Compare commits

...

243 Commits

Author SHA1 Message Date
pascallanger
c093f21b31 Update README.md 2022-07-08 10:38:13 +02:00
pascallanger
c5a3e305f9 Update Protocols_Details.md 2022-07-08 09:46:58 +02:00
pascallanger
e085602a6c FX816 is not limited to the P38 2022-07-08 09:46:28 +02:00
pascallanger
dee25215cf Update Protocols_Details.md 2022-07-08 09:41:16 +02:00
Michael
ef1bb1ead7 adjusted comment according to change in commit da33df43 (#696) 2022-07-07 11:44:46 +02:00
pascallanger
90170493c0 Update doc 2022-06-30 17:40:55 +02:00
pascallanger
00a9057186 Update Protocols_Details.md 2022-06-28 14:24:19 +02:00
pascallanger
05c300e979 Update Protocols_Details.md 2022-06-28 10:23:20 +02:00
pascallanger
6730ed6246 Update Protocols_Details.md 2022-06-27 17:20:55 +02:00
pascallanger
0a0463652b E129/C186 protocol
C186/E120 models
2022-06-27 16:59:48 +02:00
pascallanger
4f580a4286 Update Hardware.md 2022-06-16 10:36:34 +02:00
Michael
0616cab386 Fixes a problem where setting failsafe values was only possible once after bind and only set values for the first 12 channels. This fix allows setting failsafe values without having to rebind and sets failsafe values correctly for all possible 16 channels. (#695)
Notes for OpenTX/EdgeTX:
This fix doesn't exhibit servo jitter if failsafe mode was left on Custom, however it is still recommended to set failsafe mode back to Receiver after setting failsafe values.
It is still necessary to wait at least 8 seconds switching back from failsafe mode Custom to failsafe mode Receiver as OpenTX/EdgeTX will trigger the data transfer in Custom mode only every 7 seconds.

Bench tested with HoTT receivers GR-16, GR-24pro, GR-32
Flight tested with HoTT receiver GR-24
2022-06-13 14:28:21 +02:00
Michael
175cfa5e93 This is the Graupner HoTT adapted version of the Model Locator script. It uses the Graupner HoTT telemetry sensor "Rssi" instead of the OpenTX sensor "RSSI". (#693)
Reasoning: The OpenTX sensor "RSSI" is populated by the individual OpenTX telemetry protocol implementations and returns a value from 0..100 (percent) originating from the early FrSky implementation. It turns out that FrSky did not really provide a genuine signal strength indicator in units of dbm but a link quality indicator in 0..100%. With Graupner HoTT the link quality indicator is not a good basis for the model locator as it is very non-linear and doesn't change much with distance. Using the Graupner HoTT telemetry sensor "Rssi" which is a true signal strength indicator serves the purpose of locating a model much better as it varies much more with distance.
2022-06-07 10:51:26 +02:00
Pascal Langer
dbfccad568 Update DSM FwdPrg.lua 2022-04-25 10:33:16 +02:00
Pascal Langer
3fe6dc64fa KF606/MIG320: Added LED control 2022-04-15 17:29:25 +02:00
Peter Feerick
49068af59f fix: MultiConfig lua set and reset subProtocol (#672) 2022-03-25 09:12:14 +01:00
pascallanger
fbd81c6e26 Update Protocols_Details.md 2022-02-07 18:49:38 +01:00
Ryan5732
9cac96d6a7 Small Readme Typos (#661) 2022-02-03 14:11:26 +01:00
Pascal Langer
5987aa40a6 Another try on PA18 2022-01-25 15:21:22 +01:00
Pascal Langer
30cb812549 Try PA18 2022-01-24 08:36:00 +01:00
Pascal Langer
0fd2e36046 test PA18 2022-01-23 19:08:46 +01:00
Pascal Langer
8b05e55ebd MT99xx2/PA18: new protocol 2022-01-23 17:56:00 +01:00
Pascal Langer
af71a208fd Ready for release 2022-01-16 11:00:50 +01:00
mheimlich
7e5cb8e884 mention XK A800 in V911S/E119 details (#654) 2022-01-16 10:54:04 +01:00
MattCarothers
8c669ea015 Updated several text fields (#651) 2022-01-09 17:25:11 +01:00
Anders Höglund
acd8379077 A few more Spektrum Fwd Programming text updates (#632)
* DSM FP, Added AR8360T

* DSM FP, Added a few unkown empty lines
2021-11-19 08:37:28 +01:00
Pascal Langer
97c6088715 fix compilation? 2021-11-13 19:08:38 +01:00
Pascal Langer
db017c73b6 HS6200 emulation using CYRF for E01X protocol 2021-11-13 19:03:01 +01:00
Anders Höglund
24aaa0dd0c Text updates in Spektrum Fwd Prog LUA script (#630)
* DSM FP, Added AR636B

* DSM FP, Added AR637TA

* DSM FP, Added On, conflict with AR636B

* DSM FP, Rx name conflict resolved.
2021-11-12 18:37:52 +01:00
Michael
da33df4346 added packet_in[14] to transfer HoTT device warnings to OpenTx (#627) 2021-11-04 14:57:25 +01:00
Pascal Langer
22590ed4f7 Update DSM FwdPrg.lua 2021-10-26 16:34:38 +02:00
Pascal Langer
c0bc64c2aa V911S: increased bind time 2021-10-24 12:03:09 +02:00
Pascal Langer
694d968e8c Update Propel_nrf24l01.ino 2021-10-24 11:04:57 +02:00
Pascal Langer
fff3b8830e MT99xx/A180: F949S flags for RATE, RXLED and 3D6G 2021-10-24 11:04:44 +02:00
Pascal Langer
b740f4cd24 V911S/E119: add 6G_3D channel for P40 plane 2021-10-24 09:57:24 +02:00
Pascal Langer
e247b8b9c1 DSM Fwd Pgm updated 2021-10-20 15:13:56 +02:00
Pascal Langer
4f7af553d1 Update doc 2021-09-17 17:07:15 +02:00
Pascal Langer
570e6f8c64 Update Protocols_Details.md 2021-09-17 09:48:35 +02:00
Pascal Langer
b6e665b567 Devo: fix typo 2021-09-16 16:13:39 +02:00
Pascal Langer
48e82304a0 Update Devo_cyrf6936.ino 2021-09-16 00:30:46 +02:00
Pascal Langer
7b58b9aca0 Devo: support for 2 GPS formats
Use the Fixed ID field, 0/1 first GPS format, +2 for the other format -> 2/3
2021-09-16 00:11:25 +02:00
Pascal Langer
dfcf3f533c Update NRF24l01_SPI.ino 2021-09-16 00:08:47 +02:00
Pascal Langer
4c14925b4f Bump version for release 2021-09-12 19:35:11 +02:00
Pascal Langer
4c74bc869d Update _Config.h 2021-09-11 00:08:09 +02:00
Pascal Langer
45edfa1ec0 AFHDS2A doc update 2021-09-10 23:58:12 +02:00
Pascal Langer
88343b7424 Proto list: fix flags 2021-09-09 08:40:09 +02:00
Pascal Langer
13197840c2 V761: code cleanup 2021-09-09 08:39:37 +02:00
Pascal Langer
ffe4ac68fd Proto list: add number of protocols in the list 2021-09-08 14:30:01 +02:00
Pascal Langer
5bab5f03db Update Multi_Protos.ino 2021-09-08 13:38:25 +02:00
Pascal Langer
ae748e25f8 Update XN297Dump_nrf24l01.ino 2021-09-07 23:17:21 +02:00
Pascal Langer
e9c7959ecb Update V761_nrf24l01.ino 2021-09-07 23:17:11 +02:00
Pascal Langer
bf09855014 Another attempt 2021-09-07 16:59:06 +02:00
Pascal Langer
32bd39f209 Save space in the 5in1 modules 2021-09-07 15:07:37 +02:00
Pascal Langer
940f241b9d Fix compilation issues 2021-09-07 14:29:35 +02:00
Pascal Langer
5c00ce6b88 New 0 protocol: enable to list all protocols and sub protocols 2021-09-07 14:08:24 +02:00
Pascal Langer
016b282246 Multi Status: send frame as soon as a new protocol is selected 2021-09-05 22:15:56 +02:00
Pascal Langer
d6ecac1302 Xerall: few improvements 2021-09-04 11:48:41 +02:00
Ben Lye
901f8ca6b0 Disable some protocols for the DIY 5-in-1 (#618) 2021-09-01 15:20:10 +02:00
Pascal Langer
9c3b6ba9f6 Update Validate.h 2021-09-01 09:45:38 +02:00
Pascal Langer
53ec484028 Update Validate.h 2021-09-01 01:39:26 +02:00
Pascal Langer
246e808cb4 Xerall protocol 2021-09-01 01:21:38 +02:00
Pascal Langer
a7b68dc2aa F949G: will it work? 2021-08-27 10:22:47 +02:00
Pascal Langer
08404f9223 F949G: another try... 2021-08-26 23:43:42 +02:00
Pascal Langer
149554e61c Update MT99xx_ccnrf.ino 2021-08-26 23:23:38 +02:00
Pascal Langer
7b71425db2 F949G test with original radio ID 2021-08-26 23:19:59 +02:00
Pascal Langer
f9cfb7f20f Update Protocols_Details.md 2021-08-26 22:51:57 +02:00
Pascal Langer
506ee43d41 Update _Config.h 2021-08-26 22:35:42 +02:00
Pascal Langer
ebde0915cd MT99xx/F949G: new sub protocol 2021-08-26 22:33:38 +02:00
Pascal Langer
2501656bf4 Update XN297Dump_nrf24l01.ino 2021-08-26 11:52:36 +02:00
Pascal Langer
9356e7654e XN297EMU: allows to send and receive 0 payload length in enhanced mode 2021-08-25 19:07:36 +02:00
Pascal Langer
4f1e5d2452 BUGSMINI: fix
No one has reported an issue but from the look of the code it was broken since some time...
2021-08-25 19:05:24 +02:00
Ben Lye
64c75414d8 Add release build for 64KB CC2500-only module (#615) 2021-08-24 20:54:46 +02:00
Pascal Langer
5147833487 DSM RX: use directly the TX type and channels 2021-08-21 10:14:05 +02:00
Ben Lye
324419241f Prefix release binaries with mm instead of multi (#596)
Better for radios with 128x64 LCDs.
2021-08-16 17:59:07 +02:00
Pascal Langer
1a921b1cdb Disable multi config if telemetry is disabled 2021-07-05 17:08:57 +02:00
Pascal Langer
25c052c0a3 KF606: new sub protocol MIG320 2021-07-04 14:05:42 +02:00
Pascal Langer
a02586cca9 RadioLink: RSSI correction 2021-07-03 14:09:28 +02:00
Pascal Langer
226e082c5a E129 and E010R5 not supported on atmega328p 2021-06-30 09:45:25 +02:00
Pascal Langer
5afdff8477 V911S: Rate channel on CH6 (default is high) 2021-06-28 18:10:44 +02:00
Pascal Langer
c52ac2cefc Fix XN297Dump enhanced payload detection 2021-06-28 18:04:17 +02:00
pascallanger
09f39ea60f Update README.md 2021-06-27 12:38:53 +02:00
Harry Phillips
41e31eae6d Set reserved field in CABELL packet to current channel (#593) 2021-06-24 11:49:47 +02:00
Pascal Langer
dcf20951ba Update Protocols_Details.md 2021-06-20 18:51:23 +02:00
Pascal Langer
6e9ebfd695 Mould King: control up to 4 bricks at the same time 2021-06-20 18:39:27 +02:00
Pascal Langer
c36b112437 Update Multi_Config.ino 2021-06-17 15:42:09 +02:00
Pascal Langer
24fbd44f5b Multi Config: eeprom format for atmega 2021-06-17 15:40:28 +02:00
Pascal Langer
d0db7829e5 Multi config: enabled by default, LUA script update 2021-06-17 15:30:46 +02:00
Pascal Langer
58ed8ca60f Mould King: Analog and digital sub protocols 2021-05-27 19:01:08 +02:00
Pascal Langer
4d2c8ef04e Fix RadioLink: request telemetry every time to time like original instead of all the time 2021-05-25 14:54:17 +02:00
Pascal Langer
438e85c551 MouldKing: match original 2021-05-09 03:36:42 +02:00
Pascal Langer
06b336ee59 Mould King: fix frequencies 2021-05-04 14:58:40 +02:00
pascallanger
a93adeb75e Update Protocols_Details.md 2021-05-04 11:29:44 +02:00
Pascal Langer
802e69563e ... 2021-05-04 10:53:38 +02:00
Pascal Langer
a8897df3f2 New protocol: Mould King 2021-05-04 10:39:13 +02:00
Pascal Langer
7157d3d906 Losi: optimization 2021-05-03 16:57:08 +02:00
Pascal Langer
96b8a500b4 New protocol: Losi 2021-05-03 15:29:24 +02:00
Pascal Langer
51a3ef8ee9 Update XN297Dump_nrf24l01.ino 2021-05-01 18:45:20 +02:00
Pascal Langer
652d6604e7 Update Multiprotocol.h 2021-05-01 18:35:47 +02:00
Pascal Langer
b9028ab4b4 XN297Dump: CC2500 dump @250K 2021-05-01 18:15:34 +02:00
Konstantin Tretyakov
62c509b03c Add the IKEA Ansluta remote-controllable lighting protocol (#566)
* Add the IKEA Ansluta remote-controllable lighting protocol

* Fixes to IKEA Ansluta implementation
2021-04-24 21:46:29 +02:00
Pascal Langer
1648a0780a XK: fix twitch on other channels than rudder 2021-04-24 12:54:17 +02:00
pascallanger
3b1af68ed6 Update FUNDING.yml 2021-04-21 13:17:46 +02:00
pascallanger
aeed7bac57 Create FUNDING.yml 2021-04-20 23:17:50 +02:00
Pascal Langer
2bb76a40f3 Pelikan/SCX24: add second hopping table 2021-04-20 22:24:01 +02:00
Pascal Langer
0c129a45aa SCX24 IDs 2021-04-18 16:41:49 +02:00
Pascal Langer
2a383c7285 Pelikan/SCX24: fix? 2021-04-17 22:55:43 +02:00
Pascal Langer
34f16b0b66 MT99XX/Dragon: batt telemetry correction & low batt flag 2021-04-17 18:31:41 +02:00
Pascal Langer
a9d9c4cdfa Update A7105_SPI.ino 2021-04-17 11:57:00 +02:00
Pascal Langer
4a1c986dd0 Kyosho/FHSS fix? 2021-04-17 11:52:21 +02:00
Pascal Langer
756e9b3213 Update Protocols_Details.md 2021-04-16 15:00:33 +02:00
Pascal Langer
61a284863e Update Protocols_Details.md 2021-04-16 14:59:10 +02:00
Pascal Langer
39410c290b Pelikan/SCX24: new sub protocol 2021-04-16 14:50:53 +02:00
Pascal Langer
9e0684b6cb CABELL: code optimization 2021-04-07 09:02:50 +02:00
Pascal Langer
13add5b9f2 Devo: fix GPS year 2021-04-06 18:15:34 +02:00
Pascal Langer
475cd1af98 Atmega CC2500 build: remove FRSKYL to fit 2021-04-06 10:36:15 +02:00
Pascal Langer
04d08c6d67 FrSkyX2: changed bind bytes 2021-04-06 10:18:48 +02:00
Pascal Langer
6295bb1bbc Packed protocols definition to save space 2021-04-05 17:43:42 +02:00
Pascal Langer
931ba2bd68 Hitec: fix freq tune 2021-04-02 17:42:44 +02:00
Pascal Langer
769fb4ff94 Update Protocols_Details.md 2021-03-30 16:41:29 +02:00
Pascal Langer
aa7c18a2bd FrSkyX: fix the need to rebind RXs 2021-03-30 15:13:00 +02:00
Pascal Langer
f95cfa1261 Update Protocols_Details.md 2021-03-30 14:13:18 +02:00
Pascal Langer
8c12aaf2c1 DSMR: new surface protocol 2021-03-30 12:10:29 +02:00
Pascal Langer
94f73bd54f MT99xx: Added voltage telemetry for the Dragon sub protocol 2021-03-27 11:51:53 +01:00
Pascal Langer
9b3549d4a9 FrSkyX: code review 2021-03-25 10:10:53 +01:00
Pascal Langer
7bc05cb63c Update Multiprotocol.h 2021-03-19 17:11:06 +01:00
Pascal Langer
84780a9d90 Multi Config 2021-03-19 17:06:58 +01:00
Pascal Langer
37e029c612 Bug fix in XN297 emu layer when address is 3 bytes and CC2500 in use 2021-03-17 19:24:42 +01:00
Pascal Langer
c47ed8aca8 E016H has its own protocol now 2021-03-17 18:46:48 +01:00
Pascal Langer
5bb0752d5e Update include to xn297... 2021-03-17 17:19:41 +01:00
Pascal Langer
4a626eaf14 Change XN297 emulation layer
Loads of protocols have been touched by this change. Some testing has been done but please test on all your models.
The XN297 emulation selects in this order:
 - the CC2500 if it is available and bitrate=250K. Configure the option field automatically for RF tune.
 - the NRF for all bitrates if it is available
 - if NRF is not available and bitrate=1M then an invalid protocol is sent automatically to the radio.
CC2500 @250K can now receive normal and enhanced payloads.
OMP protocol supports telemetry on CC2500 and is also for NRF only modules including telemetry.
Separation of E016H (new protocol) from E01X due to different structure.
MJXQ, MT99XX, Q303 and XK: some sub protocols available on CC2500 only.
2021-03-17 17:05:42 +01:00
pascallanger
47de19c8a5 DSM RX output ranges 2021-03-15 08:45:27 +01:00
Pascal Langer
3d4cfa30ac Remove spaces 2021-03-15 08:43:25 +01:00
pascallanger
d658bee05a Add files via upload 2021-03-15 08:39:06 +01:00
pascallanger
820c181394 Update CPPM_HW_Mod.md 2021-03-15 08:07:42 +01:00
pascallanger
c9774f557e Add files via upload 2021-03-15 08:06:24 +01:00
Pascal Langer
b17618a5a8 Update Protocols_Details.md 2021-03-14 19:22:49 +01:00
Pascal Langer
03d0adbd74 CCPM: added comment to disable the telemetry after setup 2021-03-14 19:00:45 +01:00
Pascal Langer
905ee4b1ed Fix module boot issue? 2021-03-14 11:15:24 +01:00
Pascal Langer
dbc33951a4 Fix for module boot issue? 2021-03-13 18:18:07 +01:00
Pascal Langer
732e66cab2 HoTT: fix Text config in Sync mode 2021-03-13 11:01:51 +01:00
pascallanger
0dab92552a Update CPPM_HW_Mod.md 2021-03-08 17:47:28 +01:00
pascallanger
047952537a Update CPPM_HW_Mod.md 2021-03-08 13:39:59 +01:00
pascallanger
d4bf1fb36e Update CPPM_HW_Mod.md 2021-03-08 13:36:43 +01:00
pascallanger
ff817cd098 Update Protocols_Details.md 2021-03-08 11:36:59 +01:00
pascallanger
04ea44ed4b Update CPPM_HW_Mod.md 2021-03-08 11:19:10 +01:00
pascallanger
e23c8e2216 Add files via upload 2021-03-08 10:15:47 +01:00
pascallanger
afb4802a2c Update CPPM_HW_Mod.md 2021-03-07 17:34:16 +01:00
pascallanger
3a5d341514 CPPM hardware mod initial page 2021-03-07 17:31:45 +01:00
pascallanger
b6bcab1604 CPPM hardware mod images 2021-03-07 17:24:15 +01:00
Pascal Langer
0a998d2dc5 Enable CPPM by default 2021-03-07 11:12:49 +01:00
Pascal Langer
7927bc601e CPPM for RX protocols 2021-03-06 18:51:53 +01:00
Pascal Langer
f8cc913898 Update Multiprotocol.ino 2021-03-06 12:00:05 +01:00
Pascal Langer
a5428bc180 Removed SBUS trainer option 2021-03-06 11:33:32 +01:00
Pascal Langer
c0285f81f0 JOYSWAY: fix? 2021-03-05 19:57:33 +01:00
Pascal Langer
600049898a SBUS/CPPM: fixed switching from CPPM to SBUS 2021-03-04 21:28:06 +01:00
Pascal Langer
0e1db8f06b SBUS/CPPM: fixed switching from SBUS to CPPM
There is still an issue from CPPM to SBUS...
2021-03-04 19:02:45 +01:00
Pascal Langer
ec83f1e5a3 Disable SBUS serial when switching to CPPM 2021-03-04 15:23:23 +01:00
Pascal Langer
f8f7769d9c Update DSM subprotocols naming 2021-03-04 10:08:52 +01:00
Pascal Langer
4dacac29c6 SBUS/CPPM: restore normal telemetry on student link lost
Once the setup is done check the "Disable telemetry" box to make sure that there is no interference between the internal module and Multi telemetry.
2021-03-04 09:52:54 +01:00
Pascal Langer
593f3b87f1 SBUS/CPPM: fixed telemetry_link 2021-03-04 09:11:20 +01:00
Pascal Langer
bb70116df0 SBUS and CPPM output 2021-03-03 10:07:19 +01:00
Pascal Langer
d7c24d62ed Update Devo_cyrf6936.ino 2021-03-02 18:32:02 +01:00
Pascal Langer
07df1a8959 DEVO telemetry: reduce the voltage and RSSI refresh frequency 2021-03-02 17:37:28 +01:00
Pascal Langer
ca9e2870ab DEVO: temp telem fix 2021-03-02 16:30:14 +01:00
Pascal Langer
99ca6fa36c DEVO: fix temp telemetry 2021-03-02 16:26:30 +01:00
Pascal Langer
3d82560f71 Update Protocols_Details.md 2021-03-02 16:20:05 +01:00
Pascal Langer
44d362aeb4 DEVO: improve telemetry 2021-03-02 16:14:14 +01:00
Pascal Langer
3d4ed5ad11 SFHSS: Timing debug 2021-03-02 12:01:23 +01:00
Pascal Langer
ca3c2bbdc8 Update Protocols_Details.md 2021-03-02 10:42:25 +01:00
Pascal Langer
90c226c748 LOLI lua script 2021-03-02 10:39:11 +01:00
Pascal Langer
b757283f41 JOYSWAY: new protocol UNTESTED 2021-03-02 10:00:33 +01:00
Pascal Langer
b3132c7bf1 Devo: added telemetry voltage 3 2021-03-02 09:32:59 +01:00
Pascal Langer
9ba56f040a Update Futaba_cc2500.ino 2021-03-01 16:31:11 +01:00
Pascal Langer
ac71b4d981 Update Devo_cyrf6936.ino 2021-03-01 14:02:39 +01:00
Pascal Langer
6bb2c06cf6 Fix compilation 2021-03-01 13:53:39 +01:00
Pascal Langer
2ad3c727fd Few changes... 2021-03-01 13:48:23 +01:00
Pascal Langer
d36af55b84 DEVO: full telemetry 2021-03-01 13:47:44 +01:00
Pascal Langer
f19bb05c7a WFLY: Failsafe values 2021-02-24 16:29:24 +01:00
Pascal Langer
08ea8818fb E010R5: 5th ID 2021-02-24 10:26:58 +01:00
Pascal Langer
59c541d013 MT99xx missing break 2021-02-23 09:52:46 +01:00
Ben Lye
37e2b5f41c Merge pull request #532 from benlye/new-builds
5-in-1 builds for DIY and T-Lite
2021-02-21 19:16:24 +00:00
Ben Lye
614a330cf2 5-in-1 builds for DIY and T-Lite 2021-02-21 18:58:02 +00:00
Pascal Langer
9106548859 T18 default build 2021-02-21 18:56:48 +01:00
Pascal Langer
2f07e79e50 T18 build by default 2021-02-21 18:35:24 +01:00
Pascal Langer
2233f6f862 SX1276: RF power adjustment for DIY & Jumper T-Lite 2021-02-21 16:05:25 +01:00
Pascal Langer
ae842f0bdc MT99XX Dragon telem prep 2021-02-17 10:26:38 +01:00
Ben Lye
4b36656246 Merge pull request #529 from benlye/build-fix
Update MT99xx_nrf24l01.ino
2021-02-16 19:39:55 +00:00
Ben Lye
ea282489f9 Update MT99xx_nrf24l01.ino 2021-02-16 19:34:01 +00:00
Ben Lye
6f2d9430d0 Merge pull request #528 from benlye/build-fix
Disable CCNRF protocols when needed
2021-02-16 18:40:58 +00:00
Pascal Langer
bccd9dc0d9 Fix XK protocol with latest change 2021-02-16 19:38:34 +01:00
Ben Lye
af919fb940 Fix CCNRF_PROTOCOLS 2021-02-16 18:31:40 +00:00
Ben Lye
7dab0de3c5 Update main.yml 2021-02-16 18:26:14 +00:00
Pascal Langer
2c0525421a Update Protocols_Details.md 2021-02-16 19:08:57 +01:00
Pascal Langer
0844ec2efd Add more protocols which can run with the CC2500
Use CC2500 only when emulating NRF250K/XN297_250K
2021-02-16 19:06:23 +01:00
Pascal Langer
49c3af12f9 AFHDS2A: fix issue with fs-x6b 2021-02-14 20:51:15 +01:00
Pascal Langer
96d335f458 Hide scanner from the available protocols 2021-02-13 20:39:00 +01:00
Pascal Langer
eae412fe41 E010r5: 1 more ID 2021-02-13 09:26:03 +01:00
Pascal Langer
0270420531 XN297dump: increase polling 2021-02-12 19:05:39 +01:00
Pascal Langer
93bb117961 RF switch fix... 2021-02-12 16:29:36 +01:00
Pascal Langer
29d1fb00b1 More code optimization 2021-02-12 11:21:42 +01:00
Pascal Langer
5a49d99c4f Update _Config.h 2021-02-11 20:09:40 +01:00
Pascal Langer
d66bf1a5b3 NRF init changed to most likely default 2021-02-11 18:40:29 +01:00
Pascal Langer
b41dccef67 HONTAI: use the global CRC calculation routine 2021-02-11 10:54:55 +01:00
Pascal Langer
addf2c5143 MT99XX/Dragon: beginner and intermediate swapped... 2021-02-11 09:50:41 +01:00
Pascal Langer
ff829f1f7b M-Link telemetry forwarded to OpenTX 2021-02-10 12:31:37 +01:00
Pascal Langer
7ee72976c4 M-Link: added vario 2021-02-10 10:13:51 +01:00
Pascal Langer
dc18e8e5b2 MT99XX: new subproto Dragon 2021-02-10 09:59:30 +01:00
Pascal Langer
97de2aaf3d One file missing in the push... 2021-02-09 18:31:13 +01:00
Pascal Langer
3b8b2ef376 Protocol init function modified 2021-02-09 18:23:33 +01:00
Pascal Langer
d496f62719 Removed depreciated MULTI_STATUS 2021-02-08 09:36:47 +01:00
Pascal Langer
fc978f95ef Disabling AFHDS2A Hub telemetry to fit in flash... 2021-02-07 19:20:12 +01:00
Pascal Langer
596e8c9b55 Update MLINK_cyrf6936.ino 2021-02-07 18:57:59 +01:00
Pascal Langer
0cf58c2990 MLink: added voltage, current, rpm, temp sensors and lqi 2021-02-07 18:51:36 +01:00
Pascal Langer
6ba1c8b118 Update Protocols_Details.md 2021-02-06 10:36:14 +01:00
Pascal Langer
b949ac0fed Update Protocols_Details.md 2021-02-06 10:35:15 +01:00
Pascal Langer
510f892d2f MLink: use only odd channels like original 2021-02-06 10:23:10 +01:00
Pascal Langer
17750e774a M-Link Failsafe 2021-02-06 09:58:36 +01:00
Pascal Langer
be1591c489 Update Protocols_Details.md 2021-02-05 18:44:48 +01:00
Pascal Langer
3b22705166 Exclude MLink from T18 build to save Flash space 2021-02-05 17:21:07 +01:00
Ben Lye
c05c0a5693 Merge pull request #518 from pascallanger/benlye-patch-1
Update main.yml
2021-02-05 16:15:36 +00:00
Ben Lye
d6fc6a3517 Update main.yml
Disable default configuration builds for T18 and 4in1.
2021-02-05 16:09:30 +00:00
Pascal Langer
7bfaee8b4f Update MLINK_cyrf6936.ino 2021-02-05 16:20:42 +01:00
Pascal Langer
89c00e8f17 Initial M-LINK release 2021-02-05 12:28:35 +01:00
pascallanger
447a58966f Update Compiling_STM32.md 2021-02-04 14:19:29 +01:00
pascallanger
74162aa972 Update Compiling_STM32.md 2021-02-04 14:15:57 +01:00
Pascal Langer
78a1e61f7a Update Telemetry.ino 2021-02-04 14:07:15 +01:00
Pascal Langer
a917227ddc Bayang: generic frsky hub function 2021-02-04 12:05:57 +01:00
Pascal Langer
c866d07743 Bayang: add PID to telemetry 2021-02-03 19:44:59 +01:00
Pascal Langer
43d969f962 FrSky RX: sub protocol to erase clone IDs 2021-02-03 16:57:14 +01:00
Pascal Langer
3973b42f81 MT99XX fix bind hopping 2021-02-02 17:55:40 +01:00
Pascal Langer
6046ad81db Update Protocols_Details.md 2021-02-02 14:42:22 +01:00
Pascal Langer
63a9874aea Futaba S-FHSS: another fs throw test 2021-02-02 12:06:54 +01:00
Pascal Langer
89420fe2d4 Futaba S-FHSS: failsafe throw test 2021-02-02 10:06:24 +01:00
Pascal Langer
9769354989 MT99XX: no autobind, 1 ID 2021-02-01 21:31:34 +01:00
Pascal Langer
580b996215 MT99XX: code optimization 2021-02-01 19:26:34 +01:00
Pascal Langer
8f5fb5083f MT99X sub A180: timing 2021-02-01 19:06:47 +01:00
Pascal Langer
821076ce95 MT99XX: code cleanup 2021-02-01 18:25:11 +01:00
Pascal Langer
0bfe1f8e63 MT99XX: new sub protocol A180 2021-02-01 15:21:39 +01:00
Pascal Langer
9c35f6f73c Futaba S-FHSS: Fist attempt to fix failsafe 2021-02-01 11:54:16 +01:00
Pascal Langer
983debe6ce WFLY2: Failsafe working for values, hold and no pulse 2021-01-29 15:41:47 +01:00
Pascal Langer
66704b5a13 AFHDS2A: common timing 2021-01-28 15:41:59 +01:00
Pascal Langer
f11da0c1de DSM: fix low power 2021-01-28 09:09:43 +01:00
Pascal Langer
7676398aab Fix OMP protocol 2021-01-25 11:33:30 +01:00
146 changed files with 9269 additions and 6393 deletions

12
.github/FUNDING.yml vendored Normal file
View File

@@ -0,0 +1,12 @@
# These are supported funding model platforms
github: [pascallanger]
patreon: # Replace with a single Patreon username
open_collective: # Replace with a single Open Collective username
ko_fi: # Replace with a single Ko-fi username
tidelift: # Replace with a single Tidelift platform-name/package-name e.g., npm/babel
community_bridge: # Replace with a single Community Bridge project-name e.g., cloud-foundry
liberapay: # Replace with a single Liberapay username
issuehunt: # Replace with a single IssueHunt username
otechie: # Replace with a single Otechie username
custom: https://www.paypal.com/cgi-bin/webscr?cmd=_donations&business=VF2K9T23DRY56&lc=US&item_name=DIY%20Multiprotocol&currency_code=EUR&bn=PP%2dDonationsBF%3abtn_donate_SM%2egif%3aNonHosted

View File

@@ -101,6 +101,7 @@ jobs:
echo "CYRF6936_PROTOCOLS=$(echo $CYRF6936_PROTOCOLS)" >> $GITHUB_ENV
echo "NRF24L01_PROTOCOLS=$(echo $NRF24L01_PROTOCOLS)" >> $GITHUB_ENV
echo "SX1276_PROTOCOLS=$(echo $SX1276_PROTOCOLS)" >> $GITHUB_ENV
echo "CCNRF_INO_PROTOCOLS=$(echo $CCNRF_INO_PROTOCOLS)" >> $GITHUB_ENV
echo "ALL_PROTOCOLS=$(echo $ALL_PROTOCOLS)" >> $GITHUB_ENV
# Get all the RF modules for this board
@@ -131,8 +132,13 @@ jobs:
- name: Build default configuration
run: |
source ./buildroot/bin/buildFunctions;
buildMulti
# Skip the default build for boards where it's too large now
if [[ "$BOARD" == "multi4in1:STM32F1:multistm32f103cb:debug_option=none" ]] || [[ "$BOARD" == "multi4in1:STM32F1:multi5in1t18int" ]]; then
printf "Not testing default build for $BOARD.";
else
source ./buildroot/bin/buildFunctions;
buildMulti
fi
- name: Build serial only
run: |

