); // set up pin for analog input //Timers init_HWTimer(); //0.5us #else //ATMEGA328p // all inputs DDRB=0x00;DDRC=0x00;DDRD=0x00; // outputs SDI_output; SCLK_output; #ifdef A7105_CSN_pin A7105_CSN_output; #endif #ifdef CC25_CSN_pin CC25_CSN_output; #endif #ifdef CYRF_CSN_pin CYRF_RST_output; CYRF_CSN_output; #endif #ifdef NRF_CSN_pin NRF_CSN_output; #endif PE1_output; PE2_output; SERIAL_TX_output; // pullups MODE_DIAL1_port |= _BV(MODE_DIAL1_pin); MODE_DIAL2_port |= _BV(MODE_DIAL2_pin); MODE_DIAL3_port |= _BV(MODE_DIAL3_pin); MODE_DIAL4_port |= _BV(MODE_DIAL4_pin); BIND_port |= _BV(BIND_pin); // Timer1 config TCCR1A = 0; TCCR1B = (1 << CS11); //prescaler8, set timer1 to increment every 0.5us(16Mhz) and start timer // Random random_init(); #endif // Set Chip selects #ifdef A7105_CSN_pin A7105_CSN_on; #endif #ifdef CC25_CSN_pin CC25_CSN_on; #endif #ifdef CYRF_CSN_pin CYRF_CSN_on; #endif #ifdef NRF_CSN_pin NRF_CSN_on; #endif // Set SPI lines #ifdef STM32_BOARD initSPI2(); #else SDI_on; SCLK_off; #endif //Wait for every component to start delayMilliseconds(100); // Read status of bind button if( IS_BIND_BUTTON_on ) { BIND_BUTTON_FLAG_on; // If bind button pressed save the status BIND_IN_PROGRESS; // Request bind } else BIND_DONE; // Read status of mode select binary switch // after this mode_select will be one of {0000, 0001, ..., 1111} #ifndef ENABLE_PPM mode_select = MODE_SERIAL ; // force serial mode #elif defined STM32_BOARD mode_select= 0x0F -(uint8_t)(((GPIOA->regs->IDR)>>4)&0x0F); #else mode_select = ((MODE_DIAL1_ipr & _BV(MODE_DIAL1_pin)) ? 0 : 1) + ((MODE_DIAL2_ipr & _BV(MODE_DIAL2_pin)) ? 0 : 2) + ((MODE_DIAL3_ipr & _BV(MODE_DIAL3_pin)) ? 0 : 4) + ((MODE_DIAL4_ipr & _BV(MODE_DIAL4_pin)) ? 0 : 8); #endif //mode_select=1; debugln("Mode switch reads as %d", mode_select); // Set default channels' value InitChannel(); #ifdef ENABLE_PPM InitPPM(); #endif // Update LED LED_off; LED_output; //Init RF modules modules_reset(); #ifndef ORANGE_TX //Init the seed with a random value created from watchdog timer for all protocols requiring random values #ifdef STM32_BOARD randomSeed((uint32_t)analogRead(PB0) << 10 | analogRead(PB1)); #else randomSeed(random_value()); #endif #endif // Read or create protocol id MProtocol_id_master=random_id(10,false); debugln("Module Id: %lx", MProtocol_id_master); #ifdef ENABLE_PPM //Protocol and interrupts initialization if(mode_select != MODE_SERIAL) { // PPM mode_select--; protocol = PPM_prot[mode_select].protocol; cur_protocol[1] = protocol; sub_protocol = PPM_prot[mode_select].sub_proto; RX_num = PPM_prot[mode_select].rx_num; //Forced frequency tuning values for CC2500 protocols #if defined(FORCE_FRSKYD_TUNING) && defined(FRSKYD_CC2500_INO) if(protocol==MODE_FRSKYD) option = FORCE_FRSKYD_TUNING; // Use config-defined tuning value for FrSkyD else #endif #if defined(FORCE_FRSKYV_TUNING) && defined(FRSKYV_CC2500_INO) if(protocol==MODE_FRSKYV) option = FORCE_FRSKYV_TUNING; // Use config-defined tuning value for FrSkyV else #endif #if defined(FORCE_FRSKYX_TUNING) && defined(FRSKYX_CC2500_INO) if(protocol==MODE_FRSKYX) option = FORCE_FRSKYX_TUNING; // Use config-defined tuning value for FrSkyX else #endif #if defined(FORCE_SFHSS_TUNING) && defined(SFHSS_CC2500_INO) if (protocol==MODE_SFHSS) option = FORCE_SFHSS_TUNING; // Use config-defined tuning value for SFHSS else #endif #if defined(FORCE_CORONA_TUNING) && defined(CORONA_CC2500_INO) if (protocol==MODE_CORONA) option = FORCE_CORONA_TUNING; // Use config-defined tuning value for CORONA else #endif option = PPM_prot[mode_select].option; // Use radio-defined option value if(PPM_prot[mode_select].power) POWER_FLAG_on; if(PPM_prot[mode_select].autobind) { AUTOBIND_FLAG_on; BIND_IN_PROGRESS; // Force a bind at protocol startup } mode_select++; protocol_init(); #ifndef STM32_BOARD //Configure PPM interrupt #if PPM_pin == 2 EICRA |= _BV(ISC01); // The rising edge of INT0 pin D2 generates an interrupt request EIMSK |= _BV(INT0); // INT0 interrupt enable #elif PPM_pin == 3 EICRA |= _BV(ISC11); // The rising edge of INT1 pin D3 generates an