/* This project is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Multiprotocol is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Multiprotocol. If not, see . Thanks to Goebish ,Ported from his deviation firmware */ #if defined(V761_NRF24L01_INO) #include "iface_nrf24l01.h" #define V761_PACKET_PERIOD 7060 // Timeout for callback in uSec #define V761_INITIAL_WAIT 500 #define V761_PACKET_SIZE 8 #define V761_BIND_COUNT 200 //Fx chan management #define V761_BIND_FREQ 0x28 #define V761_RF_NUM_CHANNELS 3 enum { V761_BIND1 = 0, V761_BIND2, V761_DATA }; static void __attribute__((unused)) V761_set_checksum() { uint8_t checksum = packet[0]; for(uint8_t i=1; i>1; // Elevator if(sub_protocol==V761_3CH) { packet[1] = convert_channel_8b(RUDDER)>>1; // Rudder packet[3] = convert_channel_8b(AILERON)>>1; // Aileron } else { packet[1] = convert_channel_8b(AILERON)>>1; // Aileron packet[3] = convert_channel_8b(RUDDER)>>1; // Rudder } packet[5] = (packet_count++ / 3)<<6; packet[4] = (packet[5] == 0x40) ? 0x1a : 0x20; // ? if(CH5_SW) // Mode Expert Gyro off flags = 0x0c; else if(Channel_data[CH5] < CHANNEL_MIN_COMMAND) flags = 0x08; // Beginer mode (Gyro on, yaw and pitch rate limited) else flags = 0x0a; // Mid Mode ( Gyro on no rate limits) if(!prev_ch6 && CH6_SW) // -100% -> 100% launch gyro calib calib=!calib; prev_ch6 = CH6_SW; if(calib) flags |= 0x01; // Gyro calibration packet[5] |= flags; packet[6] = GET_FLAG(CH7_SW, 0x20) // Flip |GET_FLAG(CH8_SW, 0x08) // RTH activation |GET_FLAG(CH9_SW, 0x10); // RTH on/off if(sub_protocol==V761_3CH) packet[6] |= 0x80; // unknown, set on original V761-1 dump but not on eachine dumps, keeping for compatibility //packet counter if(packet_count >= 12) packet_count = 0; NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency[hopping_frequency_no++]); if(hopping_frequency_no >= V761_RF_NUM_CHANNELS) hopping_frequency_no = 0; } V761_set_checksum(); // Power on, TX mode, 2byte CRC XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP)); NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); NRF24L01_FlushTx(); XN297_WritePayload(packet, V761_PACKET_SIZE); NRF24L01_SetPower(); } static void __attribute__((unused)) V761_init() { NRF24L01_Initialize(); NRF24L01_SetTxRxMode(TX_EN); NRF24L01_FlushTx(); NRF24L01_FlushRx(); NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowldgement on all data pipes NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x02); // set address length (4 bytes) NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0x00); // no retransmits NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps NRF24L01_SetPower(); NRF24L01_Activate(0x73); // Activate feature register NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 0x00); // Disable dynamic payload length on all pipes NRF24L01_WriteReg(NRF24L01_1D_FEATURE, 0x01); NRF24L01_Activate(0x73); } static void __attribute__((unused)) V761_initialize_txid() { switch(RX_num%5) { case 1: //Dump from air on Protonus TX memcpy(rx_tx_addr,(uint8_t *)"\xE8\xE4\x45\x09",4); memcpy(hopping_frequency,(uint8_t *)"\x0D\x21",2); break; case 2: //Dump from air on mshagg2 TX memcpy(rx_tx_addr,(uint8_t *)"\xAE\xD1\x45\x09",4); memcpy(hopping_frequency,(uint8_t *)"\x13\x1D",2); break; case 3: //Dump from air on MikeHRC Eachine TX memcpy(rx_tx_addr,(uint8_t *)"\x08\x03\x00\xA0",4); // To be checked memcpy(hopping_frequency,(uint8_t *)"\x0D\x21",2); // To be checked break; case 4: //Dump from air on Crashanium Eachine TX memcpy(rx_tx_addr,(uint8_t *)"\x58\x08\x00\xA0",4); // To be checked memcpy(hopping_frequency,(uint8_t *)"\x0D\x31",3); // To be checked break; default: //Dump from SPI memcpy(rx_tx_addr,(uint8_t *)"\x6f\x2c\xb1\x93",4); memcpy(hopping_frequency,(uint8_t *)"\x14\x1e",3); break; } hopping_frequency[2]=hopping_frequency[0]+0x37; } uint16_t V761_callback() { switch(phase) { case V761_BIND1: if(bind_counter) bind_counter--; packet_count ++; NRF24L01_WriteReg(NRF24L01_05_RF_CH, V761_BIND_FREQ); XN297_SetTXAddr((uint8_t*)"\x34\x43\x10\x10", 4); V761_send_packet(); if(packet_count >= 20) { packet_count = 0; phase = V761_BIND2; } return 15730; case V761_BIND2: if(bind_counter) bind_counter--; packet_count ++; NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency[0]); XN297_SetTXAddr(rx_tx_addr, 4); V761_send_packet(); if(bind_counter == 0) { phase = V761_DATA; BIND_DONE; } else if(packet_count >= 20) { packet_count = 0; phase = V761_BIND1; } return 15730; case V761_DATA: #ifdef MULTI_SYNC telemetry_set_input_sync(V761_PACKET_PERIOD); #endif V761_send_packet(); break; } return V761_PACKET_PERIOD; } uint16_t initV761(void) { V761_initialize_txid(); if(IS_BIND_IN_PROGRESS) { bind_counter = V761_BIND_COUNT; phase = V761_BIND1; } else phase = V761_DATA; V761_init(); hopping_frequency_no = 0; packet_count = 0; return V761_INITIAL_WAIT; } #endif