317
Lua_scripts/DSM FwdPrg.lua Normal file → Executable file
View File

@@ -1,4 +1,4 @@
local toolName = "TNS|DSM Forward Programming|TNE"
local toolName = "TNS|DSM Forward Programming v0.2|TNE"
---- #########################################################################
---- # #
@@ -31,11 +31,12 @@ local toolName = "TNS|DSM Forward Programming|TNE"
-- Write "DSM" at address 0..2
--###############################################################################
local RX_VERSION, WAIT_CMD, MENU_TITLE, MENU_LINES, MENU_VALUES, VALUE_CHANGING, VALUE_CHANGING_WAIT, VALUE_CHANGED = 0, 1, 2, 3, 4, 5, 6, 7
local MENU, LIST_MENU_NOCHANGING, LIST_MENU2, PERCENTAGE_VALUE = 0x1C, 0x6C, 0x4C, 0xC0
local RX_VERSION, WAIT_CMD, MENU_TITLE, MENU_LINES, MENU_VALUES, VALUE_CHANGING, VALUE_CHANGING_WAIT, VALUE_CHANGED, EXIT, EXIT_DONE = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
local MENU, LIST_MENU_NOCHANGING, LIST_MENU1, LIST_MENU2, VALUE_NOCHANGING = 0x1C, 0x6C, 0x0C, 0x4C, 0x60
local Phase = RX_VERSION
local Waiting_RX = 0
local Text = {}
local RxName = {}
local Retry=100
local Blink = 0
local Value_Changed=0
@@ -44,13 +45,30 @@ local Menu = { Cur=nil, Id=nil, Title="", Prev=nil, PrevId=nil, Next=nil, NextId
local Line = {}
local RX = { Name="", Version="" }
-- used for debug
local rxAnswer = ""
local debugLine = 0
------------------------------------------------------------------------------------------------------------
local function GetDebugInfo(lineNr) -- used for debug
local i
debugLine = lineNr
rxAnswer = "RX:"
for i=10, 25 do
rxAnswer = rxAnswer.." "..string.format("%02X", multiBuffer(i))
end
end
------------------------------------------------------------------------------------------------------------
local function conv_int16(number)
if number >= 0x8000 then
return number - 0x10000
end
return number
end
------------------------------------------------------------------------------------------------------------
local function Get_Text(index)
out = Text[index]
if out == nil then -- unknown...
@@ -58,11 +76,20 @@ local function Get_Text(index)
end
return out
end
------------------------------------------------------------------------------------------------------------
local function Get_RxName(index)
out = RxName[index]
if out == nil then -- unknown...
out = "Unknown_"..string.format("%X",index)
end
return out
end
------------------------------------------------------------------------------------------------------------
local function DSM_Release()
multiBuffer( 0, 0 )
Phase = EXIT_DONE
end
------------------------------------------------------------------------------------------------------------
local function DSM_Send(...)
local arg = {...}
for i = 1 , #arg do
@@ -70,7 +97,7 @@ local function DSM_Send(...)
end
multiBuffer( 3, 0x70+#arg)
end
------------------------------------------------------------------------------------------------------------
local function Value_Add(dir)
local line=Line[Menu.SelLine]
Speed = getRotEncSpeed()
@@ -91,17 +118,25 @@ local function Value_Add(dir)
Waiting_RX = 0
end
end
------------------------------------------------------------------------------------------------------------
local function DSM_Menu(event)
local Speed = 0
if event == EVT_VIRTUAL_NEXT then
if event == EVT_VIRTUAL_EXIT then
if Phase == RX_VERSION then
DSM_Release()
else
Phase = EXIT
Waiting_RX = 0
end
elseif event == EVT_VIRTUAL_NEXT then
if Menu.EditLine == nil then
-- not changing a value
if Menu.SelLine ~= nil then
if Menu.SelLine < 7 then
local num = Menu.SelLine
for i = Menu.SelLine + 1, 6, 1 do
if Line[i].Type ~= nil and Line[i].Next ~= nil then
if Line[i].Type ~= nil and Line[i].Next ~= nil and Line[i].Type ~= VALUE_NOCHANGING then
Menu.SelLine=i
break
end
@@ -131,7 +166,7 @@ local function DSM_Menu(event)
end
local num = Menu.SelLine
for i = Menu.SelLine-1, 0, -1 do
if Line[i].Type ~= nil and Line[i].Next ~= nil then
if Line[i].Type ~= nil and Line[i].Next ~= nil and Line[i].Type ~= VALUE_NOCHANGING then
Menu.SelLine=i
break
end
@@ -146,6 +181,15 @@ local function DSM_Menu(event)
else -- need to dec the value
Value_Add(-1)
end
elseif event == EVT_VIRTUAL_ENTER_LONG then
if Menu.EditLine ~= nil then
-- reset the value to default
if Line[Menu.SelLine].Type ~= LIST_MENU_NOCHANGING then
Line[Menu.SelLine].Val = Line[Menu.SelLine].Def
Phase = VALUE_CHANGING
Waiting_RX = 0
end
end
elseif event == EVT_VIRTUAL_ENTER then
if Menu.SelLine == -1 then -- Back
Menu.Cur = Menu.Back
@@ -185,23 +229,27 @@ local function DSM_Menu(event)
end
end
end
------------------------------------------------------------------------------------------------------------
local function DSM_Send_Receive()
if Waiting_RX == 0 then
Waiting_RX = 1
-- Need to send a request
-- Need to send a request
if Phase == RX_VERSION then -- request RX version
DSM_Send(0x11,0x06,0x00,0x14,0x00,0x00)
elseif Phase == WAIT_CMD then -- keep connection open
elseif Phase == WAIT_CMD then -- keep connection open
DSM_Send(0x00,0x04,0x00,0x00)
elseif Phase == MENU_TITLE then -- request menu title
elseif Phase == MENU_TITLE then -- request menu title
if Menu.Cur == nil then
DSM_Send(0x12,0x06,0x00,0x14,0x00,0x00) -- first menu only
Menu.Cur = 0
else
DSM_Send(0x16,0x06,Menu.Id,Menu.Cur,0x00,Menu.SelLine)
end
elseif Phase == MENU_LINES then -- request menu lines
elseif Phase == MENU_LINES then -- request menu lines
if Menu.CurLine == nil then
DSM_Send(0x13,0x04,Menu.Id,Menu.Cur) -- line 0
elseif Menu.CurLine >= 0x80 then
@@ -210,46 +258,59 @@ local function DSM_Send_Receive()
else
DSM_Send(0x14,0x06,Menu.Id,Menu.Cur,0x00,Menu.CurLine) -- line X
end
elseif Phase == MENU_VALUES then -- request menu values
DSM_Send(0x15,0x06,Menu.Id,Menu.Cur,Line[Menu.CurLine].ValId,Menu.CurLine) -- line X
elseif Phase == VALUE_CHANGING then -- send value
local value=Line[Menu.SelLine].Val
elseif Phase == MENU_VALUES then -- request menu values
DSM_Send(0x15,0x06,Menu.Id,Menu.Cur,Line[Menu.CurLine].ValId,Line[Menu.CurLine].Next) -- line X
elseif Phase == VALUE_CHANGING then -- send value
local value=Line[Menu.SelLine].Val
if value < 0 then
value = 0x10000 + value
end
DSM_Send(0x18,0x06,Line[Menu.SelLine].ValId,Menu.SelLine,bit32.rshift(value,8),bit32.band(value,0xFF)) -- send current value
DSM_Send(0x18,0x06,Line[Menu.SelLine].ValId,Line[Menu.SelLine].Next,bit32.rshift(value,8),bit32.band(value,0xFF)) -- send current value
Phase = VALUE_CHANGING_WAIT
elseif Phase == VALUE_CHANGED then -- send value
elseif Phase == VALUE_CHANGED then -- send value
if Value_Changed == 0 then
local value=Line[Menu.SelLine].Val
if value < 0 then
value = 0x10000 + value
end
DSM_Send(0x18,0x06,Line[Menu.SelLine].ValId,Menu.SelLine,bit32.rshift(value,8),bit32.band(value,0xFF)) -- send current value
DSM_Send(0x18,0x06,Line[Menu.SelLine].ValId,Line[Menu.SelLine].Next,bit32.rshift(value,8),bit32.band(value,0xFF)) -- send current value
Value_Changed = Value_Changed + 1
Waiting_RX = 0
elseif Value_Changed == 1 then
DSM_Send(0x19,0x06,Line[Menu.SelLine].ValId,Menu.SelLine) -- validate
DSM_Send(0x19,0x06,Line[Menu.SelLine].ValId,Line[Menu.SelLine].Next) -- validate
-- Value_Changed = Value_Changed + 1
-- Waiting_RX = 0
--elseif Value_Changed == 2 then
-- DSM_Send(0x1B,0x06,0x10,Menu.SelLine) -- validate again?
-- Value_Changed = Value_Changed + 1
end
elseif Phase == VALUE_CHANGING_WAIT then
DSM_Send(0x1A,0x06,Line[Menu.SelLine].ValId,Menu.SelLine)
end
elseif Phase == VALUE_CHANGING_WAIT then
DSM_Send(0x1A,0x06,Line[Menu.SelLine].ValId,Line[Menu.SelLine].Next)
elseif Phase == EXIT then
DSM_Send(0x1F,0x02,0xAA)
end
multiBuffer(10,0x00);
Retry = 50
-- -- -- -- -- -- -- -- -- -- -- -- receive part -- -- -- -- -- -- -- -- -- -- -- -- --
elseif multiBuffer(10) == 0x09 then
-- Answer received
--if multiBuffer(11) == 0x00 then -- waiting for commands?
if multiBuffer(11) == 0x01 then -- read version
--ex: 0x09 0x01 0x00 0x15 0x02 0x22 0x01 0x00 0x14 0x00 0x00 0x00 0x00 0x00 0x00 0x00
RX.Name = Get_Text(multiBuffer(13))
-- GetDebugInfo(292) -- used for debug
--if multiBuffer(11) == 0x00 then -- waiting for commands?
if multiBuffer(11) == 0x01 then -- read version
--ex: 0x09 0x01 0x00 0x15 0x02 0x22 0x01 0x00 0x14 0x00 0x00 0x00 0x00 0x00 0x00 0x00
RX.Name = Get_RxName(multiBuffer(13))
RX.Version = multiBuffer(14).."."..multiBuffer(15).."."..multiBuffer(16)
Phase = MENU_TITLE
elseif multiBuffer(11) == 0x02 then -- read menu title
elseif multiBuffer(11) == 0x02 then -- read menu title
--ex: 0x09 0x02 0x4F 0x10 0xA5 0x00 0x00 0x00 0x50 0x10 0x10 0x10 0x00 0x00 0x00 0x00
Menu.Cur = multiBuffer(12)
Menu.Id = multiBuffer(13)
@@ -271,7 +332,8 @@ local function DSM_Send_Receive()
end
Blink = 0
Phase = MENU_LINES
elseif multiBuffer(11) == 0x03 then -- read menu lines
elseif multiBuffer(11) == 0x03 then -- read menu lines
--ex: 0x09 0x03 0x00 0x10 0x00 0x1C 0xF9 0x00 0x10 0x10 0x00 0x00 0x00 0x00 0x03 0x00
-- Menu Id line Type Text_idx Next V_Id Val_Min Val_Max Val_Def
--ex: 0x09 0x03 0x61 0x10 0x00 0x6C 0x50 0x00 0x00 0x10 0x36 0x00 0x49 0x00 0x36 0x00
@@ -279,13 +341,13 @@ local function DSM_Send_Receive()
local line = Line[Menu.CurLine]
line.Menu = multiBuffer(12)
line.Id = multiBuffer(13) -- not quite sure yet
line.Type = multiBuffer(15) -- not quite sure yet: 1C is text menu only, 4C/6C is text followed by text list, C0 is text followed by percentage value
line.Type = multiBuffer(15) -- not quite sure yet: 1C is text menu only, 4C/6C is text followed by text list, C0 is text followed by percentage value, 0C new list type
line.Text = Get_Text(multiBuffer(16)+multiBuffer(17)*256)
if multiBuffer(18) == Menu.Cur then
line.Next = nil
else
line.Next = multiBuffer(18) -- not quite sure yet: 1C=text menu=>next menu, others=>line number of the value
end
--if multiBuffer(18) == Menu.Cur then
-- line.Next = nil
--else
line.Next = multiBuffer(18) -- not quite sure yet: 1C=text menu=>next menu, others=>identifier of line number of the value
--end
if Menu.SelLine == -1 and line.Next ~= nil then -- Auto select first line of the menu
Menu.SelLine = Menu.CurLine
end
@@ -297,7 +359,7 @@ local function DSM_Send_Receive()
line.Def = conv_int16(multiBuffer(24)+multiBuffer(25)*256)
if line.Type == MENU then
-- nothing to do on menu entries
elseif line.Type == LIST_MENU_NOCHANGING or line.Type == LIST_MENU2 then
elseif line.Type == LIST_MENU_NOCHANGING or line.Type == LIST_MENU1 or line.Type == LIST_MENU2 then
line.Val = nil --line.Def - line.Min -- use default value not sure if needed
line.Def = line.Min -- pointer to the start of the list in Text
line.Max = line.Max - line.Min -- max index
@@ -305,43 +367,66 @@ local function DSM_Send_Receive()
else -- default to numerical value
line.Val = nil --line.Def -- use default value not sure if needed
end
if line.Type ~= 0x1C then -- value to follow
if line.Type ~= MENU and line.Type ~= VALUE_NOCHANGING then -- updatable value to follow
line.Text = line.Text..":"
end
Phase = MENU_LINES
elseif multiBuffer(11) == 0x04 then -- read menu values
elseif multiBuffer(11) == 0x04 then -- read menu values
--ex: 0x09 0x04 0x53 0x10 0x00 0x10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
-- Menu MeId line VaId Value
--ex: 0x09 0x04 0x61 0x10 0x02 0x10 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
Menu.CurLine = multiBuffer(14)
Line[Menu.CurLine].Val = conv_int16(multiBuffer(16)+multiBuffer(17)*256)
-- Identify the line and update the value
for i = 0, 6 do
if Line[i] ~= nil and Line[i].Type ~= nil then
if Line[i].Type ~= MENU and Line[i].Next == multiBuffer(14) then -- identifier of line number stored in .Next
Line[i].Val = conv_int16(multiBuffer(16)+multiBuffer(17)*256)
Menu.CurLine = i
break
end
end
end
Phase = MENU_VALUES
elseif multiBuffer(11) == 0x05 then -- unknown... need to get through the lines...
elseif multiBuffer(11) == 0x05 then -- unknown... need to get through the lines...
Menu.CurLine = 0x80 + multiBuffer(12)
Phase = MENU_LINES
elseif multiBuffer(11) == 0x00 and Phase == VALUE_CHANGING then
elseif multiBuffer(11) == 0xA7 then -- answer to EXIT command
DSM_Release()
elseif multiBuffer(11) == 0x00 and Phase == VALUE_CHANGING then
Phase = VALUE_CHANGING_WAIT
end
-- Data processed
end
-- Data processed
Waiting_RX = 0
multiBuffer(10,0x00)
Retry = 50
else
Retry = Retry - 1
if Retry <= 0 then
-- Retry the RX request
Retry = 50
Waiting_RX = 0
if Phase == EXIT then
DSM_Release()
end
if Phase ~= RX_VERSION and Phase ~= VALUE_CHANGING_WAIT then
Phase = WAIT_CMD
end
end
end
end
------------------------------------------------------------------------------------------------------------
local function DSM_Display()
lcd.clear()
if LCD_W == 480 then
--lcd.drawText(10,55,debugLine.." "..rxAnswer) -- draw debug info
--Draw title
lcd.drawFilledRectangle(0, 0, LCD_W, 30, TITLE_BGCOLOR)
lcd.drawText(1, 5, "DSM Forward Programming", MENU_TITLE_COLOR)
@@ -362,12 +447,13 @@ local function DSM_Display()
if Line[i].Type ~= MENU then -- list/value
if Line[i].Val ~= nil then
local text=""
if Line[i].Type == LIST_MENU_NOCHANGING or Line[i].Type == LIST_MENU2 then
if Line[i].Type == LIST_MENU_NOCHANGING or Line[i].Type == LIST_MENU1 or Line[i].Type == LIST_MENU2 then
text = Get_Text(Line[i].Val+Line[i].Def)
elseif Line[i].Type == PERCENTAGE_VALUE then
elseif ( Line[i].Min == 0 and Line[i].Max == 100) or ( Line[i].Min == -100 and Line[i].Max == 100) or ( Line[i].Min == 0 and Line[i].Max == 150) or ( Line[i].Min == -150 and Line[i].Max == 150) then
text = Line[i].Val.." %"
else
text = Line[i].Val
--text = Line[i].Val .." T="..Line[i].Type -- used for debug
text = Line[i].Val
end
if Menu.EditLine == Menu.SelLine then -- blink edited entry
Blink = Blink + 1
@@ -437,7 +523,7 @@ local function DSM_Display()
-- end
end
end
------------------------------------------------------------------------------------------------------------
-- Init
local function DSM_Init()
--Set protocol to talk to
@@ -456,11 +542,30 @@ local function DSM_Init()
multiBuffer( 1, string.byte('S') )
multiBuffer( 2, string.byte('M') )
--Text to be displayed -> need to use a file instead?
--RX names--
Text[0x0014]="SPM4651T"
Text[0x0015]="AR637T"
RxName[0x0001]="AR636B"
RxName[0x0014]="SPM4651T"
RxName[0x0015]="AR637T"
RxName[0x0016]="AR637TA"
RxName[0x0018]="FC6250HX"
RxName[0x001A]="AR8360T"
RxName[0x001E]="AR631"
--Text to be displayed -> need to use a file instead?
Text[0x0001]="On"
Text[0x0002]="Off"
Text[0x0003]="Inh"
Text[0x0004]="Act"
Text[0x000C]="Inhibit?" --?
Text[0x000D]="Gear"
--Lists--
Text[0x002E]="11ms"
Text[0x002F]="22ms"
Text[0x0032]="1 X"
Text[0x0033]="2 X"
Text[0x0034]="4 X"
Text[0x0035]="Inhibit?" --?
Text[0x0036]="Throttle"
Text[0x0037]="Aileron"
Text[0x0038]="Elevator"
@@ -479,9 +584,12 @@ local function DSM_Init()
Text[0x0040]="Roll"
Text[0x0041]="Pitch"
Text[0x0042]="Yaw"
Text[0x0043]="Gain" -- FC6250HX
Text[0x0045]="Differential"
Text[0x0046]="Priority"
Text[0x0049]="Output Setup" -- FC6250HX
--******
Text[0x004A]="Failsafe"
Text[0x004B]="Main Menu"
Text[0x004E]="Position"
@@ -497,21 +605,33 @@ local function DSM_Init()
Text[0x0060]="Preset"
--Text[0x0061]="Custom"
--Messages--
Text[0x0071]="Proportional"
Text[0x0072]="Integral"
Text[0x0073]="Derivate"
Text[0x0078]="FM Channel"
Text[0x0080]="Orientation"
Text[0x0082]="Heading"
Text[0x0085]="Frame Rate"
Text[0x0086]="System Setup"
Text[0x0087]="F-Mode Setup"
Text[0x0088]="Enabled F-Modes"
Text[0x0089]="Gain Channel"
Text[0x008A]="Gain Sensitivity"
Text[0x008B]="Panic"
Text[0x0090]="Apply"
Text[0x0092]="Start"
Text[0x0093]="Complete"
Text[0x0094]="Done"
Text[0x0097]="Factory Reset"
Text[0x0099]="Advanced Setup"
Text[0x009A]="Capture Failsafe Positions"
Text[0x009C]="Custom Failsafe"
Text[0x00A5]="First Time Setup"
Text[0x00AA]="Capture Gyro Gains"
Text[0x00AD]="Gain Channel Select"
Text[0x00B0]="Self-Level/Angle Dem"
Text[0x00B1]="Envelope"
Text[0x00B5]="Inhibit"
Text[0x00B6]="FM1"
Text[0x00B7]="FM2"
Text[0x00B8]="FM3"
@@ -522,78 +642,125 @@ local function DSM_Init()
Text[0x00BD]="FM8"
Text[0x00BE]="FM9"
Text[0x00BF]="FM10"
Text[0x00C7]="Calibrate Sensor"
Text[0x00CA]="SAFE/Panic Mode Setup"
Text[0x00D3]="Swashplate"
Text[0x00D5]="Agility"
Text[0x00D8]="Stop"
Text[0x00DA]="SAFE"
Text[0x00DB]="Stability"
Text[0x00DC]="@ per sec"
Text[0x00DD]="Tail rotor"
Text[0x00DE]="Setup"
Text[0x00DF]="AFR"
Text[0x00E0]="Collective"
Text[0x00E1]="Subtrim"
Text[0x00E2]="Phasing"
Text[0x00E4]="E-Ring"
Text[0x00E7]="Left"
Text[0x00E8]="Right"
Text[0x00F2]="Fixed"
Text[0x00F3]="Adjustable"
Text[0x00F9]="Gyro settings"
Text[0x00FE]="Stick Priority"
Text[0x0100]="Make sure the model has been"
Text[0x0101]="configured, including wing type,"
Text[0x0102]="reversing, travel, trimmed, etc."
Text[0x0103]="before continuing setup."
Text[0x0104]="0104"
Text[0x0105]="0105"
Text[0x0106]="Any wing type, channel assignment,"
Text[0x0107]="subtrim, or servo reversing changes"
Text[0x0108]="require running through initial"
Text[0x0109]="setup again."
Text[0x010A]="010A"
Text[0x010B]="010B"
Text[0x0190]="Relearn Servo Settings"
Text[0x019C]="Enter Receiver Bind Mode"
Text[0x01D7]="SAFE Select Channel"
Text[0x01DC]="AS3X"
Text[0x01DD]="AS3X Settings"
Text[0x01DE]="AS3X Gains"
Text[0x01E0]="Rate Gains"
Text[0x020A]="Restore from Backup"
Text[0x01E2]="SAFE Settings"
Text[0x01E3]="SAFE Gains"
Text[0x01E6]="Attitude Trim"
Text[0x01E7]="Envelope"
Text[0x01E9]="Roll Right"
Text[0x01EA]="Roll Left"
Text[0x01EB]="Pitch Down"
Text[0x01EC]="Pitch Up"
Text[0x01EE]="Throttle to Pitch"
Text[0x01EF]="Low Thr to Pitch"
Text[0x01F0]="High Thr to Pitch"
Text[0x01F3]="Threshold"
Text[0x01F4]="Angle"
Text[0x01F6]="Failsafe Angles"
Text[0x01F8]="Safe Mode"
Text[0x01F9]="SAFE Select"
Text[0x01FD]="SAFE Failsafe FMode"
Text[0x0208]="Decay"
Text[0x0209]="Save to Backup"
Text[0x020A]="Restore from Backup"
Text[0x020D]="First Time SAFE Setup"
Text[0x021A]="Set the model level,"
Text[0x021B]="and press Continue."
Text[0x021C]="021C"
Text[0x021D]="021D"
Text[0x021C]="" -- empty??
Text[0x021D]="" -- empty??
Text[0x021F]="Set the model on its nose,"
Text[0x0220]="and press Continue. If the"
Text[0x0221]="orientation on the next"
Text[0x0222]="screen is wrong go back"
Text[0x0223]="and try again."
Text[0x0224]="Continue"
Text[0x0229]="Set Orientation Manually"
Text[0x0226]="Angle Limits"
Text[0x0227]="Other settings"
Text[0x0229]="Set Orientation Manually"
Text[0x022B]="WARNING!"
Text[0x022C]="This will reset the"
Text[0x022D]="configuration to factory"
Text[0x022E]="defaults. This does not"
Text[0x022F]="affect the backup config."
Text[0x0230]="0230"
Text[0x0230]="" -- empty??
Text[0x0231]="This will overwrite the"
Text[0x0232]="backup memory with your"
Text[0x0233]="current configuartion."
Text[0x0234]="0234"
Text[0x0235]="0235"
Text[0x0234]="" -- blank line
Text[0x0235]="" -- blank line
Text[0x0236]="This will overwrite the"
Text[0x0237]="current config with"
Text[0x0238]="that which is in"
Text[0x0239]="the backup memory."
Text[0x023A]="023A"
Text[0x023A]="" -- blank line
Text[0x023D]="Copy Flight Mode Settings"
Text[0x0240]="Utilities"
Text[0x024C]="Gains will be captured on"
Text[0x024D]="Captured gains will be"
Text[0x024E]="Gains on"
Text[0x024F]="were captured and changed"
Text[0x0250]="from Adjustable to Fixed"
Text[0x0254]="Postive = Up, Negative = Down"
Text[0x0263]="Fixed/Adjustable Gains"
Text[0x0266]="Heading Gain"
Text[0x0267]="Positive = Nose Up/Roll Right"
Text[0x0268]="Negative = Nose Down/Roll Left"
Text[0x0269]="SAFE - Throttle to Pitch"
Text[0x026A]="Use CAUTION for Yaw gain!"
Text[0x8000]="FLIGHT MODE"
Text[0x8001]="Flight Mode 1"
Text[0x8002]="Flight Mode 2"
Text[0x8003]="Flight Mode 3"
end
------------------------------------------------------------------------------------------------------------
-- Main
local function DSM_Run(event)
if event == nil then
error("Cannot be run as a model script!")
return 2
elseif event == EVT_VIRTUAL_EXIT then
DSM_Release()
return 2
else
DSM_Menu(event)
DSM_Send_Receive()
DSM_Display()
end
if Phase == EXIT_DONE then
return 2
else
return 0
end
end

View File

@@ -0,0 +1,167 @@
---- #########################################################################
---- # #
---- # Telemetry Widget script for FrSky Horus/Radio Master TX16s #
---- # Copyright (C) EdgeTX #
-----# #
---- # License GPLv2: http://www.gnu.org/licenses/gpl-2.0.html #
---- # #
---- # This program is free software; you can redistribute it and/or modify #
---- # it under the terms of the GNU General Public License version 2 as #
---- # published by the Free Software Foundation. #
---- # #
---- # This program is distributed in the hope that it will be useful #
---- # but WITHOUT ANY WARRANTY; without even the implied warranty of #
---- # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
---- # GNU General Public License for more details. #
---- # #
---- #########################################################################
-- Model Locator by RSSI
-- Offer Shmuely (based on code from Scott Bauer 6/21/2015)
-- Date: 2021
-- ver: 0.1
-- MHA (based on code from Offer Shmuely)
-- Date: 2022
-- ver: 0.11
-- changes: made version for Graupner HoTT. Uses real Rssi data scaled -15db to -115db to 100..0
-- This widget help to find a lost/crashed model based on the RSSI (if still available)
-- The widget produce audio representation (variometer style) of the RSSI from the lost model
-- The widget also display the RSSI in a visible colorized bar (0-100%)
-- There are two way to use it
-- 1. The simple way:
-- walk toward the quad/plane that crashed,
-- as you get closer to your model the beeps will become more frequent with higher pitch (and a visual bar graph as well)
-- until you get close enough to find it visually
-- 2. the more accurate way:
-- turn the antenna straight away (i.e. to point from you, straight away)
-- try to find the weakest signal! (not the highest), i.e. the lowest RSSI you can find, this is the direction to the model.
-- now walk to the side (not toward the model), find again the weakest signal, this is also the direction to your model
-- triangulate the two lines, and it will be :-)
local delayMillis = 100
local nextPlayTime = getTime()
local img = Bitmap.open("/SCRIPTS/TOOLS/Model Locator (by RSSI).png")
--------------------------------------------------------------
local function log(s)
--return;
print("locator: " .. s)
end
--------------------------------------------------------------
-- init_func is called once when model is loaded
local function init()
return 0
end
-- bg_func is called periodically when screen is not visible
local function bg()
return 0
end
-- This function returns green at gvalue, red at rvalue and graduate in between
local function getRangeColor(value, red_value, green_value)
local range = math.abs(green_value - red_value)
if range == 0 then
return lcd.RGB(0, 0xdf, 0)
end
if value == nil then
return lcd.RGB(0, 0xdf, 0)
end
if green_value > red_value then
if value > green_value then
return lcd.RGB(0, 0xdf, 0)
end
if value < red_value then
return lcd.RGB(0xdf, 0, 0)
end
g = math.floor(0xdf * (value - red_value) / range)
r = 0xdf - g
return lcd.RGB(r, g, 0)
else
if value > green_value then
return lcd.RGB(0, 0xdf, 0)
end
if value < red_value then
return lcd.RGB(0xdf, 0, 0)
end
r = math.floor(0xdf * (value - green_value) / range)
g = 0xdf - r
return lcd.RGB(r, g, 0)
end
end
local function main(event)
lcd.clear()
-- fetch uplink rssi (HoTT sensor Rssi)
local rssi = getValue("Rssi")
-- calculate a percentage for the color bar (range -115db to -15db)
local rssiP = rssi
if(rssi ~= 0) then -- rssi < 0 -> telemtry data received
if(rssi >= -15) then -- -15db to -1db => 100%
rssiP = 100
else
if(rssi >= -115) then -- between -115db and -15db => 0% to 100%
rssiP = 100+rssi+15
else
rssiP = 0 -- less than -115 => 0%
end
end
end
lcd.drawBitmap(img, 250, 50, 40)
-- Title
lcd.drawText(3, 3, "Graupner HoTT Rssi Model Locator", 0)
myColor = getRangeColor(rssi, 0, 100)
lcd.setColor(CUSTOM_COLOR, myColor)
-- draw current value
local dx = 0
if rssi < -99 then
dx = -33
end
if rssi == 0 then
lcd.drawText(115, 73, "no telemetry", DBLSIZE + CUSTOM_COLOR)
else
lcd.drawNumber(180+dx, 30, rssi, XXLSIZE + CUSTOM_COLOR)
lcd.drawText(275, 73, "db", 0 + CUSTOM_COLOR)
end
-- draw main bar
lcd.setColor(CUSTOM_COLOR, YELLOW) -- RED / YELLOW
local xMin = 0
local yMin = 270
local xMax = 480
local yMax = 200
local h = 0
local rssiAsX = (rssiP * xMax) / 100
for xx = xMin, rssiAsX, 20 do
lcd.setColor(CUSTOM_COLOR, getRangeColor(xx, xMin, xMax - 40))
h = h + 10
lcd.drawFilledRectangle(xx, yMin - h, 15, h, CUSTOM_COLOR)
end
-- beep
if getTime() >= nextPlayTime then
playFile("/SCRIPTS/TOOLS/Model Locator (by RSSI).wav")
nextPlayTime = getTime() + delayMillis - rssiP
end
return 0
end
return {init = init,run = main,background = bg}

View File

@@ -6,6 +6,7 @@
14,4,Bayang,DHD_D4,1,Flip,RTH,Pict,Video,HLess,Invert,Rates,TakeOf,EmStop
14,5,Bayang,QX100,1,Flip,RTH,Pict,Video,HLess,Invert,Rates,TakeOf,EmStop
59,0,BayangRX,RX,1,AnAux1,AnAux2,Flip,RTH,Pict,Video
59,1,BayangRX,CPPM,1,AnAux1,AnAux2,Flip,RTH,Pict,Video
41,0,Bugs,3-6-8,0,Arm,Angle,Flip,Pict,Video,LED
42,0,BugsMini,Mini,0,Arm,Angle,Flip,Pict,Video,LED
42,1,BugsMini,3H,0,Arm,Angle,Flip,Pict,Video,LED,AltHol
@@ -28,15 +29,16 @@
7,3,Devo,6CH,0,CH5,CH6
7,4,Devo,7CH,0,CH5,CH6,CH7
33,0,DM022,Std,1,Flip,LED,Cam1,Cam2,HLess,RTH,RLow
6,0,DSM,2_22,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,n-a,ThKill
6,1,DSM,2_11,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,n-a,ThKill
6,2,DSM,X_22,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,n-a,ThKill
6,3,DSM,X_11,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,n-a,ThKill
6,0,DSM,2_1F,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,n-a,ThKill
6,1,DSM,2_2F,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,n-a,ThKill
6,2,DSM,X_1F,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,n-a,ThKill
6,3,DSM,X_2F,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,n-a,ThKill
6,4,DSM,AUTO,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,n-a,ThKill
6,5,DSM,R_1F,0,AUX3,AUX4,AUX5
70,0,DSM_RX,RX,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12
70,1,DSM_RX,CPPM,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12
45,0,E01X,E012,1,n-a,Flip,n-a,HLess,RTH
45,1,E01X,E015,1,Arm,Flip,LED,HLess,RTH
45,2,E01X,E016H,1,Stop,Flip,n-a,HLess,RTH
16,0,ESKY,Std,0,Gyro,Pitch
16,1,ESKY,ET4,0,Gyro,Pitch
35,0,ESKY150,4CH,0
@@ -53,7 +55,10 @@
28,3,Flysky_AFHDS2A,PPM_SBUS,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14
28,4,Flysky_AFHDS2A,PWM_IB16,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14,CH15,CH16
28,5,Flysky_AFHDS2A,PPM_IB16,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14,CH15,CH16
28,6,Flysky_AFHDS2A,PWM_SB16,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14,CH15,CH16
28,7,Flysky_AFHDS2A,PPM_SB16,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14,CH15,CH16
56,0,Flysky2A_RX,RX,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14
56,1,Flysky2A_RX,CPPM,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14
53,0,Height,5ch,0,Gear
53,1,Height,8ch,0,Gear,Gyro,Flap,Light
25,0,FrSkyV,V8,0,CH5,CH6,CH7,CH8
@@ -79,7 +84,9 @@
65,3,FrSkyR9,R9_968_8CH,0,CH5,CH6,CH7,CH8
55,0,FrSkyRX,RX,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14,CH15,CH16
55,1,FrSkyRX,CloneTX,0
58,0,FX816,P38,1
55,2,FrSkyRX,EraseTX,0
55,3,FrSkyRX,CPPM,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14,CH15,CH16
58,0,FX816,Std,1
20,0,FY326,FY326,1,Flip,RTH,HLess,Expert,Calib
20,1,FY326,FY319,1,Flip,RTH,HLess,Expert,Calib
23,0,FY326,FY326,1,Flip,RTH,HLess,Expert
@@ -107,7 +114,8 @@
22,0,J6Pro,Std,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12
71,0,JJRC345,JJRC345,1,Flip,HLess,RTH,LED,UNK1,UNK2,UNK3
71,1,JJRC345,SkyTmblr,1,Flip,HLess,RTH,LED,UNK1,UNK2,UNK3
49,0,KF606,Std,1,Trim
49,0,KF606,KF606,1,Trim
49,1,KF606,MIG320,1,Trim,LED
9,0,KN,WLToys,0,DRate,THold,IdleUp,Gyro,Ttrim,Atrim,Etrim
9,1,KN,Feilun,0,DRate,THold,IdleUp,Gyro,Ttrim,Atrim,Etrim
73,0,Kyosho,Std,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14
@@ -123,10 +131,14 @@
17,2,MT99XX,YZ,1,Flip,LED,Pict,Video,HLess
17,3,MT99XX,LS,1,Flip,Invert,Pict,Video,HLess
17,4,MT99XX,FY805,1,Flip,n-a,n-a,n-a,HLess
17,5,MT99XX,A180,0,3D_6G
17,6,MT99XX,Dragon,0,Mode,RTH
17,7,MT99XX,F949G,0,6G_3D,Light
44,0,NCC1701,Std,1,Warp
77,0,OMP,M2,0,THold,IdleUp,6G_3D
60,0,Pelikan,PRO_V4,0,CH5,CH6,CH7,CH8
60,1,Pelikan,LITE_V4,0,CH5,CH6,CH7,CH8
60,2,Pelikan,SCX24,0
51,0,Potensic,A20,1,TakLan,Emerg,Mode,HLess
66,0,Propel,74-Z,1,LEDs,RollCW,RolCCW,Fire,Weapon,Calib,AltHol,TakeOf,Land,Train
29,0,Q2x2,Q222,1,Flip,LED,Mod2,Mod1,HLess,RTH,XCal,YCal
@@ -159,8 +171,8 @@
5,1,V2x2,JXD506,1,Flip,Light,Pict,Video,HLess,StaSto,Emerg,Cam_UD
48,0,V761,3CH,0,Gyro,Calib,Flip,RtnAct,Rtn
48,1,V761,4CH,0,Gyro,Calib,Flip,RtnAct,Rtn
46,0,V911s,V911s,1,Calib
46,1,V911s,E119,1,Calib
46,0,V911s,V911s,1,Calib,Rate
46,1,V911s,E119,1,Calib,Rate,6G_3D
22,0,WFLY,WFR0xS,0,CH5,CH6,CH7,CH8,CH9
30,0,WK2x01,WK2801,0,CH5,CH6,CH7,CH8
30,1,WK2x01,WK2401,0
@@ -180,5 +192,14 @@
79,0,WFLY2,RF20x,0,CH5,CH6,CH7,CH8,CH9,CH10
80,0,E016Hv2,E016Hv2,1,TakLan,EmStop,Flip,Calib,HLess,RTH
81,0,E010r5,E010r5,1,Flip,LED,CALIB,HLess,RTH,GLIDE
82,0,LOLI,LOLI,0,CH5,CH6,CH7,CH8,1SwSePpPw,2SwSePw,3SwSe,4SwSe,5SwSeSb,6SwSe,7SwSePw,8SwSe
82,0,LOLI,Std,0,CH5,CH6,CH7,CH8,1SwSePpPw,2SwSePw,3SwSe,4SwSe,5SwSeSb,6SwSe,7SwSePw,8SwSe
83,0,E129,E129,1,TakLan,EmStop,TrimA,TrimE,TrimR
83,1,E129,C186,1,TakLan,EmStop,TrimA,TrimE,TrimR
84,0,JOYSWAY,Std,0
85,0,E016H,Std,1,Stop,Flip,n-a,HLess,RTH
87,0,IKEA
89,0,LOSI
90,0,MouldKg,Analog,0
90,1,MouldKg,Digit,0
91,0,Xerall,Tank,0,FlTa,TakLan,Rate,HLess,Photo,Video,TrimR,TrimE,TrimA
92,0,MT99xx2,PA18,0,MODE,FLIP,RTH

View File

@@ -280,11 +280,27 @@ local function Multi_Init()
end
--Exceptions on first 4 channels...
if ( protocol == 73 or (protocol == 74 and sub_protocol == 0) ) then -- Kyosho or RadioLink Surface
if ( protocol == 73 or (protocol == 74 and sub_protocol == 0) or (protocol == 60 and sub_protocol == 2) or protocol == 89) then -- Kyosho or RadioLink Surface or Pelikan/SCX24 or Losi
channel_names[1] = "ST"
channel_names[2] = "THR"
channel_names[3] = "CH3"
channel_names[4] = "CH4"
if(protocol == 60 and sub_protocol == 2) then
channel_names[4] = "n-a"
else
channel_names[4] = "CH4"
end
end
if ( protocol == 6 and sub_protocol == 5 ) then -- DSMR
channel_names[1] = "ST"
channel_names[2] = "THR"
channel_names[3] = "AUX1"
channel_names[4] = "AUX2"
end
if ( protocol == 90 ) then -- Mould King
channel_names[1] = "A"
channel_names[2] = "B"
channel_names[3] = "C"
channel_names[4] = "D"
end
--Check MultiChan.txt