interrupt request EIMSK |= _BV(INT1); // INT1 interrupt enable #else #error PPM pin can only be 2 or 3 #endif #else attachInterrupt(PPM_pin,PPM_decode,FALLING); #endif #if defined(TELEMETRY) PPM_Telemetry_serial_init();// Configure serial for telemetry #endif } else #endif //ENABLE_PPM { // Serial #ifdef ENABLE_SERIAL for(uint8_t i=0;i<3;i++) cur_protocol[i]=0; protocol=0; #ifdef CHECK_FOR_BOOTLOADER Mprotocol_serial_init(1); // Configure serial and enable RX interrupt #else Mprotocol_serial_init(); // Configure serial and enable RX interrupt #endif #endif //ENABLE_SERIAL } debugln("Init complete"); } // Main // Protocol scheduler void loop() { uint16_t next_callback,diff=0xFFFF; while(1) { if(remote_callback==0 || IS_WAIT_BIND_on || diff>2*200) { do { Update_All(); } while(remote_callback==0 || IS_WAIT_BIND_on); } #ifndef STM32_BOARD if( (TIFR1 & OCF1A_bm) != 0) { cli(); // Disable global int due to RW of 16 bits registers OCR1A=TCNT1; // Callback should already have been called... Use "now" as new sync point. sei(); // Enable global int } else while((TIFR1 & OCF1A_bm) == 0); // Wait before callback #else if((TIMER2_BASE->SR & TIMER_SR_CC1IF)!=0) { debugln("Callback miss"); cli(); OCR1A = TCNT1; sei(); } else while((TIMER2_BASE->SR & TIMER_SR_CC1IF )==0); // Wait before callback #endif do { TX_MAIN_PAUSE_on; tx_pause(); if(IS_INPUT_SIGNAL_on && remote_callback!=0) next_callback=remote_callback(); else next_callback=2000; // No PPM/serial signal check again in 2ms... TX_MAIN_PAUSE_off; tx_resume(); while(next_callback>4000) { // start to wait here as much as we can... next_callback-=2000; // We will wait below for 2ms cli(); // Disable global int due to RW of 16 bits registers OCR1A += 2000*2 ; // set compare A for callback #ifndef STM32_BOARD TIFR1=OCF1A_bm; // clear compare A=callback flag #else TIMER2_BASE->SR = 0x1E5F & ~TIMER_SR_CC1IF; // Clear Timer2/Comp1 interrupt flag #endif sei(); // enable global int if(Update_All()) // Protocol changed? { next_callback=0; // Launch new protocol ASAP break; } #ifndef STM32_BOARD while((TIFR1 & OCF1A_bm) == 0); // wait 2ms... #else while((TIMER2_BASE->SR & TIMER_SR_CC1IF)==0);//2ms wait #endif } // at this point we have a maximum of 4ms in next_callback next_callback *= 2 ; cli(); // Disable global int due to RW of 16 bits registers OCR1A+= next_callback ; // set compare A for callback #ifndef STM32_BOARD TIFR1=OCF1A_bm; // clear compare A=callback flag #else TIMER2_BASE->SR = 0x1E5F & ~TIMER_SR_CC1IF; // Clear Timer2/Comp1 interrupt flag #endif diff=OCR1A-TCNT1; // compare timer and comparator sei(); // enable global int } while(diff&0x8000); // Callback did not took more than requested time for next callback // so we can launch Update_All before next callback } } uint8_t Update_All() { #ifdef ENABLE_SERIAL #ifdef CHECK_FOR_BOOTLOADER if ( (mode_select==MODE_SERIAL) && (NotBootChecking == 0) ) pollBoot() ; else #endif if(mode_select==MODE_SERIAL && IS_RX_FLAG_on) // Serial mode and something has been received { update_serial_data(); // Update protocol and data update_channels_aux(); INPUT_SIGNAL_on; //valid signal received last_signal=millis(); } #endif //ENABLE_SERIAL #ifdef ENABLE_PPM if(mode_select!=MODE_SERIAL && IS_PPM_FLAG_on) // PPM mode and a full frame has been received { for(uint8_t i=0;iCHANNEL_MAX_125) val=CHANNEL_MAX_125; Channel_data[i]=val; } PPM_FLAG_off; // wait for next frame before update update_channels_aux(); INPUT_SIGNAL_on; // valid signal received last_signal=millis(); } #endif //ENABLE_PPM update_led_status(); #if defined(TELEMETRY) #if ( !