/* This project is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Multiprotocol is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Multiprotocol. If not, see . */ #if defined(DEVO_CYRF6936_INO) #include "iface_cyrf6936.h" #define DEVO_NUM_CHANNELS 8 //For Debug //#define NO_SCRAMBLE #define DEVO_PKTS_PER_CHANNEL 4 #define DEVO_BIND_COUNT 0x1388 #define DEVO_NUM_WAIT_LOOPS (100 / 5) //each loop is ~5us. Do not wait more than 100us enum { DEVO_BIND, DEVO_BIND_SENDCH, DEVO_BOUND, DEVO_BOUND_1, DEVO_BOUND_2, DEVO_BOUND_3, DEVO_BOUND_4, DEVO_BOUND_5, DEVO_BOUND_6, DEVO_BOUND_7, DEVO_BOUND_8, DEVO_BOUND_9, DEVO_BOUND_10, }; const uint8_t PROGMEM DEVO_sopcodes[][8] = { /* Note these are in order transmitted (LSB 1st) */ /* 0 */ {0x3C,0x37,0xCC,0x91,0xE2,0xF8,0xCC,0x91}, //0x91CCF8E291CC373C /* 1 */ {0x9B,0xC5,0xA1,0x0F,0xAD,0x39,0xA2,0x0F}, //0x0FA239AD0FA1C59B /* 2 */ {0xEF,0x64,0xB0,0x2A,0xD2,0x8F,0xB1,0x2A}, //0x2AB18FD22AB064EF /* 3 */ {0x66,0xCD,0x7C,0x50,0xDD,0x26,0x7C,0x50}, //0x507C26DD507CCD66 /* 4 */ {0x5C,0xE1,0xF6,0x44,0xAD,0x16,0xF6,0x44}, //0x44F616AD44F6E15C /* 5 */ {0x5A,0xCC,0xAE,0x46,0xB6,0x31,0xAE,0x46}, //0x46AE31B646AECC5A /* 6 */ {0xA1,0x78,0xDC,0x3C,0x9E,0x82,0xDC,0x3C}, //0x3CDC829E3CDC78A1 /* 7 */ {0xB9,0x8E,0x19,0x74,0x6F,0x65,0x18,0x74}, //0x7418656F74198EB9 /* 8 */ {0xDF,0xB1,0xC0,0x49,0x62,0xDF,0xC1,0x49}, //0x49C1DF6249C0B1DF /* 9 */ {0x97,0xE5,0x14,0x72,0x7F,0x1A,0x14,0x72}, //0x72141A7F7214E597 }; static void __attribute__((unused)) DEVO_ConfigSOPCode(uint8_t val) { uint8_t code[8]; for(uint8_t i=0;i<8;i++) code[i]=pgm_read_byte_near(&DEVO_sopcodes[val][i]); CYRF_ConfigSOPCode(code); } static void __attribute__((unused)) DEVO_scramble_pkt() { #ifdef NO_SCRAMBLE return; #else for(uint8_t i = 0; i < 15; i++) packet[i + 1] ^= cyrfmfg_id[i % 4]; #endif } static void __attribute__((unused)) DEVO_add_pkt_suffix() { uint8_t bind_state; if(prev_option!=option) { MProtocol_id = RX_num + MProtocol_id_master; bind_counter=DEVO_BIND_COUNT; } if (option) { if (bind_counter > 0) bind_state = 0xc0; else bind_state = 0x80; } else bind_state = 0x00; packet[10] = bind_state | (DEVO_PKTS_PER_CHANNEL - packet_count - 1); packet[11] = *(hopping_frequency_ptr + 1); packet[12] = *(hopping_frequency_ptr + 2); packet[13] = MProtocol_id & 0xff; packet[14] = (MProtocol_id >> 8) & 0xff; packet[15] = (MProtocol_id >> 16) & 0xff; } static void __attribute__((unused)) DEVO_build_beacon_pkt(uint8_t upper) { packet[0] = (DEVO_NUM_CHANNELS << 4) | 0x07; uint8_t max = 8; if (upper) { packet[0] += 1; max = 4; } for(uint8_t i = 0; i < max; i++) packet[i+1] = 0; packet[9] = 0; DEVO_add_pkt_suffix(); } static void __attribute__((unused)) DEVO_build_bind_pkt() { packet[0] = (DEVO_NUM_CHANNELS << 4) | 0x0a; packet[1] = bind_counter & 0xff; packet[2] = (bind_counter >> 8); packet[3] = *hopping_frequency_ptr; packet[4] = *(hopping_frequency_ptr + 1); packet[5] = *(hopping_frequency_ptr + 2); packet[6] = cyrfmfg_id[0]; packet[7] = cyrfmfg_id[1]; packet[8] = cyrfmfg_id[2]; packet[9] = cyrfmfg_id[3]; DEVO_add_pkt_suffix(); //The fixed-id portion is scrambled in the bind packet //I assume it is ignored packet[13] ^= cyrfmfg_id[0]; packet[14] ^= cyrfmfg_id[1]; packet[15] ^= cyrfmfg_id[2]; } static void __attribute__((unused)) DEVO_build_data_pkt() { static uint8_t ch_idx=0; packet[0] = (DEVO_NUM_CHANNELS << 4) | (0x0b + ch_idx); uint8_t sign = 0x0b; for (uint8_t i = 0; i < 4; i++) { int16_t value=map(Servo_data[CH_EATR[ch_idx * 4 + i]],servo_min_125,servo_max_125,-1600,1600);//range -1600..+1600 if(value < 0) { value = -value; sign |= 1 << (7 - i); } packet[2 * i + 1] = value & 0xff; packet[2 * i + 2] = (value >> 8) & 0xff; } packet[9] = sign; ch_idx++; if (ch_idx * 4 >= DEVO_NUM_CHANNELS) ch_idx = 0; DEVO_add_pkt_suffix(); } static void __attribute__((unused)) DEVO_cyrf_set_bound_sop_code() { /* crc == 0 isn't allowed, so use 1 if the math results in 0 */ uint8_t crc = (cyrfmfg_id[0] + (cyrfmfg_id[1] >> 6) + cyrfmfg_id[2]); if(! crc) crc = 1; uint8_t sopidx = (0xff &((cyrfmfg_id[0] << 2) + cyrfmfg_id[1] + cyrfmfg_id[2])) % 10; CYRF_SetTxRxMode(TX_EN); CYRF_ConfigCRCSeed((crc << 8) + crc); DEVO_ConfigSOPCode(sopidx); CYRF_SetPower(0x08); } const uint8_t PROGMEM DEVO_init_vals[][2] = { { CYRF_1D_MODE_OVERRIDE, 0x38 }, { CYRF_03_TX_CFG, 0x08 }, { CYRF_06_RX_CFG, 0x4A }, { CYRF_0B_PWR_CTRL, 0x00 }, { CYRF_10_FRAMING_CFG, 0xA4 }, { CYRF_11_DATA32_THOLD, 0x05 }, { CYRF_12_DATA64_THOLD, 0x0E }, { CYRF_1B_TX_OFFSET_LSB, 0x55 }, { CYRF_1C_TX_OFFSET_MSB, 0x05 }, { CYRF_32_AUTO_CAL_TIME, 0x3C }, { CYRF_35_AUTOCAL_OFFSET, 0x14 }, { CYRF_39_ANALOG_CTRL, 0x01 }, { CYRF_1E_RX_OVERRIDE, 0x10 }, { CYRF_1F_TX_OVERRIDE, 0x00 }, { CYRF_01_TX_LENGTH, 0x10 }, { CYRF_0F_XACT_CFG, 0x10 }, { CYRF_27_CLK_OVERRIDE, 0x02 }, { CYRF_28_CLK_EN, 0x02 }, { CYRF_0F_XACT_CFG, 0x28 } }; static void __attribute__((unused)) DEVO_cyrf_init() { /* Initialise CYRF chip */ for(uint8_t i = 0; i < sizeof(DEVO_init_vals) / 2; i++) CYRF_WriteRegister(pgm_read_byte( &DEVO_init_vals[i][0]), pgm_read_byte( &DEVO_init_vals[i][1]) ); } static void __attribute__((unused)) DEVO_set_radio_channels() { CYRF_FindBestChannels(hopping_frequency, 3, 4, 4, 80); hopping_frequency[3] = hopping_frequency[0]; hopping_frequency[4] = hopping_frequency[1]; } static void __attribute__((unused)) DEVO_BuildPacket() { static uint8_t failsafe_pkt=0; switch(phase) { case DEVO_BIND: if(bind_counter) bind_counter--; DEVO_build_bind_pkt(); phase = DEVO_BIND_SENDCH; break; case DEVO_BIND_SENDCH: if(bind_counter) bind_counter--; DEVO_build_data_pkt(); DEVO_scramble_pkt(); if (bind_counter == 0) { phase = DEVO_BOUND; BIND_DONE; } else phase = DEVO_BIND; break; case DEVO_BOUND: case DEVO_BOUND_1: case DEVO_BOUND_2: case DEVO_BOUND_3: case DEVO_BOUND_4: case DEVO_BOUND_5: case DEVO_BOUND_6: case DEVO_BOUND_7: case DEVO_BOUND_8: case DEVO_BOUND_9: DEVO_build_data_pkt(); DEVO_scramble_pkt(); phase++; if (bind_counter) { bind_counter--; if (bind_counter == 0) BIND_DONE; } break; case DEVO_BOUND_10: DEVO_build_beacon_pkt(DEVO_NUM_CHANNELS > 8 ? failsafe_pkt : 0); failsafe_pkt = failsafe_pkt ? 0 : 1; DEVO_scramble_pkt(); phase = DEVO_BOUND_1; break; } packet_count++; if(packet_count == DEVO_PKTS_PER_CHANNEL) packet_count = 0; } uint16_t devo_callback() { static uint8_t txState=0; if (txState == 0) { txState = 1; DEVO_BuildPacket(); CYRF_WriteDataPacket(packet); return 1200; } txState = 0; uint8_t i = 0; while (! (CYRF_ReadRegister(CYRF_04_TX_IRQ_STATUS) & 0x02)) if(++i > DEVO_NUM_WAIT_LOOPS) return 1200; if (phase == DEVO_BOUND) { /* exit binding state */ phase = DEVO_BOUND_3; DEVO_cyrf_set_bound_sop_code(); } if(packet_count == 0) { CYRF_SetPower(0x08); //Keep tx power updated hopping_frequency_ptr = hopping_frequency_ptr == &hopping_frequency[2] ? hopping_frequency : hopping_frequency_ptr + 1; CYRF_ConfigRFChannel(*hopping_frequency_ptr); } return 1200; } uint16_t DevoInit() { DEVO_cyrf_init(); CYRF_GetMfgData(cyrfmfg_id); CYRF_SetTxRxMode(TX_EN); CYRF_ConfigCRCSeed(0x0000); DEVO_ConfigSOPCode(0); DEVO_set_radio_channels(); hopping_frequency_ptr = hopping_frequency; CYRF_ConfigRFChannel(*hopping_frequency_ptr); packet_count = 0; prev_option=option; if(option==0) { MProtocol_id = ((uint32_t)(hopping_frequency[0] ^ cyrfmfg_id[0] ^ cyrfmfg_id[3]) << 16) | ((uint32_t)(hopping_frequency[1] ^ cyrfmfg_id[1] ^ cyrfmfg_id[4]) << 8) | ((uint32_t)(hopping_frequency[2] ^ cyrfmfg_id[2] ^ cyrfmfg_id[5]) << 0); MProtocol_id %= 1000000; bind_counter = DEVO_BIND_COUNT; phase = DEVO_BIND; BIND_IN_PROGRESS; } else { phase = DEVO_BOUND_1; bind_counter = 0; DEVO_cyrf_set_bound_sop_code(); } return 2400; } #endif