529
Lua_scripts/MultiConfig.lua Normal file
View File

@@ -0,0 +1,529 @@
---- #########################################################################
---- # #
---- # Copyright (C) OpenTX #
-----# #
---- # License GPLv2: http://www.gnu.org/licenses/gpl-2.0.html #
---- # #
---- # This program is free software; you can redistribute it and/or modify #
---- # it under the terms of the GNU General Public License version 2 as #
---- # published by the Free Software Foundation. #
---- # #
---- # This program is distributed in the hope that it will be useful #
---- # but WITHOUT ANY WARRANTY; without even the implied warranty of #
---- # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
---- # GNU General Public License for more details. #
---- # #
---- #########################################################################
--###############################################################################
-- Multi buffer for Config description
-- To start operation:
-- Write 0xFF at address 4 will request the buffer to be cleared
-- Write "Conf" at address 0..3
-- Read
-- Read at address 12 gives the current config page
-- Read at address 13..172 gives the current data of the page = 8 lines * 20 caracters
-- Write
-- Write at address 5..11 the command
-- Write 0x01 at address 4 will send the command to the module
-- !! Before exiting the script must write 0 at address 0 for normal operation !!
--###############################################################################
local Version = "v0.2"
local Focus = -1
local Page = 0
local Edit = -1
local Edit_pos = 1
local Menu = { {text = "", field_type = 0, field_len = 0, field_value = {}, field_text = ""},
{text = "", field_type = 0, field_len = 0, field_value = {}, field_text = ""},
{text = "", field_type = 0, field_len = 0, field_value = {}, field_text = ""},
{text = "", field_type = 0, field_len = 0, field_value = {}, field_text = ""},
{text = "", field_type = 0, field_len = 0, field_value = {}, field_text = ""},
{text = "", field_type = 0, field_len = 0, field_value = {}, field_text = ""},
{text = "", field_type = 0, field_len = 0, field_value = {}, field_text = ""} }
local Menu_value = {}
local Blink = 0
local ModuleNumber = 0
local ModuleType = ""
local Module = {}
local InitialProtocol = 0
local InitialSubProtocol = 0
function bitand(a, b)
local result = 0
local bitval = 1
while a > 0 and b > 0 do
if a % 2 == 1 and b % 2 == 1 then -- test the rightmost bits
result = result + bitval -- set the current bit
end
bitval = bitval * 2 -- shift left
a = math.floor(a/2) -- shift right
b = math.floor(b/2)
end
return result
end
local function Config_Send(page, line, value)
local i
i = (page*16) + line
multiBuffer( 5, i )
for i = 1 , 6 , 1 do
multiBuffer( 5+i, value[i] )
end
multiBuffer( 4, 1 )
end
local function Config_Release()
--Set the protocol back to what it was
Module.protocol = InitialProtocol
Module.subProtocol = InitialSubProtocol
model.setModule(ModuleNumber, Module)
--Stop requesting updates
local i
for i = 3 , 0 , -1 do
multiBuffer( i, 0 )
end
end
local function Config_Page( )
Config_Send(Page, 0, { 0, 0, 0, 0, 0, 0 })
end
local function Config_Draw_Edit( event )
local i
local text
if Menu[Focus].field_type == 0xD0 then
-- Editable Hex value
if Edit == -1 then
-- Init
Edit = 0
Edit_pos = 1
Blink = 0
for i = 1, Menu[Focus].field_len, 1 do
Menu_value[i] = Menu[Focus].field_value[i]
end
end
if Edit == 0 then
-- Not editing value
if event == EVT_VIRTUAL_ENTER then
if Edit_pos > Menu[Focus].field_len then
-- Save or Cancel
Edit = -1
if Edit_pos == Menu[Focus].field_len + 1 then
-- Save
Config_Send(Page, Focus, Menu_value)
end
return
else
-- Switch to edit mode
Edit = 1
end
elseif event == EVT_VIRTUAL_PREV and Edit_pos > 1 then
-- Move cursor
Edit_pos = Edit_pos - 1
elseif event == EVT_VIRTUAL_NEXT and Edit_pos < Menu[Focus].field_len + 2 then
-- Move cursor
Edit_pos = Edit_pos + 1
end
else
-- Editing value
if event == EVT_VIRTUAL_ENTER then
-- End edit
Edit = 0
elseif event == EVT_VIRTUAL_PREV then
-- Change value
Menu_value[Edit_pos] = Menu_value[Edit_pos] - 1
elseif event == EVT_VIRTUAL_NEXT then
-- Change value
Menu_value[Edit_pos] = Menu_value[Edit_pos] + 1
end
--Blink
Blink = Blink + 1
if Blink > 30 then
Blink = 0
end
end
--Display
if LCD_W == 480 then
lcd.drawRectangle(160-1, 100-1, 160+2, 55+2, TEXT_COLOR)
lcd.drawFilledRectangle(160, 100, 160, 55, TEXT_BGCOLOR)
else
lcd.clear()
end
for i = 1, Menu[Focus].field_len, 1 do
if i==Edit_pos and (Edit ~= 1 or Blink > 15) then
attrib = INVERS
else
attrib = 0
end
if LCD_W == 480 then
lcd.drawText(170+12*2*(i-1), 110, string.format('%02X', Menu_value[i]), attrib)
else
lcd.drawText(17+6*2*(i-1), 10, string.format('%02X', Menu_value[i]), attrib + SMLSIZE)
end
end
if Edit_pos == Menu[Focus].field_len + 1 then
attrib = INVERS
else
attrib = 0
end
if LCD_W == 480 then
lcd.drawText(170, 130, "Save", attrib)
else
lcd.drawText(17, 30, "Save", attrib + SMLSIZE)
end
if Edit_pos == Menu[Focus].field_len + 2 then
attrib = INVERS
else
attrib = 0
end
if LCD_W == 480 then
lcd.drawText(260, 130, "Cancel", attrib)
else
lcd.drawText(77, 30, "Cancel", attrib + SMLSIZE)
end
elseif Menu[Focus].field_type == 0x90 then
-- Action text
if Edit == -1 then
-- Init
Edit = 0
Edit_pos = 2
end
if event == EVT_VIRTUAL_ENTER then
-- Exit
Edit = -1
if Edit_pos == 1 then
-- Yes
Config_Send(Page, Focus, { 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA } )
end
return
elseif event == EVT_VIRTUAL_PREV and Edit_pos > 1 then
-- Switch to Yes
Edit_pos = Edit_pos - 1
elseif event == EVT_VIRTUAL_NEXT and Edit_pos < 2 then
-- Switch to No
Edit_pos = Edit_pos + 1
end
-- Display
if LCD_W == 480 then
lcd.drawRectangle(160-1, 100-1, 160+2, 55+2, TEXT_COLOR)
lcd.drawFilledRectangle(160, 100, 160, 55, TEXT_BGCOLOR)
else
lcd.clear()
end
if LCD_W == 480 then
lcd.drawText(170, 110, Menu[Focus].field_text .. "?")
else
lcd.drawText(17, 10, Menu[Focus].field_text .. "?", SMLSIZE)
end
if Edit_pos == 1 then
attrib = INVERS
else
attrib = 0
end
if LCD_W == 480 then
lcd.drawText(170, 130, "Yes", attrib)
else
lcd.drawText(17, 30, "Yes", attrib + SMLSIZE)
end
if Edit_pos == 2 then
attrib = INVERS
else
attrib = 0
end
if LCD_W == 480 then
lcd.drawText(260, 130, "No", attrib)
else
lcd.drawText(77, 30, "No", attrib)
end
end
end
local function Config_Next_Prev( event )
-- Next Prev on main menu
local line
if event == EVT_VIRTUAL_PREV then
for line = Focus - 1, 1, -1 do
if Menu[line].field_type >= 0x80 and Menu[line].field_type ~= 0xA0 and Menu[line].field_type ~= 0xC0 then
Focus = line
break
end
end
elseif event == EVT_VIRTUAL_NEXT then
for line = Focus + 1, 7, 1 do
if Menu[line].field_type >= 0x80 and Menu[line].field_type ~= 0xA0 and Menu[line].field_type ~= 0xC0 then
Focus = line
break
end
end
end
end
local function Config_Draw_Menu()
-- Main menu
local i
local value
local line
local length
local text
lcd.clear()
if LCD_W == 480 then
--Draw title
lcd.drawFilledRectangle(0, 0, LCD_W, 30, TITLE_BGCOLOR)
lcd.drawText(1, 5, "Multi Config " .. Version, MENU_TITLE_COLOR)
if multiBuffer(13) == 0x00 then
lcd.drawText(10,50,"No Config telemetry...", BLINK)
end
else
--Draw on LCD_W=128
lcd.drawText(1, 0, "Multi Config " .. Version, SMLSIZE)
if multiBuffer(13) == 0x00 then
lcd.drawText(2,17,"No Config telemetry...",SMLSIZE)
end
end
if multiBuffer(13) ~= 0x00 then
if LCD_W == 480 then
--Draw firmware version and channels order
local ch_order = multiBuffer(17)
local channel_names = {}
channel_names[bitand(ch_order,3)+1] = "A"
ch_order = math.floor(ch_order/4)
channel_names[bitand(ch_order,3)+1] = "E"
ch_order = math.floor(ch_order/4)
channel_names[bitand(ch_order,3)+1] = "T"
ch_order = math.floor(ch_order/4)
channel_names[bitand(ch_order,3)+1] = "R"
lcd.drawText(150, 5, ModuleType.." v" .. multiBuffer(13) .. "." .. multiBuffer(14) .. "." .. multiBuffer(15) .. "." .. multiBuffer(16) .. " " .. channel_names[1] .. channel_names[2] .. channel_names[3] .. channel_names[4], MENU_TITLE_COLOR)
else
lcd.drawText(76, 0, "/Fw" .. multiBuffer(13) .. "." .. multiBuffer(14) .. "." .. multiBuffer(15) .. "." .. multiBuffer(16),SMLSIZE) -- .. " " .. channel_names[1] .. channel_names[2] .. channel_names[3] .. channel_names[4])
end
--Draw Menu
for line = 1, 7, 1 do
--Clear line info
Menu[line].text = ""
Menu[line].field_type = 0
Menu[line].field_len = 0
for i = 1, 7, 1 do
Menu[line].field_value[i] = 0
end
Menu[line].field_text = ""
length = 0
--Read line from buffer
for i = 0, 20-1, 1 do
value=multiBuffer( line*20+13+i )
if value == 0 then
break -- end of line
end
if value > 0x80 and Menu[line].field_type == 0 then
-- Read field type
Menu[line].field_type = bitand(value, 0xF0)
Menu[line].field_len = bitand(value, 0x0F)
length = Menu[line].field_len
if Menu[line].field_type ~= 0xA0 and Menu[line].field_type ~= 0xC0 and Focus == -1 then
-- First actionnable field if nothing was selected
Focus = line;
end
else
if Menu[line].field_type == 0 then
-- Text
Menu[line].text = Menu[line].text .. string.char(value)
else
-- Menu specific fields
length = length - 1
if Menu[line].field_type == 0x80 or Menu[line].field_type == 0x90 then
Menu[line].field_text = Menu[line].field_text .. string.char(value)
else
Menu[line].field_value[Menu[line].field_len-length] = value
end
if length == 0 then
-- End of fields
break
end
end
end
end
-- Display menu text
if Menu[line].text ~= "" then
if Menu[line].field_type == 0xA0 or Menu[line].field_type == 0xB0 or Menu[line].field_type == 0xC0 or Menu[line].field_type == 0xD0 then
Menu[line].text = Menu[line].text .. ":"
end
if LCD_W == 480 then
lcd.drawText(10,32+20*line,Menu[line].text )
else
lcd.drawText(2,1+8*line,Menu[line].text,SMLSIZE)
end
end
-- Display specific fields
if line == Focus then
attrib = INVERS
else
attrib = 0
end
if Menu[line].field_type == 0x80 or Menu[line].field_type == 0x90 then
-- Text
if LCD_W == 480 then
lcd.drawText(10+9*#Menu[line].text, 32+20*line, Menu[line].field_text, attrib)
else
lcd.drawText(2+5*#Menu[line].text, 1+8*line, Menu[line].field_text, SMLSIZE + attrib)
end
elseif Menu[line].field_type == 0xA0 or Menu[line].field_type == 0xB0 then
-- Decimal value
value = 0
for i = 1, Menu[line].field_len, 1 do
value = value*256 + value
end
if LCD_W == 480 then
lcd.drawText(10+9*#Menu[line].text, 32+20*line, value, attrib)
else
lcd.drawText(2+5*#Menu[line].text, 1+8*line, value, SMLSIZE + attrib)
end
elseif Menu[line].field_type == 0xC0 or Menu[line].field_type == 0xD0 then
-- Hex value
text=""
for i = 1, Menu[line].field_len, 1 do
text = text .. string.format('%02X ', Menu[line].field_value[i])
end
if LCD_W == 480 then
lcd.drawText(10+9*#Menu[line].text, 32+20*line, text, attrib)
else
lcd.drawText(2+5*#Menu[line].text, 1+8*line, text, SMLSIZE + attrib)
end
end
end
end
end
-- Init
local function Config_Init()
--Find Multi module
Module_int = model.getModule(0)
Module_ext = model.getModule(1)
if Module_int["Type"] ~= 6 and Module_ext["Type"] ~= 6 then
error("No Multi module detected...")
return 2
end
if Module_int["Type"] == 6 and Module_ext["Type"] == 6 then
error("Two Multi modules detected, turn on only the one to be configured.")
return 2
end
if Module_int["Type"] == 6 then
ModuleNumber = 0
ModuleType = "Internal"
else
ModuleNumber = 1
ModuleType = "External"
end
--Get Module settings and set it to config protocol
Module = model.getModule(ModuleNumber)
InitialProtocol = Module.protocol
InitialSubProtocol = Module.subProtocol
Module.protocol = 86
Module.subProtocol = 0
model.setModule(ModuleNumber, Module)
--pause while waiting for the module to switch to config
for i = 0, 10, 1 do end
--Set protocol to talk to
multiBuffer( 0, string.byte('C') )
--test if value has been written
if multiBuffer( 0 ) ~= string.byte('C') then
error("Not enough memory!")
return 2
end
--Request init of the buffer
multiBuffer( 4, 0xFF )
multiBuffer(13, 0x00 )
--Continue buffer init
multiBuffer( 1, string.byte('o') )
multiBuffer( 2, string.byte('n') )
multiBuffer( 3, string.byte('f') )
-- Test set
-- multiBuffer( 12, 0 )
-- multiBuffer( 13, 1 )
-- multiBuffer( 14, 3 )
-- multiBuffer( 15, 2 )
-- multiBuffer( 16, 62 )
-- multiBuffer( 17, 0 + 1*4 + 2*16 + 3*64)
-- multiBuffer( 33, string.byte('G') )
-- multiBuffer( 34, string.byte('l') )
-- multiBuffer( 35, string.byte('o') )
-- multiBuffer( 36, string.byte('b') )
-- multiBuffer( 37, string.byte('a') )
-- multiBuffer( 38, string.byte('l') )
-- multiBuffer( 39, string.byte(' ') )
-- multiBuffer( 40, string.byte('I') )
-- multiBuffer( 41, string.byte('D') )
-- multiBuffer( 42, 0xD0 + 4 )
-- multiBuffer( 43, 0x12 )
-- multiBuffer( 44, 0x34 )
-- multiBuffer( 45, 0x56 )
-- multiBuffer( 46, 0x78 )
-- multiBuffer( 47, 0x9A )
-- multiBuffer( 48, 0xBC )
-- multiBuffer( 53, 0x90 + 9 )
-- multiBuffer( 54, string.byte('R') )
-- multiBuffer( 55, string.byte('e') )
-- multiBuffer( 56, string.byte('s') )
-- multiBuffer( 57, string.byte('e') )
-- multiBuffer( 58, string.byte('t') )
-- multiBuffer( 59, string.byte(' ') )
-- multiBuffer( 60, string.byte('G') )
-- multiBuffer( 61, string.byte('I') )
-- multiBuffer( 62, string.byte('D') )
-- multiBuffer( 63, 0x00 )
end
-- Main
local function Config_Run(event)
if event == nil then
error("Cannot be run as a model script!")
return 2
elseif event == EVT_VIRTUAL_EXIT then
Config_Release()
return 2
else
Config_Draw_Menu()
if ( event == EVT_VIRTUAL_PREV_PAGE or event == EVT_VIRTUAL_NEXT_PAGE ) and Edit < 1 then
-- Not editing, ok to change page
if event == EVT_VIRTUAL_PREV_PAGE then
killEvents(event)
if Page > 0 then
--Page = Page - 1
--Config_Page()
end
else
--Page = Page + 1
--Config_Page()
end
end
if Focus > 0 then
-- At least one line has an action
if Edit >= 0 then
-- Currently editing
Config_Draw_Edit( event )
elseif event == EVT_VIRTUAL_ENTER then
-- Switch to edit
Config_Draw_Edit( 0 )
elseif event == EVT_VIRTUAL_PREV or event == EVT_VIRTUAL_NEXT then
-- Main menu selection
Config_Next_Prev( event )
end
end
return 0
end
end
return { init=Config_Init, run=Config_Run }

View File

@@ -13,6 +13,19 @@ If you like this project and want to support further development please consider
</tr>
</table>
## MultiConfig
Enables to modify on a Multi module the Global ID, Cyrf ID or format the EEPROM.
Matching the ID of 2 Multi modules enable them to control the same receivers without rebinding. Be carefull the 2 modules should not be used at the same time unless you know what you are doing.
Notes:
- Supported from Multi v1.3.2.85 or above and OpenTX 2.3.12 or above
- The Multi module to be configured must be active, if there is a second Multi module in the radio it must be off
- Located on the radio SD card under \SCRIPTS\TOOLS
[![MultiCconfig](https://img.youtube.com/vi/lGyCV2kpqHU/0.jpg)](https://www.youtube.com/watch?v=lGyCV2kpqHU)
## MultiChannelsUpdater
Automatically name the channels based on the loaded Multi protocol and sub protocol including the module channel order convention.
@@ -39,8 +52,16 @@ Notes:
[![Text mode video](https://img.youtube.com/vi/81wd8NlF3Qw/0.jpg)](https://www.youtube.com/watch?v=81wd8NlF3Qw)
## Graupner HoTT Model Locator
This is the Graupner HoTT adapted version of the Model Locator script using RSSI.
The OpenTX sensor "RSSI" is populated by the individual OpenTX telemetry protocol implementations and returns a value from 0..100 (percent) originating from the early FrSky implementation. It turns out that FrSky did not really provide a genuine signal strength indicator in units of dbm but a link quality indicator in 0..100%. With Graupner HoTT the link quality indicator is not a good basis for the model locator as it is very non-linear and doesn't change much with distance. Using the Graupner HoTT telemetry sensor "Rssi" which is a true signal strength indicator serves the purpose of locating a model much better as it varies much more with distance.
## DSM Forward Programming
Navigation is mainly done using the scroll wheel and ENT. Short press on ENT will edit a value. When editing a value a long ENT press will restore the value to its default. To exit the script and terminate all current operations correctly short press RTN (if you don't do this the RX might not store the changes).
This is a work in progress. It's only available for color screens (Horus, TX16S, T16, T18...).
If some text appears as Unknown_xxx, please report xxx and what the exact text display should be.

View File

@@ -29,7 +29,7 @@ void A7105_WriteData(uint8_t len, uint8_t channel)
A7105_CSN_on;
if(protocol!=PROTO_WFLY2)
{
if(!(protocol==PROTO_FLYSKY || protocol==PROTO_KYOSHO))
if(!(protocol==PROTO_FLYSKY || (protocol==PROTO_KYOSHO && sub_protocol==KYOSHO_HYPE)))
{
A7105_Strobe(A7105_STANDBY); //Force standby mode, ie cancel any TX or RX...
A7105_SetTxRxMode(TX_EN); //Switch to PA
@@ -210,6 +210,11 @@ void A7105_AdjustLOBaseFreq(uint8_t cmd)
offset=(int16_t)FORCE_KYOSHO_TUNING;
#endif
break;
case PROTO_JOYSWAY:
#ifdef FORCE_JOYSWAY_TUNING
offset=(int16_t)FORCE_JOYSWAY_TUNING;
#endif
break;
case PROTO_WFLY2:
#ifdef FORCE_WFLY2_TUNING
offset=(int16_t)FORCE_WFLY2_TUNING;
@@ -341,6 +346,14 @@ const uint8_t PROGMEM WFLY2_A7105_regs[] = {
0x01, 0x0f // 30 - 31
};
#endif
#ifdef JOYSWAY_A7105_INO
const uint8_t PROGMEM JOYSWAY_A7105_regs[] = {
0xff, 0x62, 0xff, 0x0F, 0x00, 0xff, 0xff ,0x00, 0x00, 0x05, 0x00, 0x01, 0x00, 0xF5, 0x00, 0x15, // 00 - 0f
0x9E, 0x4B, 0x00, 0x03, 0x56, 0x2B, 0x12, 0x4A, 0x02, 0x80, 0x80, 0x00, 0x0E, 0x91, 0x03, 0x0F, // 10 - 1f
0x16, 0x2A, 0x00, 0xff, 0xff, 0xff, 0x3A, 0x06, 0x1F, 0x47, 0x80, 0x01, 0x05, 0x45, 0x18, 0x00, // 20 - 2f
0x01, 0x0f // 30 - 31
};
#endif
#define ID_NORMAL 0x55201041
#define ID_PLUS 0xAA201041
@@ -349,6 +362,13 @@ void A7105_Init(void)
uint8_t *A7105_Regs=0;
uint8_t vco_calibration0, vco_calibration1;
#ifdef JOYSWAY_A7105_INO
if(protocol==PROTO_JOYSWAY)
{
A7105_Regs=(uint8_t*)JOYSWAY_A7105_regs;
}
else
#endif
#ifdef WFLY2_A7105_INO
if(protocol==PROTO_WFLY2)
{
@@ -479,9 +499,17 @@ void A7105_Init(void)
vco_calibration1=0x02;
break;
case PROTO_PELIKAN:
if(sub_protocol == PELIKAN_SCX24)
{
vco_calibration1=0x0A;
break;
}
case PROTO_KYOSHO: //sub_protocol Hype
vco_calibration1=0x0C;
break;
case PROTO_JOYSWAY:
vco_calibration1=0x09;
break;
default:
vco_calibration1=0x0A;
break;

View File

@@ -28,7 +28,7 @@ enum {
AFHDS2A_RX_DATA
};
static void __attribute__((unused)) AFHDS2A_Rx_build_telemetry_packet()
static void __attribute__((unused)) AFHDS2A_RX_build_telemetry_packet()
{
uint32_t bits = 0;
uint8_t bitsavailable = 0;
@@ -56,13 +56,13 @@ static void __attribute__((unused)) AFHDS2A_Rx_build_telemetry_packet()
}
}
static uint8_t __attribute__((unused)) AFHDS2A_Rx_data_ready()
static uint8_t __attribute__((unused)) AFHDS2A_RX_data_ready()
{
// check if FECF+CRCF Ok
return !(A7105_ReadReg(A7105_00_MODE) & (1 << 5 | 1 << 6 | 1 << 0));
}
uint16_t initAFHDS2A_Rx()
void AFHDS2A_RX_init()
{
uint8_t i;
A7105_Init();
@@ -84,12 +84,11 @@ uint16_t initAFHDS2A_Rx()
hopping_frequency[i] = eeprom_read_byte((EE_ADDR)temp++);
phase = AFHDS2A_RX_DATA;
}
return 1000;
}
#define AFHDS2A_RX_WAIT_WRITE 0x80
uint16_t AFHDS2A_Rx_callback()
uint16_t AFHDS2A_RX_callback()
{
static int8_t read_retry;
int16_t temp;
@@ -105,9 +104,13 @@ uint16_t AFHDS2A_Rx_callback()
switch(phase) {
case AFHDS2A_RX_BIND1:
if(IS_BIND_DONE) return initAFHDS2A_Rx(); // Abort bind
if(IS_BIND_DONE)
{
AFHDS2A_RX_init(); // Abort bind
break;
}
debugln("bind p=%d", phase+1);
if (AFHDS2A_Rx_data_ready()) {
if (AFHDS2A_RX_data_ready()) {
A7105_ReadData(AFHDS2A_RX_TXPACKET_SIZE);
if ((packet[0] == 0xbb && packet[9] == 0x01) || (packet[0] == 0xbc && packet[9] <= 0x02)) {
memcpy(rx_id, &packet[1], 4); // TX id actually
@@ -121,9 +124,13 @@ uint16_t AFHDS2A_Rx_callback()
return 10000;
case AFHDS2A_RX_BIND2:
if(IS_BIND_DONE) return initAFHDS2A_Rx(); // Abort bind
if(IS_BIND_DONE)
{
AFHDS2A_RX_init(); // Abort bind
break;
}
// got 2nd bind packet from tx ?
if (AFHDS2A_Rx_data_ready()) {
if (AFHDS2A_RX_data_ready()) {
A7105_ReadData(AFHDS2A_RX_TXPACKET_SIZE);
if ((packet[0] == 0xBC && packet[9] == 0x02 && packet[10] == 0x00) &&
(memcmp(rx_id, &packet[1], 4) == 0) &&
@@ -156,7 +163,8 @@ uint16_t AFHDS2A_Rx_callback()
{
debugln("done");
BIND_DONE;
return initAFHDS2A_Rx(); // Restart protocol
AFHDS2A_RX_init(); // Restart protocol
break;
}
phase |= AFHDS2A_RX_WAIT_WRITE;
return 1700;
@@ -173,14 +181,18 @@ uint16_t AFHDS2A_Rx_callback()
return 10000;
case AFHDS2A_RX_DATA:
if (AFHDS2A_Rx_data_ready()) {
if (AFHDS2A_RX_data_ready()) {
A7105_ReadData(AFHDS2A_RX_TXPACKET_SIZE);
if (memcmp(&packet[1], rx_id, 4) == 0 && memcmp(&packet[5], rx_tx_addr, 4) == 0) {
if (packet[0] == 0x58 && packet[37] == 0x00 && telemetry_link == 0) { // standard packet, send channels to TX
if (packet[0] == 0x58 && packet[37] == 0x00 && (telemetry_link&0x7F) == 0) { // standard packet, send channels to TX
int rssi = min(A7105_ReadReg(A7105_1D_RSSI_THOLD),160);
RX_RSSI = map16b(rssi, 160, 8, 0, 128);
AFHDS2A_Rx_build_telemetry_packet();
AFHDS2A_RX_build_telemetry_packet();
telemetry_link = 1;
#ifdef SEND_CPPM
if(sub_protocol>0)
telemetry_link |= 0x80; // Disable telemetry output
#endif
}
rx_data_started = true;
read_retry = 10; // hop to next channel

View File

@@ -277,7 +277,7 @@ static void AFHDS2A_build_packet(uint8_t type)
#define AFHDS2A_WRITE_TIME 1700
#endif
uint16_t ReadAFHDS2A()
uint16_t AFHDS2A_callback()
{
static uint8_t packet_type;
static uint16_t packet_counter;
@@ -293,8 +293,8 @@ uint16_t ReadAFHDS2A()
case AFHDS2A_BIND3:
AFHDS2A_build_bind_packet();
A7105_WriteData(AFHDS2A_TXPACKET_SIZE, packet_count%2 ? 0x0d : 0x8c);
if(!(A7105_ReadReg(A7105_00_MODE) & (1<<5 | 1<<6)))
{ // FECF+CRCF Ok
if(!(A7105_ReadReg(A7105_00_MODE) & (1<<5))) // removed FECF check due to issues with fs-x6b -> & (1<<5 | 1<<6)
{ // CRCF Ok
A7105_ReadData(AFHDS2A_RXPACKET_SIZE);
if(packet[0] == 0xbc && packet[9] == 0x01)
{
@@ -310,17 +310,17 @@ uint16_t ReadAFHDS2A()
}
phase = AFHDS2A_BIND4;
packet_count++;
return 3850;
break;
}
}
packet_count++;
if(IS_BIND_DONE)
{ // exit bind if asked to do so from the GUI
phase = AFHDS2A_BIND4;
return 3850;
break;
}
phase |= AFHDS2A_WAIT_WRITE;
return 1700;
return AFHDS2A_WRITE_TIME;
case AFHDS2A_BIND1|AFHDS2A_WAIT_WRITE:
case AFHDS2A_BIND2|AFHDS2A_WAIT_WRITE:
case AFHDS2A_BIND3|AFHDS2A_WAIT_WRITE:
@@ -336,7 +336,7 @@ uint16_t ReadAFHDS2A()
phase++;
if(phase > AFHDS2A_BIND3)
phase = AFHDS2A_BIND1;
return 2150;
return 3850-AFHDS2A_WRITE_TIME;
case AFHDS2A_BIND4:
AFHDS2A_build_bind_packet();
A7105_WriteData(AFHDS2A_TXPACKET_SIZE, packet_count%2 ? 0x0d : 0x8c);
@@ -348,7 +348,7 @@ uint16_t ReadAFHDS2A()
phase = AFHDS2A_DATA_INIT;
BIND_DONE;
}
return 3850;
break;
case AFHDS2A_DATA_INIT:
packet_counter=0;
packet_type = AFHDS2A_PACKET_STICKS;
@@ -358,8 +358,7 @@ uint16_t ReadAFHDS2A()
telemetry_set_input_sync(3850);
#endif
AFHDS2A_build_packet(packet_type);
if((A7105_ReadReg(A7105_00_MODE) & 0x01)==0) // Check if something has been received...
data_rx=1; // Yes
data_rx=A7105_ReadReg(A7105_00_MODE); // Check if something has been received...
A7105_WriteData(AFHDS2A_TXPACKET_SIZE, hopping_frequency[hopping_frequency_no++]);
if(hopping_frequency_no >= AFHDS2A_NUMFREQ)
hopping_frequency_no = 0;
@@ -377,8 +376,8 @@ uint16_t ReadAFHDS2A()
#endif
packet_type = AFHDS2A_PACKET_STICKS; // todo : check for settings changes
}
if(!(A7105_ReadReg(A7105_00_MODE) & (1<<5 | 1<<6)) && data_rx==1)
{ // RX+FECF+CRCF Ok
if(!(A7105_ReadReg(A7105_00_MODE) & (1<<5)) && !(data_rx & 1)) // removed FECF check due to issues with fs-x6b -> & (1<<5 | 1<<6)
{ // RX+CRCF Ok
A7105_ReadData(AFHDS2A_RXPACKET_SIZE);
if(packet[0] == 0xAA && packet[9] == 0xFC)
packet_type=AFHDS2A_PACKET_SETTINGS; // RX is asking for settings
@@ -417,10 +416,10 @@ uint16_t ReadAFHDS2A()
phase &= ~AFHDS2A_WAIT_WRITE;
return 3850-AFHDS2A_WRITE_TIME;
}
return 3850; // never reached, please the compiler
return 3850;
}
uint16_t initAFHDS2A()
void AFHDS2A_init()
{
A7105_Init();
@@ -446,6 +445,5 @@ uint16_t initAFHDS2A()
num_ch=17;
else
num_ch=14;
return 50000;
}
#endif

View File

@@ -33,19 +33,14 @@ enum {
ASSAN_DATA5
};
void ASSAN_init()
void ASSAN_RF_init()
{
NRF24L01_Initialize();
//Specifics to ASSAN
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x02); // 4 bytes rx/tx address
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, (uint8_t *)"\x80\x80\x80\xB8", ASSAN_ADDRESS_LENGTH); // Bind address
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, (uint8_t *)"\x80\x80\x80\xB8", ASSAN_ADDRESS_LENGTH); // Bind address
NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, (uint8_t *)"\x80\x80\x80\xB8", ASSAN_ADDRESS_LENGTH); // Bind address
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowldgement on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, ASSAN_PACKET_SIZE);
NRF24L01_SetPower();
}
void ASSAN_send_packet()
@@ -169,17 +164,16 @@ static void __attribute__((unused)) ASSAN_initialize_txid()
hopping_frequency[1]=freq2;
}
uint16_t initASSAN()
void ASSAN_init()
{
ASSAN_initialize_txid();
ASSAN_init();
ASSAN_RF_init();
hopping_frequency_no = 0;
if(IS_BIND_IN_PROGRESS)
phase=ASSAN_BIND0;
else
phase=ASSAN_DATA0;
return 1000;
}
#endif

View File

@@ -16,7 +16,7 @@
#if defined(BUGSMINI_NRF24L01_INO)
#include "iface_nrf24l01.h"
#include "iface_xn297.h"
#define BUGSMINI_INITIAL_WAIT 500
#define BUGSMINI_PACKET_INTERVAL 6840
@@ -57,22 +57,10 @@ enum {
#define BUGSMINI_FLAG_ANGLE 0x02 // angle/acro mode (set is angle mode)
#define BUGSMINI_FLAG_ALTHOLD 0x04 // angle/altitude hold mode (set is altitude mode)
static void __attribute__((unused)) BUGSMINI_init()
static void __attribute__((unused)) BUGSMINI_RF_init()
{
NRF24L01_Initialize();
NRF24L01_SetTxRxMode(TX_EN);
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowldgement on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, BUGSMINI_RX_PAYLOAD_SIZE); // bytes of data payload for rx pipe 1
NRF24L01_WriteReg(NRF24L01_06_RF_SETUP, 0x07);
NRF24L01_SetBitrate(NRF24L01_BR_1M);
NRF24L01_SetPower();
NRF24L01_Activate(0x73); // Activate feature register
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 0x00); // Disable dynamic payload length on all pipes
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, 0x00); // Set feature bits on
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_1M);
//XN297_HoppingCalib(BUGSMINI_NUM_RF_CHANNELS*2);
}
static void __attribute__((unused)) BUGSMINI_check_arming()
@@ -95,7 +83,7 @@ static void __attribute__((unused)) BUGSMINI_check_arming()
}
}
static void __attribute__((unused)) BUGSMINI_send_packet(uint8_t bind)
static void __attribute__((unused)) BUGSMINI_send_packet()
{
BUGSMINI_check_arming(); // sets globals arm_flags and armed
@@ -107,7 +95,7 @@ static void __attribute__((unused)) BUGSMINI_send_packet(uint8_t bind)
packet[1] = BUGSMINI_txid[0];
packet[2] = BUGSMINI_txid[1];
packet[3] = BUGSMINI_txid[2];
if(bind)
if(IS_BIND_IN_PROGRESS)
{
packet[4] = 0x00;
packet[5] = 0x7d;
@@ -159,15 +147,14 @@ static void __attribute__((unused)) BUGSMINI_send_packet(uint8_t bind)
hopping_frequency_no++;
if(hopping_frequency_no >= BUGSMINI_NUM_RF_CHANNELS)
hopping_frequency_no = 0;
NRF24L01_WriteReg(NRF24L01_05_RF_CH, bind ? hopping_frequency[hopping_frequency_no+BUGSMINI_NUM_RF_CHANNELS] : hopping_frequency[hopping_frequency_no]);
XN297_Hopping(IS_BIND_IN_PROGRESS ? hopping_frequency_no+BUGSMINI_NUM_RF_CHANNELS : hopping_frequency_no);
}
// Power on, TX mode, 2byte CRC
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP));
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
// Send
XN297_SetPower();
XN297_SetTxRxMode(TXRX_OFF);
XN297_SetTxRxMode(TX_EN);
XN297_WritePayload(packet, BUGSMINI_TX_PAYLOAD_SIZE);
NRF24L01_SetPower();
}
// compute final address for the rxid received during bind
@@ -231,37 +218,37 @@ static void __attribute__((unused)) BUGSMINI_make_address()
// Something wrong happened if we arrive here....
}
#if defined(BUGS_HUB_TELEMETRY)
static void __attribute__((unused)) BUGSMINI_update_telemetry()
{
#if defined(BUGS_HUB_TELEMETRY)
uint8_t checksum = 0x6d;
for(uint8_t i=1; i<12; i++)
checksum += packet[i];
if(packet[0] == checksum)
checksum += packet_in[i];
if(packet_in[0] == checksum)
{
RX_RSSI = packet[3];
RX_RSSI = packet_in[3];
if(sub_protocol==BUGS3H)
{
if(packet[11] & 0x40)
if(packet_in[11] & 0x40)
v_lipo1 = 0x40; // Warning
else if(packet[11] & 0x80)
else if(packet_in[11] & 0x80)
v_lipo1 = 0x20; // Critical
else
v_lipo1 = 0x80; // Ok
}
else
{
if(packet[11] & 0x80)
if(packet_in[11] & 0x80)
v_lipo1 = 0x80; // Ok
else if(packet[11] & 0x40)
else if(packet_in[11] & 0x40)
v_lipo1 = 0x40; // Warning
else
v_lipo1 = 0x20; // Critical
}
telemetry_link=1;
}
#endif
}
#endif
uint16_t BUGSMINI_callback()
{
@@ -269,58 +256,52 @@ uint16_t BUGSMINI_callback()
switch(phase)
{
case BUGSMINI_BIND1:
if( NRF24L01_ReadReg(NRF24L01_07_STATUS) & _BV(NRF24L01_07_RX_DR))
if( XN297_IsRX() )
{ // RX fifo data ready
XN297_ReadPayload(packet, BUGSMINI_RX_PAYLOAD_SIZE);
XN297_ReadPayload(packet, BUGSMINI_RX_PAYLOAD_SIZE); // Not checking the CRC??
base_adr=BUGSMINI_EEPROM_OFFSET+(RX_num&0x0F)*2;
eeprom_write_byte((EE_ADDR)(base_adr+0),packet[1]); // Save rxid in EEPROM
eeprom_write_byte((EE_ADDR)(base_adr+1),packet[2]); // Save rxid in EEPROM
NRF24L01_SetTxRxMode(TXRX_OFF);
NRF24L01_SetTxRxMode(TX_EN);
eeprom_write_byte((EE_ADDR)(base_adr+0),packet[1]); // Save rxid in EEPROM
eeprom_write_byte((EE_ADDR)(base_adr+1),packet[2]); // Save rxid in EEPROM
BUGSMINI_make_address();
XN297_SetTXAddr(rx_tx_addr, 5);
XN297_SetRXAddr(rx_tx_addr, 5);
XN297_SetRXAddr(rx_tx_addr, BUGSMINI_RX_PAYLOAD_SIZE);
phase = BUGSMINI_DATA1;
BIND_DONE;
return BUGSMINI_PACKET_INTERVAL;
break;
}
NRF24L01_SetTxRxMode(TXRX_OFF);
NRF24L01_SetTxRxMode(TX_EN);
BUGSMINI_send_packet(1);
BUGSMINI_send_packet();
phase = BUGSMINI_BIND2;
return BUGSMINI_WRITE_WAIT;
case BUGSMINI_BIND2:
// switch to RX mode
NRF24L01_SetTxRxMode(TXRX_OFF);
NRF24L01_SetTxRxMode(RX_EN);
NRF24L01_FlushRx();
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO)
| _BV(NRF24L01_00_PWR_UP) | _BV(NRF24L01_00_PRIM_RX));
XN297_SetTxRxMode(TXRX_OFF);
XN297_SetTxRxMode(RX_EN);
phase = BUGSMINI_BIND1;
return BUGSMINI_PACKET_INTERVAL - BUGSMINI_WRITE_WAIT;
case BUGSMINI_DATA1:
#ifdef MULTI_SYNC
telemetry_set_input_sync(BUGSMINI_PACKET_INTERVAL);
#endif
if( NRF24L01_ReadReg(NRF24L01_07_STATUS) & _BV(NRF24L01_07_RX_DR))
{ // RX fifo data ready => read only 12 bytes to not overwrite channel change flag
XN297_ReadPayload(packet, 12);
BUGSMINI_update_telemetry();
}
NRF24L01_SetTxRxMode(TXRX_OFF);
NRF24L01_SetTxRxMode(TX_EN);
BUGSMINI_send_packet(0);
#if defined(BUGS_HUB_TELEMETRY)
if( XN297_IsRX() )
{
XN297_ReadPayload(packet_in, BUGSMINI_RX_PAYLOAD_SIZE); // Not checking the CRC??
BUGSMINI_update_telemetry();
}
#endif
BUGSMINI_send_packet();
#if not defined(BUGS_HUB_TELEMETRY)
break;
#else
phase = BUGSMINI_DATA2;
return BUGSMINI_WRITE_WAIT;
case BUGSMINI_DATA2:
// switch to RX mode
NRF24L01_SetTxRxMode(TXRX_OFF);
NRF24L01_FlushRx();
NRF24L01_SetTxRxMode(RX_EN);
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO)
| _BV(NRF24L01_00_PWR_UP) | _BV(NRF24L01_00_PRIM_RX));
XN297_SetTxRxMode(TXRX_OFF);
XN297_SetTxRxMode(RX_EN);
phase = BUGSMINI_DATA1;
return BUGSMINI_PACKET_INTERVAL - BUGSMINI_WRITE_WAIT;
#endif
}
return BUGSMINI_PACKET_INTERVAL;
}
@@ -357,28 +338,27 @@ static void __attribute__((unused)) BUGSMINI_initialize_txid()
BUGSMINI_txhash = pgm_read_byte_near( &BUGSMINI_tx_hash[rx_tx_addr[3]%BUGSMINI_NUM_TX_RF_MAPS] );
}
uint16_t initBUGSMINI()
void BUGSMINI_init()
{
BUGSMINI_initialize_txid();
BUGSMINI_RF_init();
memset(packet, (uint8_t)0, BUGSMINI_TX_PAYLOAD_SIZE);
BUGSMINI_init();
if(IS_BIND_IN_PROGRESS)
{
XN297_SetTXAddr((const uint8_t*)"mjxRC", 5);
XN297_SetRXAddr((const uint8_t*)"mjxRC", 5);
XN297_SetRXAddr((const uint8_t*)"mjxRC", BUGSMINI_RX_PAYLOAD_SIZE);
phase = BUGSMINI_BIND1;
}
else
{
BUGSMINI_make_address();
XN297_SetTXAddr(rx_tx_addr, 5);
XN297_SetRXAddr(rx_tx_addr, 5);
XN297_SetRXAddr(rx_tx_addr, BUGSMINI_RX_PAYLOAD_SIZE);
phase = BUGSMINI_DATA1;
}
armed = 0;
arm_flags = BUGSMINI_FLAG_DISARM; // initial value from captures
arm_channel_previous = BUGSMINI_CH_SW_ARM;
return BUGSMINI_INITIAL_WAIT;
}
#endif