( defined(MULTI_TELEMETRY) || defined(MULTI_STATUS) ) ) if( (protocol==MODE_FRSKYD) || (protocol==MODE_BAYANG) || (protocol==MODE_HUBSAN) || (protocol==MODE_AFHDS2A) || (protocol==MODE_FRSKYX) || (protocol==MODE_DSM) || (protocol==MODE_CABELL) ) #endif TelemetryUpdate(); #endif #ifdef ENABLE_BIND_CH if(IS_AUTOBIND_FLAG_on && IS_BIND_CH_PREV_off && Channel_data[BIND_CH-1]>CHANNEL_MAX_COMMAND && Channel_data[THROTTLE]<(CHANNEL_MIN_100+50)) { // Autobind is on and BIND_CH went up and Throttle is low CHANGE_PROTOCOL_FLAG_on; //reload protocol BIND_IN_PROGRESS; //enable bind BIND_CH_PREV_on; } if(IS_AUTOBIND_FLAG_on && IS_BIND_CH_PREV_on && Channel_data[BIND_CH-1]2) bind_counter=2; } #endif //ENABLE_BIND_CH if(IS_CHANGE_PROTOCOL_FLAG_on) { // Protocol needs to be changed or relaunched for bind protocol_init(); //init new protocol return 1; } return 0; } // Update channels direction and Channel_AUX flags based on servo AUX positions static void update_channels_aux(void) { //Reverse channels direction #ifdef REVERSE_AILERON reverse_channel(AILREON); #endif #ifdef REVERSE_ELEVATOR reverse_channel(ELEVATOR); #endif #ifdef REVERSE_THROTTLE reverse_channel(THROTTLE); #endif #ifdef REVERSE_RUDDER reverse_channel(RUDDER); #endif //Calc AUX flags Channel_AUX=0; for(uint8_t i=0;i<8;i++) if(Channel_data[CH5+i]>CHANNEL_SWITCH) Channel_AUX|=1<70) INPUT_SIGNAL_off; //no valid signal (PPM or Serial) received for 70ms if(blinkCR1 &= ~ USART_CR1_TXEIE; #else UCSR0B &= ~_BV(UDRIE0); #endif #endif #endif #endif } inline void tx_resume() { #ifdef TELEMETRY // Resume telemetry by enabling transmitter interrupt #ifndef SPORT_POLLING if(!IS_TX_PAUSE_on) #endif { #ifdef ORANGE_TX cli() ; USARTC0.CTRLA = (USARTC0.CTRLA & 0xFC) | 0x01 ; sei() ; #else #ifndef BASH_SERIAL #ifdef STM32_BOARD USART3_BASE->CR1 |= USART_CR1_TXEIE; #else UCSR0B |= _BV(UDRIE0); #endif #else resumeBashSerial(); #endif #endif } #endif } // Protocol start static void protocol_init() { static uint16_t next_callback; if(IS_WAIT_BIND_off) { remote_callback = 0; // No protocol next_callback=0; // Default is immediate call back LED_off; // Led off during protocol init modules_reset(); // Reset all modules // reset telemetry #ifdef TELEMETRY tx_pause(); pass=0; telemetry_link=0; telemetry_lost=1; #ifdef BASH_SERIAL TIMSK0 = 0 ; // Stop all timer 0 interrupts #ifdef INVERT_SERIAL SERIAL_TX_off; #else SERIAL_TX_on; #endif SerialControl.tail=0; SerialControl.head=0; SerialControl.busy=0; #else tx_tail=0; tx_head=0; #endif TX_RX_PAUSE_off; TX_MAIN_PAUSE_off; #endif //Set global ID and rx_tx_addr MProtocol_id = RX_num + MProtocol_id_master; set_rx_tx_addr(MProtocol_id); #ifdef FAILSAFE_ENABLE InitFailsafe(); #endif blink=millis(); PE1_on; //NRF24L01 antenna RF3 by default PE2_off; //NRF24L01 antenna RF3 by default switch(protocol) // Init the requested protocol { #ifdef A7105_INSTALLED #if defined(FLYSKY_A7105_INO) case MODE_FLYSKY: PE1_off; //antenna RF1 next_callback = initFlySky(); remote_callback = ReadFlySky; break; #endif #if defined(AFHDS2A_A7105_INO) case MODE_AFHDS2A: PE1_off; //antenna RF1 next_callback = initAFHDS2A(); remote_callback = ReadAFHDS2A; break; #endif #if defined(HUBSAN_A7105_INO) case MODE_HUBSAN: PE1_off; //antenna RF1 if(IS_BIND_BUTTON_FLAG_on) random_id(EEPROM_ID_OFFSET,true); // Generate new ID if bind button is pressed. next_callback = initHubsan(); remote_callback = ReadHubsan; break; #endif #endif #ifdef CC2500_INSTALLED #if defined(FRSKYD_CC2500_INO) case MODE_FRSKYD: PE1_off; //antenna RF2 PE2_on; next_callback = initFrSky_2way(); remote_callback = ReadFrSky_2way; break; #endif #if defined(FRSKYV_CC2500_INO) case MODE_FRSKYV: PE1_off; //antenna RF2 PE2_on; next_callback = initFRSKYV(); remote_callback = ReadFRSKYV; break; #endif #if defined(FRSKYX_CC2500_INO) case MODE_FRSKYX: PE1_off; //antenna RF2 PE2_on; next_callback = initFrSkyX(); remote_callback = ReadFrSkyX; break; #endif #if defined(SFHSS_CC2500_INO) case MODE_SFHSS: PE1_off; //antenna RF2 PE2_on; next_callback = initSFHSS(); remote_callback = ReadSFHSS; break; #endif #if defined(CORONA_CC2500_INO) case MODE_CORONA: PE1_off; //antenna RF2 PE2_on; next_callback = initCORONA(); remote_callback = ReadCORONA; break; #endif #endif #ifdef CYRF6936_INSTALLED #if defined(DSM_CYRF6936_INO) case MODE_DSM: PE2_on; //antenna RF4 next_callback = initDsm(); remote_callback = ReadDsm; break; #endif #if defined(DEVO_CYRF6936_INO) case MODE_DEVO: #ifdef ENABLE_PPM if(mode_select) //PPM mode { if(IS_BIND_BUTTON_FLAG_on) { eeprom_write_byte((EE_ADDR)(MODELMODE_EEPROM_OFFSET+mode_select),0x00); // reset to autobind mode for the current model option=0; } else { option=eeprom_read_byte((EE_ADDR)(MODELMODE_EEPROM_OFFSET+mode_select)); // load previous mode: autobind or fixed id if(option!