View File

@@ -15,7 +15,7 @@ Multiprotocol is distributed in the hope that it will be useful,
#if defined(BAYANG_RX_NRF24L01_INO)
#include "iface_nrf24l01.h"
#include "iface_xn297.h"
#define BAYANG_RX_PACKET_SIZE 15
#define BAYANG_RX_RF_NUM_CHANNELS 4
@@ -27,28 +27,15 @@ enum {
BAYANG_RX_DATA
};
static void __attribute__((unused)) Bayang_Rx_init_nrf24l01()
static void __attribute__((unused)) Bayang_Rx_RF_init()
{
const uint8_t bind_address[BAYANG_RX_ADDRESS_LENGTH] = { 0,0,0,0,0 };
NRF24L01_Initialize();
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_1M);
XN297_SetTXAddr(bind_address, BAYANG_RX_ADDRESS_LENGTH);
XN297_SetRXAddr(bind_address, BAYANG_RX_ADDRESS_LENGTH);
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowldgement on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, BAYANG_RX_PACKET_SIZE + 2); // 2 extra bytes for xn297 crc
NRF24L01_WriteReg(NRF24L01_05_RF_CH, BAYANG_RX_RF_BIND_CHANNEL);
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps
NRF24L01_SetPower();
NRF24L01_Activate(0x73); // Activate feature register
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 0x00); // Disable dynamic payload length on all pipes
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, 0x01);
NRF24L01_Activate(0x73);
NRF24L01_SetTxRxMode(TXRX_OFF);
NRF24L01_FlushRx();
NRF24L01_SetTxRxMode(RX_EN);
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP) | _BV(NRF24L01_00_PRIM_RX));
XN297_SetRXAddr(bind_address, BAYANG_RX_PACKET_SIZE);
XN297_RFChannel(BAYANG_RX_RF_BIND_CHANNEL);
XN297_SetTxRxMode(TXRX_OFF);
XN297_SetTxRxMode(RX_EN);
}
static uint8_t __attribute__((unused)) Bayang_Rx_check_validity() {
@@ -98,10 +85,10 @@ static void __attribute__((unused)) Bayang_Rx_build_telemetry_packet()
}
}
uint16_t initBayang_Rx()
void BAYANG_RX_init()
{
uint8_t i;
Bayang_Rx_init_nrf24l01();
Bayang_Rx_RF_init();
hopping_frequency_no = 0;
rx_data_started = false;
rx_data_received = false;
@@ -115,90 +102,101 @@ uint16_t initBayang_Rx()
rx_tx_addr[i] = eeprom_read_byte((EE_ADDR)temp++);
for (i = 0; i < BAYANG_RX_RF_NUM_CHANNELS; i++)
hopping_frequency[i] = eeprom_read_byte((EE_ADDR)temp++);
//XN297_HoppingCalib(BAYANG_RX_RF_NUM_CHANNELS);
XN297_SetTXAddr(rx_tx_addr, BAYANG_RX_ADDRESS_LENGTH);
XN297_SetRXAddr(rx_tx_addr, BAYANG_RX_ADDRESS_LENGTH);
XN297_SetRXAddr(rx_tx_addr, BAYANG_RX_PACKET_SIZE);
phase = BAYANG_RX_DATA;
}
return 1000;
}
uint16_t Bayang_Rx_callback()
uint16_t BAYANG_RX_callback()
{
uint8_t i;
static int8_t read_retry;
switch (phase) {
case BAYANG_RX_BIND:
if(IS_BIND_DONE) return initBayang_Rx(); // Abort bind
if (NRF24L01_ReadReg(NRF24L01_07_STATUS) & _BV(NRF24L01_07_RX_DR)) {
// data received from TX
if (XN297_ReadPayload(packet, BAYANG_RX_PACKET_SIZE) && ( packet[0] == 0xA4 || packet[0] == 0xA2 ) && Bayang_Rx_check_validity()) {
// store tx info into eeprom
uint16_t temp = BAYANG_RX_EEPROM_OFFSET;
for (i = 0; i < 5; i++) {
rx_tx_addr[i] = packet[i + 1];
eeprom_write_byte((EE_ADDR)temp++, rx_tx_addr[i]);
}
for (i = 0; i < 4; i++) {
hopping_frequency[i] = packet[i + 6];
eeprom_write_byte((EE_ADDR)temp++, hopping_frequency[i]);
}
XN297_SetTXAddr(rx_tx_addr, BAYANG_RX_ADDRESS_LENGTH);
XN297_SetRXAddr(rx_tx_addr, BAYANG_RX_ADDRESS_LENGTH);
BIND_DONE;
phase = BAYANG_RX_DATA;
}
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
}
break;
case BAYANG_RX_DATA:
if (NRF24L01_ReadReg(NRF24L01_07_STATUS) & _BV(NRF24L01_07_RX_DR)) {
if (XN297_ReadPayload(packet, BAYANG_RX_PACKET_SIZE) && packet[0] == 0xA5 && Bayang_Rx_check_validity()) {
if (telemetry_link == 0) {
Bayang_Rx_build_telemetry_packet();
telemetry_link = 1;
}
rx_data_started = true;
rx_data_received = true;
read_retry = 8;
pps_counter++;
}
}
// packets per second
if (millis() - pps_timer >= 1000) {
pps_timer = millis();
debugln("%d pps", pps_counter);
RX_LQI = pps_counter >> 1;
pps_counter = 0;
}
// frequency hopping
if (read_retry++ >= 8) {
hopping_frequency_no++;
if (hopping_frequency_no >= BAYANG_RX_RF_NUM_CHANNELS)
hopping_frequency_no = 0;
NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency[hopping_frequency_no]);
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
if (rx_data_started)
switch (phase)
{
case BAYANG_RX_BIND:
if(IS_BIND_DONE)
{
if(rx_data_received)
{ // In sync
rx_data_received = false;
read_retry = 5;
return 1500;
BAYANG_RX_init(); // Abort bind
break;
}
if ( XN297_IsRX() )
{
debugln("RX");
// data received from TX
if (XN297_ReadPayload(packet, BAYANG_RX_PACKET_SIZE) && ( packet[0] == 0xA4 || packet[0] == 0xA2 ) && Bayang_Rx_check_validity())
{
// store tx info into eeprom
uint16_t temp = BAYANG_RX_EEPROM_OFFSET;
for (i = 0; i < 5; i++) {
rx_tx_addr[i] = packet[i + 1];
eeprom_write_byte((EE_ADDR)temp++, rx_tx_addr[i]);
}
for (i = 0; i < 4; i++) {
hopping_frequency[i] = packet[i + 6];
eeprom_write_byte((EE_ADDR)temp++, hopping_frequency[i]);
}
//XN297_HoppingCalib(BAYANG_RX_RF_NUM_CHANNELS);
XN297_SetTXAddr(rx_tx_addr, BAYANG_RX_ADDRESS_LENGTH);
XN297_SetRXAddr(rx_tx_addr, BAYANG_RX_PACKET_SIZE);
BIND_DONE;
phase = BAYANG_RX_DATA;
}
XN297_SetTxRxMode(RX_EN);
}
break;
case BAYANG_RX_DATA:
if ( XN297_IsRX() ) {
if (XN297_ReadPayload(packet, BAYANG_RX_PACKET_SIZE) && packet[0] == 0xA5 && Bayang_Rx_check_validity()) {
if ((telemetry_link & 0x7F) == 0) {
Bayang_Rx_build_telemetry_packet();
telemetry_link = 1;
#ifdef SEND_CPPM
if(sub_protocol>0)
telemetry_link |= 0x80; // Disable telemetry output
#endif
}
rx_data_started = true;
rx_data_received = true;
read_retry = 8;
pps_counter++;
}
}
// packets per second
if (millis() - pps_timer >= 1000) {
pps_timer = millis();
debugln("%d pps", pps_counter);
RX_LQI = pps_counter >> 1;
pps_counter = 0;
}
// frequency hopping
if (read_retry++ >= 8) {
hopping_frequency_no++;
if (hopping_frequency_no >= BAYANG_RX_RF_NUM_CHANNELS)
hopping_frequency_no = 0;
XN297_Hopping(hopping_frequency_no);
XN297_SetTxRxMode(RX_EN);
if (rx_data_started)
{
if(rx_data_received)
{ // In sync
rx_data_received = false;
read_retry = 5;
return 1500;
}
else
{ // packet lost
read_retry = 0;
if(RX_LQI==0) // communication lost
rx_data_started=false;
}
}
else
{ // packet lost
read_retry = 0;
if(RX_LQI==0) // communication lost
rx_data_started=false;
}
read_retry = -16; // retry longer until first packet is caught
}
else
read_retry = -16; // retry longer until first packet is caught
}
return 250;
return 250;
}
return 1000;
}

View File

@@ -17,7 +17,7 @@ Multiprotocol is distributed in the hope that it will be useful,
#if defined(BAYANG_NRF24L01_INO)
#include "iface_nrf24l01.h"
#include "iface_xn297.h"
#define BAYANG_BIND_COUNT 1000
#define BAYANG_PACKET_PERIOD 2000
@@ -97,6 +97,8 @@ static void __attribute__((unused)) BAYANG_send_packet()
}
else
{
XN297_Hopping(hopping_frequency_no++);
hopping_frequency_no%=BAYANG_RF_NUM_CHANNELS;
uint16_t val;
uint8_t dyntrim = 1;
switch (sub_protocol)
@@ -192,33 +194,23 @@ static void __attribute__((unused)) BAYANG_send_packet()
for (uint8_t i=0; i < BAYANG_PACKET_SIZE-1; i++)
packet[14] += packet[i];
NRF24L01_WriteReg(NRF24L01_05_RF_CH, IS_BIND_IN_PROGRESS ? rf_ch_num:hopping_frequency[hopping_frequency_no++]);
hopping_frequency_no%=BAYANG_RF_NUM_CHANNELS;
// Power on, TX mode, 2byte CRC
// Why CRC0? xn297 does not interpret it - either 16-bit CRC or nothing
NRF24L01_FlushTx();
NRF24L01_SetTxRxMode(TX_EN);
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP));
// Send
XN297_SetPower();
XN297_SetTxRxMode(TX_EN);
XN297_WritePayload(packet, BAYANG_PACKET_SIZE);
NRF24L01_SetPower(); // Set tx_power
}
#ifdef BAYANG_HUB_TELEMETRY
static void __attribute__((unused)) BAYANG_check_rx(void)
{
if (NRF24L01_ReadReg(NRF24L01_07_STATUS) & _BV(NRF24L01_07_RX_DR))
if( XN297_IsRX() )
{ // data received from model
XN297_ReadPayload(packet, BAYANG_PACKET_SIZE);
NRF24L01_WriteReg(NRF24L01_07_STATUS, 255);
NRF24L01_FlushRx();
XN297_ReadPayload(packet, BAYANG_PACKET_SIZE); // Strange can't test the CRC since it seems to be disabled on telemetry packets...
uint8_t check = packet[0];
for (uint8_t i=1; i < BAYANG_PACKET_SIZE-1; i++)
check += packet[i];
// decode data , check sum is ok as well, since there is no crc
if (packet[0] == 0x85 && packet[14] == check)
if (packet[0] == 0x85 && packet[14] == check && telemetry_link == 0)
{
// uncompensated battery volts*100/2
v_lipo1 = (packet[3]<<7) + (packet[4]>>1);
@@ -230,46 +222,33 @@ static void __attribute__((unused)) BAYANG_check_rx(void)
//Flags
//uint8_t flags = packet[3] >> 3;
// battery low: flags & 1
telemetry_link=1;
#if defined HUB_TELEMETRY
// Multiplexed P, I, D values in packet[8] and packet[9].
// The two most significant bits specify which term is sent.
// Remaining 14 bits represent the value: 0 .. 16383
frsky_send_user_frame(0x24+(packet[8]>>6), packet[9], packet[8] & 0x3F ); //0x24 = ACCEL_X_ID, so ACCEL_X_ID=P, ACCEL_Y_ID=I, ACCEL_Z_ID=D
#endif
telemetry_counter++;
if(telemetry_lost==0)
telemetry_link=1;
if(telemetry_lost)
telemetry_link=0; // Don't send anything yet
}
}
NRF24L01_SetTxRxMode(TXRX_OFF);
XN297_SetTxRxMode(TXRX_OFF);
}
#endif
static void __attribute__((unused)) BAYANG_init()
static void __attribute__((unused)) BAYANG_RF_init()
{
NRF24L01_Initialize();
NRF24L01_SetTxRxMode(TX_EN);
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_1M);
XN297_SetTXAddr((uint8_t *)"\x00\x00\x00\x00\x00", BAYANG_ADDRESS_LENGTH);
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowldgement on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, BAYANG_PACKET_SIZE);
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0x00); // No retransmits
NRF24L01_SetPower();
NRF24L01_Activate(0x73); // Activate feature register
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 0x00); // Disable dynamic payload length on all pipes
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, 0x01);
NRF24L01_Activate(0x73);
//XN297_HoppingCalib(BAYANG_RF_NUM_CHANNELS);
switch (sub_protocol)
{
case X16_AH:
case IRDRONE:
rf_ch_num = BAYANG_RF_BIND_CHANNEL_X16_AH;
break;
default:
rf_ch_num = BAYANG_RF_BIND_CHANNEL;
break;
}
//Set bind channel
uint8_t ch = BAYANG_RF_BIND_CHANNEL;
if(sub_protocol == X16_AH || sub_protocol == IRDRONE)
ch = BAYANG_RF_BIND_CHANNEL_X16_AH;
XN297_RFChannel(ch);
}
enum {
@@ -294,7 +273,7 @@ uint16_t BAYANG_callback()
{
XN297_SetTXAddr(rx_tx_addr, BAYANG_ADDRESS_LENGTH);
#ifdef BAYANG_HUB_TELEMETRY
XN297_SetRXAddr(rx_tx_addr, BAYANG_ADDRESS_LENGTH);
XN297_SetRXAddr(rx_tx_addr, BAYANG_PACKET_SIZE);
#endif
BIND_DONE;
phase++; //WRITE
@@ -329,9 +308,9 @@ uint16_t BAYANG_callback()
// switch radio to rx as soon as packet is sent
start=(uint16_t)micros();
while ((uint16_t)((uint16_t)micros()-(uint16_t)start) < 1000) // Wait max 1ms
if((NRF24L01_ReadReg(NRF24L01_07_STATUS) & _BV(NRF24L01_07_TX_DS)))
if(XN297_IsPacketSent())
break;
NRF24L01_WriteReg(NRF24L01_00_CONFIG, 0x03);
XN297_SetTxRxMode(RX_EN);
phase++; // READ
return BAYANG_PACKET_TELEM_PERIOD - BAYANG_CHECK_DELAY - BAYANG_READ_DELAY;
case BAYANG_READ:
@@ -356,15 +335,14 @@ static void __attribute__((unused)) BAYANG_initialize_txid()
hopping_frequency_no=0;
}
uint16_t initBAYANG(void)
void BAYANG_init(void)
{
BIND_IN_PROGRESS; // autobind protocol
phase=BAYANG_BIND;
bind_counter = BAYANG_BIND_COUNT;
BAYANG_initialize_txid();
BAYANG_init();
BAYANG_RF_init();
packet_count=0;
return BAYANG_INITIAL_WAIT+BAYANG_PACKET_PERIOD;
}
#endif
#endif

View File

@@ -315,7 +315,7 @@ static void __attribute__((unused)) BUGS_increment_counts()
// FIFO config is one less than desired value
#define BUGS_FIFO_SIZE_RX 15
#define BUGS_FIFO_SIZE_TX 21
uint16_t ReadBUGS(void)
uint16_t BUGS_callback(void)
{
uint8_t mode, base_adr;
uint16_t rxid;
@@ -437,7 +437,7 @@ uint16_t ReadBUGS(void)
return packet_period;
}
uint16_t initBUGS(void)
void BUGS_init(void)
{
uint16_t rxid=0;
uint8_t base_adr=BUGS_EEPROM_OFFSET+(RX_num&0x0F)*2;
@@ -459,8 +459,6 @@ uint16_t initBUGS(void)
armed = 0;
arm_flags = BUGS_FLAG_DISARM; // initial value from captures
arm_channel_previous = BUGS_CH_SW_ARM;
return 10000;
}
#endif

View File

@@ -190,7 +190,9 @@ static void __attribute__((unused)) CABELL_send_packet(uint8_t bindMode)
}
TxPacket.option = (bindMode) ? (option & (~CABELL_OPTION_MASK_CHANNEL_REDUCTION)) : option; //remove channel reduction if in bind mode
}
TxPacket.reserved = 0;
rf_ch_num = CABELL_getNextChannel (hopping_frequency,CABELL_RADIO_CHANNELS, rf_ch_num);
TxPacket.reserved = rf_ch_num & 0x3F;
TxPacket.modelNum = RX_num;
uint16_t checkSum = TxPacket.modelNum + TxPacket.option + TxPacket.RxMode + TxPacket.reserved; // Start Calculate checksum
@@ -244,7 +246,6 @@ static void __attribute__((unused)) CABELL_send_packet(uint8_t bindMode)
TxPacket.checkSum_LSB = checkSum & 0x00FF;
// Set channel for next transmission
rf_ch_num = CABELL_getNextChannel (hopping_frequency,CABELL_RADIO_CHANNELS, rf_ch_num);
NRF24L01_WriteReg(NRF24L01_05_RF_CH,rf_ch_num);
//NRF24L01_FlushTx(); //just in case things got hung up
@@ -255,7 +256,7 @@ static void __attribute__((unused)) CABELL_send_packet(uint8_t bindMode)
*p |= (packet_count++)<<7; // This causes the 8th bit of the first byte to toggle with each xmit so consecutive payloads are not identical.
// This is a work around for a reported bug in clone NRF24L01 chips that mis-took this case for a re-transmit of the same packet.
CABELL_SetPower();
NRF24L01_SetPower();
NRF24L01_WritePayload((uint8_t*)&TxPacket, packetSize);
#if defined CABELL_HUB_TELEMETRY
@@ -279,39 +280,44 @@ static void __attribute__((unused)) CABELL_send_packet(uint8_t bindMode)
static void __attribute__((unused)) CABELL_getChannelSequence (uint8_t outArray[], uint8_t numChannels, uint64_t permutation)
{
/* This procedure initializes an array with the sequence progression of channels.
* This is not the actual channels itself, but the sequence base to be used within bands of
* This is not the actual channels itself, but the sequence base to be used within bands of
* channels.
*
*
* There are numChannels! permutations for arranging the channels
* one of these permutations will be calculated based on the permutation input
* permutation should be between 1 and numChannels! but the routine will constrain it
* if these bounds are exceeded. Typically the radio's unique TX ID should be used.
*
*
* The maximum numChannels is 20. Anything larger than this will cause the uint64_t
* variables to overflow, yielding unknown results (possibly infinite loop?). Therefor
* this routine constrains the value.
*/
*/
uint8_t i; //iterator counts numChannels
uint64_t indexOfNextSequenceValue;
uint64_t numChannelsFactorial=1;
uint32_t indexOfNextSequenceValue;
uint32_t numChannelsFactorial=1;
uint32_t perm32 ;
uint8_t sequenceValue;
numChannels = constrain(numChannels,1,20);
numChannels = constrain(numChannels,1,9);
for (i = 1; i <= numChannels;i++)
{
numChannelsFactorial *= i; // Calculate n!
outArray[i-1] = i-1; // Initialize array with the sequence
numChannelsFactorial *= i; // Calculate n!
outArray[i-1] = i-1; // Initialize array with the sequence
}
permutation = (permutation % numChannelsFactorial) + 1; // permutation must be between 1 and n! or this algorithm will infinite loop
perm32 = permutation >> 8 ; // Shift 40 bit input to 32 bit
perm32 = (perm32 % numChannelsFactorial); // permutation must be between 1 and n! or this algorithm will infinite loop
perm32 <<= 8 ; // Shift back 8 bits
perm32 += permutation & 0x00FF ; // Tack on least 8 bits
perm32 = (perm32 % numChannelsFactorial) + 1; // permutation must be between 1 and n! or this algorithm will infinite loop
//Rearrange the array elements based on the permutation selected
for (i=0, permutation--; i<numChannels; i++ )
for (i=0, perm32--; i<numChannels; i++ )
{
numChannelsFactorial /= ((uint64_t)numChannels)-i;
indexOfNextSequenceValue = i+(permutation/numChannelsFactorial);
permutation %= numChannelsFactorial;
numChannelsFactorial /= numChannels-i;
indexOfNextSequenceValue = i+(perm32/numChannelsFactorial);
perm32 %= numChannelsFactorial;
//Copy the value in the selected array position
sequenceValue = outArray[indexOfNextSequenceValue];
@@ -356,48 +362,18 @@ static void __attribute__((unused)) CABELL_setAddress()
}
//-----------------------------------------------------------------------------------------
static void __attribute__((unused)) CABELL_init()
static void __attribute__((unused)) CABELL_RF_init()
{
NRF24L01_Initialize();
CABELL_SetPower();
NRF24L01_SetBitrate(NRF24L01_BR_250K); // slower data rate gives better range/reliability
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowledgment on all data pipes
NRF24L01_SetTxRxMode(TX_EN); //Power up and 16 bit CRC
CABELL_setAddress();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01);
NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, 0x20); // 32 byte packet length
NRF24L01_WriteReg(NRF24L01_12_RX_PW_P1, 0x20); // 32 byte packet length
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x03);
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0x5F); // no retransmits
NRF24L01_Activate(0x73); // Activate feature register
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 0x3F); // Enable dynamic payload length on all pipes
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, 0x04); // Enable dynamic Payload Length
NRF24L01_Activate(0x73);
prev_power = NRF_POWER_0;
}
//-----------------------------------------------------------------------------------------
static void CABELL_SetPower() // This over-ride the standard Set Power to allow an flag in option to indicate max power setting
// Note that on many modules max power may actually be worse than the normal high power setting
// test and only use max if it helps the range
{
if(IS_BIND_DONE && !IS_RANGE_FLAG_on && ((option & CABELL_OPTION_MASK_MAX_POWER_OVERRIDE) != 0))
{ // If we are not in range or bind mode and power setting override is in effect, then set max power, else standard power logic
if(prev_power != NRF_POWER_3) // prev_power is global variable for NRF24L01; NRF_POWER_3 is max power
{
uint8_t rf_setup = NRF24L01_ReadReg(NRF24L01_06_RF_SETUP);
rf_setup = (rf_setup & 0xF9) | (NRF_POWER_3 << 1);
NRF24L01_WriteReg(NRF24L01_06_RF_SETUP, rf_setup);
prev_power=NRF_POWER_3;
}
}
else
NRF24L01_SetPower();
NRF24L01_SetTxRxMode(TX_EN); // Clear data ready, data sent, retransmit and enable CRC 16bits, ready for TX
}
//-----------------------------------------------------------------------------------------
@@ -414,7 +390,7 @@ uint16_t CABELL_callback()
else if (bind_counter == 0)
{
BIND_DONE;
CABELL_init(); // non-bind address
CABELL_RF_init(); // non-bind address
}
else
{
@@ -425,17 +401,15 @@ uint16_t CABELL_callback()
}
//-----------------------------------------------------------------------------------------
uint16_t initCABELL(void)
void CABELL_init(void)
{
if (IS_BIND_DONE)
bind_counter = 0;
else
bind_counter = CABELL_BIND_COUNT;
CABELL_init();
CABELL_RF_init();
packet_period = CABELL_PACKET_PERIOD;
return packet_period;
}
#endif

View File

@@ -195,6 +195,7 @@ void __attribute__((unused)) CC2500_250K_Init()
// TX Power = 0
// Whitening = false
// Fast Frequency Hopping - no PLL auto calibration
/* //Previous config
CC2500_WriteReg(CC2500_08_PKTCTRL0, 0x01); // Packet Automation Control
CC2500_WriteReg(CC2500_0B_FSCTRL1, 0x0A); // Frequency Synthesizer Control
CC2500_WriteReg(CC2500_0C_FSCTRL0, option); // Frequency offset hack
@@ -217,6 +218,42 @@ void __attribute__((unused)) CC2500_250K_Init()
CC2500_WriteReg(CC2500_23_FSCAL3, 0xEA); // Frequency Synthesizer Calibration
CC2500_WriteReg(CC2500_25_FSCAL1, 0x00); // Frequency Synthesizer Calibration
CC2500_WriteReg(CC2500_26_FSCAL0, 0x11); // Frequency Synthesizer Calibration
*/
CC2500_WriteReg(CC2500_07_PKTCTRL1, 0x05); // Packet Automation Control, address check true auto append RSSI & LQI
CC2500_WriteReg(CC2500_08_PKTCTRL0, 0x00); // Packet Automation Control, fixed packet len
CC2500_WriteReg(CC2500_0B_FSCTRL1, 0x0A); // Frequency Synthesizer Control (IF Frequency)
CC2500_WriteReg(CC2500_0C_FSCTRL0, 0x00); // Frequency Synthesizer Control
CC2500_WriteReg(CC2500_0D_FREQ2, 0x5C); // Frequency Control Word, High Byte
CC2500_WriteReg(CC2500_0E_FREQ1, 0x4E); // Frequency Control Word, Middle Byte
CC2500_WriteReg(CC2500_0F_FREQ0, 0xC5); // Frequency Control Word, Low Byte
CC2500_WriteReg(CC2500_10_MDMCFG4, 0x3D); // Modem Configuration Set to 406kHz BW filter
CC2500_WriteReg(CC2500_11_MDMCFG3, 0x3B); // Modem Configuration
CC2500_WriteReg(CC2500_12_MDMCFG2, 0x10); // Modem Configuration, GFSK, no preambule and no sync word -> TX by default
CC2500_WriteReg(CC2500_13_MDMCFG1, 0x03); // Modem Configuration, 2 bytes of preamble
CC2500_WriteReg(CC2500_14_MDMCFG0, 0xA4); // Modem Configuration
CC2500_WriteReg(CC2500_15_DEVIATN, 0x62); // Modem Deviation Setting
CC2500_WriteReg(CC2500_18_MCSM0, 0x08); // Main Radio Control State Machine Configuration
CC2500_WriteReg(CC2500_19_FOCCFG, 0x1D); // Frequency Offset Compensation Configuration
CC2500_WriteReg(CC2500_1A_BSCFG, 0x1C); // Bit Synchronization Configuration
CC2500_WriteReg(CC2500_1B_AGCCTRL2, 0xC7); // AGC Control
CC2500_WriteReg(CC2500_1C_AGCCTRL1, 0x00); // AGC Control
CC2500_WriteReg(CC2500_1D_AGCCTRL0, 0xB0); // AGC Control
CC2500_WriteReg(CC2500_21_FREND1, 0xB6); // Front End RX Configuration
CC2500_WriteReg(CC2500_23_FSCAL3, 0xEA); // Frequency Synthesizer Calibration
CC2500_WriteReg(CC2500_25_FSCAL1, 0x00); // Frequency Synthesizer Calibration
CC2500_WriteReg(CC2500_26_FSCAL0, 0x11); // Frequency Synthesizer Calibration
//Prep RX
// Set first 3 bytes of rx addr in [0]->SYNC1, [1]->SYNC0 and [2]->ADDR
// CC2500_WriteReg(CC2500_04_SYNC1, [0]); // Sync word, high byte
// CC2500_WriteReg(CC2500_05_SYNC0, [1]); // Sync word, low byte
// CC2500_WriteReg(CC2500_09_ADDR, [2]); // Set addr
//RX
// CC2500_WriteReg(CC2500_12_MDMCFG2, 0x12); // Modem Configuration, GFSK, 16/16 Sync Word TX&RX
//TX
// CC2500_WriteReg(CC2500_12_MDMCFG2, 0x10); // Modem Configuration, GFSK, no preambule and no sync word
// need to set packet length before sending/receiving
// CC2500_WriteReg(CC2500_06_PKTLEN, cc2500_packet_len); // Packet len, fix packet len
CC2500_SetTxRxMode(TX_EN);
CC2500_SetPower();
@@ -250,87 +287,4 @@ void __attribute__((unused)) CC2500_250K_RFChannel(uint8_t number)
CC2500_Strobe(CC2500_SCAL);
delayMicroseconds(900);
}
//NRF emulation layer with CRC16 enabled
uint8_t cc2500_nrf_tx_addr[5], cc2500_nrf_addr_len;
void __attribute__((unused)) CC2500_250K_NRF_SetTXAddr(uint8_t* addr, uint8_t len)
{
cc2500_nrf_addr_len = len;
memcpy(cc2500_nrf_tx_addr, addr, len);
}
void __attribute__((unused)) CC2500_250K_NRF_WritePayload(uint8_t* msg, uint8_t len)
{
#if defined(ESKY150V2_CC2500_INO)
uint8_t buf[158];
#else
uint8_t buf[35];
#endif
uint8_t last = 0;
uint8_t i;
//nrf preamble
if(cc2500_nrf_tx_addr[cc2500_nrf_addr_len - 1] & 0x80)
buf[0]=0xAA;
else
buf[0]=0x55;
last++;
// address
for (i = 0; i < cc2500_nrf_addr_len; ++i)
buf[last++] = cc2500_nrf_tx_addr[cc2500_nrf_addr_len - i - 1];
// payload
for (i = 0; i < len; ++i)
buf[last++] = msg[i];
// crc
crc = 0xffff;
for (uint8_t i = 1; i < last; ++i)
crc16_update( buf[i], 8);
buf[last++] = crc >> 8;
buf[last++] = crc & 0xff;
buf[last++] = 0;
//for(uint8_t i=0;i<last;i++)
// debug("%02X ",buf[i]);
//debugln("");
// stop TX/RX
CC2500_Strobe(CC2500_SIDLE);
// flush tx FIFO
CC2500_Strobe(CC2500_SFTX);
// packet length
CC2500_WriteReg(CC2500_3F_TXFIFO, last);
// transmit nrf packet
uint8_t *buff=buf;
uint8_t status;
if(last>63)
{
CC2500_WriteRegisterMulti(CC2500_3F_TXFIFO, buff, 63);
CC2500_Strobe(CC2500_STX);
last-=63;
buff+=63;
while(last)
{//Loop until all the data is sent
do
{// Wait for the FIFO to become available
status=CC2500_ReadReg(CC2500_3A_TXBYTES | CC2500_READ_BURST);
}
while((status&0x7F)>31 && (status&0x80)==0);
if(last>31)
{//Send 31 bytes
CC2500_WriteRegisterMulti(CC2500_3F_TXFIFO, buff, 31);
last-=31;
buff+=31;
}
else
{//Send last bytes
CC2500_WriteRegisterMulti(CC2500_3F_TXFIFO, buff, last);
last=0;
}
}
}
else
{//Send packet
CC2500_WriteRegisterMulti(CC2500_3F_TXFIFO, buff, last);
CC2500_Strobe(CC2500_STX);
}
}
#endif

View File

@@ -644,37 +644,24 @@ static uint8_t crtp_log_setup_state_machine()
return state_machine_completed;
}
static int cflie_init()
static void CFLIE_RF_init()
{
NRF24L01_Initialize();
// CRC, radio on
NRF24L01_SetTxRxMode(TX_EN);
NRF24L01_WriteReg(NRF24L01_00_CONFIG, _BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP));
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x01); // Auto Acknowledgement for data pipe 0
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, TX_ADDR_SIZE-2); // 5-byte RX/TX address
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0x13); // 3 retransmits, 500us delay
NRF24L01_WriteReg(NRF24L01_05_RF_CH, rf_ch_num); // Defined in initialize_rx_tx_addr
NRF24L01_SetBitrate(data_rate); // Defined in initialize_rx_tx_addr
NRF24L01_SetPower();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, rx_tx_addr, TX_ADDR_SIZE);
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, rx_tx_addr, TX_ADDR_SIZE);
// this sequence necessary for module from stock tx
NRF24L01_ReadReg(NRF24L01_1D_FEATURE);
NRF24L01_Activate(0x73); // Activate feature register
NRF24L01_ReadReg(NRF24L01_1D_FEATURE);
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 0x01); // Enable Dynamic Payload Length on pipe 0
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, 0x06); // Enable Dynamic Payload Length, enable Payload with ACK
// 50ms delay in callback
return 50000;
NRF24L01_SetTxRxMode(TX_EN); // Clear data ready, data sent, retransmit and enable CRC 16bits, ready for TX
}
// TODO: Fix telemetry
@@ -749,7 +736,7 @@ static int cflie_init()
// }
// }
static uint16_t cflie_callback()
static uint16_t CFLIE_callback()
{
switch (phase) {
case CFLIE_INIT_SEARCH:
@@ -799,7 +786,7 @@ static uint16_t cflie_callback()
}
// Generate address to use from TX id and manufacturer id (STM32 unique id)
static uint8_t initialize_rx_tx_addr()
static uint8_t CFLIE_initialize_rx_tx_addr()
{
rx_tx_addr[0] =
rx_tx_addr[1] =
@@ -844,19 +831,15 @@ static uint8_t initialize_rx_tx_addr()
return CFLIE_INIT_SEARCH;
}
uint16_t initCFlie(void)
void CFLIE_init(void)
{
BIND_IN_PROGRESS; // autobind protocol
phase = initialize_rx_tx_addr();
phase = CFLIE_initialize_rx_tx_addr();
crtp_log_setup_state = CFLIE_CRTP_LOG_SETUP_STATE_INIT;
packet_count=0;
int delay = cflie_init();
// debugln("CFlie init!");
return delay;
CFLIE_RF_init();
}
#endif

View File

@@ -16,7 +16,7 @@
#if defined(CG023_NRF24L01_INO)
#include "iface_nrf24l01.h"
#include "iface_xn297.h"
#define CG023_PACKET_PERIOD 8200 // Timeout for callback in uSec
#define CG023_INITIAL_WAIT 500
@@ -49,7 +49,7 @@ enum YD829_FLAGS {
YD829_FLAG_STILL = 0x80,
};
static void __attribute__((unused)) CG023_send_packet(uint8_t bind)
static void __attribute__((unused)) CG023_send_packet()
{
// throttle : 0x00 - 0xFF
throttle=convert_channel_8b(THROTTLE);
@@ -62,10 +62,16 @@ static void __attribute__((unused)) CG023_send_packet(uint8_t bind)
// aileron : 0x43 - 0x7F - 0xBB
aileron = convert_channel_16b_limit(AILERON, 0x43, 0xBB);
if (bind)
if (IS_BIND_IN_PROGRESS)
{
packet[0]= 0xaa;
XN297_RFChannel(CG023_RF_BIND_CHANNEL);
}
else
{
packet[0]= 0x55;
XN297_RFChannel(hopping_frequency_no);
}
// transmitter id
packet[1] = rx_tx_addr[0];
packet[2] = rx_tx_addr[1];
@@ -85,7 +91,7 @@ static void __attribute__((unused)) CG023_send_packet(uint8_t bind)
if(sub_protocol==CG023)
{
// rate
packet[13] = CG023_FLAG_RATE_HIGH
packet[13] = CG023_FLAG_RATE_HIGH
| GET_FLAG(CH5_SW,CG023_FLAG_FLIP)
| GET_FLAG(CH6_SW,CG023_FLAG_LED_OFF)
| GET_FLAG(CH7_SW,CG023_FLAG_STILL)
@@ -95,7 +101,7 @@ static void __attribute__((unused)) CG023_send_packet(uint8_t bind)
else
{// YD829
// rate
packet[13] = YD829_FLAG_RATE_HIGH
packet[13] = YD829_FLAG_RATE_HIGH
| GET_FLAG(CH5_SW,YD829_FLAG_FLIP)
| GET_FLAG(CH7_SW,YD829_FLAG_STILL)
| GET_FLAG(CH8_SW,YD829_FLAG_VIDEO)
@@ -103,79 +109,52 @@ static void __attribute__((unused)) CG023_send_packet(uint8_t bind)
}
packet[14] = 0;
// Power on, TX mode, 2byte CRC
// Why CRC0? xn297 does not interpret it - either 16-bit CRC or nothing
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP));
if (bind)
NRF24L01_WriteReg(NRF24L01_05_RF_CH, CG023_RF_BIND_CHANNEL);
else
NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency_no);
// clear packet status bits and TX FIFO
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
// Send
XN297_SetTxRxMode(TX_EN);
XN297_SetPower();
XN297_WritePayload(packet, CG023_PACKET_SIZE);
NRF24L01_SetPower(); // Set tx_power
}
static void __attribute__((unused)) CG023_init()
static void __attribute__((unused)) CG023_RF_init()
{
NRF24L01_Initialize();
NRF24L01_SetTxRxMode(TX_EN);
XN297_SetTXAddr((uint8_t *)"\x26\xA8\x67\x35\xCC", 5);
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_1M);
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowldgement on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0x00); // no retransmits
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps
NRF24L01_SetPower();
XN297_SetTXAddr((uint8_t *)"\x26\xA8\x67\x35\xCC", 5);
}
uint16_t CG023_callback()
{
if(IS_BIND_DONE)
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
CG023_send_packet(0);
}
else
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
if(bind_counter)
{
bind_counter--;
if (bind_counter == 0)
BIND_DONE;
else
{
CG023_send_packet(1);
bind_counter--;
}
}
CG023_send_packet();
return packet_period;
}
static void __attribute__((unused)) CG023_initialize_txid()
{
rx_tx_addr[0]= 0x80 | (rx_tx_addr[0] % 0x40);
if( rx_tx_addr[0] == 0xAA) // avoid using same freq for bind and data channel
if( rx_tx_addr[0] == 0xAA) // avoid using same freq for bind and data channel
rx_tx_addr[0] ++;
hopping_frequency_no = rx_tx_addr[0] - 0x7D; // rf channel for data packets
}
uint16_t initCG023(void)
void CG023_init(void)
{
BIND_IN_PROGRESS; // autobind protocol
bind_counter = CG023_BIND_COUNT;
CG023_initialize_txid();
CG023_init();
CG023_RF_init();
if(sub_protocol==CG023)
packet_period=CG023_PACKET_PERIOD;
else // YD829
packet_period=YD829_PACKET_PERIOD;
return CG023_INITIAL_WAIT+YD829_PACKET_PERIOD;
}
#endif

View File

@@ -17,7 +17,7 @@
#if defined(CX10_NRF24L01_INO)
#include "iface_nrf24l01.h"
#include "iface_xn297.h"
#define CX10_BIND_COUNT 4360 // 6 seconds
#define CX10_PACKET_SIZE 15
@@ -46,12 +46,12 @@ enum {
CX10_DATA
};
static void __attribute__((unused)) CX10_Write_Packet(uint8_t bind)
static void __attribute__((unused)) CX10_Write_Packet()
{
uint8_t offset = 0;
if(sub_protocol == CX10_BLUE)
offset = 4;
packet[0] = bind ? 0xAA : 0x55;
packet[0] = IS_BIND_IN_PROGRESS ? 0xAA : 0x55;
packet[1] = rx_tx_addr[0];
packet[2] = rx_tx_addr[1];
packet[3] = rx_tx_addr[2];
@@ -62,57 +62,57 @@ static void __attribute__((unused)) CX10_Write_Packet(uint8_t bind)
uint16_t throttle=convert_channel_16b_limit(THROTTLE,1000,2000);
uint16_t rudder= convert_channel_16b_limit(RUDDER ,2000,1000);
// Channel 5 - flip flag
packet[12+offset] = GET_FLAG(CH5_SW,CX10_FLAG_FLIP); // flip flag applied on rudder
packet[12+offset] = GET_FLAG(CH5_SW,CX10_FLAG_FLIP); // flip flag applied on rudder
// Channel 6 - rate mode is 2 lsb of packet 13
if(CH6_SW) // rate 3 / headless on CX-10A
if(CH6_SW) // rate 3 / headless on CX-10A
flags = 0x02;
else
if(Channel_data[CH6] < CHANNEL_MIN_COMMAND)
flags = 0x00; // rate 1
flags = 0x00; // rate 1
else
flags = 0x01; // rate 2
uint8_t flags2=0; // packet 14
flags = 0x01; // rate 2
uint8_t flags2=0; // packet 14
uint8_t video_state=packet[14] & 0x21;
switch(sub_protocol)
{
case CX10_BLUE:
flags |= GET_FLAG(!CH7_SW, 0x10) // Channel 7 - picture
|GET_FLAG( CH8_SW, 0x08); // Channel 8 - video
flags |= GET_FLAG(!CH7_SW, 0x10) // Channel 7 - picture
|GET_FLAG( CH8_SW, 0x08); // Channel 8 - video
break;
case F_Q282:
case F_Q242:
case F_Q222:
memcpy(&packet[15], "\x10\x10\xaa\xaa\x00\x00", 6);
//FLIP|LED|PICTURE|VIDEO|HEADLESS|RTH|XCAL|YCAL
flags2 = GET_FLAG(CH5_SW, 0x80) // Channel 5 - FLIP
|GET_FLAG(!CH6_SW, 0x40) // Channel 6 - LED
|GET_FLAG(CH9_SW, 0x08) // Channel 9 - HEADLESS
|GET_FLAG(CH11_SW, 0x04) // Channel 11 - XCAL
|GET_FLAG(CH12_SW, 0x02); // Channel 12 - YCAL or Start/Stop motors on JXD 509
flags2 = GET_FLAG(CH5_SW, 0x80) // Channel 5 - FLIP
|GET_FLAG(!CH6_SW, 0x40) // Channel 6 - LED
|GET_FLAG(CH9_SW, 0x08) // Channel 9 - HEADLESS
|GET_FLAG(CH11_SW, 0x04) // Channel 11 - XCAL
|GET_FLAG(CH12_SW, 0x02); // Channel 12 - YCAL or Start/Stop motors on JXD 509
if(sub_protocol==F_Q242)
{
flags=2;
flags2|= GET_FLAG(CH7_SW,0x01) // Channel 7 - picture
|GET_FLAG(CH8_SW,0x10); // Channel 8 - video
flags2|= GET_FLAG(CH7_SW,0x01) // Channel 7 - picture
|GET_FLAG(CH8_SW,0x10); // Channel 8 - video
packet[17]=0x00;
packet[18]=0x00;
}
else
{ // F_Q282 & F_Q222
flags=3; // expert
if(CH8_SW) // Channel 8 - F_Q282 video / F_Q222 Module 1
flags=3; // expert
if(CH8_SW) // Channel 8 - F_Q282 video / F_Q222 Module 1
{
if (!(video_state & 0x20)) video_state ^= 0x21;
}
else
if (video_state & 0x20) video_state &= 0x01;
flags2 |= video_state
|GET_FLAG(CH7_SW,0x10); // Channel 7 - F_Q282 picture / F_Q222 Module 2
|GET_FLAG(CH7_SW,0x10); // Channel 7 - F_Q282 picture / F_Q222 Module 2
}
if(CH10_SW) flags |=0x80; // Channel 10 - RTH
if(CH10_SW) flags |=0x80; // Channel 10 - RTH
break;
case DM007:
aileron = 3000 - aileron;
@@ -128,16 +128,16 @@ static void __attribute__((unused)) CX10_Write_Packet(uint8_t bind)
if(CH8_SW) packet[12] &= ~CX10_FLAG_FLIP;
case JC3015_1:
//FLIP|MODE|PICTURE|VIDEO
flags2= GET_FLAG(CH7_SW,_BV(3)) // Channel 7
|GET_FLAG(CH8_SW,_BV(4)); // Channel 8
flags2= GET_FLAG(CH7_SW,_BV(3)) // Channel 7
|GET_FLAG(CH8_SW,_BV(4)); // Channel 8
break;
case MK33041:
elevator = 3000 - elevator;
//FLIP|MODE|PICTURE|VIDEO|HEADLESS|RTH
flags|=GET_FLAG(CH7_SW,_BV(7)) // Channel 7 - picture
|GET_FLAG(CH10_SW,_BV(2)); // Channel 10 - rth
flags2=GET_FLAG(CH8_SW,_BV(0)) // Channel 8 - video
|GET_FLAG(CH9_SW,_BV(5)); // Channel 9 - headless
flags|=GET_FLAG(CH7_SW,_BV(7)) // Channel 7 - picture
|GET_FLAG(CH10_SW,_BV(2)); // Channel 10 - rth
flags2=GET_FLAG(CH8_SW,_BV(0)) // Channel 8 - video
|GET_FLAG(CH9_SW,_BV(5)); // Channel 9 - headless
break;
}
packet[5+offset] = lowByte(aileron);
@@ -151,39 +151,23 @@ static void __attribute__((unused)) CX10_Write_Packet(uint8_t bind)
packet[13+offset]=flags;
packet[14+offset]=flags2;
// Power on, TX mode, 2byte CRC
// Why CRC0? xn297 does not interpret it - either 16-bit CRC or nothing
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP));
if (bind)
NRF24L01_WriteReg(NRF24L01_05_RF_CH, CX10_RF_BIND_CHANNEL);
else
// Send
if(IS_BIND_DONE)
{
NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency[hopping_frequency_no++]);
XN297_Hopping(hopping_frequency_no++);
hopping_frequency_no %= CX10_NUM_RF_CHANNELS;
}
// clear packet status bits and TX FIFO
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
XN297_SetPower();
XN297_SetTxRxMode(TX_EN);
XN297_WritePayload(packet, packet_length);
NRF24L01_SetPower();
}
static void __attribute__((unused)) CX10_init()
static void __attribute__((unused)) CX10_RF_init()
{
NRF24L01_Initialize();
NRF24L01_SetTxRxMode(TX_EN);
XN297_SetTXAddr((uint8_t *)"\xcc\xcc\xcc\xcc\xcc",5);
XN297_SetRXAddr((uint8_t *)"\xcc\xcc\xcc\xcc\xcc",5);
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowledgment on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, packet_length); // rx pipe 0 (used only for blue board)
NRF24L01_WriteReg(NRF24L01_05_RF_CH, CX10_RF_BIND_CHANNEL);
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps
NRF24L01_SetPower();
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_1M);
XN297_SetTXAddr((uint8_t *)"\xcc\xcc\xcc\xcc\xcc", 5);
XN297_SetRXAddr((uint8_t *)"\xcc\xcc\xcc\xcc\xcc", packet_length);
XN297_RFChannel(CX10_RF_BIND_CHANNEL);
}
uint16_t CX10_callback()
@@ -197,43 +181,39 @@ uint16_t CX10_callback()
}
else
{
CX10_Write_Packet(1);
CX10_Write_Packet();
bind_counter--;
}
break;
case CX10_BIND2:
if( NRF24L01_ReadReg(NRF24L01_07_STATUS) & _BV(NRF24L01_07_RX_DR))
// switch to TX mode
if( XN297_IsRX() )
{ // RX fifo data ready
XN297_ReadPayload(packet, packet_length);
NRF24L01_SetTxRxMode(TXRX_OFF);
NRF24L01_SetTxRxMode(TX_EN);
if(packet[9] == 1)
debugln("RX");
if(XN297_ReadPayload(packet, packet_length) && packet[9] == 1)
{
BIND_DONE;
XN297_SetTxRxMode(TXRX_OFF);
phase = CX10_DATA;
break;
}
}
else
{
// switch to TX mode
NRF24L01_SetTxRxMode(TXRX_OFF);
NRF24L01_FlushTx();
NRF24L01_SetTxRxMode(TX_EN);
CX10_Write_Packet(1);
XN297_SetTxRxMode(TXRX_OFF);
CX10_Write_Packet();
// wait for packet to be sent
while( (NRF24L01_ReadReg(NRF24L01_07_STATUS) & _BV(NRF24L01_07_TX_DS)) == 0); //delayMicroseconds(400);
// switch to RX mode
NRF24L01_SetTxRxMode(TXRX_OFF);
NRF24L01_FlushRx();
NRF24L01_SetTxRxMode(RX_EN);
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP) | _BV(NRF24L01_00_PRIM_RX));
while( !XN297_IsPacketSent()); //delayMicroseconds(400);
}
// switch to RX mode
XN297_SetTxRxMode(TXRX_OFF);
XN297_SetTxRxMode(RX_EN);
break;
case CX10_DATA:
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
CX10_Write_Packet(0);
CX10_Write_Packet();
break;
}
return packet_period;
@@ -261,9 +241,13 @@ static void __attribute__((unused)) CX10_initialize_txid()
}
}
uint16_t initCX10(void)
void CX10_init(void)
{
BIND_IN_PROGRESS; // autobind protocol
if(protocol == PROTO_Q2X2)
sub_protocol|=0x08; // Increase the number of sub_protocols for CX-10
if(sub_protocol==CX10_BLUE)
{
packet_length = CX10A_PACKET_SIZE;
@@ -286,8 +270,7 @@ uint16_t initCX10(void)
bind_counter = CX10_BIND_COUNT;
}
CX10_initialize_txid();
CX10_init();
return CX10_INITIAL_WAIT+packet_period;
CX10_RF_init();
}
#endif

View File

@@ -79,13 +79,24 @@ uint8_t CYRF_Reset()
void CYRF_GetMfgData(uint8_t data[])
{
#ifndef FORCE_CYRF_ID
/* Fuses power on */
CYRF_WriteRegister(CYRF_25_MFG_ID, 0xFF);
if(eeprom_read_byte((EE_ADDR)EEPROM_CID_INIT_OFFSET)==0xf0)
{//read Cyrf ID from EEPROM
for(uint8_t i=0;i<6;i++)
data[i] = eeprom_read_byte((EE_ADDR)EEPROM_CID_OFFSET+i);
}
else
{//read Cyrf ID and store it EEPROM
/* Fuses power on */
CYRF_WriteRegister(CYRF_25_MFG_ID, 0xFF);
CYRF_ReadRegisterMulti(CYRF_25_MFG_ID, data, 6);
CYRF_ReadRegisterMulti(CYRF_25_MFG_ID, data, 6);
for(uint8_t i=0;i<6;i++)
eeprom_write_byte((EE_ADDR)EEPROM_CID_OFFSET+i, data[i]);
eeprom_write_byte((EE_ADDR)EEPROM_CID_INIT_OFFSET, 0xf0);
/* Fuses power off */
CYRF_WriteRegister(CYRF_25_MFG_ID, 0x00);
/* Fuses power off */
CYRF_WriteRegister(CYRF_25_MFG_ID, 0x00);
}
#else
memcpy(data,FORCE_CYRF_ID,6);
#endif
@@ -258,7 +269,7 @@ void CYRF_FindBestChannels(uint8_t *channels, uint8_t len, uint8_t minspace, uin
delayMilliseconds(1);
for(i = 0; i < NUM_FREQ; i++)
{
CYRF_ConfigRFChannel(i);
CYRF_ConfigRFChannel(protocol==PROTO_LOSI?i|1:i);
delayMicroseconds(270); //slow channel require 270usec for synthesizer to settle
if( !(CYRF_ReadRegister(CYRF_05_RX_CTRL) & 0x80)) {
CYRF_WriteRegister(CYRF_05_RX_CTRL, 0x80); //Prepare to receive

View File

@@ -61,7 +61,6 @@ static void __attribute__((unused)) CORONA_rf_init()
CC2500_WriteReg(CC2500_15_DEVIATN, 0x50);
}
prev_option = option;
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
//not sure what they are doing to the PATABLE since basically only the first byte is used and it's only 8 bytes long. So I think they end up filling the PATABLE fully with 0xFF
@@ -72,7 +71,7 @@ static void __attribute__((unused)) CORONA_rf_init()
}
// Generate id and hopping freq
static void __attribute__((unused)) CORONA_init()
static void __attribute__((unused)) CORONA_TXID_init()
{
#ifdef CORONA_FORCE_ID
// Example of ID and channels taken from dumps
@@ -256,17 +255,13 @@ static uint16_t __attribute__((unused)) CORONA_build_packet()
return packet_period;
}
uint16_t ReadCORONA()
uint16_t CORONA_callback()
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(22000);
#endif
// Tune frequency if it has been changed
if ( prev_option != option )
{
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
prev_option = option ;
}
CC2500_SetFreqOffset();
if(IS_BIND_IN_PROGRESS)
{
@@ -281,7 +276,7 @@ uint16_t ReadCORONA()
return packet_period;
}
uint16_t initCORONA()
void CORONA_init()
{
switch(sub_protocol)
{
@@ -298,9 +293,8 @@ uint16_t initCORONA()
state=400; // Used by V2 to send RF channels + ID for 2.65s at startup
hopping_frequency_no=0;
fdv3_id_send = 0;
CORONA_init();
CORONA_TXID_init();
CORONA_rf_init();
return 10000;
}
#endif

View File

@@ -16,7 +16,7 @@
#if defined(DM002_NRF24L01_INO)
#include "iface_nrf24l01.h"
#include "iface_xn297.h"
#define DM002_PACKET_PERIOD 6100 // Timeout for callback in uSec
#define DM002_INITIAL_WAIT 500
@@ -24,7 +24,6 @@
#define DM002_RF_BIND_CHANNEL 0x27
#define DM002_BIND_COUNT 655 // 4 seconds
enum DM002_FLAGS {
// flags going to packet[9]
DM002_FLAG_FLIP = 0x01,
@@ -37,10 +36,10 @@ enum DM002_FLAGS {
DM002_FLAG_CAMERA2 = 0x80,
};
static void __attribute__((unused)) DM002_send_packet(uint8_t bind)
static void __attribute__((unused)) DM002_send_packet()
{
memcpy(packet+5,(uint8_t *)"\x00\x7F\x7F\x7F\x00\x00\x00",7);
if(bind)
if(IS_BIND_IN_PROGRESS)
{
packet[0] = 0xAA;
packet[1] = rx_tx_addr[0];
@@ -75,63 +74,40 @@ static void __attribute__((unused)) DM002_send_packet(uint8_t bind)
packet_count&=0x0F;
packet[10] = packet_count;
packet_count++;
XN297_Hopping(hopping_frequency_no);
}
//CRC
for(uint8_t i=0;i<DM002_PACKET_SIZE-1;i++)
packet[11]+=packet[i];
// Power on, TX mode, 2byte CRC
// Why CRC0? xn297 does not interpret it - either 16-bit CRC or nothing
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP));
if (bind)
NRF24L01_WriteReg(NRF24L01_05_RF_CH, DM002_RF_BIND_CHANNEL);
else
NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency[hopping_frequency_no]);
// clear packet status bits and TX FIFO
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
//Send
XN297_SetPower();
XN297_SetTxRxMode(TX_EN);
XN297_WritePayload(packet, DM002_PACKET_SIZE);
NRF24L01_SetPower(); // Set tx_power
}
static void __attribute__((unused)) DM002_init()
static void __attribute__((unused)) DM002_RF_init()
{
NRF24L01_Initialize();
NRF24L01_SetTxRxMode(TX_EN);
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_1M);
XN297_SetTXAddr((uint8_t *)"\x26\xA8\x67\x35\xCC", 5);
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowldgement on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps
NRF24L01_SetPower();
XN297_RFChannel(DM002_RF_BIND_CHANNEL);
}
uint16_t DM002_callback()
{
if(IS_BIND_DONE)
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(DM002_PACKET_PERIOD);
#endif
DM002_send_packet(0);
}
else
#ifdef MULTI_SYNC
telemetry_set_input_sync(DM002_PACKET_PERIOD);
#endif
if (bind_counter)
{
bind_counter--;
if (bind_counter == 0)
{
BIND_DONE;
XN297_SetTXAddr(rx_tx_addr, 5);
}
else
{
DM002_send_packet(1);
bind_counter--;
}
}
DM002_send_packet();
return DM002_PACKET_PERIOD;
}
@@ -155,13 +131,12 @@ static void __attribute__((unused)) DM002_initialize_txid()
}
}
uint16_t initDM002(void)
void DM002_init(void)
{
BIND_IN_PROGRESS; // autobind protocol
bind_counter = DM002_BIND_COUNT;
DM002_initialize_txid();
DM002_init();
return DM002_INITIAL_WAIT;
DM002_RF_init();
}
#endif

View File

@@ -117,7 +117,9 @@ static void __attribute__((unused)) DSM_cyrf_configdata()
static uint8_t __attribute__((unused)) DSM_get_pn_row(uint8_t channel, bool dsmx)
{
return (dsmx ? (channel - 2) % 5 : channel % 5);
if(protocol == PROTO_DSM && sub_protocol == DSMR)
return (channel + 2) % 5;
return (dsmx ? (channel - 2) % 5 : channel % 5);
}
static void __attribute__((unused)) DSM_set_sop_data_crc(bool ch2, bool dsmx)
@@ -127,10 +129,14 @@ static void __attribute__((unused)) DSM_set_sop_data_crc(bool ch2, bool dsmx)
if(ch2)
CYRF_ConfigCRCSeed(seed); //CH2
else
CYRF_ConfigCRCSeed(~seed); //CH1
CYRF_ConfigCRCSeed(~seed); //CH1, DSMR only use CH1
uint8_t pn_row = DSM_get_pn_row(hopping_frequency[hopping_frequency_no], dsmx);
uint8_t code[16];
#if 0
debug_time();
debug(" crc:%04X,row:%d,col:%d,rf:%02X",(~seed)&0xffff,pn_row,sop_col,hopping_frequency[hopping_frequency_no]);
#endif
DSM_read_code(code,pn_row,sop_col,8); // pn_row between 0 and 4, sop_col between 1 and 7
CYRF_ConfigSOPCode(code);
DSM_read_code(code,pn_row,7 - sop_col,8); // 7-sop_col between 0 and 6

View File

@@ -4,7 +4,7 @@
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
@@ -31,7 +31,7 @@ enum {
DSM_RX_DATA_CH2,
};
static void __attribute__((unused)) DSM_Rx_init()
static void __attribute__((unused)) DSM_RX_RF_init()
{
DSM_cyrf_config();
rx_disable_lna = IS_POWER_FLAG_on;
@@ -63,7 +63,7 @@ uint16_t convert_channel_DSM_nolimit(int32_t val)
return (uint16_t)val;
}
static uint8_t __attribute__((unused)) DSM_Rx_check_packet()
static uint8_t __attribute__((unused)) DSM_RX_check_packet()
{
uint8_t rx_status=CYRF_ReadRegister(CYRF_07_RX_IRQ_STATUS);
if((rx_status & 0x03) == 0x02) // RXC=1, RXE=0 then 2nd check is required (debouncing)
@@ -99,7 +99,7 @@ static uint8_t __attribute__((unused)) DSM_Rx_check_packet()
return rx_status; // Return error code
}
static void __attribute__((unused)) DSM_Rx_build_telemetry_packet()
static void __attribute__((unused)) DSM_RX_build_telemetry_packet()
{
uint8_t nbr_bits = 11;
if((DSM_rx_type&0xF0) == 0x00)
@@ -155,9 +155,13 @@ static void __attribute__((unused)) DSM_Rx_build_telemetry_packet()
packet_in[idx++] = bits & 0xff;
// Send telemetry
telemetry_link = 1;
#ifdef SEND_CPPM
if(sub_protocol>0)
telemetry_link |= 0x80; // Disable telemetry output
#endif
}
static bool __attribute__((unused)) DSM_Rx_bind_check_validity()
static bool __attribute__((unused)) DSM_RX_bind_check_validity()
{
uint16_t sum = 384 - 0x10;//
for(uint8_t i = 0; i < 8; i++)
@@ -173,7 +177,7 @@ static bool __attribute__((unused)) DSM_Rx_bind_check_validity()
return true;
}
static void __attribute__((unused)) DSM_Rx_build_bind_packet()
static void __attribute__((unused)) DSM_RX_build_bind_packet()
{
uint16_t sum = 384 - 0x10;//
packet[0] = 0xff ^ cyrfmfg_id[0]; // ID
@@ -205,7 +209,7 @@ static void __attribute__((unused)) DSM_abort_channel_rx(uint8_t ch)
CYRF_WriteRegister(CYRF_05_RX_CTRL, 0x83); // Prepare to receive
}
uint16_t DSM_Rx_callback()
uint16_t DSM_RX_callback()
{
uint8_t rx_status;
static uint8_t read_retry=0;
@@ -232,7 +236,7 @@ uint16_t DSM_Rx_callback()
if(len==16)
{
CYRF_ReadDataPacketLen(packet_in, 16);
if(DSM_Rx_bind_check_validity())
if(DSM_RX_bind_check_validity())
{
// store tx info into eeprom
uint16_t temp = DSM_RX_EEPROM_OFFSET;
@@ -243,10 +247,9 @@ uint16_t DSM_Rx_callback()
eeprom_write_byte((EE_ADDR)temp++, cyrfmfg_id[i]);
debug(" %02X", cyrfmfg_id[i]);
}
// check num_ch
// save num_ch
num_ch=packet_in[11];
if(num_ch>12) num_ch=12;
//check DSM_rx_type
// store DSM_rx_type
/*packet[12] 1 byte -> max DSM type allowed:
0x01 => 22ms 1024 DSM2 1 packet => number of channels is <8
0x02 => 22ms 1024 DSM2 2 packets => either a number of channel >7
@@ -257,29 +260,13 @@ uint16_t DSM_Rx_callback()
&0x80 => false=DSM2, true=DSMX
&0xF0 => false=1024, true=2048 */
DSM_rx_type=packet_in[12];
switch(DSM_rx_type)
{
case 0x01:
if(num_ch>7) DSM_rx_type = 0x02; // Can't be 0x01 with this number of channels
break;
case 0xA2:
if(num_ch>7) DSM_rx_type = 0xB2; // Can't be 0xA2 with this number of channels
break;
case 0x02:
case 0x12:
case 0xB2:
break;
default: // Unknown type, default to DSMX 11ms
DSM_rx_type = 0xB2;
break;
}
eeprom_write_byte((EE_ADDR)temp, DSM_rx_type);
debugln(", num_ch=%d, type=%02X",num_ch, DSM_rx_type);
eeprom_write_byte((EE_ADDR)temp, DSM_rx_type);
CYRF_WriteRegister(CYRF_29_RX_ABORT, 0x20); // Abort RX operation
CYRF_SetTxRxMode(TX_EN); // Force end state TX
CYRF_ConfigDataCode((const uint8_t *)"\x98\x88\x1B\xE4\x30\x79\x03\x84", 16);
CYRF_WriteRegister(CYRF_29_RX_ABORT, 0x00); // Clear abort RX
DSM_Rx_build_bind_packet();
DSM_RX_build_bind_packet();
bind_counter=500;
phase++; // DSM_RX_BIND2;
return 1000;
@@ -301,11 +288,11 @@ uint16_t DSM_Rx_callback()
if(read_retry==0)
{
packet_count=0;
hopping_frequency_no++; // Change channel
hopping_frequency_no++; // Change channel
hopping_frequency_no %= 0x50;
hopping_frequency_no |= 0x01; // Odd channels only
hopping_frequency_no |= 0x01; // Odd channels only
CYRF_ConfigRFChannel(hopping_frequency_no);
DSM_abort_channel_rx(0); // Abort RX operation and receive
DSM_abort_channel_rx(0); // Abort RX operation and receive
}
}
return 1000;
@@ -346,7 +333,7 @@ uint16_t DSM_Rx_callback()
break;
case DSM2_RX_SCAN: // Scan for DSM2 frequencies
//Received something ?
rx_status = DSM_Rx_check_packet();
rx_status = DSM_RX_check_packet();
if(rx_status == 0x02)
{ // data received with no errors
debugln("CH%d:Found %d",rf_ch_num+1,hopping_frequency[rf_ch_num]);
@@ -401,13 +388,13 @@ uint16_t DSM_Rx_callback()
pps_counter = 0;
}
//Received something ?
rx_status = DSM_Rx_check_packet();
rx_status = DSM_RX_check_packet();
if(rx_status == 0x02)
{ // data received with no errors
#ifdef DSM_DEBUG_RF
debugln("CH1:RX");
#endif
DSM_Rx_build_telemetry_packet();
DSM_RX_build_telemetry_packet();
rx_data_started = true;
pps_counter++;
DSM_abort_channel_rx(2); // Abort RX operation, set sop&data&seed&rf using CH2, DSM2/X and receive
@@ -452,13 +439,13 @@ uint16_t DSM_Rx_callback()
}
return 500;
case DSM_RX_DATA_CH2:
rx_status = DSM_Rx_check_packet();
rx_status = DSM_RX_check_packet();
if(rx_status == 0x02)
{ // data received with no errors
#ifdef DSM_DEBUG_RF
debugln("CH2:RX");
#endif
DSM_Rx_build_telemetry_packet();
DSM_RX_build_telemetry_packet();
pps_counter++;
}
#ifdef DSM_DEBUG_RF
@@ -476,9 +463,9 @@ uint16_t DSM_Rx_callback()
return 10000;
}
uint16_t initDSM_Rx()
void DSM_RX_init()
{
DSM_Rx_init();
DSM_RX_RF_init();
hopping_frequency_no = 0;
if (IS_BIND_IN_PROGRESS)
@@ -499,7 +486,6 @@ uint16_t initDSM_Rx()
debugln(", type=%02X", DSM_rx_type);
phase = DSM_RX_DATA_PREP;
}
return 15000;
}
#endif

View File

@@ -86,21 +86,24 @@ static void __attribute__((unused)) DSM_build_bind_packet()
if(sub_protocol==DSM_AUTO)
packet[11] = 12;
else
packet[11] = num_ch;
packet[11] = num_ch; // DX5 DSMR sends 0x48...
if (sub_protocol==DSM2_22)
packet[12]=num_ch<8?0x01:0x02; // DSM2/1024 1 or 2 packets depending on the number of channels
else if(sub_protocol==DSM2_11)
packet[12]=0x12; // DSM2/2048 2 packets
else if(sub_protocol==DSMX_22)
if (sub_protocol==DSMR)
packet[12] = 0xa2;
else if (sub_protocol==DSM2_1F)
packet[12] = num_ch<8?0x01:0x02; // DSM2/1024 1 or 2 packets depending on the number of channels
else if(sub_protocol==DSM2_2F)
packet[12] = 0x12; // DSM2/2048 2 packets
else if(sub_protocol==DSMX_1F)
#if defined DSM_TELEMETRY
packet[12] = 0xb2; // DSMX/2048 2 packets
#else
packet[12] = num_ch<8? 0xa2 : 0xb2; // DSMX/2048 1 or 2 packets depending on the number of channels
#endif
else // DSMX_11 && DSM_AUTO
packet[12]=0xb2; // DSMX/2048 2 packets
else // DSMX_2F && DSM_AUTO
packet[12] = 0xb2; // DSMX/2048 2 packets
packet[13] = 0x00; //???
for(i = 8; i < 14; i++)
sum += packet[i];
@@ -126,6 +129,9 @@ static void __attribute__((unused)) DSM_update_channels()
if(num_ch<3 || num_ch>12)
num_ch=6; // Default to 6 channels if invalid choice...
if(sub_protocol==DSMR && num_ch>7)
num_ch=7; // Max 7 channels in DSMR
// Create channel map based on number of channels and refresh rate
uint8_t idx=num_ch-3;
if((option & 0x40) && num_ch>7 && num_ch<12)
@@ -141,17 +147,30 @@ static void __attribute__((unused)) DSM_build_data_packet(uint8_t upper)
if(prev_option!=option)
DSM_update_channels();
if (sub_protocol==DSMX_11 || sub_protocol==DSMX_22 )
if (sub_protocol==DSMX_2F || sub_protocol==DSMX_1F)
{//DSMX
packet[0] = cyrfmfg_id[2];
packet[1] = cyrfmfg_id[3];
}
else
{//DSM2
{//DSM2 && DSMR
packet[0] = (0xff ^ cyrfmfg_id[2]);
packet[1] = (0xff ^ cyrfmfg_id[3]);
if(sub_protocol==DSM2_22)
bits=10; // Only DSM2_22 is using a resolution of 1024
if(sub_protocol==DSM2_1F)
bits=10; // Only DSM2_1F is using a resolution of 1024
}
if(sub_protocol == DSMR)
{
for (uint8_t i = 0; i < 7; i++)
{
uint16_t value = 0x0000;
if(i < num_ch)
value=Channel_data[i]<<1;
packet[i*2+2] = (value >> 8) & 0xff;
packet[i*2+3] = (value >> 0) & 0xff;
}
return;
}
#ifdef DSM_THROTTLE_KILL_CH
@@ -179,18 +198,18 @@ static void __attribute__((unused)) DSM_build_data_packet(uint8_t upper)
else
#endif
#ifdef DSM_MAX_THROW
value=Channel_data[CH_TAER[idx]]; // -100%..+100% => 1024..1976us and -125%..+125% => 904..2096us based on Redcon 6 channel DSM2 RX
value=Channel_data[CH_TAER[idx]]; // -100%..+100% => 1024..1976us and -125%..+125% => 904..2096us based on Redcon 6 channel DSM2 RX
#else
if(option & 0x80)
value=Channel_data[CH_TAER[idx]]; // -100%..+100% => 1024..1976us and -125%..+125% => 904..2096us based on Redcon 6 channel DSM2 RX
value=Channel_data[CH_TAER[idx]]; // -100%..+100% => 1024..1976us and -125%..+125% => 904..2096us based on Redcon 6 channel DSM2 RX
else
value=convert_channel_16b_nolimit(CH_TAER[idx],0x156,0x6AA,false); // -100%..+100% => 1100..1900us and -125%..+125% => 1000..2000us based on a DX8 G2 dump
#endif
if(bits==10) value>>=1;
value |= (upper && i==0 ? 0x8000 : 0) | (idx << bits);
}
packet[i*2+2] = (value >> 8) & 0xff;
packet[i*2+3] = (value >> 0) & 0xff;
packet[i*2+2] = value >> 8;
packet[i*2+3] = value;
}
#ifdef DSM_FWD_PGM
if(upper==0 && DSM_SerialRX && (DSM_SerialRX_val[0]&0xF8)==0x70 )
@@ -228,7 +247,7 @@ static uint8_t __attribute__((unused)) DSM_Check_RX_packet()
return result;
}
uint16_t ReadDsm()
uint16_t DSM_callback()
{
#define DSM_CH1_CH2_DELAY 4010 // Time between write of channel 1 and channel 2
#ifdef STM32_BOARD
@@ -319,25 +338,32 @@ uint16_t ReadDsm()
DSM_cyrf_configdata();
CYRF_SetTxRxMode(TX_EN);
hopping_frequency_no = 0;
phase = DSM_CH1_WRITE_A; // in fact phase++
DSM_set_sop_data_crc(phase==DSM_CH1_CHECK_A||phase==DSM_CH1_CHECK_B, sub_protocol==DSMX_11||sub_protocol==DSMX_22);
phase = DSM_CH1_WRITE_A; // in fact phase++
if(sub_protocol == DSMR)
DSM_set_sop_data_crc(false, true);
else
DSM_set_sop_data_crc(true, sub_protocol==DSMX_2F||sub_protocol==DSMX_1F); //prep CH1
return 10000;
case DSM_CH1_WRITE_A:
#ifdef MULTI_SYNC
telemetry_set_input_sync(11000); // Always request 11ms spacing even if we don't use half of it in 22ms mode
telemetry_set_input_sync(11000); // Always request 11ms spacing even if we don't use half of it in 22ms mode
#endif
if(sub_protocol == DSMR)
CYRF_SetPower(0x08); //Keep transmit power in sync
else
CYRF_SetPower(0x28); //Keep transmit power in sync
case DSM_CH1_WRITE_B:
DSM_build_data_packet(phase == DSM_CH1_WRITE_B); // build lower or upper channels
case DSM_CH2_WRITE_A:
case DSM_CH2_WRITE_B:
CYRF_ReadRegister(CYRF_04_TX_IRQ_STATUS); // clear IRQ flags
CYRF_ReadRegister(CYRF_04_TX_IRQ_STATUS); // clear IRQ flags
CYRF_WriteDataPacket(packet);
#if 0
for(uint8_t i=0;i<16;i++)
debug(" %02X", packet[i]);
debugln("");
#endif
phase++; // change from WRITE to CHECK mode
phase++; // change from WRITE to CHECK mode
return DSM_WRITE_DELAY;
case DSM_CH1_CHECK_A:
case DSM_CH1_CHECK_B:
@@ -348,7 +374,7 @@ uint16_t ReadDsm()
if((CYRF_ReadRegister(CYRF_02_TX_CTRL) & 0x80) == 0x00)
break;
if(phase==DSM_CH1_CHECK_A || phase==DSM_CH1_CHECK_B)
if((phase==DSM_CH1_CHECK_A || phase==DSM_CH1_CHECK_B) && sub_protocol!=DSMR)
{
#if defined DSM_TELEMETRY
// reset cyrf6936 if freezed after switching from TX to RX
@@ -360,16 +386,19 @@ uint16_t ReadDsm()
CYRF_SetTxRxMode(TX_EN);
}
#endif
DSM_set_sop_data_crc(phase==DSM_CH1_CHECK_A||phase==DSM_CH1_CHECK_B, sub_protocol==DSMX_11 || sub_protocol==DSMX_22);
phase++; // change from CH1_CHECK to CH2_WRITE
DSM_set_sop_data_crc(true, sub_protocol==DSMX_2F||sub_protocol==DSMX_1F); // prep CH2
phase++; // change from CH1_CHECK to CH2_WRITE
return DSM_CH1_CH2_DELAY - DSM_WRITE_DELAY;
}
if (phase == DSM_CH2_CHECK_A)
CYRF_SetPower(0x28); //Keep transmit power in sync
#if defined DSM_TELEMETRY
phase++; // change from CH2_CHECK to CH2_READ
CYRF_SetTxRxMode(RX_EN); //Receive mode
CYRF_WriteRegister(CYRF_05_RX_CTRL, 0x87); //0x80??? //Prepare to receive
if(sub_protocol==DSMR)
{
phase = DSM_CH2_READ_B;
return 11000 - DSM_WRITE_DELAY - DSM_READ_DELAY;
}
#ifdef DSM_GR300
if(num_ch==3)
return timing - DSM_CH1_CH2_DELAY - DSM_WRITE_DELAY - DSM_READ_DELAY;
@@ -401,7 +430,7 @@ uint16_t ReadDsm()
telemetry_link=1;
}
CYRF_WriteRegister(CYRF_29_RX_ABORT, 0x20); // Abort RX operation
if (phase == DSM_CH2_READ_A && (sub_protocol==DSM2_22 || sub_protocol==DSMX_22) && num_ch < 8) // 22ms mode
if (phase == DSM_CH2_READ_A && (sub_protocol==DSM2_1F || sub_protocol==DSMX_1F) && num_ch < 8) // 22ms mode
{
CYRF_SetTxRxMode(RX_EN); // Force end state read
CYRF_WriteRegister(CYRF_29_RX_ABORT, 0x00); // Clear abort RX operation
@@ -419,14 +448,14 @@ uint16_t ReadDsm()
phase = DSM_CH1_WRITE_A; //Transmit lower
CYRF_SetTxRxMode(TX_EN); //TX mode
CYRF_WriteRegister(CYRF_29_RX_ABORT, 0x00); //Clear abort RX operation
DSM_set_sop_data_crc(phase==DSM_CH1_CHECK_A||phase==DSM_CH1_CHECK_B, sub_protocol==DSMX_11||sub_protocol==DSMX_22);
DSM_set_sop_data_crc(false, sub_protocol==DSMX_2F||sub_protocol==DSMX_1F||sub_protocol==DSMR);
return DSM_READ_DELAY;
#else
// No telemetry
DSM_set_sop_data_crc(phase==DSM_CH1_CHECK_A||phase==DSM_CH1_CHECK_B, sub_protocol==DSMX_11||sub_protocol==DSMX_22);
DSM_set_sop_data_crc(phase==DSM_CH1_CHECK_A||phase==DSM_CH1_CHECK_B, sub_protocol==DSMX_2F||sub_protocol==DSMX_1F);
if (phase == DSM_CH2_CHECK_A)
{
if(num_ch > 7 || sub_protocol==DSM2_11 || sub_protocol==DSMX_11)
if(num_ch > 7 || sub_protocol==DSM2_2F || sub_protocol==DSMX_2F)
phase = DSM_CH1_WRITE_B; //11ms mode or upper to transmit change from CH2_CHECK_A to CH1_WRITE_A
else
{ //Normal mode 22ms
@@ -450,25 +479,65 @@ uint16_t ReadDsm()
return 0;
}
uint16_t initDsm()
const uint8_t PROGMEM DSMR_ID_FREQ[][4 + 23] = {
{ 0x71, 0x74, 0x1c, 0xe4, 0x11, 0x2f, 0x17, 0x3d, 0x23, 0x3b, 0x0f, 0x21, 0x25, 0x49, 0x1d, 0x13, 0x4d, 0x1f, 0x41, 0x4b, 0x47, 0x05, 0x27, 0x15, 0x19, 0x3f, 0x07 },
{ 0xfe, 0xfe, 0xfe, 0xfe, 0x45, 0x31, 0x33, 0x4b, 0x11, 0x29, 0x49, 0x3f, 0x09, 0x13, 0x47, 0x21, 0x1d, 0x43, 0x1f, 0x05, 0x41, 0x19, 0x1b, 0x2d, 0x15, 0x4d, 0x0f },
{ 0xfe, 0xff, 0xff, 0xff, 0x2a, 0x06, 0x22, 0x28, 0x16, 0x24, 0x38, 0x0e, 0x32, 0x2e, 0x14, 0x3a, 0x04, 0x44, 0x0c, 0x42, 0x1c, 0x4a, 0x10, 0x36, 0x3c, 0x48, 0x26 },
{ 0xff, 0xfe, 0xff, 0xff, 0x28, 0x34, 0x48, 0x46, 0x3a, 0x12, 0x18, 0x32, 0x14, 0x42, 0x16, 0x40, 0x22, 0x44, 0x1c, 0x0a, 0x36, 0x20, 0x10, 0x0c, 0x3c, 0x26, 0x2e },
{ 0xff, 0xff, 0xfe, 0xff, 0x3c, 0x16, 0x04, 0x48, 0x1e, 0x4a, 0x10, 0x18, 0x22, 0x28, 0x38, 0x40, 0x20, 0x06, 0x3e, 0x42, 0x30, 0x1a, 0x2c, 0x1c, 0x46, 0x14, 0x34 },
{ 0xff, 0xff, 0xff, 0xfe, 0x4d, 0x39, 0x1b, 0x13, 0x45, 0x2f, 0x0d, 0x3d, 0x0b, 0x11, 0x47, 0x2d, 0x19, 0x1d, 0x23, 0x35, 0x33, 0x3b, 0x21, 0x31, 0x17, 0x0f, 0x43 },
{ 0xff, 0xff, 0xff, 0xff, 0x14, 0x28, 0x2e, 0x32, 0x3e, 0x10, 0x38, 0x0e, 0x12, 0x06, 0x2c, 0x26, 0x30, 0x4c, 0x34, 0x16, 0x04, 0x3a, 0x42, 0x48, 0x36, 0x46, 0x1a },
{ 0x00, 0xff, 0xff, 0xff, 0x3e, 0x30, 0x42, 0x24, 0x06, 0x0e, 0x14, 0x1c, 0x08, 0x10, 0x20, 0x22, 0x04, 0x32, 0x0c, 0x44, 0x3c, 0x46, 0x4a, 0x26, 0x4c, 0x48, 0x1e },
{ 0xff, 0x00, 0xff, 0xff, 0x38, 0x0e, 0x22, 0x2a, 0x44, 0x3a, 0x4a, 0x3e, 0x16, 0x20, 0x36, 0x24, 0x46, 0x18, 0x1e, 0x12, 0x1c, 0x30, 0x2c, 0x14, 0x06, 0x0c, 0x40 },
{ 0x00, 0x00, 0xff, 0xff, 0x06, 0x4c, 0x26, 0x08, 0x46, 0x3e, 0x30, 0x12, 0x38, 0x1c, 0x04, 0x4a, 0x2c, 0x1a, 0x20, 0x3a, 0x18, 0x36, 0x28, 0x2e, 0x22, 0x40, 0x10 },
{ 0xff, 0xff, 0x00, 0xff, 0x12, 0x06, 0x3c, 0x2a, 0x22, 0x38, 0x48, 0x4c, 0x32, 0x44, 0x26, 0x16, 0x0c, 0x28, 0x2c, 0x36, 0x1c, 0x1a, 0x42, 0x10, 0x08, 0x4a, 0x34 },
{ 0x00, 0xff, 0x00, 0xff, 0x04, 0x4c, 0x4a, 0x28, 0x2a, 0x24, 0x14, 0x1e, 0x40, 0x48, 0x44, 0x2c, 0x2e, 0x1a, 0x12, 0x46, 0x3a, 0x0e, 0x18, 0x1c, 0x20, 0x10, 0x42 },
{ 0xff, 0x00, 0x00, 0xff, 0x06, 0x10, 0x14, 0x16, 0x48, 0x18, 0x44, 0x2c, 0x0a, 0x26, 0x24, 0x42, 0x36, 0x30, 0x38, 0x3e, 0x0c, 0x3c, 0x34, 0x46, 0x2a, 0x32, 0x0e },
{ 0x00, 0x00, 0x00, 0xff, 0x2c, 0x0a, 0x46, 0x28, 0x38, 0x24, 0x14, 0x06, 0x04, 0x10, 0x18, 0x30, 0x12, 0x20, 0x3a, 0x1a, 0x32, 0x3c, 0x3e, 0x4a, 0x1e, 0x44, 0x36 },
{ 0x00, 0x00, 0x00, 0x00, 0x45, 0x23, 0x07, 0x37, 0x4b, 0x13, 0x3d, 0x31, 0x19, 0x2b, 0x2f, 0x2d, 0x1f, 0x4d, 0x3f, 0x1b, 0x43, 0x27, 0x3b, 0x11, 0x05, 0x0d, 0x17 },
{ 0xff, 0xff, 0xff, 0x00, 0x0b, 0x4b, 0x1d, 0x39, 0x09, 0x0f, 0x49, 0x25, 0x07, 0x35, 0x3b, 0x05, 0x33, 0x17, 0x2d, 0x11, 0x2b, 0x29, 0x1f, 0x45, 0x1b, 0x41, 0x47 },
{ 0x00, 0xff, 0xff, 0x00, 0x41, 0x35, 0x11, 0x25, 0x29, 0x27, 0x33, 0x47, 0x4d, 0x31, 0x05, 0x37, 0x15, 0x1f, 0x23, 0x07, 0x1b, 0x0f, 0x3b, 0x49, 0x19, 0x3f, 0x0b },
{ 0xff, 0x00, 0xff, 0x00, 0x25, 0x47, 0x05, 0x0b, 0x45, 0x1f, 0x2b, 0x27, 0x2d, 0x09, 0x07, 0x43, 0x49, 0x29, 0x4d, 0x39, 0x33, 0x41, 0x17, 0x0f, 0x15, 0x19, 0x3b },
{ 0x00, 0x00, 0xff, 0x00, 0x3b, 0x05, 0x21, 0x0d, 0x1b, 0x43, 0x17, 0x2d, 0x1d, 0x25, 0x4b, 0x35, 0x4d, 0x3f, 0x07, 0x09, 0x37, 0x41, 0x15, 0x1f, 0x0f, 0x27, 0x29 },
{ 0xff, 0xff, 0x00, 0x00, 0x2b, 0x35, 0x1b, 0x1d, 0x0f, 0x47, 0x09, 0x0d, 0x45, 0x41, 0x21, 0x11, 0x2f, 0x43, 0x27, 0x33, 0x4b, 0x37, 0x13, 0x19, 0x4d, 0x23, 0x17 },
{ 0x00, 0xff, 0x00, 0x00, 0x1b, 0x1d, 0x33, 0x13, 0x2b, 0x27, 0x09, 0x41, 0x25, 0x17, 0x19, 0x2d, 0x4b, 0x37, 0x45, 0x11, 0x21, 0x0d, 0x3d, 0x4d, 0x07, 0x39, 0x43 },
{ 0xff, 0x00, 0x00, 0x00, 0x37, 0x27, 0x43, 0x4b, 0x39, 0x13, 0x07, 0x0d, 0x25, 0x17, 0x29, 0x1b, 0x1d, 0x45, 0x19, 0x2d, 0x0b, 0x3d, 0x15, 0x47, 0x1f, 0x21, 0x4d } };
void DSM_init()
{
CYRF_GetMfgData(cyrfmfg_id);
//Model match
cyrfmfg_id[3]^=RX_num;
if(sub_protocol == DSMR)
{
uint8_t row = rx_tx_addr[3]%22;
for(uint8_t i=0; i< 4; i++)
cyrfmfg_id[i] = pgm_read_byte_near(&DSMR_ID_FREQ[row][i]);
for(uint8_t i=0; i< 23; i++)
hopping_frequency[i] = pgm_read_byte_near(&DSMR_ID_FREQ[row][i+4]);
}
else
{
CYRF_GetMfgData(cyrfmfg_id);
//Model match
cyrfmfg_id[3]^=RX_num;
}
//Calc sop_col
sop_col = (cyrfmfg_id[0] + cyrfmfg_id[1] + cyrfmfg_id[2] + 2) & 0x07;
//Fix for OrangeRX using wrong DSM_pncodes by preventing access to "Col 8"
if(sop_col==0)
if(sop_col==0 && sub_protocol != DSMR)
{
cyrfmfg_id[rx_tx_addr[0]%3]^=0x01; //Change a bit so sop_col will be different from 0
sop_col = (cyrfmfg_id[0] + cyrfmfg_id[1] + cyrfmfg_id[2] + 2) & 0x07;
}
//Calc CRC seed
seed = (cyrfmfg_id[0] << 8) + cyrfmfg_id[1];
//Hopping frequencies
if (sub_protocol == DSMX_11 || sub_protocol == DSMX_22)
if (sub_protocol == DSMX_2F || sub_protocol == DSMX_1F)
DSM_calc_dsmx_channel();
else
else if(sub_protocol != DSMR)
{
uint8_t tmpch[10];
CYRF_FindBestChannels(tmpch, 10, 5, 3, 75);
@@ -483,6 +552,7 @@ uint16_t initDsm()
}
hopping_frequency[1] = tmpch[idx];
}
//
DSM_cyrf_config();
CYRF_SetTxRxMode(TX_EN);
@@ -497,7 +567,6 @@ uint16_t initDsm()
}
else
phase = DSM_CHANSEL;//
return 10000;
}
#endif