=1) option=0; // if not fixed id mode then it should be autobind } } #endif //ENABLE_PPM PE2_on; //antenna RF4 next_callback = DevoInit(); remote_callback = devo_callback; break; #endif #if defined(WK2x01_CYRF6936_INO) case MODE_WK2x01: #ifdef ENABLE_PPM if(mode_select) //PPM mode { if(IS_BIND_BUTTON_FLAG_on) { eeprom_write_byte((EE_ADDR)(MODELMODE_EEPROM_OFFSET+mode_select),0x00); // reset to autobind mode for the current model option=0; } else { option=eeprom_read_byte((EE_ADDR)(MODELMODE_EEPROM_OFFSET+mode_select)); // load previous mode: autobind or fixed id if(option!=1) option=0; // if not fixed id mode then it should be autobind } } #endif //ENABLE_PPM PE2_on; //antenna RF4 next_callback = WK_setup(); remote_callback = WK_cb; break; #endif #if defined(J6PRO_CYRF6936_INO) case MODE_J6PRO: PE2_on; //antenna RF4 next_callback = initJ6Pro(); remote_callback = ReadJ6Pro; break; #endif #endif #ifdef NRF24L01_INSTALLED #if defined(HISKY_NRF24L01_INO) case MODE_HISKY: next_callback=initHiSky(); remote_callback = hisky_cb; break; #endif #if defined(V2X2_NRF24L01_INO) case MODE_V2X2: next_callback = initV2x2(); remote_callback = ReadV2x2; break; #endif #if defined(YD717_NRF24L01_INO) case MODE_YD717: next_callback=initYD717(); remote_callback = yd717_callback; break; #endif #if defined(KN_NRF24L01_INO) case MODE_KN: next_callback = initKN(); remote_callback = kn_callback; break; #endif #if defined(SYMAX_NRF24L01_INO) case MODE_SYMAX: next_callback = initSymax(); remote_callback = symax_callback; break; #endif #if defined(SLT_NRF24L01_INO) case MODE_SLT: next_callback=initSLT(); remote_callback = SLT_callback; break; #endif #if defined(CX10_NRF24L01_INO) case MODE_Q2X2: sub_protocol|=0x08; // Increase the number of sub_protocols for CX-10 case MODE_CX10: next_callback=initCX10(); remote_callback = CX10_callback; break; #endif #if defined(CG023_NRF24L01_INO) case MODE_CG023: next_callback=initCG023(); remote_callback = CG023_callback; break; #endif #if defined(BAYANG_NRF24L01_INO) case MODE_BAYANG: next_callback=initBAYANG(); remote_callback = BAYANG_callback; break; #endif #if defined(ESKY_NRF24L01_INO) case MODE_ESKY: next_callback=initESKY(); remote_callback = ESKY_callback; break; #endif #if defined(MT99XX_NRF24L01_INO) case MODE_MT99XX: next_callback=initMT99XX(); remote_callback = MT99XX_callback; break; #endif #if defined(MJXQ_NRF24L01_INO) case MODE_MJXQ: next_callback=initMJXQ(); remote_callback = MJXQ_callback; break; #endif #if defined(SHENQI_NRF24L01_INO) case MODE_SHENQI: next_callback=initSHENQI(); remote_callback = SHENQI_callback; break; #endif #if defined(FY326_NRF24L01_INO) case MODE_FY326: next_callback=initFY326(); remote_callback = FY326_callback; break; #endif #if defined(FQ777_NRF24L01_INO) case MODE_FQ777: next_callback=initFQ777(); remote_callback = FQ777_callback; break; #endif #if defined(ASSAN_NRF24L01_INO) case MODE_ASSAN: next_callback=initASSAN(); remote_callback = ASSAN_callback; break; #endif #if defined(HONTAI_NRF24L01_INO) case MODE_HONTAI: next_callback=initHONTAI(); remote_callback = HONTAI_callback; break; #endif #if defined(Q303_NRF24L01_INO) case MODE_Q303: next_callback=initQ303(); remote_callback = Q303_callback; break; #endif #if defined(GW008_NRF24L01_INO) case MODE_GW008: next_callback=initGW008(); remote_callback = GW008_callback; break; #endif #if defined(DM002_NRF24L01_INO) case MODE_DM002: next_callback=initDM002(); remote_callback = DM002_callback; break; #endif #if defined(CABELL_NRF24L01_INO) case MODE_CABELL: next_callback=initCABELL(); remote_callback = CABELL_callback; break; #endif #if defined(ESKY150_NRF24L01_INO) case MODE_ESKY150: next_callback=initESKY150(); remote_callback = ESKY150_callback; break; #endif #if defined(H8_3D_NRF24L01_INO) case MODE_H8_3D: next_callback=initH8_3D(); remote_callback = H8_3D_callback; break; #endif #endif } } debugln("Protocol selected: %d, sub proto %d, rxnum %d, option %d", protocol, sub_protocol, RX_num, option); #if defined(WAIT_FOR_BIND) && defined(ENABLE_BIND_CH) if( IS_AUTOBIND_FLAG_on && IS_BIND_CH_PREV_off && (cur_protocol[1]&0x80)==0 && mode_select == MODE_SERIAL) { // Autobind is active but no bind requested by either BIND_CH or BIND. But do not wait if in PPM mode... WAIT_BIND_on; return; } #endif WAIT_BIND_off; CHANGE_PROTOCOL_FLAG_off; if(next_callback>32000) { // next_callback should not be more than 32767 so we will wait here... uint16_t temp=(next_callback>>10)-2; delayMilliseconds(temp); next_callback-=temp<<10; // between 2-3ms left at this stage } cli(); // disable global int OCR1A = TCNT1 + next_callback*2; // set compare A for callback #ifndef STM32_BOARD TIFR1 = OCF1A_bm ; // clear compare A flag #else TIMER2_BASE->SR = 0x1E5F & ~TIMER_SR_CC1IF; // Clear Timer2/Comp1 interrupt flag #endif sei(); // enable global int BIND_BUTTON_FLAG_off; // do not bind/reset id anymore even if protocol change } void update_serial_data() { RX_DONOTUPDATE_on; RX_FLAG_off; //data is being processed if(rx_ok_buff[1]&0x20) //check range RANGE_FLAG_on; else RANGE_FLAG_off; if(rx_ok_buff[1]&0x40) //check autobind AUTOBIND_FLAG_on; else AUTOBIND_FLAG_off; if(rx_ok_buff[2]&0x80) //if rx_ok_buff[2] ==1,power is low ,0-power high POWER_FLAG_off; //power low else POWER_FLAG_on; //power high //Forced frequency tuning values for CC2500 protocols #if defined(FORCE_FRSKYD_TUNING) && defined(FRSKYD_CC2500_INO) if(protocol==MODE_FRSKYD) option=FORCE_FRSKYD_TUNING; // Use config-defined tuning value for FrSkyD else #endif #if defined(FORCE_FRSKYV_TUNING) && defined(FRSKYV_CC2500_INO) if(protocol==MODE_FRSKYV) option=FORCE_FRSKYV_TUNING; // Use config-defined tuning value for FrSkyV else #endif #if defined(FORCE_FRSKYX_TUNING) && defined(FRSKYX_CC2500_INO) if(protocol==MODE_FRSKYX) option=FORCE_FRSKYX_TUNING; // Use config-defined tuning value for FrSkyX else #endif #if defined(FORCE_SFHSS_TUNING) && defined(SFHSS_CC2500_INO) if (protocol==MODE_SFHSS) option=FORCE_SFHSS_TUNING; // Use config-defined tuning value for SFHSS else #endif #if defined(FORCE_CORONA_TUNING) && defined(CORONA_CC2500_INO) if (protocol==MODE_CORONA) option=FORCE_CORONA_TUNING; // Use config-defined tuning value for CORONA else #endif option=rx_ok_buff[3]; // Use radio-defined option value #ifdef FAILSAFE_ENABLE bool failsafe=false; if(rx_ok_buff[0]&0x02) { // Packet contains failsafe instead of channels failsafe=true; rx_ok_buff[0]&=0xFD; //remove the failsafe flag FAILSAFE_VALUES_on; //failsafe data has been received } #endif if( (rx_ok_buff[0] != cur_protocol[0]) || ((rx_ok_buff[1]&0x5F) != (cur_protocol[1]&0x5F)) || ( (rx_ok_buff[2]&0x7F) != (cur_protocol[2]&0x7F) ) ) { // New model has been selected CHANGE_PROTOCOL_FLAG_on; //change protocol WAIT_BIND_off; if(IS_AUTOBIND_FLAG_on) BIND_IN_PROGRESS; //launch bind right away if in autobind mode else BIND_DONE; protocol=(rx_ok_buff[0]==0x55?0:32) + (rx_ok_buff[1]&0x1F); //protocol no (0-63) bits 4-6 of buff[1] and bit 0 of buf[0] sub_protocol=(rx_ok_buff[2]>>4)& 0x07; //subprotocol no (0-7) bits 4-6 RX_num=rx_ok_buff[2]& 0x0F; // rx_num bits 0---3 } else if( ((rx_ok_buff[1]&0x80)!=0) && ((cur_protocol[1]&0x80)==0) ) // Bind flag has been set { // Restart protocol with bind CHANGE_PROTOCOL_FLAG_on; BIND_IN_PROGRESS; } else if( ((rx_ok_buff[1]&0x80)==0) && ((cur_protocol[1]&0x80)!=0) ) // Bind flag has been reset { // Request protocol to end bind #if defined(FRSKYD_CC2500_INO) || defined(FRSKYX_CC2500_INO) || defined(FRSKYV_CC2500_INO) if(protocol==MODE_FRSKYD || protocol==MODE_FRSKYX || protocol==MODE_FRSKYV) BIND_DONE; else #endif if(bind_counter>2) bind_counter=2; } //store current protocol values for(uint8_t i=0;i<3;i++) cur_protocol[i] = rx_ok_buff[i]; // decode channel/failsafe values volatile uint8_t *p=rx_ok_buff+3; uint8_t dec=-3; for(uint8_t i=0;i=8) { dec-=8; p++; } p++; uint16_t temp=((*((uint32_t *)p))>>dec)&0x7FF; #ifdef FAILSAFE_ENABLE if(failsafe) Failsafe_data[i]=temp; //value range 0..2047, 0=no pulses, 2047=hold else #endif Channel_data[i]=temp; //value range 0..2047, 0=-125%, 2047=+125% } RX_DONOTUPDATE_off; #ifdef ORANGE_TX cli(); #else UCSR0B &= ~_BV(RXCIE0); // RX interrupt disable #endif if(IS_RX_MISSED_BUFF_on) // If the buffer is still valid { memcpy((void*)rx_ok_buff,(const void*)rx_buff,RXBUFFER_SIZE);// Duplicate the buffer RX_FLAG_on; // data to be processed next time... RX_MISSED_BUFF_off; } #ifdef ORANGE_TX sei(); #else UCSR0B |= _BV(RXCIE0) ; // RX interrupt enable #endif #ifdef FAILSAFE_ENABLE if(failsafe) debugln("RX_FS:%d,%d,%d,%d",Failsafe_data[0],Failsafe_data[1],Failsafe_data[2],Failsafe_data[3]); #endif } void modules_reset() { #ifdef CC2500_INSTALLED CC2500_Reset(); #endif #ifdef A7105_INSTALLED A7105_Reset(); #endif #ifdef CYRF6936_INSTALLED CYRF_Reset(); #endif #ifdef NRF24L01_INSTALLED NRF24L01_Reset(); #endif //Wait for every component to reset delayMilliseconds(100); prev_power=0xFD; // unused power value } #ifdef CHECK_FOR_BOOTLOADER void Mprotocol_serial_init( uint8_t boot ) #else void Mprotocol_serial_init() #endif { #ifdef ORANGE_TX PORTC.OUTSET = 0x08 ; PORTC.DIRSET = 0x08 ; USARTC0.BAUDCTRLA = 19 ; USARTC0.BAUDCTRLB = 0 ; USARTC0.CTRLB = 0x18 ; USARTC0.CTRLA = (USARTC0.CTRLA & 0xCC) | 0x11 ; USARTC0.CTRLC = 0x2B ; UDR0 ; #ifdef INVERT_SERIAL PORTC.PIN3CTRL |= 0x40 ; #endif #ifdef CHECK_FOR_BOOTLOADER if ( boot ) { USARTC0.BAUDCTRLB = 0 ; USARTC0.BAUDCTRLA = 33 ; // 57600 USARTC0.CTRLA = (USARTC0.CTRLA & 0xC0) ; USARTC0.CTRLC = 0x03 ; // 8 bit, no parity, 1 stop USARTC0.CTRLB = 0x18 ; // Enable Tx and Rx PORTC.PIN3CTRL &= ~0x40 ; } #endif // CHECK_FOR_BOOTLOADER #elif defined STM32_BOARD #ifdef CHECK_FOR_BOOTLOADER if ( boot ) { usart2_begin(57600,SERIAL_8N1); USART2_BASE->CR1 &= ~USART_CR1_RXNEIE ; (void)UDR0 ; } else #endif // CHECK_FOR_BOOTLOADER { usart2_begin(100000,SERIAL_8E2); USART2_BASE->CR1 |= USART_CR1_PCE_BIT; } usart3_begin(100000,SERIAL_8E2); #ifndef SPORT_POLLING USART3_BASE->CR1 &= ~ USART_CR1_RE; //disable receive #endif USART2_BASE->CR1 &= ~ USART_CR1_TE; //disable transmit #else //ATMEGA328p #include UBRR0H = UBRRH_VALUE; UBRR0L = UBRRL_VALUE; UCSR0A = 0 ; // Clear X2 bit //Set frame format to 8 data bits, even parity, 2 stop bits UCSR0C = _BV(UPM01)|_BV(USBS0)|_BV(UCSZ01)|_BV(UCSZ00); while ( UCSR0A & (1 << RXC0) ) //flush receive buffer UDR0; //enable reception and RC complete interrupt UCSR0B = _BV(RXEN0)|_BV(RXCIE0);//rx enable and interrupt #ifndef DEBUG_PIN #if defined(TELEMETRY) initTXSerial( SPEED_100K ) ; #endif //TELEMETRY #endif //DEBUG_PIN #ifdef CHECK_FOR_BOOTLOADER if ( boot ) { UBRR0H = 0; UBRR0L = 33; // 57600 UCSR0C &= ~_BV(UPM01); // No parity UCSR0B &= ~_BV(RXCIE0); // No rx interrupt UCSR0A |= _BV(U2X0); // Double speed mode USART0 } #endif // CHECK_FOR_BOOTLOADER #endif //ORANGE_TX } #ifdef STM32_BOARD void usart2_begin(uint32_t baud,uint32_t config ) { usart_init(USART2); usart_config_gpios_async(USART2,GPIOA,PIN_MAP[PA3].gpio_bit,GPIOA,PIN_MAP[PA2].gpio_bit,config); usart_set_baud_rate(USART2, STM32_PCLK1, baud); usart_enable(USART2); } void usart3_begin(uint32_t baud,uint32_t config ) { usart_init(USART3); usart_config_gpios_async(USART3,GPIOB,PIN_MAP[PB11].gpio_bit,GPIOB,PIN_MAP[PB10].gpio_bit,config); usart_set_baud_rate(USART3, STM32_PCLK1, baud); usart_enable(USART3); } void init_HWTimer() { HWTimer2.pause(); // Pause the timer2 while we're configuring it TIMER2_BASE->PSC = 35; // 36-1;for 72 MHZ /0.5sec/(35+1) TIMER2_BASE->ARR = 0xFFFF; // Count until 0xFFFF HWTimer2.setMode(TIMER_CH1, TIMER_OUTPUT_COMPARE); // Main scheduler HWTimer2.setMode(TIMER_CH2, TIMER_OUTPUT_COMPARE); // Serial check TIMER2_BASE->SR = 0x1E5F & ~TIMER_SR_CC2IF; // Clear Timer2/Comp2 interrupt flag HWTimer2.attachInterrupt(TIMER_CH2,ISR_COMPB); // Assign function to Timer2/Comp2 interrupt TIMER2_BASE->DIER &= ~TIMER_DIER_CC2IE; // Disable Timer2/Comp2 interrupt HWTimer2.refresh(); // Refresh the timer's count, prescale, and overflow HWTimer2.resume(); } #endif #ifdef CHECK_FOR_BOOTLOADER void pollBoot() { uint8_t rxchar ; uint8_t lState = BootState ; uint8_t millisTime = millis(); // Call