View File

@@ -55,14 +55,14 @@ static void __attribute__((unused)) DEVO_add_pkt_suffix()
{
uint8_t bind_state;
#ifdef ENABLE_PPM
if(mode_select && option==0 && IS_BIND_DONE) //PPM mode and option not already set and bind is finished
if(mode_select && (option&0x01)==0 && IS_BIND_DONE) //PPM mode and option not already set and bind is finished
{
BIND_SET_INPUT;
BIND_SET_PULLUP; // set pullup
if(IS_BIND_BUTTON_on)
{
eeprom_write_byte((EE_ADDR)(MODELMODE_EEPROM_OFFSET+RX_num),0x01); // Set fixed id mode for the current model
option=1;
option |= 0x01;
}
BIND_SET_OUTPUT;
}
@@ -72,7 +72,7 @@ static void __attribute__((unused)) DEVO_add_pkt_suffix()
MProtocol_id = RX_num + MProtocol_id_master;
bind_counter=DEVO_BIND_COUNT;
}
if (option)
if (option&0x01)
{
if (bind_counter > 0)
bind_state = 0xc0;
@@ -163,29 +163,161 @@ static void __attribute__((unused)) DEVO_build_data_pkt()
}
#if defined DEVO_HUB_TELEMETRY
static void __attribute__((unused)) DEVO_parse_telemetry_packet()
static uint32_t __attribute__((unused)) DEVO_text_to_int(uint8_t *ptr, uint8_t len)
{
uint32_t value = 0;
for(uint8_t i = 0; i < len; i++)
value = value * 10 + (ptr[i] - '0');
return value;
}
static void __attribute__((unused)) DEVO_float_to_ints(uint8_t *ptr, uint16_t *value, uint16_t *decimal)
{
bool seen_decimal = false;
*value = 0;
*decimal = 0;
for(uint8_t i = 0; i < 7; i++)
{
if(ptr[i] == '.')
{
seen_decimal = true;
continue;
}
if(ptr[i] < '0' || ptr[i] > '9')
{
if(*value != 0 || seen_decimal)
return;
}
else
{
if(seen_decimal)
*decimal = *decimal * 10 + (ptr[i] - '0');
else
*value = *value * 10 + (ptr[i] - '0');
}
}
}
static void __attribute__((unused)) DEVO_parse_telemetry_packet()
{ // Telemetry packets every 2.4ms
DEVO_scramble_pkt(); //This will unscramble the packet
debugln("RX");
if ((((uint32_t)packet[15] << 16) | ((uint32_t)packet[14] << 8) | packet[13]) != (MProtocol_id & 0x00ffffff))
return; // ID does not match
//RSSI
TX_RSSI = CYRF_ReadRegister(CYRF_13_RSSI) & 0x1F;
TX_RSSI = (TX_RSSI << 1) + TX_RSSI;
RX_RSSI = TX_RSSI;
telemetry_link = 1;
//TODO: FW telemetry https://github.com/DeviationTX/deviation/blob/5efb6a28bea697af9a61b5a0ed2528cc8d203f90/src/protocol/devo_cyrf6936.c#L232
debug("P[0]=%02X",packet[0]);
if (packet[0] == 0x30) // Volt packet
if((telemetry_link & 3) != 0)
{
v_lipo1 = packet[1] << 1;
v_lipo2 = packet[3] << 1;
debugln("S%d",telemetry_link);
return; // Previous telemetry not sent yet...
}
//Debug telem RX
//for(uint8_t i=0;i<12;i++)
// debug("%02X ",packet[i]);
//debugln("");
#if defined HUB_TELEMETRY
//Telemetry https://github.com/DeviationTX/deviation/blob/5efb6a28bea697af9a61b5a0ed2528cc8d203f90/src/protocol/devo_cyrf6936.c#L232
uint16_t val, dec;
uint32_t val32;
switch(packet[0])
{
case 0x30: // Volt and RPM packet
//RSSI and voltage
TX_RSSI = CYRF_ReadRegister(CYRF_13_RSSI) & 0x1F;
TX_RSSI = (TX_RSSI << 1) + TX_RSSI;
RX_RSSI = TX_RSSI;
telemetry_link |= 1;
v_lipo1 = packet[1] << 1;
v_lipo2 = packet[3] << 1;
//packet[5] = 127; // 12.7V
if(packet[5] != 0)
{
val = (packet[5]*11)/21; // OpenTX strange transformation??
dec = val;
val /= 10;
dec -= val*10;
frsky_send_user_frame(0x3A, val, 0x00); // volt3
frsky_send_user_frame(0x3B, dec, 0x00); // volt3
}
val = packet[7] * 120; // change to RPM
frsky_send_user_frame(0x03, val, val>>8); // RPM
break;
case 0x31: // Temperature packet
//memcpy(&packet[1],"\x29\x2A\x2B\x00\x00\x00\x00\x00\x00\x00\x00\x00",12); // 21°, 22°, 23°
for(uint8_t i=0; i<2;i++)
if(packet[i+1]!=0xff)
{
val = packet[i+1];
val -= 20;
frsky_send_user_frame(0x02 + i*3, val, val>>8); // temp 1 & 2
}
break;
// GPS Data
case 0x32: // Longitude
//memcpy(&packet[1],"\x30\x33\x30\x32\x30\x2e\x38\x32\x37\x30\x45\xfb",12); // 030°20.8270E in ddmm.mmmm
//memcpy(&packet[1],"\x31\x31\x37\x31\x31\x2e\x35\x39\x34\x37\x57\xfb",12); // RX705 sends 117°11.5947W which should be 11706.95685W in ddmm.mmmm
val = DEVO_text_to_int(&packet[1], 3)*100; // dd00
val32 = DEVO_text_to_int(&packet[4], 2) * 10000 + DEVO_text_to_int(&packet[7], 4); // mmmmmm
if(option&0x02) // if RX705 GPS format
val32 = (val32*3)/5; // then * 6/10 correction
dec = val32/10000;
val = val + dec; // dddmm
frsky_send_user_frame(0x12 , val, val>>8);
val = val32 - dec*10000; // .mmmm
frsky_send_user_frame(0x12+8, val, val>>8);
frsky_send_user_frame(0x1A+8, packet[11], 0x00); // 'E'/'W'
break;
case 0x33: // Latitude
//memcpy(&packet[1],"\x35\x39\x35\x34\x2e\x37\x37\x37\x36\x4e\x07\x00",12); // 59°54.776N in ddmm.mmmm
//memcpy(&packet[1],"\x31\x37\x31\x31\x2e\x35\x39\x34\x37\x4e\xfb\x00",12); // RX705 sends 17°11.5947N which should be 1706.95685N in ddmm.mmmm
val = DEVO_text_to_int(&packet[1], 2)*100; // dd00
val32 = DEVO_text_to_int(&packet[3], 2) * 10000 + DEVO_text_to_int(&packet[6], 4); // mmmmmm
if(option&0x02) // if RX705 GPS format
val32 = (val32*3)/5; // then * 6/10 correction
dec = val32/10000;
val = val + dec; // dddmm
frsky_send_user_frame(0x13 , val, val>>8);
val = val32 - dec*10000; // .mmmm
frsky_send_user_frame(0x13+8, val, val>>8);
frsky_send_user_frame(0x1B+8, packet[10], 0x00); // 'N'/'S'
break;
case 0x34: // Altitude
//memcpy(&packet[1],"\x31\x32\x2e\x38\x00\x00\x00\x4d\x4d\x4e\x45\xfb",12); // 12.8 MMNE
DEVO_float_to_ints(&packet[1], &val, &dec);
frsky_send_user_frame(0x10, val, val>>8);
frsky_send_user_frame(0x21, dec, dec>>8);
break;
case 0x35: // Speed
//memcpy(&packet[1],"\x00\x00\x00\x00\x00\x00\x30\x2e\x30\x30\x00\x00",12); // 0.0
DEVO_float_to_ints(&packet[1], &val, &dec);
frsky_send_user_frame(0x11 , val, val>>8);
frsky_send_user_frame(0x11+8, dec, dec>>8);
break;
case 0x36: // Time
//memcpy(&packet[1],"\x31\x38\x32\x35\x35\x32\x31\x35\x31\x30\x31\x32",12); // "182552151012" = 2012-10-15 18:25:52 (UTC)
if(packet[1]!=0)
{
frsky_send_user_frame(0x15, DEVO_text_to_int(&packet[9], 2), DEVO_text_to_int(&packet[7], 2)); // month, day
val = 2000 + DEVO_text_to_int(&packet[11], 2); // year
frsky_send_user_frame(0x16, val, val>>8);
frsky_send_user_frame(0x17, DEVO_text_to_int(&packet[1], 2), DEVO_text_to_int(&packet[3], 2)); // hour, min
frsky_send_user_frame(0x18, DEVO_text_to_int(&packet[5], 2), 0x00); // second
}
break;
}
#else
if(packet[0] == 0x30)
{
TX_RSSI = CYRF_ReadRegister(CYRF_13_RSSI) & 0x1F;
TX_RSSI = (TX_RSSI << 1) + TX_RSSI;
RX_RSSI = TX_RSSI;
telemetry_link |= 1;
v_lipo1 = packet[1] << 1;
v_lipo2 = packet[3] << 1;
}
#endif
}
#endif
@@ -294,7 +426,7 @@ static void __attribute__((unused)) DEVO_BuildPacket()
packet_count = 0;
}
uint16_t devo_callback()
uint16_t DEVO_callback()
{
static uint8_t txState=0;
@@ -404,8 +536,23 @@ uint16_t devo_callback()
#endif
}
uint16_t DevoInit()
void DEVO_init()
{
#ifdef ENABLE_PPM
if(mode_select) //PPM mode
{
if(IS_BIND_BUTTON_FLAG_on)
{
option &= 0xFE;
eeprom_write_byte((EE_ADDR)(MODELMODE_EEPROM_OFFSET+RX_num),option); // reset to autobind mode for the current model
}
else
{
option=eeprom_read_byte((EE_ADDR)(MODELMODE_EEPROM_OFFSET+RX_num)); // load previous mode: autobind or fixed id
if(option > 3) option = 0; // if invalid then it should be autobind
}
}
#endif //ENABLE_PPM
switch(sub_protocol)
{
case 1:
@@ -436,8 +583,13 @@ uint16_t DevoInit()
packet_count = 0;
prev_option=option;
if(option==0)
if(option&0x01)
{
phase = DEVO_BOUND_1;
bind_counter = 0;
DEVO_cyrf_set_bound_sop_code();
}
else
{
MProtocol_id = ((uint32_t)(hopping_frequency[0] ^ cyrfmfg_id[0] ^ cyrfmfg_id[3]) << 16)
| ((uint32_t)(hopping_frequency[1] ^ cyrfmfg_id[1] ^ cyrfmfg_id[4]) << 8)
@@ -447,13 +599,6 @@ uint16_t DevoInit()
phase = DEVO_BIND;
BIND_IN_PROGRESS;
}
else
{
phase = DEVO_BOUND_1;
bind_counter = 0;
DEVO_cyrf_set_bound_sop_code();
}
return 2400;
}
#endif

View File

@@ -19,7 +19,6 @@
#define E010R5_FORCE_ID
#define E010R5_BIND_CH 0x2D //45
#define E010R5_PAYLOAD_SIZE 14
@@ -51,15 +50,12 @@ static void __attribute__((unused)) E010R5_build_data_packet()
RF2500_BuildPayload(packet);
}
uint16_t ReadE010R5()
uint16_t E010R5_callback()
{
//Bind
if(bind_counter)
{
bind_counter--;
if(bind_counter==0)
if(--bind_counter==0)
BIND_DONE;
}
//Send packet
RF2500_SendPayload();
@@ -90,7 +86,7 @@ uint16_t ReadE010R5()
return 0;
}
uint16_t initE010R5()
void E010R5_init()
{
BIND_IN_PROGRESS; // Autobind protocol
bind_counter = 2600;
@@ -99,33 +95,49 @@ uint16_t initE010R5()
RF2500_Init(E010R5_PAYLOAD_SIZE, false); // 14 bytes, not scrambled
RF2500_SetTXAddr((uint8_t*)"\x0E\x54\x96\xEE"); // Same address for bind and normal packets
rx_tx_addr[0]=0x00;
hopping_frequency[0]=0x35; //53
#ifdef E010R5_FORCE_ID
switch(rx_tx_addr[3]%3)
switch(rx_tx_addr[3]%5)
{
case 0:
//TX1
hopping_frequency[0]=0x35; //53
hopping_frequency[1]=0x30; //48
//hopping_frequency[0]=0x35; //53
hopping_frequency[1]=0x30; //48
rx_tx_addr[1]=0x45;
rx_tx_addr[2]=0x46;
break;
case 1:
//TX2
hopping_frequency[0]=0x35; //53
hopping_frequency[1]=0x3C; //60
//hopping_frequency[0]=0x35; //53
hopping_frequency[1]=0x3C; //60
rx_tx_addr[1]=0x1B;
rx_tx_addr[2]=0x9E;
break;
case 2:
//TX4
hopping_frequency[0]=0x30; //48
hopping_frequency[1]=0x38; //56
rx_tx_addr[1]=0x2E;
rx_tx_addr[2]=0xAE;
break;
case 3:
//TX5
//hopping_frequency[0]=0x35; //53
hopping_frequency[1]=0x41; //65
rx_tx_addr[0]=0x0D;
rx_tx_addr[1]=0xB9;
rx_tx_addr[2]=0xFC;
break;
default:
//TX3
hopping_frequency[0]=0x30; //48
hopping_frequency[1]=0x38; //56
hopping_frequency[0]=0x30; //48
hopping_frequency[1]=0x38; //56
rx_tx_addr[1]=0x17;
rx_tx_addr[2]=0x0D;
break;
}
#endif
rx_tx_addr[0]=0x00;
// This is the same as the E010 v1...
hopping_frequency[2]=hopping_frequency[0]+0x10;
hopping_frequency[3]=hopping_frequency[1]+0x10;
@@ -134,8 +146,6 @@ uint16_t initE010R5()
RF2500_RFChannel(hopping_frequency[0]);
hopping_frequency_no=0;
packet_count=0;
return 3400;
}
#endif

View File

@@ -124,7 +124,7 @@ uint16_t E016HV2_callback()
return E016HV2_PACKET_PERIOD;
}
uint16_t initE016HV2()
void E016HV2_init()
{
//Config CC2500
CC2500_250K_Init();
@@ -152,7 +152,6 @@ uint16_t initE016HV2()
flags=0;
bind_counter = E016HV2_BIND_COUNT;
BIND_IN_PROGRESS; // Autobind protocol
return E016HV2_INITIAL_WAIT;
}
#endif

View File

@@ -0,0 +1,154 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// compatible with E016H
#if defined(E016H_NRF24L01_INO)
#include "iface_xn297.h"
//Protocols constants
#define E016H_BIND_COUNT 500
#define E016H_ADDRESS_LENGTH 5
#define E016H_PACKET_PERIOD 4080
#define E016H_PACKET_SIZE 10
#define E016H_BIND_CHANNEL 80
#define E016H_NUM_CHANNELS 4
//Channels
#define E016H_STOP_SW CH5_SW
#define E016H_FLIP_SW CH6_SW
#define E016H_HEADLESS_SW CH8_SW
#define E016H_RTH_SW CH9_SW
// E016H flags packet[1]
#define E016H_FLAG_CALIBRATE 0x80
#define E016H_FLAG_STOP 0x20
#define E016H_FLAG_FLIP 0x04
// E016H flags packet[3]
#define E016H_FLAG_HEADLESS 0x10
#define E016H_FLAG_RTH 0x04
// E016H flags packet[7]
#define E016H_FLAG_TAKEOFF 0x80
#define E016H_FLAG_HIGHRATE 0x08
static void __attribute__((unused)) E016H_send_packet()
{
uint8_t can_flip = 0, calibrate = 1;
if(IS_BIND_IN_PROGRESS)
{
memcpy(packet, &rx_tx_addr[1], 4);
memcpy(&packet[4], hopping_frequency, 4);
packet[8] = 0x23;
}
else
{
// trim commands
packet[0] = 0;
// aileron
uint16_t val = convert_channel_16b_limit(AILERON, 0, 0x3ff);
can_flip |= (val < 0x100) || (val > 0x300);
packet[1] = val >> 8;
packet[2] = val & 0xff;
if(val < 0x300) calibrate = 0;
// elevator
val = convert_channel_16b_limit(ELEVATOR, 0x3ff, 0);
can_flip |= (val < 0x100) || (val > 0x300);
packet[3] = val >> 8;
packet[4] = val & 0xff;
if(val < 0x300) calibrate = 0;
// throttle
val = convert_channel_16b_limit(THROTTLE, 0, 0x3ff);
packet[5] = val >> 8;
packet[6] = val & 0xff;
if(val > 0x100) calibrate = 0;
// rudder
val = convert_channel_16b_limit(RUDDER, 0, 0x3ff);
packet[7] = val >> 8;
packet[8] = val & 0xff;
if(val > 0x100) calibrate = 0;
// flags
packet[1] |= GET_FLAG(E016H_STOP_SW, E016H_FLAG_STOP)
| (can_flip ? GET_FLAG(E016H_FLIP_SW, E016H_FLAG_FLIP) : 0)
| (calibrate ? E016H_FLAG_CALIBRATE : 0);
packet[3] |= GET_FLAG(E016H_HEADLESS_SW, E016H_FLAG_HEADLESS)
| GET_FLAG(E016H_RTH_SW, E016H_FLAG_RTH);
packet[7] |= E016H_FLAG_HIGHRATE;
// frequency hopping
XN297_Hopping(hopping_frequency_no++ & 0x03);
}
// checksum
packet[9] = packet[0];
for (uint8_t i=1; i < E016H_PACKET_SIZE-1; i++)
packet[9] += packet[i];
// Send
XN297_SetPower();
XN297_SetTxRxMode(TX_EN);
XN297_WritePayload(packet, E016H_PACKET_SIZE);
}
static void __attribute__((unused)) E016H_RF_init()
{
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_1M);
XN297_SetTXAddr((uint8_t *)"\x5a\x53\x46\x30\x31", 5); // bind address
//XN297_HoppingCalib(E016H_NUM_CHANNELS);
XN297_RFChannel(E016H_BIND_CHANNEL);
}
uint16_t E016H_callback()
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
if(bind_counter)
{
bind_counter--;
if (bind_counter == 0)
{
XN297_SetTXAddr(rx_tx_addr, E016H_ADDRESS_LENGTH);
BIND_DONE;
}
}
E016H_send_packet();
return E016H_PACKET_PERIOD;
}
static void __attribute__((unused)) E016H_initialize_txid()
{
// tx id
rx_tx_addr[0] = 0xa5;
rx_tx_addr[1] = 0x00;
// rf channels
uint32_t lfsr=random(0xfefefefe);
for(uint8_t i=0; i<E016H_NUM_CHANNELS; i++)
{
hopping_frequency[i] = (lfsr & 0xFF) % 80;
lfsr>>=8;
}
}
void E016H_init()
{
BIND_IN_PROGRESS;
E016H_initialize_txid();
E016H_RF_init();
bind_counter = E016H_BIND_COUNT;
hopping_frequency_no = 0;
}
#endif

View File

@@ -0,0 +1,239 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// compatible with E012 and E015
#if defined(E01X_CYRF6936_INO)
#include "iface_hs6200.h"
//Protocols constants
#define E01X_BIND_COUNT 500
#define E01X_INITIAL_WAIT 500
#define E01X_ADDRESS_LENGTH 5
#define E012_PACKET_PERIOD 4525
#define E012_RF_BIND_CHANNEL 0x3c
#define E012_NUM_RF_CHANNELS 4
#define E012_PACKET_SIZE 15
//#define E015_FORCE_ID
#define E015_PACKET_PERIOD 9000
#define E015_RF_CHANNEL 0x2d // 2445 MHz
#define E015_PACKET_SIZE 10
#define E015_BIND_PACKET_SIZE 9
//Channels
#define E01X_ARM_SW CH5_SW
#define E016H_STOP_SW CH5_SW
#define E01X_FLIP_SW CH6_SW
#define E01X_LED_SW CH7_SW
#define E01X_HEADLESS_SW CH8_SW
#define E01X_RTH_SW CH9_SW
// E012 flags packet[1]
#define E012_FLAG_FLIP 0x40
#define E012_FLAG_HEADLESS 0x10
#define E012_FLAG_RTH 0x04
// E012 flags packet[7]
#define E012_FLAG_EXPERT 0x02
// E015 flags packet[6]
#define E015_FLAG_DISARM 0x80
#define E015_FLAG_ARM 0x40
// E015 flags packet[7]
#define E015_FLAG_FLIP 0x80
#define E015_FLAG_HEADLESS 0x10
#define E015_FLAG_RTH 0x08
#define E015_FLAG_LED 0x04
#define E015_FLAG_EXPERT 0x02
#define E015_FLAG_INTERMEDIATE 0x01
static void __attribute__((unused)) E015_check_arming()
{
uint8_t arm_channel = E01X_ARM_SW;
if (arm_channel != arm_channel_previous)
{
arm_channel_previous = arm_channel;
if (arm_channel)
{
armed = 1;
arm_flags ^= E015_FLAG_ARM;
}
else
{
armed = 0;
arm_flags ^= E015_FLAG_DISARM;
}
}
}
static void __attribute__((unused)) E01X_send_packet()
{
if(sub_protocol==E012)
{
packet_length=E012_PACKET_SIZE;
packet[0] = rx_tx_addr[1];
if(IS_BIND_IN_PROGRESS)
{
rf_ch_num = E012_RF_BIND_CHANNEL;
packet[1] = 0xaa;
memcpy(&packet[2], hopping_frequency, E012_NUM_RF_CHANNELS);
memcpy(&packet[6], rx_tx_addr, E01X_ADDRESS_LENGTH);
}
else
{
rf_ch_num = hopping_frequency[hopping_frequency_no++];
hopping_frequency_no %= E012_NUM_RF_CHANNELS;
packet[1] = 0x01
| GET_FLAG(E01X_RTH_SW, E012_FLAG_RTH)
| GET_FLAG(E01X_HEADLESS_SW, E012_FLAG_HEADLESS)
| GET_FLAG(E01X_FLIP_SW, E012_FLAG_FLIP);
packet[2] = convert_channel_16b_limit(AILERON, 0xc8, 0x00); // aileron
packet[3] = convert_channel_16b_limit(ELEVATOR, 0x00, 0xc8); // elevator
packet[4] = convert_channel_16b_limit(RUDDER, 0xc8, 0x00); // rudder
packet[5] = convert_channel_16b_limit(THROTTLE, 0x00, 0xc8); // throttle
packet[6] = 0xaa;
packet[7] = E012_FLAG_EXPERT; // rate (0-2)
packet[8] = 0x00;
packet[9] = 0x00;
packet[10]= 0x00;
}
packet[11] = 0x00;
packet[12] = 0x00;
packet[13] = 0x56;
packet[14] = rx_tx_addr[2];
}
else
{ // E015
rf_ch_num = E015_RF_CHANNEL;
if(IS_BIND_IN_PROGRESS)
{
packet[0] = 0x18;
packet[1] = 0x04;
packet[2] = 0x06;
// data phase address
memcpy(&packet[3], rx_tx_addr, E01X_ADDRESS_LENGTH);
packet[8] = 0x63; // unknown calculation
// checksum
//packet[8] = packet[3];
//for(uint8_t i=4; i<8; i++)
// packet[8] += packet[i];
packet_length=E015_BIND_PACKET_SIZE;
}
else
{
E015_check_arming();
packet[0] = convert_channel_16b_limit(THROTTLE, 0, 225); // throttle
packet[1] = convert_channel_16b_limit(RUDDER, 225, 0); // rudder
packet[2] = convert_channel_16b_limit(AILERON, 0, 225); // aileron
packet[3] = convert_channel_16b_limit(ELEVATOR, 225, 0); // elevator
packet[4] = 0x20; // elevator trim
packet[5] = 0x20; // aileron trim
packet[6] = arm_flags;
packet[7] = E015_FLAG_EXPERT
| GET_FLAG(E01X_FLIP_SW, E015_FLAG_FLIP)
| GET_FLAG(E01X_LED_SW, E015_FLAG_LED)
| GET_FLAG(E01X_HEADLESS_SW,E015_FLAG_HEADLESS)
| GET_FLAG(E01X_RTH_SW, E015_FLAG_RTH);
packet[8] = 0;
// checksum
packet[9] = packet[0];
for(uint8_t i=1; i<9; i++)
packet[9] += packet[i];
packet_length=E015_PACKET_SIZE;
}
}
HS6200_RFChannel(rf_ch_num);
HS6200_SetPower();
delayMicroseconds(270); // Wait for RF channel to settle
HS6200_SendPayload(packet, packet_length);
}
static void __attribute__((unused)) E01X_RF_init()
{
HS6200_Init(true); // CRC enabled
if(sub_protocol==E012)
HS6200_SetTXAddr((uint8_t *)"\x55\x42\x9C\x8F\xC9", E01X_ADDRESS_LENGTH);
else //E015
HS6200_SetTXAddr((uint8_t *)"\x62\x54\x79\x38\x53", E01X_ADDRESS_LENGTH);
}
uint16_t E01X_callback()
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
if(bind_counter)
{
bind_counter--;
if (bind_counter == 0)
{
HS6200_SetTXAddr(rx_tx_addr, E01X_ADDRESS_LENGTH);
BIND_DONE;
}
}
E01X_send_packet();
return packet_period;
}
static void __attribute__((unused)) E012_initialize_txid()
{
// rf channels
uint32_t lfsr=random(0xfefefefe);
for(uint8_t i=0; i<E012_NUM_RF_CHANNELS; i++)
{
hopping_frequency[i] = 0x10 + ((lfsr & 0xff) % 0x32);
lfsr>>=8;
}
}
void E01X_init()
{
BIND_IN_PROGRESS;
if(sub_protocol==E012)
{
E012_initialize_txid();
packet_period=E012_PACKET_PERIOD;
}
else //E015
{
#ifdef E015_FORCE_ID
rx_tx_addr[0] = 0x06;
rx_tx_addr[1] = 0xC6;
rx_tx_addr[2] = 0xB7;
rx_tx_addr[3] = 0x56;
rx_tx_addr[4] = 0x8A;
#endif
//force the sum to give 0x63 since the id calculation is unknown
uint8_t sum=0x63;
for(uint8_t i=0; i < 4; i++)
sum -= rx_tx_addr[i];
rx_tx_addr[4] = sum;
packet_period=E015_PACKET_PERIOD;
armed = 0;
arm_flags = 0;
arm_channel_previous = E01X_ARM_SW;
}
E01X_RF_init();
bind_counter = E01X_BIND_COUNT;
hopping_frequency_no = 0;
}
#endif

View File

@@ -1,352 +0,0 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// compatible with E012 and E015
#if defined(E01X_NRF24L01_INO)
#include "iface_nrf24l01.h"
//Protocols constants
#define E01X_BIND_COUNT 500
#define E01X_INITIAL_WAIT 500
#define E01X_ADDRESS_LENGTH 5
#define E012_PACKET_PERIOD 4525
#define E012_RF_BIND_CHANNEL 0x3c
#define E012_NUM_RF_CHANNELS 4
#define E012_PACKET_SIZE 15
#define E015_PACKET_PERIOD 4500 // stock Tx=9000, but let's send more packets ...
#define E015_RF_CHANNEL 0x2d // 2445 MHz
#define E015_PACKET_SIZE 10
#define E015_BIND_PACKET_SIZE 9
#define E016H_PACKET_PERIOD 4080
#define E016H_PACKET_SIZE 10
#define E016H_BIND_CHANNEL 80
#define E016H_NUM_CHANNELS 4
//Channels
#define E01X_ARM_SW CH5_SW
#define E016H_STOP_SW CH5_SW
#define E01X_FLIP_SW CH6_SW
#define E01X_LED_SW CH7_SW
#define E01X_HEADLESS_SW CH8_SW
#define E01X_RTH_SW CH9_SW
// E012 flags packet[1]
#define E012_FLAG_FLIP 0x40
#define E012_FLAG_HEADLESS 0x10
#define E012_FLAG_RTH 0x04
// E012 flags packet[7]
#define E012_FLAG_EXPERT 0x02
// E015 flags packet[6]
#define E015_FLAG_DISARM 0x80
#define E015_FLAG_ARM 0x40
// E015 flags packet[7]
#define E015_FLAG_FLIP 0x80
#define E015_FLAG_HEADLESS 0x10
#define E015_FLAG_RTH 0x08
#define E015_FLAG_LED 0x04
#define E015_FLAG_EXPERT 0x02
#define E015_FLAG_INTERMEDIATE 0x01
// E016H flags packet[1]
#define E016H_FLAG_CALIBRATE 0x80
#define E016H_FLAG_STOP 0x20
#define E016H_FLAG_FLIP 0x04
// E016H flags packet[3]
#define E016H_FLAG_HEADLESS 0x10
#define E016H_FLAG_RTH 0x04
// E016H flags packet[7]
#define E016H_FLAG_TAKEOFF 0x80
#define E016H_FLAG_HIGHRATE 0x08
static void __attribute__((unused)) E015_check_arming()
{
uint8_t arm_channel = E01X_ARM_SW;
if (arm_channel != arm_channel_previous)
{
arm_channel_previous = arm_channel;
if (arm_channel)
{
armed = 1;
arm_flags ^= E015_FLAG_ARM;
}
else
{
armed = 0;
arm_flags ^= E015_FLAG_DISARM;
}
}
}
static void __attribute__((unused)) E01X_send_packet(uint8_t bind)
{
uint8_t can_flip = 0, calibrate = 1;
if(sub_protocol==E012)
{
packet_length=E012_PACKET_SIZE;
packet[0] = rx_tx_addr[1];
if(bind)
{
packet[1] = 0xaa;
memcpy(&packet[2], hopping_frequency, E012_NUM_RF_CHANNELS);
memcpy(&packet[6], rx_tx_addr, E01X_ADDRESS_LENGTH);
rf_ch_num=E012_RF_BIND_CHANNEL;
}
else
{
packet[1] = 0x01
| GET_FLAG(E01X_RTH_SW, E012_FLAG_RTH)
| GET_FLAG(E01X_HEADLESS_SW, E012_FLAG_HEADLESS)
| GET_FLAG(E01X_FLIP_SW, E012_FLAG_FLIP);
packet[2] = convert_channel_16b_limit(AILERON, 0xc8, 0x00); // aileron
packet[3] = convert_channel_16b_limit(ELEVATOR, 0x00, 0xc8); // elevator
packet[4] = convert_channel_16b_limit(RUDDER, 0xc8, 0x00); // rudder
packet[5] = convert_channel_16b_limit(THROTTLE, 0x00, 0xc8); // throttle
packet[6] = 0xaa;
packet[7] = E012_FLAG_EXPERT; // rate (0-2)
packet[8] = 0x00;
packet[9] = 0x00;
packet[10]= 0x00;
rf_ch_num=hopping_frequency[hopping_frequency_no++];
hopping_frequency_no %= E012_NUM_RF_CHANNELS;
}
packet[11] = 0x00;
packet[12] = 0x00;
packet[13] = 0x56;
packet[14] = rx_tx_addr[2];
}
else if(sub_protocol==E015)
{ // E015
if(bind)
{
packet[0] = 0x18;
packet[1] = 0x04;
packet[2] = 0x06;
// data phase address
memcpy(&packet[3], rx_tx_addr, E01X_ADDRESS_LENGTH);
// checksum
packet[8] = packet[3];
for(uint8_t i=4; i<8; i++)
packet[8] += packet[i];
packet_length=E015_BIND_PACKET_SIZE;
}
else
{
E015_check_arming();
packet[0] = convert_channel_16b_limit(THROTTLE, 0, 225); // throttle
packet[1] = convert_channel_16b_limit(RUDDER, 225, 0); // rudder
packet[2] = convert_channel_16b_limit(AILERON, 0, 225); // aileron
packet[3] = convert_channel_16b_limit(ELEVATOR, 225, 0); // elevator
packet[4] = 0x20; // elevator trim
packet[5] = 0x20; // aileron trim
packet[6] = arm_flags;
packet[7] = E015_FLAG_EXPERT
| GET_FLAG(E01X_FLIP_SW, E015_FLAG_FLIP)
| GET_FLAG(E01X_LED_SW, E015_FLAG_LED)
| GET_FLAG(E01X_HEADLESS_SW,E015_FLAG_HEADLESS)
| GET_FLAG(E01X_RTH_SW, E015_FLAG_RTH);
packet[8] = 0;
// checksum
packet[9] = packet[0];
for(uint8_t i=1; i<9; i++)
packet[9] += packet[i];
packet_length=E015_PACKET_SIZE;
}
}
else
{ // E016H
packet_length=E016H_PACKET_SIZE;
if(bind)
{
rf_ch_num=E016H_BIND_CHANNEL;
memcpy(packet, &rx_tx_addr[1], 4);
memcpy(&packet[4], hopping_frequency, 4);
packet[8] = 0x23;
}
else
{
// trim commands
packet[0] = 0;
// aileron
uint16_t val = convert_channel_16b_limit(AILERON, 0, 0x3ff);
can_flip |= (val < 0x100) || (val > 0x300);
packet[1] = val >> 8;
packet[2] = val & 0xff;
if(val < 0x300) calibrate = 0;
// elevator
val = convert_channel_16b_limit(ELEVATOR, 0x3ff, 0);
can_flip |= (val < 0x100) || (val > 0x300);
packet[3] = val >> 8;
packet[4] = val & 0xff;
if(val < 0x300) calibrate = 0;
// throttle
val = convert_channel_16b_limit(THROTTLE, 0, 0x3ff);
packet[5] = val >> 8;
packet[6] = val & 0xff;
if(val > 0x100) calibrate = 0;
// rudder
val = convert_channel_16b_limit(RUDDER, 0, 0x3ff);
packet[7] = val >> 8;
packet[8] = val & 0xff;
if(val > 0x100) calibrate = 0;
// flags
packet[1] |= GET_FLAG(E016H_STOP_SW, E016H_FLAG_STOP)
| (can_flip ? GET_FLAG(E01X_FLIP_SW, E016H_FLAG_FLIP) : 0)
| (calibrate ? E016H_FLAG_CALIBRATE : 0);
packet[3] |= GET_FLAG(E01X_HEADLESS_SW, E016H_FLAG_HEADLESS)
| GET_FLAG(E01X_RTH_SW, E016H_FLAG_RTH);
packet[7] |= E016H_FLAG_HIGHRATE;
// frequency hopping
rf_ch_num=hopping_frequency[hopping_frequency_no++ & 0x03];
}
// checksum
packet[9] = packet[0];
for (uint8_t i=1; i < E016H_PACKET_SIZE-1; i++)
packet[9] += packet[i];
}
// Power on, TX mode, CRC enabled
if(sub_protocol==E016H)
XN297_Configure( _BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP));
else //E012 & E015
HS6200_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP));
NRF24L01_WriteReg(NRF24L01_05_RF_CH, rf_ch_num);
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
if(sub_protocol==E016H)
XN297_WritePayload(packet, packet_length);
else
HS6200_WritePayload(packet, packet_length);
// Check and adjust transmission power. We do this after
// transmission to not bother with timeout after power
// settings change - we have plenty of time until next
// packet.
NRF24L01_SetPower();
}
static void __attribute__((unused)) E01X_init()
{
NRF24L01_Initialize();
NRF24L01_SetTxRxMode(TX_EN);
if(sub_protocol==E012)
HS6200_SetTXAddr((uint8_t *)"\x55\x42\x9C\x8F\xC9", E01X_ADDRESS_LENGTH);
else if(sub_protocol==E015)
HS6200_SetTXAddr((uint8_t *)"\x62\x54\x79\x38\x53", E01X_ADDRESS_LENGTH);
else //E016H
XN297_SetTXAddr((uint8_t *)"\x5a\x53\x46\x30\x31", 5); // bind address
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowldgement on all data pipes
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x03);
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0x00); // no retransmits
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1 Mbps
NRF24L01_SetPower();
NRF24L01_Activate(0x73); // Activate feature register
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 0x00); // Disable dynamic payload length on all pipes
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, 0x01); // Set feature bits on
NRF24L01_Activate(0x73);
}
uint16_t E01X_callback()
{
if(IS_BIND_IN_PROGRESS)
{
if (bind_counter == 0)
{
if(sub_protocol==E016H)
XN297_SetTXAddr(rx_tx_addr, E01X_ADDRESS_LENGTH);
else
HS6200_SetTXAddr(rx_tx_addr, E01X_ADDRESS_LENGTH);
BIND_DONE;
}
else
{
E01X_send_packet(1);
bind_counter--;
}
}
else
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
E01X_send_packet(0);
}
return packet_period;
}
static void __attribute__((unused)) E012_initialize_txid()
{
// rf channels
uint32_t lfsr=random(0xfefefefe);
for(uint8_t i=0; i<E012_NUM_RF_CHANNELS; i++)
{
hopping_frequency[i] = 0x10 + ((lfsr & 0xff) % 0x32);
lfsr>>=8;
}
}
static void __attribute__((unused)) E016H_initialize_txid()
{
// tx id
rx_tx_addr[0] = 0xa5;
rx_tx_addr[1] = 0x00;
// rf channels
uint32_t lfsr=random(0xfefefefe);
for(uint8_t i=0; i<E016H_NUM_CHANNELS; i++)
{
hopping_frequency[i] = (lfsr & 0xFF) % 80;
lfsr>>=8;
}
}
uint16_t initE01X()
{
BIND_IN_PROGRESS;
if(sub_protocol==E012)
{
E012_initialize_txid();
packet_period=E012_PACKET_PERIOD;
}
else if(sub_protocol==E015)
{
packet_period=E015_PACKET_PERIOD;
rf_ch_num=E015_RF_CHANNEL;
armed = 0;
arm_flags = 0;
arm_channel_previous = E01X_ARM_SW;
}
else
{ // E016H
E016H_initialize_txid();
packet_period=E016H_PACKET_PERIOD;
}
E01X_init();
bind_counter = E01X_BIND_COUNT;
hopping_frequency_no = 0;
return E01X_INITIAL_WAIT;
}
#endif