this once only #ifdef ORANGE_TX if ( USARTC0.STATUS & USART_RXCIF_bm ) #elif defined STM32_BOARD if ( USART2_BASE->SR & USART_SR_RXNE ) #else if ( UCSR0A & ( 1 << RXC0 ) ) #endif { rxchar = UDR0 ; BootCount += 1 ; if ( ( lState == BOOT_WAIT_30_IDLE ) || ( lState == BOOT_WAIT_30_DATA ) ) { if ( lState == BOOT_WAIT_30_IDLE ) // Waiting for 0x30 BootTimer = millisTime ; // Start timeout if ( rxchar == 0x30 ) lState = BOOT_WAIT_20 ; else lState = BOOT_WAIT_30_DATA ; } else if ( lState == BOOT_WAIT_20 && rxchar == 0x20 ) // Waiting for 0x20 lState = BOOT_READY ; } else // No byte received { if ( lState != BOOT_WAIT_30_IDLE ) // Something received { uint8_t time = millisTime - BootTimer ; if ( time > 5 ) { #ifdef STM32_BOARD if ( BootCount > 4 ) #else if ( BootCount > 2 ) #endif { // Run normally NotBootChecking = 0xFF ; Mprotocol_serial_init( 0 ) ; } else if ( lState == BOOT_READY ) { #ifdef STM32_BOARD nvic_sys_reset(); while(1); /* wait until reset */ #else cli(); // Disable global int due to RW of 16 bits registers void (*p)(); #ifndef ORANGE_TX p = (void (*)())0x3F00 ; // Word address (0x7E00 byte) #else p = (void (*)())0x4000 ; // Word address (0x8000 byte) #endif (*p)() ; // go to boot #endif } else { lState = BOOT_WAIT_30_IDLE ; BootCount = 0 ; } } } } BootState = lState ; } #endif //CHECK_FOR_BOOTLOADER #if defined(TELEMETRY) void PPM_Telemetry_serial_init() { if( (protocol==MODE_FRSKYD) || (protocol==MODE_HUBSAN) || (protocol==MODE_AFHDS2A) || (protocol==MODE_BAYANG) || (protocol==MODE_CABELL) ) initTXSerial( SPEED_9600 ) ; if(protocol==MODE_FRSKYX) initTXSerial( SPEED_57600 ) ; if(protocol==MODE_DSM) initTXSerial( SPEED_125K ) ; } #endif // Convert 32b id to rx_tx_addr static void set_rx_tx_addr(uint32_t id) { // Used by almost all protocols rx_tx_addr[0] = (id >> 24) & 0xFF; rx_tx_addr[1] = (id >> 16) & 0xFF; rx_tx_addr[2] = (id >> 8) & 0xFF; rx_tx_addr[3] = (id >> 0) & 0xFF; rx_tx_addr[4] = (rx_tx_addr[2]&0xF0)|(rx_tx_addr[3]&0x0F); } static uint32_t random_id(uint16_t address, uint8_t create_new) { #ifndef FORCE_GLOBAL_ID uint32_t id=0; if(eeprom_read_byte((EE_ADDR)(address+10))==0xf0 && !create_new) { // TXID exists in EEPROM for(uint8_t i=4;i>0;i--) { id<<=8; id|=eeprom_read_byte((EE_ADDR)address+i-1); } if(id!=0x2AD141A7) //ID with seed=0 return id; } // Generate a random ID #if defined STM32_BOARD #define STM32_UUID ((uint32_t *)0x1FFFF7E8) if (!create_new) id = STM32_UUID[0] ^ STM32_UUID[1] ^ STM32_UUID[2]; #else id = random(0xfefefefe) + ((uint32_t)random(0xfefefefe) << 16); #endif for(uint8_t i=0;i<4;i++) { eeprom_write_byte((EE_ADDR)address+i,id); id>>=8; } eeprom_write_byte((EE_ADDR)(address+10),0xf0);//write bind flag in eeprom. return id; #else (void)address; (void)create_new; return FORCE_GLOBAL_ID; #endif } /**************************/ /**************************/ /** Interrupt routines **/ /**************************/ /**************************/ //PPM #ifdef ENABLE_PPM #ifdef ORANGE_TX #if PPM_pin == 2 ISR(PORTD_INT0_vect) #else ISR(PORTD_INT1_vect) #endif #elif defined STM32_BOARD void PPM_decode() #else #if PPM_pin == 2 ISR(INT0_vect, ISR_NOBLOCK) #else ISR(INT1_vect, ISR_NOBLOCK) #endif #endif { // Interrupt on PPM pin static int8_t chan=0,bad_frame=1; static uint16_t Prev_TCNT1=0; uint16_t Cur_TCNT1; Cur_TCNT1 = TCNT1 - Prev_TCNT1 ; // Capture current Timer1 value if(Cur_TCNT1<1600) bad_frame=1; // bad frame else if(Cur_TCNT1>4400) { //start of frame if(chan>=MIN_PPM_CHANNELS) { PPM_FLAG_on; // good frame received if at least 4 channels have been seen if(chan>PPM_chan_max) PPM_chan_max=chan; // Saving the number of channels received } chan=0; // reset channel counter bad_frame=0; } else if(bad_frame==0) // need to wait for start of frame { //servo values between 800us and 2200us will end up here PPM_data[chan]=Cur_TCNT1; if(chan++>=MAX_PPM_CHANNELS) bad_frame=1; // don't accept any new channels } Prev_TCNT1+=Cur_TCNT1; } #endif //ENABLE_PPM //Serial RX #ifdef ENABLE_SERIAL #ifdef ORANGE_TX ISR(USARTC0_RXC_vect) #elif defined STM32_BOARD void __irq_usart2() #else ISR(USART_RX_vect) #endif { // RX interrupt static uint8_t idx=0; #ifdef ORANGE_TX if((USARTC0.STATUS & 0x1C)==0) // Check frame error, data overrun and parity error #elif defined STM32_BOARD if((USART2_BASE->SR & USART_SR_RXNE) && (USART2_BASE->SR &0x0F)==0) #else UCSR0B &= ~_BV(RXCIE0) ; // RX interrupt disable sei() ; if((UCSR0A&0x1C)==0) // Check frame error, data overrun and parity error #endif { // received byte is ok to process if(idx==0||discard_frame==1) { // Let's try to sync at this point idx=0;discard_frame=0; RX_MISSED_BUFF_off; // If rx_buff was good it's not anymore... rx_buff[0]=UDR0; #ifdef FAILSAFE_ENABLE if((rx_buff[0]&0xFC)==0x54) // If 1st byte is 0x54, 0x55, 0x56 or 0x57 it looks ok #else if((rx_buff[0]&0xFE)==0x54) // If 1st byte is 0x54 or 0x55 it looks ok #endif { TX_RX_PAUSE_on; tx_pause(); #if defined STM32_BOARD TIMER2_BASE->CCR2=TIMER2_BASE->CNT+(6500L); // Full message should be received within timer of 3250us TIMER2_BASE->SR = 0x1E5F & ~TIMER_SR_CC2IF; // Clear Timer2/Comp2 interrupt flag TIMER2_BASE->DIER |= TIMER_DIER_CC2IE; // Enable Timer2/Comp2 interrupt #else OCR1B = TCNT1+(6500L) ; // Full message should be received within timer of 3250us TIFR1 = OCF1B_bm ; // clear OCR1B match flag SET_TIMSK1_OCIE1B ; // enable interrupt on compare B match #endif idx++; } } else { rx_buff[idx++]=UDR0; // Store received byte if(idx>=RXBUFFER_SIZE) { // A full frame has been received if(!IS_RX_DONOTUPDATE_on) { //Good frame received and main is not working on the buffer memcpy((void*)rx_ok_buff,(const void*)rx_buff,RXBUFFER_SIZE);// Duplicate the buffer RX_FLAG_on; // flag for main to process servo data } else RX_MISSED_BUFF_on; // notify that rx_buff is good discard_frame=1; // start again } } } else { idx=UDR0; // Dummy read discard_frame=1; // Error encountered discard full frame... debugln("Bad frame RX"); } if(discard_frame==1) { #ifdef STM32_BOARD TIMER2_BASE->DIER &= ~TIMER_DIER_CC2IE; // Disable Timer2/Comp2 interrupt #else CLR_TIMSK1_OCIE1B; // Disable interrupt on compare B match #endif TX_RX_PAUSE_off; tx_resume(); } #if not defined (ORANGE_TX) && not defined (STM32_BOARD) cli() ; UCSR0B |= _BV(RXCIE0) ; // RX interrupt enable #endif } //Serial timer #ifdef ORANGE_TX ISR(TCC1_CCB_vect) #elif defined STM32_BOARD void ISR_COMPB() #else ISR(TIMER1_COMPB_vect, ISR_NOBLOCK ) #endif { // Timer1 compare B interrupt discard_frame=1; #ifdef STM32_BOARD TIMER2_BASE->DIER &= ~TIMER_DIER_CC2IE; // Disable Timer2/Comp2 interrupt debugln("Bad frame timer"); #else CLR_TIMSK1_OCIE1B; // Disable interrupt on compare B match #endif tx_resume(); } #endif //ENABLE_SERIAL #if not defined (ORANGE_TX) && not defined (STM32_BOARD) static void random_init(void) { cli(); // Temporarily turn off interrupts, until WDT configured MCUSR = 0; // Use the MCU status register to reset flags for WDR, BOR, EXTR, and POWR WDTCSR |= _BV(WDCE); // WDT control register, This sets the Watchdog Change Enable (WDCE) flag, which is needed to set the prescaler WDTCSR = _BV(WDIE); // Watchdog interrupt enable (WDIE) sei(); // Turn interupts on } static uint32_t random_value(void) { while (!gWDT_entropy); return gWDT_entropy; } // Random interrupt service routine called every time the WDT interrupt is triggered. // It is only enabled at startup to generate a seed. ISR(WDT_vect) { static uint8_t gWDT_buffer_position=0; #define gWDT_buffer_SIZE 32 static uint8_t gWDT_buffer[gWDT_buffer_SIZE]; gWDT_buffer[gWDT_buffer_position] = TCNT1L; // Record the Timer 1 low byte (only one needed) gWDT_buffer_position++; // every time the WDT interrupt is triggered if (gWDT_buffer_position >= gWDT_buffer_SIZE) { // The following code is an implementation of Jenkin's one at a time hash for(uint8_t gWDT_loop_counter = 0; gWDT_loop_counter < gWDT_buffer_SIZE; ++gWDT_loop_counter) { gWDT_entropy += gWDT_buffer[gWDT_loop_counter]; gWDT_entropy += (gWDT_entropy << 10); gWDT_entropy ^= (gWDT_entropy >> 6); } gWDT_entropy += (gWDT_entropy << 3); gWDT_entropy ^= (gWDT_entropy >> 11); gWDT_entropy += (gWDT_entropy << 15); WDTCSR = 0; // Disable Watchdog interrupt } } #endif