View File

@@ -18,15 +18,17 @@
#include "iface_rf2500.h"
//#define E129_FORCE_ID
//#define C186_FORCE_ID
#define E129_BIND_CH 0x2D //45
#define E129_PAYLOAD_SIZE 16
#define C186_PAYLOAD_SIZE 19
static void __attribute__((unused)) E129_build_data_packet()
{
//Build the packet
memset(packet,0,E129_PAYLOAD_SIZE);
packet[ 0] = 0x0F; // Packet length
memset(packet,0,packet_length);
packet[ 0] = packet_length - 1; // Packet length
if(IS_BIND_IN_PROGRESS)
{
packet[ 1] = 0xA4;
@@ -40,18 +42,28 @@ static void __attribute__((unused)) E129_build_data_packet()
else
{
packet[ 1] = 0xA6;
packet[ 2] = 0xF7; // High rate 0xF7, low rate 0xF4
//packet[ 3] = 0x00; // Mode: short press=0x20->0x00->0x20->..., long press=0x10->0x30->0x10->...
//Flags
if(sub_protocol == E129_E129)
packet[ 2] = 0xF7; // High rate 0xF7, low 0xF4
else //C186
{
packet[ 2] = 0xFA; // High rate 0xFA, medium 0xF7, low 0xF4
packet[13] = bit_reverse(rx_tx_addr[2]);
packet[14] = bit_reverse(rx_tx_addr[3]);
packet[15] = bit_reverse(rx_tx_addr[0]);
packet[16] = bit_reverse(rx_tx_addr[1]);
}
//packet[ 3] = 0x00; // E129 Mode: short press=0x20->0x00->0x20->..., long press=0x10->0x30->0x10->... => C186 throttle trim is doing the same:up=short press and down=long press
packet[ 4] = GET_FLAG(CH5_SW, 0x20) // Take off/Land 0x20
| GET_FLAG(CH6_SW, 0x04); // Emergency stop 0x04
| GET_FLAG(CH6_SW, 0x04); // Emergency stop 0x04
//Channels and trims
uint16_t val = convert_channel_10b(AILERON,false);
uint8_t trim = convert_channel_8b(CH7) & 0xFC;
packet[ 5] = trim | (val >>8); // Trim (0x00..0x1F..0x3E) << 2 | channel >> 8
packet[ 6] = val; // channel (0x000...0x200...0x3FF)
val = convert_channel_10b(ELEVATOR,false);
trim = convert_channel_8b(CH8) & 0xFC;
packet[ 7] = trim | (val >>8); // Trim (0x00..0x1F..0x3E) << 2 | channel >> 8
packet[ 7] = trim | (val >>8); // Trim (0x00..0x1F..0x3E) << 2 | channel >> 8
packet[ 8] = val; // channel (0x000...0x200...0x3FF)
if(packet_count>200)
val = convert_channel_10b(THROTTLE,false);
@@ -67,14 +79,18 @@ static void __attribute__((unused)) E129_build_data_packet()
packet[11] = trim | (val >>8); // Trim (0x00..0x1F..0x3E) << 2 | channel >> 8
packet[12] = val; // channel (0x000...0x200...0x3FF)
}
packet[14] = 0x00; // Check
for(uint8_t i=0;i<14;i++)
packet[14] += packet[i];
//Check
if(sub_protocol == E129_E129)
packet[packet_length-2] = packet[0] + packet[1];
else
packet[packet_length-2] = 0x24 + packet[0] + (packet[1]&0x03); // ??
for(uint8_t i=2;i<packet_length-2;i++)
packet[packet_length-2] += packet[i];
RF2500_BuildPayload(packet);
}
uint16_t ReadE129()
uint16_t E129_callback()
{
//Set RF channel
if(phase==0)
@@ -83,7 +99,7 @@ uint16_t ReadE129()
//Send packet
RF2500_SendPayload();
//Send twice on same channel
//E129 sends twice on same channel, not the C186 but there is a bug somewhere if I don't send the packets back to back
if(phase==0)
{
phase++;
@@ -92,14 +108,11 @@ uint16_t ReadE129()
//Bind
if(bind_counter)
{
bind_counter--;
if(bind_counter==0)
if(--bind_counter==0)
{
BIND_DONE;
RF2500_SetTXAddr(rx_tx_addr); // 4 bytes of address
}
}
//Build packet
E129_build_data_packet();
@@ -112,16 +125,19 @@ uint16_t ReadE129()
hopping_frequency_no &= 3;
phase=0;
return 5200-1260;
if(sub_protocol==E129_E129)
return 5200-1260;
return 5500-1260; //E129_C186
}
uint16_t initE129()
void E129_init()
{
BIND_IN_PROGRESS; // Autobind protocol
bind_counter = 384; // ~2sec
//RF2500 emu init
RF2500_Init(E129_PAYLOAD_SIZE, true); // 16 bytes, Scrambled
//RF2500 emu init
packet_length = sub_protocol == E129_E129?E129_PAYLOAD_SIZE:C186_PAYLOAD_SIZE;
RF2500_Init(packet_length, true); // 16/19 bytes, Scrambled
//Freq hopping
calc_fh_channels(4);
@@ -139,6 +155,16 @@ uint16_t initE129()
hopping_frequency[2]=0x4B; //75
hopping_frequency[3]=0x41; //65
#endif
#ifdef C186_FORCE_ID
rx_tx_addr[0]=0x91;
rx_tx_addr[1]=0x02;
rx_tx_addr[2]=0x5D;
rx_tx_addr[3]=0x33;
hopping_frequency[0]=0x44 + 2;
hopping_frequency[1]=0x41 + 2;
hopping_frequency[2]=0x43 + 2;
hopping_frequency[3]=0x49 + 2;
#endif
RF2500_SetTXAddr((uint8_t*)"\xE2\x32\xE0\xC8"); // 4 bytes of bind address
@@ -146,7 +172,6 @@ uint16_t initE129()
hopping_frequency_no=0;
packet_count=0;
phase=0;
return 1260;
}
#endif

View File

@@ -23,7 +23,7 @@
#define ESKY150_BINDING_PACKET_PERIOD 2000
#define ESKY150_SENDING_PACKET_PERIOD 4800
static void __attribute__((unused)) ESKY150_init()
static void __attribute__((unused)) ESKY150_RF_init()
{
//Original TX always sets for channelx 0x22 and 0x4a
// Use channels 2..79
@@ -31,25 +31,16 @@ static void __attribute__((unused)) ESKY150_init()
hopping_frequency[1] = hopping_frequency[0] + 40;
NRF24L01_Initialize();
NRF24L01_WriteReg(NRF24L01_00_CONFIG, (_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO)));
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknoledgement
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x02); // 4-byte RX/TX address
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0); // Disable retransmit
NRF24L01_SetPower();
NRF24L01_SetBitrate(NRF24L01_BR_2M);
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, ESKY150_PAYLOADSIZE); // bytes of data payload for pipe 0
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, rx_tx_addr, ESKY150_TX_ADDRESS_SIZE);
NRF24L01_Activate(0x73);
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 1); // Dynamic payload for data pipe 0
// Enable: Dynamic Payload Length, Payload with ACK , W_TX_PAYLOAD_NOACK
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, _BV(NRF2401_1D_EN_DPL) | _BV(NRF2401_1D_EN_ACK_PAY) | _BV(NRF2401_1D_EN_DYN_ACK));
NRF24L01_Activate(0x73);
NRF24L01_FlushTx();
// Turn radio power on
NRF24L01_SetTxRxMode(TX_EN);
NRF24L01_SetTxRxMode(TX_EN); // Clear data ready, data sent, retransmit and enable CRC 16bits, ready for TX
}
static void __attribute__((unused)) ESKY150_bind_init()
@@ -171,16 +162,15 @@ uint16_t ESKY150_callback()
return ESKY150_SENDING_PACKET_PERIOD;
}
uint16_t initESKY150(void)
void ESKY150_init(void)
{
ESKY150_init();
ESKY150_RF_init();
if(IS_BIND_IN_PROGRESS)
{
bind_counter=3000;
ESKY150_bind_init();
}
hopping_frequency_no=0;
return 10000;
}
#endif

View File

@@ -15,7 +15,7 @@
#if defined(ESKY150V2_CC2500_INO)
#include "iface_cc2500.h"
#include "iface_nrf250k.h"
//#define ESKY150V2_FORCE_ID
@@ -74,12 +74,11 @@ static void __attribute__((unused)) ESKY150V2_send_packet()
packet[4+2*i] = channel;
packet[5+2*i] = channel>>8;
}
CC2500_250K_NRF_WritePayload(packet, ESKY150V2_PAYLOADSIZE);
NRF250K_WritePayload(packet, ESKY150V2_PAYLOADSIZE);
}
uint16_t ESKY150V2_callback()
{
if(option==0) option=1; //Trick the RF component auto select system
if(IS_BIND_DONE)
{
#ifdef MULTI_SYNC
@@ -92,12 +91,12 @@ uint16_t ESKY150V2_callback()
BIND_DONE; //Need full power for bind to work...
CC2500_SetPower(); //Set power level
BIND_IN_PROGRESS;
CC2500_250K_NRF_WritePayload(packet, ESKY150V2_BINDPAYLOADSIZE);
NRF250K_WritePayload(packet, ESKY150V2_BINDPAYLOADSIZE);
if (--bind_counter == 0)
{
BIND_DONE;
// Change TX address from bind to normal mode
CC2500_250K_NRF_SetTXAddr(rx_tx_addr, ESKY150V2_TXID_SIZE);
NRF250K_SetTXAddr(rx_tx_addr, ESKY150V2_TXID_SIZE);
memset(packet,0x00,ESKY150V2_PAYLOADSIZE);
}
return 30000; //ESKY150V2_BINDING_PACKET_PERIOD;
@@ -105,9 +104,8 @@ uint16_t ESKY150V2_callback()
return ESKY150V2_PACKET_PERIOD;
}
uint16_t initESKY150V2()
void ESKY150V2_init()
{
if(option==0) option=1; // Trick the RF component auto select system
CC2500_250K_Init();
ESKY150V2_set_freq();
hopping_frequency_no = 0;
@@ -120,7 +118,7 @@ uint16_t initESKY150V2()
if(IS_BIND_IN_PROGRESS)
{
CC2500_250K_NRF_SetTXAddr((uint8_t *)"\x73\x73\x74\x63", ESKY150V2_TXID_SIZE); //Bind address
NRF250K_SetTXAddr((uint8_t *)"\x73\x73\x74\x63", ESKY150V2_TXID_SIZE); //Bind address
CC2500_250K_Hopping(ESKY150V2_NFREQCHANNELS); //Bind channel
memcpy(packet,"\x73\x73\x74\x63", ESKY150V2_TXID_SIZE);
memcpy(&packet[ESKY150V2_TXID_SIZE],rx_tx_addr, ESKY150V2_TXID_SIZE);
@@ -134,8 +132,7 @@ uint16_t initESKY150V2()
bind_counter=100;
}
else
CC2500_250K_NRF_SetTXAddr(rx_tx_addr, ESKY150V2_TXID_SIZE);
return 50000;
NRF250K_SetTXAddr(rx_tx_addr, ESKY150V2_TXID_SIZE);
}
#endif

View File

@@ -35,14 +35,10 @@ static void __attribute__((unused)) ESKY_set_data_address()
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, rx_tx_addr, 4);
}
static void __attribute__((unused)) ESKY_init()
static void __attribute__((unused)) ESKY_RF_init()
{
NRF24L01_Initialize();
// 2-bytes CRC, radio off
NRF24L01_WriteReg(NRF24L01_00_CONFIG, _BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO));
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowledgement
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0
if (IS_BIND_IN_PROGRESS)
{
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x01); // 3-byte RX/TX address for bind packets
@@ -51,11 +47,7 @@ static void __attribute__((unused)) ESKY_init()
}
else
ESKY_set_data_address();
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0); // No auto retransmission
NRF24L01_WriteReg(NRF24L01_05_RF_CH, 50); // Channel 50 for bind packets
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps
NRF24L01_SetPower();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, ESKY_PAYLOAD_SIZE); // bytes of data payload for pipe 0
NRF24L01_WriteReg(NRF24L01_12_RX_PW_P1, ESKY_PAYLOAD_SIZE);
NRF24L01_WriteReg(NRF24L01_13_RX_PW_P2, ESKY_PAYLOAD_SIZE);
@@ -65,7 +57,7 @@ static void __attribute__((unused)) ESKY_init()
NRF24L01_WriteReg(NRF24L01_17_FIFO_STATUS, 0x00); // Just in case, no real bits to write here
}
static void __attribute__((unused)) ESKY_init2()
static void __attribute__((unused)) ESKY_TXID_init()
{
NRF24L01_FlushTx();
if(sub_protocol==ESKY_STD)
@@ -187,7 +179,7 @@ uint16_t ESKY_callback()
return ESKY_STD_PACKET_PERIOD;
}
uint16_t initESKY(void)
void ESKY_init(void)
{
bind_counter = ESKY_BIND_COUNT;
rx_tx_addr[2] = rx_tx_addr[3]; // Model match
@@ -200,10 +192,9 @@ uint16_t initESKY(void)
}
#endif
rx_tx_addr[3] = 0xBB;
ESKY_init();
ESKY_init2();
ESKY_RF_init();
ESKY_TXID_init();
packet_count=0;
return 50000;
}
#endif

View File

@@ -81,11 +81,11 @@ static void __attribute__((unused)) ssv_pack_dpl(uint8_t addr[], uint8_t pid, ui
*len += 4;
}
static void __attribute__((unused)) FQ777_send_packet(uint8_t bind)
static void __attribute__((unused)) FQ777_send_packet()
{
uint8_t packet_len = FQ777_PACKET_SIZE;
uint8_t packet_ori[8];
if (bind)
if (IS_BIND_IN_PROGRESS)
{
// 4,5,6 = address fields
// last field is checksum of address fields
@@ -138,7 +138,7 @@ static void __attribute__((unused)) FQ777_send_packet(uint8_t bind)
packet_count++;
}
ssv_pack_dpl( (0 == bind) ? rx_tx_addr : FQ777_bind_addr, hopping_frequency_no, &packet_len, packet_ori, packet);
ssv_pack_dpl( IS_BIND_IN_PROGRESS ? FQ777_bind_addr : rx_tx_addr, hopping_frequency_no, &packet_len, packet_ori, packet);
NRF24L01_WriteReg(NRF24L01_00_CONFIG,_BV(NRF24L01_00_PWR_UP));
NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency[hopping_frequency_no++]);
@@ -150,30 +150,21 @@ static void __attribute__((unused)) FQ777_send_packet(uint8_t bind)
NRF24L01_WritePayload(packet, packet_len);
}
static void __attribute__((unused)) FQ777_init()
static void __attribute__((unused)) FQ777_RF_init()
{
NRF24L01_Initialize();
NRF24L01_SetTxRxMode(TX_EN);
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, FQ777_bind_addr, 5);
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowledgement on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x00);
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x03);
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0x00); // no retransmits
NRF24L01_SetBitrate(NRF24L01_BR_250K);
NRF24L01_SetPower();
NRF24L01_Activate(0x73); // Activate feature register
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 0x00); // Disable dynamic payload length on all pipes
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, 0x01);
NRF24L01_Activate(0x73);
}
uint16_t FQ777_callback()
{
if(bind_counter!=0)
#ifdef MULTI_SYNC
telemetry_set_input_sync(FQ777_PACKET_PERIOD);
#endif
if(bind_counter)
{
FQ777_send_packet(1);
bind_counter--;
if (bind_counter == 0)
{
@@ -181,17 +172,11 @@ uint16_t FQ777_callback()
BIND_DONE;
}
}
else
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(FQ777_PACKET_PERIOD);
#endif
FQ777_send_packet(0);
}
FQ777_send_packet();
return FQ777_PACKET_PERIOD;
}
uint16_t initFQ777(void)
void FQ777_init(void)
{
BIND_IN_PROGRESS; // autobind protocol
bind_counter = FQ777_BIND_COUNT;
@@ -204,8 +189,7 @@ uint16_t initFQ777(void)
rx_tx_addr[2] = 0x00;
rx_tx_addr[3] = 0xe7;
rx_tx_addr[4] = 0x67;
FQ777_init();
return FQ777_INITIAL_WAIT;
FQ777_RF_init();
}
#endif

View File

@@ -16,7 +16,7 @@ Multiprotocol is distributed in the hope that it will be useful,
#if defined(FX816_NRF24L01_INO)
#include "iface_nrf24l01.h"
#include "iface_xn297.h"
#define FX816_INITIAL_WAIT 500
#define FX816_PACKET_PERIOD 10000
@@ -27,7 +27,14 @@ Multiprotocol is distributed in the hope that it will be useful,
static void __attribute__((unused)) FX816_send_packet()
{
packet[0] = IS_BIND_IN_PROGRESS?0x55:0xAA;
if(IS_BIND_IN_PROGRESS)
packet[0] = 0x55;
else
{
XN297_Hopping(hopping_frequency_no++);
hopping_frequency_no%=FX816_RF_NUM_CHANNELS;
packet[0] = 0xAA;
}
packet[1] = rx_tx_addr[0];
packet[2] = rx_tx_addr[1];
uint8_t val=convert_channel_8b(AILERON);
@@ -44,37 +51,18 @@ static void __attribute__((unused)) FX816_send_packet()
val+=packet[i];
packet[5]=val;
NRF24L01_WriteReg(NRF24L01_05_RF_CH, IS_BIND_IN_PROGRESS ? FX816_RF_BIND_CHANNEL:hopping_frequency[hopping_frequency_no++]);
hopping_frequency_no%=FX816_RF_NUM_CHANNELS;
// clear packet status bits and TX FIFO
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
// Send
XN297_SetPower();
XN297_SetTxRxMode(TX_EN);
XN297_WritePayload(packet, FX816_PAYLOAD_SIZE);
// Power on, TX mode, 2byte CRC
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP));
NRF24L01_SetPower(); // Set tx_power
}
static void __attribute__((unused)) FX816_init()
static void __attribute__((unused)) FX816_RF_init()
{
NRF24L01_Initialize();
NRF24L01_SetTxRxMode(TX_EN);
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_1M);
XN297_SetTXAddr((uint8_t *)"\xcc\xcc\xcc\xcc\xcc", 5);
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowldgement on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0x00); // No retransmits
NRF24L01_SetPower();
NRF24L01_Activate(0x73); // Activate feature register
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 0x00); // Disable dynamic payload length on all pipes
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, 0x01);
NRF24L01_Activate(0x73);
//XN297_HoppingCalib(FX816_RF_NUM_CHANNELS);
XN297_RFChannel(FX816_RF_BIND_CHANNEL);
}
static void __attribute__((unused)) FX816_initialize_txid()
@@ -93,21 +81,20 @@ uint16_t FX816_callback()
#ifdef MULTI_SYNC
telemetry_set_input_sync(FX816_PACKET_PERIOD);
#endif
if(IS_BIND_IN_PROGRESS)
if(bind_counter)
if(--bind_counter==0)
BIND_DONE;
FX816_send_packet();
return FX816_PACKET_PERIOD;
}
uint16_t initFX816()
void FX816_init()
{
BIND_IN_PROGRESS; // autobind protocol
FX816_initialize_txid();
FX816_init();
FX816_RF_init();
hopping_frequency_no = 0;
bind_counter=FX816_BIND_COUNT;
return FX816_INITIAL_WAIT;
}
#endif

View File

@@ -88,34 +88,25 @@ static void __attribute__((unused)) FY326_send_packet(uint8_t bind)
NRF24L01_SetPower(); // Set tx_power
}
static void __attribute__((unused)) FY326_init()
static void __attribute__((unused)) FY326_RF_init()
{
NRF24L01_Initialize();
NRF24L01_SetTxRxMode(TX_EN);
if(sub_protocol==FY319)
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x03); // Five-byte rx/tx address
else
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x01); // Three-byte rx/tx address
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, (uint8_t *)"\x15\x59\x23\xc6\x29", 5);
NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, (uint8_t *)"\x15\x59\x23\xc6\x29", 5);
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowledgement on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, FY326_PACKET_SIZE);
NRF24L01_WriteReg(NRF24L01_05_RF_CH, FY326_RF_BIND_CHANNEL);
NRF24L01_SetBitrate(NRF24L01_BR_250K);
NRF24L01_SetPower();
NRF24L01_Activate(0x73);
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 0x3f);
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, 0x07);
NRF24L01_Activate(0x73);
//Switch to RX
NRF24L01_SetTxRxMode(TXRX_OFF);
NRF24L01_FlushRx();
NRF24L01_SetTxRxMode(RX_EN);
}
@@ -209,20 +200,19 @@ static void __attribute__((unused)) FY326_initialize_txid()
hopping_frequency[i]=rx_tx_addr[0] & ~0x80;
}
uint16_t initFY326(void)
void FY326_init(void)
{
BIND_IN_PROGRESS; // autobind protocol
rxid = 0xAA;
bind_counter = FY326_BIND_COUNT;
FY326_initialize_txid();
FY326_init();
FY326_RF_init();
if(sub_protocol==FY319)
{
phase=FY319_BIND1;
}
else
phase=FY326_BIND1;
return FY326_INITIAL_WAIT;
}
#endif

View File

@@ -0,0 +1,108 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(FAKE_NRF24L01_INO)
#include "iface_nrf250k.h"
static void __attribute__((unused)) FAKE_send_packet()
{
for(uint8_t i=0;i<5;i++)
packet[i]=i;
NRF24L01_WriteReg(NRF24L01_07_STATUS, (_BV(NRF24L01_07_RX_DR) | _BV(NRF24L01_07_TX_DS) | _BV(NRF24L01_07_MAX_RT)));
NRF24L01_FlushTx();
NRF24L01_WritePayload(packet, 5);
}
static void __attribute__((unused)) FAKE_init()
{
// BIND_IN_PROGRESS;
//CC2500
option=1;
XN297L_Init();
CC2500_WriteReg(CC2500_07_PKTCTRL1, 0x01); // Packet Automation Control
CC2500_WriteReg(CC2500_08_PKTCTRL0, 0x00); // Packet Automation Control
CC2500_WriteReg(CC2500_12_MDMCFG2, 0x12); // Modem Configuration
CC2500_WriteReg(CC2500_13_MDMCFG1, 0x13); // Modem Configuration
CC2500_WriteReg(CC2500_04_SYNC1, 0x11);
CC2500_WriteReg(CC2500_05_SYNC0, 0x33);
CC2500_WriteReg(CC2500_09_ADDR, 0x99);
CC2500_WriteReg(CC2500_06_PKTLEN, 10);
CC2500_SetTxRxMode(RX_EN);
CC2500_Strobe(CC2500_SIDLE);
CC2500_Strobe(CC2500_SRX);
//CC2500_SetTxRxMode(TX_EN);
XN297L_RFChannel(0);
//NRF
/* option=0;
PE1_on; //NRF24L01 antenna RF3 by default
PE2_off; //NRF24L01 antenna RF3 by default
NRF24L01_Initialize();
NRF24L01_WriteReg(NRF24L01_00_CONFIG, 0x7f);
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00);//0x3f); // AA on all pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x3f); // Enable all pipes
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x03); // 5-byte address
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0x36); // retransmit 1ms, 6 times
NRF24L01_SetBitrate(NRF24L01_BR_250K); // 1Mbps
NRF24L01_SetPower();
NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, (uint8_t *)"\x99\x33\x11\xAA\xAA", 5); //Bind address
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, (uint8_t *)"\x99\x33\x11\xAA\xAA", 5); //Bind address
NRF24L01_WriteReg(NRF24L01_05_RF_CH, 0);
NRF24L01_Activate(0x73); // Activate feature register
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 0x3f); // Enable dynamic payload length
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, 0x07); // Enable all features
*/
/*NRF24L01_FlushTx();
NRF24L01_SetTxRxMode(TX_EN);*/
}
uint16_t FAKE_callback()
{
len = CC2500_ReadReg(CC2500_3B_RXBYTES | CC2500_READ_BURST) & 0x7F;
if(len) debug("L=%d, ",len);
if(len && len < sizeof(packet_in))
{
CC2500_ReadData(packet_in, len);
debug("P:");
for(uint8_t i=0;i<len;i++)
debug(" %02X", packet_in[i]);
}
if(len) debugln("");
CC2500_Strobe(CC2500_SFRX);
CC2500_Strobe(CC2500_SIDLE);
CC2500_Strobe(CC2500_SRX);
option=0;
//FAKE_send_packet();
PE1_off; //antenna RF2
PE2_on;
/*packet[0]=0x99;
for(uint8_t i=1;i<5;i++)
packet[i]=i;
CC2500_WriteData(packet, 5);*/
return 10000;
}
uint16_t initFAKE()
{
FAKE_init();
return 5000;
}
#endif

View File

@@ -12,7 +12,7 @@
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// Last sync with hexfet new_protocols/flysky_a7105.c dated 2015-09-28
// Last sync with hexfet new_protocols/FLYSKY_a7105.c dated 2015-09-28
#if defined(FLYSKY_A7105_INO)
@@ -53,7 +53,7 @@ enum {
const uint8_t PROGMEM V912_X17_SEQ[10] = { 0x14, 0x31, 0x40, 0x49, 0x49, // sometime first byte is 0x15 ?
0x49, 0x49, 0x49, 0x49, 0x49, };
static void __attribute__((unused)) flysky_apply_extension_flags()
static void __attribute__((unused)) FLYSKY_apply_extension_flags()
{
switch(sub_protocol)
{
@@ -129,7 +129,7 @@ static void __attribute__((unused)) flysky_apply_extension_flags()
}
}
static void __attribute__((unused)) flysky_build_packet(uint8_t init)
static void __attribute__((unused)) FLYSKY_send_packet()
{
uint8_t i;
//servodata timing range for flysky.
@@ -137,7 +137,7 @@ static void __attribute__((unused)) flysky_build_packet(uint8_t init)
//+100% =~ 0x07ca//=1994us(max)
//Center = 0x5d9//=1497us(center)
//channel order AIL;ELE;THR;RUD;CH5;CH6;CH7;CH8
packet[0] = init ? 0xaa : 0x55;
packet[0] = IS_BIND_IN_PROGRESS ? 0xaa : 0x55;
packet[1] = rx_tx_addr[3];
packet[2] = rx_tx_addr[2];
packet[3] = rx_tx_addr[1];
@@ -150,36 +150,32 @@ static void __attribute__((unused)) flysky_build_packet(uint8_t init)
packet[5 + i*2]=temp&0xFF; //low byte of servo timing(1000-2000us)
packet[6 + i*2]=(temp>>8)&0xFF; //high byte of servo timing(1000-2000us)
}
flysky_apply_extension_flags();
FLYSKY_apply_extension_flags();
A7105_SetPower();
A7105_WriteData(21, IS_BIND_IN_PROGRESS ? 0x01:hopping_frequency[hopping_frequency_no & 0x0F]);
hopping_frequency_no++;
}
uint16_t ReadFlySky()
uint16_t FLYSKY_callback()
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
#ifndef FORCE_FLYSKY_TUNING
A7105_AdjustLOBaseFreq(1);
#endif
if(IS_BIND_IN_PROGRESS)
if(bind_counter)
{
flysky_build_packet(1);
A7105_WriteData(21, 1);
bind_counter--;
if (bind_counter==0)
BIND_DONE;
}
else
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
flysky_build_packet(0);
A7105_WriteData(21, hopping_frequency[hopping_frequency_no & 0x0F]);
A7105_SetPower();
}
hopping_frequency_no++;
FLYSKY_send_packet();
return packet_period;
}
const uint8_t PROGMEM tx_channels[8][4] = {
const uint8_t PROGMEM FLYSKY_tx_channels[8][4] = {
{ 0x12, 0x34, 0x56, 0x78},
{ 0x18, 0x27, 0x36, 0x45},
{ 0x41, 0x82, 0x36, 0x57},
@@ -190,7 +186,7 @@ const uint8_t PROGMEM tx_channels[8][4] = {
{ 0x71, 0x86, 0x43, 0x52}
};
uint16_t initFlySky()
void FLYSKY_init()
{
uint8_t chanrow;
uint8_t chanoffset;
@@ -208,7 +204,7 @@ uint16_t initFlySky()
chanoffset=rx_tx_addr[3]/16;
for(uint8_t i=0;i<16;i++)
{
temp=pgm_read_byte_near(&tx_channels[chanrow>>1][i>>2]);
temp=pgm_read_byte_near(&FLYSKY_tx_channels[chanrow>>1][i>>2]);
if(i&0x02)
temp&=0x0F;
else
@@ -242,6 +238,5 @@ uint16_t initFlySky()
bind_counter = FLYSKY_BIND_COUNT;
else
bind_counter = 0;
return 2400;
}
#endif

View File

@@ -375,7 +375,6 @@ void Frsky_init_clone(void)
val=option;
CC2500_WriteReg(reg,val);
}
prev_option = option ; // Save option to monitor FSCTRL0 change
for(uint8_t i=0;i<17;i++)
{
uint8_t reg=pgm_read_byte_near(&FRSKY_common_end_cc2500_conf[i][0]);
@@ -406,7 +405,7 @@ void Frsky_init_clone(void)
{
for (uint8_t i=start+1;i<=end;i++)
packet[i]=0;
packet[start] = FrSkyX_RX_Seq << 4; //TX=8 at startup
packet[start] = FrSkyX_RX_Seq << 4;
#ifdef SPORT_SEND
if (FrSkyX_TX_IN_Seq!=0xFF)
{//RX has replied at least once
@@ -509,7 +508,7 @@ static void __attribute__((unused)) FrSkyX_set_start(uint8_t ch )
CC2500_WriteReg(CC2500_0A_CHANNR, hopping_frequency[ch]);
}
static void __attribute__((unused)) FrSkyX_init()
static void __attribute__((unused)) FrSkyX_RF_init()
{
if(protocol==PROTO_FRSKYL)
FRSKY_init_cc2500(FRSKYL_cc2500_conf);

View File

@@ -17,12 +17,12 @@
#include "iface_cc2500.h"
static void __attribute__((unused)) frsky2way_init(uint8_t bind)
static void __attribute__((unused)) FRSKYD_RF_init()
{
FRSKY_init_cc2500(FRSKYD_cc2500_conf);
CC2500_WriteReg(CC2500_1B_AGCCTRL2, bind ? 0x43 : 0x03);
CC2500_WriteReg(CC2500_09_ADDR, bind ? 0x03 : rx_tx_addr[3]);
CC2500_WriteReg(CC2500_1B_AGCCTRL2, IS_BIND_IN_PROGRESS ? 0x43 : 0x03);
CC2500_WriteReg(CC2500_09_ADDR, IS_BIND_IN_PROGRESS ? 0x03 : rx_tx_addr[3]);
CC2500_WriteReg(CC2500_07_PKTCTRL1, 0x05);
CC2500_Strobe(CC2500_SIDLE); // Go to idle...
//
@@ -32,7 +32,7 @@ static void __attribute__((unused)) frsky2way_init(uint8_t bind)
//#######END INIT########
}
static void __attribute__((unused)) frsky2way_build_bind_packet()
static void __attribute__((unused)) FRSKYD_build_bind_packet()
{
//11 03 01 d7 2d 00 00 1e 3c 5b 78 00 00 00 00 00 00 01
//11 03 01 19 3e 00 02 8e 2f bb 5c 00 00 00 00 00 00 01
@@ -57,7 +57,7 @@ static void __attribute__((unused)) frsky2way_build_bind_packet()
packet[17] = rx_tx_addr[1];
}
static void __attribute__((unused)) frsky2way_data_frame()
static void __attribute__((unused)) FRSKYD_data_frame()
{//pachet[4] is telemetry user frame counter(hub)
//11 d7 2d 22 00 01 c9 c9 ca ca 88 88 ca ca c9 ca 88 88
//11 57 12 00 00 01 f2 f2 f2 f2 06 06 ca ca ca ca 18 18
@@ -94,7 +94,7 @@ static void __attribute__((unused)) frsky2way_data_frame()
}
}
uint16_t initFrSky_2way()
void FRSKYD_init(void)
{
//FrskyD init hop
if (sub_protocol==DCLONE)
@@ -116,21 +116,20 @@ uint16_t initFrSky_2way()
packet_count=0;
if(IS_BIND_IN_PROGRESS)
{
frsky2way_init(1);
FRSKYD_RF_init();
state = FRSKY_BIND;
}
else
{
state = FRSKY_BIND_DONE;
}
return 10000;
}
uint16_t ReadFrSky_2way()
uint16_t FRSKYD_callback(void)
{
if (state < FRSKY_BIND_DONE)
{
frsky2way_build_bind_packet();
FRSKYD_build_bind_packet();
CC2500_Strobe(CC2500_SIDLE);
CC2500_WriteReg(CC2500_0A_CHANNR, 0x00);
CC2500_WriteReg(CC2500_23_FSCAL3, 0x89);
@@ -144,10 +143,10 @@ uint16_t ReadFrSky_2way()
}
if (state == FRSKY_BIND_DONE)
{
state = FRSKY_DATA2;
frsky2way_init(0);
counter = 0;
BIND_DONE;
FRSKYD_RF_init();
counter = 0;
state = FRSKY_DATA2;
}
else
if (state == FRSKY_DATA5)
@@ -203,14 +202,10 @@ uint16_t ReadFrSky_2way()
}
CC2500_Strobe(CC2500_SIDLE);
CC2500_WriteReg(CC2500_0A_CHANNR, hopping_frequency[counter % 47]);
if ( prev_option != option )
{
CC2500_WriteReg(CC2500_0C_FSCTRL0,option); // Frequency offset hack
prev_option = option ;
}
CC2500_SetFreqOffset();
CC2500_WriteReg(CC2500_23_FSCAL3, 0x89);
CC2500_Strobe(CC2500_SFRX);
frsky2way_data_frame();
FRSKYD_data_frame();
CC2500_WriteData(packet, packet[0]+1);
state++;
}

View File

@@ -137,7 +137,7 @@ static void __attribute__((unused)) FrSkyL_encode_packet(bool type)
}
}
uint16_t ReadFrSkyL()
uint16_t FRSKYL_callback()
{
static uint8_t written=0, send=0;
switch(send)
@@ -200,11 +200,7 @@ uint16_t ReadFrSkyL()
break;
case FRSKY_DATA1:
if ( prev_option != option )
{
CC2500_WriteReg(CC2500_0C_FSCTRL0,option); //Frequency offset hack
prev_option = option ;
}
CC2500_SetFreqOffset();
FrSkyX_set_start(hopping_frequency_no);
FrSkyL_build_packet();
FrSkyL_encode_packet(true);
@@ -216,7 +212,7 @@ uint16_t ReadFrSkyL()
return 1;
}
uint16_t initFrSkyL()
void FRSKYL_init()
{
set_rx_tx_addr(MProtocol_id_master);
rx_tx_addr[1]=0x02; // ID related, hw version?
@@ -231,7 +227,7 @@ uint16_t initFrSkyL()
while(!FrSkyX_chanskip)
FrSkyX_chanskip=random(0xfefefefe)%47;
FrSkyX_init();
FrSkyX_RF_init();
//Prepare frame
memset(FrSkyL_buffer,0x00,FRSKYL_PACKET_LEN-3);
@@ -257,6 +253,5 @@ uint16_t initFrSkyL()
state = FRSKY_DATA1;
FrSkyX_initialize_data(0);
}
return 10000;
}
#endif

View File

@@ -157,7 +157,7 @@ static void __attribute__((unused)) FrSkyR9_build_EU_packet()
packet[13] = FrSkyR9_CRC8(packet, 13);
}
uint16_t initFrSkyR9()
void FRSKYR9_init()
{
//Check frequencies
#ifdef DISP_FREQ_TABLE
@@ -205,7 +205,14 @@ uint16_t initFrSkyR9()
SX1276_SetDetectionThreshold(SX1276_MODEM_DETECTION_THRESHOLD_SF6);
SX1276_SetLna(1, true);
SX1276_SetHopPeriod(0); // 0 = disabled, we hop frequencies manually
SX1276_SetPaDac(true);
//RF Power
SX1276_SetPaDac(false); // Disable 20dBm mode
#if MULTI_5IN1_INTERNAL == JP_T18
SX1276_SetPaConfig(true, 7, 0); // Lowest power for the T18: 2dBm
#else
SX1276_SetPaConfig(true, 7, option); // Use PA_HP on PA_BOOST, power=17-(15-option) dBm with option equal or lower to 15
#endif
SX1276_SetOcp(true,27); // Set OCP to max 240mA
SX1276_SetTxRxMode(TX_EN); // Set RF switch to TX
//Enable all IRQ flags
SX1276_WriteReg(SX1276_11_IRQFLAGSMASK,0x00);
@@ -213,10 +220,9 @@ uint16_t initFrSkyR9()
hopping_frequency_no=0;
phase=FRSKYR9_FREQ;
return 20000; // Start calling FrSkyR9_callback in 20 milliseconds
}
uint16_t FrSkyR9_callback()
uint16_t FRSKYR9_callback()
{
switch (phase)
{
@@ -227,8 +233,14 @@ uint16_t FrSkyR9_callback()
FrSkyR9_set_frequency(); // Set current center frequency
//Set power
// max power: 15dBm (10.8 + 0.6 * MaxPower [dBm])
// output_power: 2 dBm (17-(15-OutputPower) (if pa_boost_pin == true))
SX1276_SetPaConfig(true, 7, 0); // Lowest power for the T18
// output_power: 2 dBm ( (if pa_boost_pin == true))
#if MULTI_5IN1_INTERNAL != JP_T18
if(option != prev_option)
{ // Set RF power if it has changed
SX1276_SetPaConfig(true, 7, option); // Use PA_HP on PA_BOOST, power=17-(15-option) dBm with option equal or lower to 15
prev_option = option;
}
#endif
//Build packet
if( packet_length == 26 )
FrSkyR9_build_packet();

View File

@@ -113,7 +113,7 @@ static void __attribute__((unused)) FRSKYV_build_data_packet()
packet[14] = FRSKYV_crc8(crc8, packet, 14);
}
uint16_t ReadFRSKYV()
uint16_t FRSKYV_callback(void)
{
if(IS_BIND_DONE)
{ // Normal operation
@@ -122,11 +122,7 @@ uint16_t ReadFRSKYV()
#endif
uint8_t chan = FRSKYV_calc_channel();
CC2500_Strobe(CC2500_SIDLE);
if (option != prev_option)
{
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
prev_option=option;
}
CC2500_SetFreqOffset();
CC2500_WriteReg(CC2500_0A_CHANNR, chan * 5 + 6);
FRSKYV_build_data_packet();
@@ -152,7 +148,7 @@ uint16_t ReadFRSKYV()
return 53460;
}
uint16_t initFRSKYV()
void FRSKYV_init(void)
{
//ID is 15 bits. Using rx_tx_addr[2] and rx_tx_addr[3] since we want to use RX_Num for model match
rx_tx_addr[2]&=0x7F;
@@ -162,7 +158,6 @@ uint16_t initFRSKYV()
seed = 1;
binding_idx=0;
phase = FRSKYV_DATA1;
return 10000;
}
#endif

View File

@@ -19,17 +19,14 @@
static void __attribute__((unused)) FrSkyX_build_bind_packet()
{
uint8_t packet_size = 0x1D;
if(protocol==PROTO_FRSKYX && (FrSkyFormat & 2 ))
packet_size=0x20; // FrSkyX V1 LBT
//Header
packet[0] = packet_size; // Number of bytes in the packet (after this one)
packet[1] = 0x03; // Bind packet
packet[2] = 0x01; // Bind packet
packet[0] = packet_length; // Number of bytes in the packet (after this one)
packet[1] = 0x03; // Bind packet
packet[2] = 0x01; // Bind packet
//ID
packet[3] = rx_tx_addr[3]; // ID
packet[4] = rx_tx_addr[2]; // ID
packet[3] = rx_tx_addr[3]; // ID
packet[4] = rx_tx_addr[2]; // ID
if(protocol==PROTO_FRSKYX)
{
@@ -40,10 +37,10 @@ static void __attribute__((unused)) FrSkyX_build_bind_packet()
packet[8] = hopping_frequency[idx++];
packet[9] = hopping_frequency[idx++];
packet[10] = hopping_frequency[idx++];
packet[11] = rx_tx_addr[1]; // Unknown but constant ID?
packet[11] = rx_tx_addr[1]; // ID
packet[12] = RX_num;
//
memset(&packet[13], 0, packet_size - 14);
memset(&packet[13], 0, packet_length - 14);
if(binding_idx&0x01)
memcpy(&packet[13],(void *)"\x55\xAA\x5A\xA5",4); // Telem off
if(binding_idx&0x02)
@@ -52,30 +49,34 @@ static void __attribute__((unused)) FrSkyX_build_bind_packet()
else
{
//packet 1D 03 01 0E 1C 02 00 00 32 0B 00 00 A8 26 28 01 A1 00 00 00 3E F6 87 C7 00 00 00 00 C9 C9
packet[5] = rx_tx_addr[1]; // Unknown but constant ID?
//Unknown bytes
if(state & 0x01)
memcpy(&packet[7],"\x00\x18\x0A\x00\x00\xE0\x02\x0B\x01\xD3\x08\x00\x00\x4C\xFE\x87\xC7",17);
else
memcpy(&packet[7],"\x27\xAD\x02\x00\x00\x64\xC8\x46\x00\x64\x00\x00\x00\xFB\xF6\x87\xC7",17);
//ID
packet[5] = rx_tx_addr[1]; // ID
packet[6] = RX_num;
//Bind flags
packet[7]=0;
if(binding_idx&0x01)
packet[7] |= 0x40; // Telem off
if(binding_idx&0x02)
packet[7] |= 0x80; // CH9-16
//Unknown bytes
memcpy(&packet[8],"\x32\x0B\x00\x00\xA8\x26\x28\x01\xA1\x00\x00\x00\x3E\xF6\x87\xC7",16);
packet[20]^= 0x0E ^ rx_tx_addr[3]; // Update the ID
packet[21]^= 0x1C ^ rx_tx_addr[2]; // Update the ID
//Replace the ID
packet[20] ^= 0x0E ^ rx_tx_addr[3]; // Update the ID
packet[21] ^= 0x1C ^ rx_tx_addr[2]; // Update the ID
//Xor
for(uint8_t i=3; i<packet_size-1; i++)
for(uint8_t i=3; i<packet_length-1; i++)
packet[i] ^= 0xA7;
}
//CRC
uint16_t lcrc = FrSkyX_crc(&packet[3], packet_size-4);
packet[packet_size-1] = lcrc >> 8;
packet[packet_size] = lcrc;
uint16_t lcrc = FrSkyX_crc(&packet[3], packet_length-4);
packet[packet_length-1] = lcrc >> 8;
packet[packet_length] = lcrc;
/*//Debug
debug("Bind:");
for(uint8_t i=0;i<=packet_size;i++)
for(uint8_t i=0;i<=packet_length;i++)
debug(" %02X",packet[i]);
debugln("");*/
}
@@ -85,11 +86,8 @@ static void __attribute__((unused)) FrSkyX_build_packet()
//0x1D 0xB3 0xFD 0x02 0x56 0x07 0x15 0x00 0x00 0x00 0x04 0x40 0x00 0x04 0x40 0x00 0x04 0x40 0x00 0x04 0x40 0x08 0x00 0x00 0x00 0x00 0x00 0x00 0x96 0x12
// data frames sent every 9ms; failsafe every 9 seconds
//
uint8_t packet_size = 0x1D;
if(protocol==PROTO_FRSKYX && (FrSkyFormat & 2 ))
packet_size=0x20; // FrSkyX V1 LBT
//Header
packet[0] = packet_size; // Number of bytes in the packet (after this one)
packet[0] = packet_length; // Number of bytes in the packet (after this one)
packet[1] = rx_tx_addr[3]; // ID
packet[2] = rx_tx_addr[2]; // ID
packet[3] = rx_tx_addr[1]; // Unknown but constant ID?
@@ -102,21 +100,21 @@ static void __attribute__((unused)) FrSkyX_build_packet()
FrSkyX_channels(7); // Set packet[7]=failsafe, packet[8]=0?? and packet[9..20]=channels data
//Sequence and send SPort
FrSkyX_seq_sport(21,packet_size-2); //21=RX|TXseq, 22=bytes count, 23..packet_size-2=data
FrSkyX_seq_sport(21,packet_length-2); //21=RX|TXseq, 22=bytes count, 23..packet_length-2=data
//CRC
uint16_t lcrc = FrSkyX_crc(&packet[3], packet_size-4);
packet[packet_size-1] = lcrc >> 8;
packet[packet_size] = lcrc;
uint16_t lcrc = FrSkyX_crc(&packet[3], packet_length-4);
packet[packet_length-1] = lcrc >> 8;
packet[packet_length] = lcrc;
/*//Debug
debug("Norm:");
for(uint8_t i=0;i<=packet_size;i++)
for(uint8_t i=0;i<=packet_length;i++)
debug(" %02X",packet[i]);
debugln("");*/
}
uint16_t ReadFrSkyX()
uint16_t FRSKYX_callback()
{
switch(state)
{
@@ -132,7 +130,7 @@ uint16_t ReadFrSkyX()
state = FRSKY_BIND_DONE;
else
state++;
return 9000;
break;
case FRSKY_BIND_DONE:
FrSkyX_initialize_data(0);
hopping_frequency_no=0;
@@ -142,11 +140,7 @@ uint16_t ReadFrSkyX()
case FRSKY_DATA1:
CC2500_Strobe(CC2500_SIDLE);
if ( prev_option != option )
{
CC2500_WriteReg(CC2500_0C_FSCTRL0,option); //Frequency offset hack
prev_option = option ;
}
CC2500_SetFreqOffset();
FrSkyX_set_start(hopping_frequency_no);
FrSkyX_build_packet();
if(FrSkyFormat & 2)
@@ -242,49 +236,51 @@ uint16_t ReadFrSkyX()
state = FRSKY_DATA1;
return 400; // FCC & LBT
}
return 1;
return 9000;
}
uint16_t initFrSkyX()
void FRSKYX_init()
{
set_rx_tx_addr(MProtocol_id_master);
FrSkyFormat = sub_protocol;
if (sub_protocol==XCLONE_16||sub_protocol==XCLONE_8)
Frsky_init_clone();
else if(protocol==PROTO_FRSKYX)
{
Frsky_init_hop();
rx_tx_addr[1]=0x02; // ID related, hw version?
}
else
{
#ifdef FRSKYX2_FORCE_ID
rx_tx_addr[3]=0x0E;
rx_tx_addr[2]=0x1C;
FrSkyX_chanskip=18;
#endif
if(protocol==PROTO_FRSKYX)
Frsky_init_hop();
else
{
#ifdef FRSKYX2_FORCE_ID
rx_tx_addr[3]=0x0E;
rx_tx_addr[2]=0x1C;
FrSkyX_chanskip=18;
#endif
FrSkyX2_init_hop();
}
rx_tx_addr[1]=0x02; // ID related, hw version?
FrSkyX2_init_hop();
}
if(protocol==PROTO_FRSKYX && (FrSkyFormat & 2 ))
packet_length = 0x20; // FrSkyX V1 LBT
else
packet_length = 0x1D;
packet_count=0;
while(!FrSkyX_chanskip)
FrSkyX_chanskip=random(0xfefefefe)%47;
FrSkyX_init();
FrSkyX_RF_init();
if(IS_BIND_IN_PROGRESS)
{
memset(packet, 0, packet_length);
state = FRSKY_BIND;
FrSkyX_initialize_data(1);
}
else
{
state = FRSKY_DATA1;
FrSkyX_initialize_data(0);
}
state = FRSKY_BIND_DONE;
FrSkyX_telem_init();
return 10000;
}
#endif

View File

@@ -40,7 +40,7 @@ enum {
FRSKY_RX_DATA,
};
const PROGMEM uint8_t frsky_rx_common_reg[][2] = {
const PROGMEM uint8_t FRSKY_RX_common_reg[][2] = {
{CC2500_02_IOCFG0, 0x01},
{CC2500_18_MCSM0, 0x18},
{CC2500_07_PKTCTRL1, 0x05},
@@ -68,7 +68,7 @@ const PROGMEM uint8_t frsky_rx_common_reg[][2] = {
{CC2500_09_ADDR, 0x03},
};
const PROGMEM uint8_t frsky_rx_d16fcc_reg[][2] = {
const PROGMEM uint8_t FRSKY_RX_d16fcc_reg[][2] = {
{CC2500_17_MCSM1, 0x0C},
{CC2500_0E_FREQ1, 0x76},
{CC2500_0F_FREQ0, 0x27},
@@ -81,7 +81,7 @@ const PROGMEM uint8_t frsky_rx_d16fcc_reg[][2] = {
{CC2500_15_DEVIATN, 0x51},
};
const PROGMEM uint8_t frsky_rx_d16lbt_reg[][2] = {
const PROGMEM uint8_t FRSKY_RX_d16lbt_reg[][2] = {
{CC2500_17_MCSM1, 0x0E},
{CC2500_0E_FREQ1, 0x80},
{CC2500_0F_FREQ0, 0x00},
@@ -94,7 +94,7 @@ const PROGMEM uint8_t frsky_rx_d16lbt_reg[][2] = {
{CC2500_15_DEVIATN, 0x53},
};
const PROGMEM uint8_t frsky_rx_d8_reg[][2] = {
const PROGMEM uint8_t FRSKY_RX_d8_reg[][2] = {
{CC2500_17_MCSM1, 0x0C},
{CC2500_0E_FREQ1, 0x76},
{CC2500_0F_FREQ0, 0x27},
@@ -107,32 +107,32 @@ const PROGMEM uint8_t frsky_rx_d8_reg[][2] = {
{CC2500_15_DEVIATN, 0x42},
};
static uint8_t frsky_rx_chanskip;
static int8_t frsky_rx_finetune;
static uint8_t frsky_rx_format;
static uint8_t FRSKY_RX_chanskip;
static int8_t FRSKY_RX_finetune;
static uint8_t FRSKY_RX_format;
static void __attribute__((unused)) frsky_rx_strobe_rx()
static void __attribute__((unused)) FRSKY_RX_strobe_rx()
{
CC2500_Strobe(CC2500_SIDLE);
CC2500_Strobe(CC2500_SFRX);
CC2500_Strobe(CC2500_SRX);
}
static void __attribute__((unused)) frsky_rx_initialise_cc2500() {
const uint8_t frsky_rx_length[] = { FRSKY_RX_D8_LENGTH, FRSKY_RX_D16FCC_LENGTH, FRSKY_RX_D16LBT_LENGTH, FRSKY_RX_D16v2_LENGTH, FRSKY_RX_D16v2_LENGTH };
packet_length = frsky_rx_length[frsky_rx_format];
static void __attribute__((unused)) FRSKY_RX_initialise_cc2500() {
const uint8_t FRSKY_RX_length[] = { FRSKY_RX_D8_LENGTH, FRSKY_RX_D16FCC_LENGTH, FRSKY_RX_D16LBT_LENGTH, FRSKY_RX_D16v2_LENGTH, FRSKY_RX_D16v2_LENGTH };
packet_length = FRSKY_RX_length[FRSKY_RX_format];
CC2500_Reset();
CC2500_Strobe(CC2500_SIDLE);
for (uint8_t i = 0; i < sizeof(frsky_rx_common_reg) / 2; i++)
CC2500_WriteReg(pgm_read_byte_near(&frsky_rx_common_reg[i][0]), pgm_read_byte_near(&frsky_rx_common_reg[i][1]));
for (uint8_t i = 0; i < sizeof(FRSKY_RX_common_reg) / 2; i++)
CC2500_WriteReg(pgm_read_byte_near(&FRSKY_RX_common_reg[i][0]), pgm_read_byte_near(&FRSKY_RX_common_reg[i][1]));
switch (frsky_rx_format)
switch (FRSKY_RX_format)
{
case FRSKY_RX_D16v2FCC:
case FRSKY_RX_D16FCC:
for (uint8_t i = 0; i < sizeof(frsky_rx_d16fcc_reg) / 2; i++)
CC2500_WriteReg(pgm_read_byte_near(&frsky_rx_d16fcc_reg[i][0]), pgm_read_byte_near(&frsky_rx_d16fcc_reg[i][1]));
if(frsky_rx_format==FRSKY_RX_D16v2FCC)
for (uint8_t i = 0; i < sizeof(FRSKY_RX_d16fcc_reg) / 2; i++)
CC2500_WriteReg(pgm_read_byte_near(&FRSKY_RX_d16fcc_reg[i][0]), pgm_read_byte_near(&FRSKY_RX_d16fcc_reg[i][1]));
if(FRSKY_RX_format==FRSKY_RX_D16v2FCC)
{
CC2500_WriteReg(CC2500_08_PKTCTRL0, 0x05); // Enable CRC
CC2500_WriteReg(CC2500_17_MCSM1, 0x0E); // Go/Stay in RX mode
@@ -141,36 +141,36 @@ static void __attribute__((unused)) frsky_rx_initialise_cc2500() {
break;
case FRSKY_RX_D16v2LBT:
case FRSKY_RX_D16LBT:
for (uint8_t i = 0; i < sizeof(frsky_rx_d16lbt_reg) / 2; i++)
CC2500_WriteReg(pgm_read_byte_near(&frsky_rx_d16lbt_reg[i][0]), pgm_read_byte_near(&frsky_rx_d16lbt_reg[i][1]));
if(frsky_rx_format==FRSKY_RX_D16v2LBT)
for (uint8_t i = 0; i < sizeof(FRSKY_RX_d16lbt_reg) / 2; i++)
CC2500_WriteReg(pgm_read_byte_near(&FRSKY_RX_d16lbt_reg[i][0]), pgm_read_byte_near(&FRSKY_RX_d16lbt_reg[i][1]));
if(FRSKY_RX_format==FRSKY_RX_D16v2LBT)
CC2500_WriteReg(CC2500_08_PKTCTRL0, 0x05); // Enable CRC
break;
case FRSKY_RX_D8:
for (uint8_t i = 0; i < sizeof(frsky_rx_d8_reg) / 2; i++)
CC2500_WriteReg(pgm_read_byte_near(&frsky_rx_d8_reg[i][0]), pgm_read_byte_near(&frsky_rx_d8_reg[i][1]));
for (uint8_t i = 0; i < sizeof(FRSKY_RX_d8_reg) / 2; i++)
CC2500_WriteReg(pgm_read_byte_near(&FRSKY_RX_d8_reg[i][0]), pgm_read_byte_near(&FRSKY_RX_d8_reg[i][1]));
CC2500_WriteReg(CC2500_23_FSCAL3, 0x89);
break;
}
CC2500_WriteReg(CC2500_0A_CHANNR, 0); // bind channel
rx_disable_lna = IS_POWER_FLAG_on;
CC2500_SetTxRxMode(rx_disable_lna ? TXRX_OFF : RX_EN); // lna disable / enable
frsky_rx_strobe_rx();
FRSKY_RX_strobe_rx();
delayMicroseconds(1000); // wait for RX to activate
}
static void __attribute__((unused)) frsky_rx_set_channel(uint8_t channel)
static void __attribute__((unused)) FRSKY_RX_set_channel(uint8_t channel)
{
CC2500_WriteReg(CC2500_0A_CHANNR, hopping_frequency[channel]);
if(frsky_rx_format == FRSKY_RX_D8)
if(FRSKY_RX_format == FRSKY_RX_D8)
CC2500_WriteReg(CC2500_23_FSCAL3, 0x89);
CC2500_WriteReg(CC2500_25_FSCAL1, calData[channel]);
frsky_rx_strobe_rx();
FRSKY_RX_strobe_rx();
}
static void __attribute__((unused)) frsky_rx_calibrate()
static void __attribute__((unused)) FRSKY_RX_calibrate()
{
frsky_rx_strobe_rx();
FRSKY_RX_strobe_rx();
for (unsigned c = 0; c < 47; c++)
{
CC2500_Strobe(CC2500_SIDLE);
@@ -193,7 +193,7 @@ static uint8_t __attribute__((unused)) frskyx_rx_check_crc_id(bool bind,bool ini
uint8_t offset=bind?3:1;
// Check D8 checksum
if (frsky_rx_format == FRSKY_RX_D8)
if (FRSKY_RX_format == FRSKY_RX_D8)
{
if((packet[packet_length+1] & 0x80) != 0x80) // Check CRC_OK flag in status byte 2
return false; // Bad CRC
@@ -210,7 +210,7 @@ static uint8_t __attribute__((unused)) frskyx_rx_check_crc_id(bool bind,bool ini
}
// Check D16v2 checksum
if (frsky_rx_format == FRSKY_RX_D16v2LBT || frsky_rx_format == FRSKY_RX_D16v2FCC)
if (FRSKY_RX_format == FRSKY_RX_D16v2LBT || FRSKY_RX_format == FRSKY_RX_D16v2FCC)
if((packet[packet_length+1] & 0x80) != 0x80) // Check CRC_OK flag in status byte 2
return false;
//debugln("HW Checksum ok");
@@ -222,12 +222,12 @@ static uint8_t __attribute__((unused)) frskyx_rx_check_crc_id(bool bind,bool ini
return false; // Bad CRC
//debugln("Checksum ok");
if (bind && (frsky_rx_format == FRSKY_RX_D16v2LBT || frsky_rx_format == FRSKY_RX_D16v2FCC))
if (bind && (FRSKY_RX_format == FRSKY_RX_D16v2LBT || FRSKY_RX_format == FRSKY_RX_D16v2FCC))
for(uint8_t i=3; i<packet_length-2; i++) //unXOR bind packet
packet[i] ^= 0xA7;
uint8_t offset2=0;
if (bind && (frsky_rx_format == FRSKY_RX_D16LBT || frsky_rx_format == FRSKY_RX_D16FCC))
if (bind && (FRSKY_RX_format == FRSKY_RX_D16LBT || FRSKY_RX_format == FRSKY_RX_D16FCC))
offset2=6;
if(init)
{//Save TXID
@@ -248,7 +248,7 @@ static uint8_t __attribute__((unused)) frskyx_rx_check_crc_id(bool bind,bool ini
return true; // Full match
}
static void __attribute__((unused)) frsky_rx_build_telemetry_packet()
static void __attribute__((unused)) FRSKY_RX_build_telemetry_packet()
{
uint16_t raw_channel[8];
uint32_t bits = 0;
@@ -256,7 +256,7 @@ static void __attribute__((unused)) frsky_rx_build_telemetry_packet()
uint8_t idx = 0;
uint8_t i;
if (frsky_rx_format == FRSKY_RX_D8)
if (FRSKY_RX_format == FRSKY_RX_D8)
{// decode D8 channels
raw_channel[0] = ((packet[10] & 0x0F) << 8 | packet[6]);
raw_channel[1] = ((packet[10] & 0xF0) << 4 | packet[7]);
@@ -299,7 +299,7 @@ static void __attribute__((unused)) frsky_rx_build_telemetry_packet()
packet_in[idx++] = RX_LQI;
packet_in[idx++] = RX_RSSI;
packet_in[idx++] = 0; // start channel
packet_in[idx++] = frsky_rx_format == FRSKY_RX_D8 ? 8 : 16; // number of channels in packet
packet_in[idx++] = FRSKY_RX_format == FRSKY_RX_D8 ? 8 : 16; // number of channels in packet
// pack channels
for (i = 0; i < packet_in[3]; i++) {
@@ -313,29 +313,29 @@ static void __attribute__((unused)) frsky_rx_build_telemetry_packet()
}
}
static void __attribute__((unused)) frsky_rx_data()
static void __attribute__((unused)) FRSKY_RX_data()
{
uint16_t temp = FRSKY_RX_EEPROM_OFFSET;
frsky_rx_format = eeprom_read_byte((EE_ADDR)temp++) % FRSKY_RX_FORMATS;
FRSKY_RX_format = eeprom_read_byte((EE_ADDR)temp++) % FRSKY_RX_FORMATS;
rx_tx_addr[3] = eeprom_read_byte((EE_ADDR)temp++);
rx_tx_addr[2] = eeprom_read_byte((EE_ADDR)temp++);
rx_tx_addr[1] = eeprom_read_byte((EE_ADDR)temp++);
rx_tx_addr[0] = RX_num;
frsky_rx_finetune = eeprom_read_byte((EE_ADDR)temp++);
debug("format=%d, ", frsky_rx_format);
FRSKY_RX_finetune = eeprom_read_byte((EE_ADDR)temp++);
debug("format=%d, ", FRSKY_RX_format);
debug("addr[3]=%02X, ", rx_tx_addr[3]);
debug("addr[2]=%02X, ", rx_tx_addr[2]);
debug("addr[1]=%02X, ", rx_tx_addr[1]);
debug("rx_num=%02X, ", rx_tx_addr[0]);
debugln("tune=%d", (int8_t)frsky_rx_finetune);
if(frsky_rx_format != FRSKY_RX_D16v2LBT && frsky_rx_format != FRSKY_RX_D16v2FCC)
debugln("tune=%d", (int8_t)FRSKY_RX_finetune);
if(FRSKY_RX_format != FRSKY_RX_D16v2LBT && FRSKY_RX_format != FRSKY_RX_D16v2FCC)
{//D8 & D16v1
for (uint8_t ch = 0; ch < 47; ch++)
hopping_frequency[ch] = eeprom_read_byte((EE_ADDR)temp++);
}
else
{
FrSkyFormat=frsky_rx_format == FRSKY_RX_D16v2FCC?0:2;
FrSkyFormat=FRSKY_RX_format == FRSKY_RX_D16v2FCC?0:2;
FrSkyX2_init_hop();
}
debug("ch:");
@@ -343,51 +343,74 @@ static void __attribute__((unused)) frsky_rx_data()
debug(" %02X", hopping_frequency[ch]);
debugln("");
frsky_rx_initialise_cc2500();
frsky_rx_calibrate();
FRSKY_RX_initialise_cc2500();
FRSKY_RX_calibrate();
CC2500_WriteReg(CC2500_18_MCSM0, 0x08); // FS_AUTOCAL = manual
CC2500_WriteReg(CC2500_09_ADDR, rx_tx_addr[3]); // set address
CC2500_WriteReg(CC2500_07_PKTCTRL1, 0x05); // check address
if (option == 0)
CC2500_WriteReg(CC2500_0C_FSCTRL0, frsky_rx_finetune);
CC2500_WriteReg(CC2500_0C_FSCTRL0, FRSKY_RX_finetune);
else
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
frsky_rx_set_channel(hopping_frequency_no);
FRSKY_RX_set_channel(hopping_frequency_no);
phase = FRSKY_RX_DATA;
}
uint16_t initFrSky_Rx()
void FRSKY_RX_init()
{
frsky_rx_chanskip = 1;
hopping_frequency_no = 0;
rx_data_started = false;
frsky_rx_finetune = 0;
telemetry_link = 0;
packet_count = 0;
if (IS_BIND_IN_PROGRESS)
if(sub_protocol == FRSKY_ERASE)
{
frsky_rx_format = FRSKY_RX_D8;
frsky_rx_initialise_cc2500();
phase = FRSKY_RX_TUNE_START;
debugln("FRSKY_RX_TUNE_START");
if(IS_BIND_IN_PROGRESS)
{// Clear all cloned addresses
uint16_t addr[]={ FRSKYD_CLONE_EEPROM_OFFSET+1, FRSKYX_CLONE_EEPROM_OFFSET+1, FRSKYX2_CLONE_EEPROM_OFFSET+1 };
for(uint8_t i=0; i<3;i++)
for(uint8_t j=0; j<3;j++)
eeprom_write_byte((EE_ADDR)(addr[i]+j), 0xFF);
packet_count = 100;
}
}
else
frsky_rx_data();
return 1000;
{
FRSKY_RX_chanskip = 1;
hopping_frequency_no = 0;
rx_data_started = false;
FRSKY_RX_finetune = 0;
telemetry_link = 0;
packet_count = 0;
if (IS_BIND_IN_PROGRESS)
{
FRSKY_RX_format = FRSKY_RX_D8;
FRSKY_RX_initialise_cc2500();
phase = FRSKY_RX_TUNE_START;
debugln("FRSKY_RX_TUNE_START");
}
else
FRSKY_RX_data();
}
}
uint16_t FrSky_Rx_callback()
uint16_t FRSKY_RX_callback()
{
static int8_t read_retry = 0;
static int8_t tune_low, tune_high;
uint8_t len, ch;
if(IS_BIND_DONE && phase != FRSKY_RX_DATA) return initFrSky_Rx(); // Abort bind
if(sub_protocol == FRSKY_ERASE)
{
if(packet_count)
packet_count--;
else
BIND_DONE;
return 10000; // Nothing to do...
}
if(IS_BIND_DONE && phase != FRSKY_RX_DATA)
FRSKY_RX_init(); // Abort bind
if ((prev_option != option) && (phase >= FRSKY_RX_DATA))
{
if (option == 0)
CC2500_WriteReg(CC2500_0C_FSCTRL0, frsky_rx_finetune);
CC2500_WriteReg(CC2500_0C_FSCTRL0, FRSKY_RX_finetune);
else
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
prev_option = option;
@@ -408,20 +431,20 @@ uint16_t FrSky_Rx_callback()
CC2500_ReadData(packet, len);
if(frskyx_rx_check_crc_id(true,true))
{
frsky_rx_finetune = -127;
CC2500_WriteReg(CC2500_0C_FSCTRL0, frsky_rx_finetune);
FRSKY_RX_finetune = -127;
CC2500_WriteReg(CC2500_0C_FSCTRL0, FRSKY_RX_finetune);
phase = FRSKY_RX_TUNE_LOW;
debugln("FRSKY_RX_TUNE_LOW");
frsky_rx_strobe_rx();
FRSKY_RX_strobe_rx();
state = 0;
return 1000;
}
}
frsky_rx_format = (frsky_rx_format + 1) % FRSKY_RX_FORMATS; // switch to next format (D8, D16FCC, D16LBT, D16v2FCC, D16v2LBT)
frsky_rx_initialise_cc2500();
frsky_rx_finetune += 10;
CC2500_WriteReg(CC2500_0C_FSCTRL0, frsky_rx_finetune);
frsky_rx_strobe_rx();
FRSKY_RX_format = (FRSKY_RX_format + 1) % FRSKY_RX_FORMATS; // switch to next format (D8, D16FCC, D16LBT, D16v2FCC, D16v2LBT)
FRSKY_RX_initialise_cc2500();
FRSKY_RX_finetune += 10;
CC2500_WriteReg(CC2500_0C_FSCTRL0, FRSKY_RX_finetune);
FRSKY_RX_strobe_rx();
return 18000;
case FRSKY_RX_TUNE_LOW:
@@ -429,18 +452,18 @@ uint16_t FrSky_Rx_callback()
{
CC2500_ReadData(packet, len);
if(frskyx_rx_check_crc_id(true,false)) {
tune_low = frsky_rx_finetune;
frsky_rx_finetune = 127;
CC2500_WriteReg(CC2500_0C_FSCTRL0, frsky_rx_finetune);
tune_low = FRSKY_RX_finetune;
FRSKY_RX_finetune = 127;
CC2500_WriteReg(CC2500_0C_FSCTRL0, FRSKY_RX_finetune);
phase = FRSKY_RX_TUNE_HIGH;
debugln("FRSKY_RX_TUNE_HIGH");
frsky_rx_strobe_rx();
FRSKY_RX_strobe_rx();
return 1000;
}
}
frsky_rx_finetune += 1;
CC2500_WriteReg(CC2500_0C_FSCTRL0, frsky_rx_finetune);
frsky_rx_strobe_rx();
FRSKY_RX_finetune += 1;
CC2500_WriteReg(CC2500_0C_FSCTRL0, FRSKY_RX_finetune);
FRSKY_RX_strobe_rx();
return 18000;
case FRSKY_RX_TUNE_HIGH:
@@ -448,9 +471,9 @@ uint16_t FrSky_Rx_callback()
{
CC2500_ReadData(packet, len);
if(frskyx_rx_check_crc_id(true,false)) {
tune_high = frsky_rx_finetune;
frsky_rx_finetune = (tune_low + tune_high) / 2;
CC2500_WriteReg(CC2500_0C_FSCTRL0, (int8_t)frsky_rx_finetune);
tune_high = FRSKY_RX_finetune;
FRSKY_RX_finetune = (tune_low + tune_high) / 2;
CC2500_WriteReg(CC2500_0C_FSCTRL0, (int8_t)FRSKY_RX_finetune);
if(tune_low < tune_high)
{
phase = FRSKY_RX_BIND;
@@ -461,13 +484,13 @@ uint16_t FrSky_Rx_callback()
phase = FRSKY_RX_TUNE_START;
debugln("FRSKY_RX_TUNE_START");
}
frsky_rx_strobe_rx();
FRSKY_RX_strobe_rx();
return 1000;
}
}
frsky_rx_finetune -= 1;
CC2500_WriteReg(CC2500_0C_FSCTRL0, frsky_rx_finetune);
frsky_rx_strobe_rx();
FRSKY_RX_finetune -= 1;
CC2500_WriteReg(CC2500_0C_FSCTRL0, FRSKY_RX_finetune);
FRSKY_RX_strobe_rx();
return 18000;
case FRSKY_RX_BIND:
@@ -475,7 +498,7 @@ uint16_t FrSky_Rx_callback()
{
CC2500_ReadData(packet, len);
if(frskyx_rx_check_crc_id(true,false)) {
if(frsky_rx_format != FRSKY_RX_D16v2LBT && frsky_rx_format != FRSKY_RX_D16v2FCC)
if(FRSKY_RX_format != FRSKY_RX_D16v2LBT && FRSKY_RX_format != FRSKY_RX_D16v2FCC)
{// D8 & D16v1
if(packet[5] <= 0x2D)
{
@@ -494,27 +517,27 @@ uint16_t FrSky_Rx_callback()
uint16_t temp = FRSKY_RX_EEPROM_OFFSET;
if(sub_protocol==FRSKY_CLONE)
{
if(frsky_rx_format==FRSKY_RX_D8)
if(FRSKY_RX_format==FRSKY_RX_D8)
temp=FRSKYD_CLONE_EEPROM_OFFSET;
else if(frsky_rx_format == FRSKY_RX_D16FCC || frsky_rx_format == FRSKY_RX_D16LBT)
else if(FRSKY_RX_format == FRSKY_RX_D16FCC || FRSKY_RX_format == FRSKY_RX_D16LBT)
temp=FRSKYX_CLONE_EEPROM_OFFSET;
else
temp=FRSKYX2_CLONE_EEPROM_OFFSET;
}
eeprom_write_byte((EE_ADDR)temp++, frsky_rx_format);
eeprom_write_byte((EE_ADDR)temp++, FRSKY_RX_format);
eeprom_write_byte((EE_ADDR)temp++, rx_tx_addr[3]);
eeprom_write_byte((EE_ADDR)temp++, rx_tx_addr[2]);
eeprom_write_byte((EE_ADDR)temp++, rx_tx_addr[1]);
if(sub_protocol==FRSKY_RX)
eeprom_write_byte((EE_ADDR)temp++, frsky_rx_finetune);
if(frsky_rx_format != FRSKY_RX_D16v2FCC && frsky_rx_format != FRSKY_RX_D16v2LBT)
if(sub_protocol == FRSKY_RX || sub_protocol == FRSKY_CPPM) // FRSKY_RX, FRSKY_CPPM
eeprom_write_byte((EE_ADDR)temp++, FRSKY_RX_finetune);
if(FRSKY_RX_format != FRSKY_RX_D16v2FCC && FRSKY_RX_format != FRSKY_RX_D16v2LBT)
for (ch = 0; ch < 47; ch++)
eeprom_write_byte((EE_ADDR)temp++, hopping_frequency[ch]);
frsky_rx_data();
FRSKY_RX_data();
debugln("FRSKY_RX_DATA");
}
}
frsky_rx_strobe_rx();
FRSKY_RX_strobe_rx();
}
return 1000;
@@ -531,31 +554,35 @@ uint16_t FrSky_Rx_callback()
RX_RSSI += 128;
bool chanskip_valid=true;
// hop to next channel
if (frsky_rx_format != FRSKY_RX_D8)
if (FRSKY_RX_format != FRSKY_RX_D8)
{//D16v1 & D16v2
if(rx_data_started)
{
if(frsky_rx_chanskip != (((packet[4] & 0xC0) >> 6) | ((packet[5] & 0x3F) << 2)))
if(FRSKY_RX_chanskip != (((packet[4] & 0xC0) >> 6) | ((packet[5] & 0x3F) << 2)))
{
chanskip_valid=false; // chanskip value has changed which surely indicates a bad frame
packet_count++;
if(packet_count>5) // the TX must have changed chanskip...
frsky_rx_chanskip = ((packet[4] & 0xC0) >> 6) | ((packet[5] & 0x3F) << 2); // chanskip init
FRSKY_RX_chanskip = ((packet[4] & 0xC0) >> 6) | ((packet[5] & 0x3F) << 2); // chanskip init
}
else
packet_count=0;
}
else
frsky_rx_chanskip = ((packet[4] & 0xC0) >> 6) | ((packet[5] & 0x3F) << 2); // chanskip init
FRSKY_RX_chanskip = ((packet[4] & 0xC0) >> 6) | ((packet[5] & 0x3F) << 2); // chanskip init
}
hopping_frequency_no = (hopping_frequency_no + frsky_rx_chanskip) % 47;
frsky_rx_set_channel(hopping_frequency_no);
hopping_frequency_no = (hopping_frequency_no + FRSKY_RX_chanskip) % 47;
FRSKY_RX_set_channel(hopping_frequency_no);
if(chanskip_valid)
{
if (telemetry_link == 0)
if ((telemetry_link & 0x7F) == 0)
{ // send channels to TX
frsky_rx_build_telemetry_packet();
FRSKY_RX_build_telemetry_packet();
telemetry_link = 1;
#ifdef SEND_CPPM
if(sub_protocol == FRSKY_CPPM)
telemetry_link |= 0x80; // Disable telemetry output
#endif
}
pps_counter++;
}
@@ -579,8 +606,8 @@ uint16_t FrSky_Rx_callback()
// skip channel if no packet received in time
if (read_retry++ >= 9) {
hopping_frequency_no = (hopping_frequency_no + frsky_rx_chanskip) % 47;
frsky_rx_set_channel(hopping_frequency_no);
hopping_frequency_no = (hopping_frequency_no + FRSKY_RX_chanskip) % 47;
FRSKY_RX_set_channel(hopping_frequency_no);
if(rx_data_started)
read_retry = 0;
else

View File

@@ -18,6 +18,8 @@
#include "iface_cc2500.h"
//#define SFHSS_DEBUG_TIMING
#define SFHSS_COARSE 0
#define SFHSS_PACKET_LEN 13
@@ -79,7 +81,6 @@ static void __attribute__((unused)) SFHSS_rf_init()
for (uint8_t i = 0; i < 39; ++i)
CC2500_WriteReg(i, pgm_read_byte_near(&SFHSS_init_values[i]));
prev_option = option;
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
CC2500_SetTxRxMode(TX_EN);
@@ -125,7 +126,7 @@ static void __attribute__((unused)) SFHSS_calc_next_chan()
// Channel values are 12-bit values between 1020 and 2020, 1520 is the middle.
// Futaba @140% is 2070...1520...970
// Values grow down and to the right.
static void __attribute__((unused)) SFHSS_build_data_packet()
static void __attribute__((unused)) SFHSS_send_packet()
{
uint16_t ch[4];
// command.bit0 is the packet number indicator: =0 -> SFHSS_DATA1, =1 -> SFHSS_DATA2
@@ -165,16 +166,14 @@ static void __attribute__((unused)) SFHSS_build_data_packet()
// 3584-4095 -> looks to be used for the throttle channel with values ranging from 880µs to 1520µs
for(uint8_t i=0;i<4;i++)
{
ch[i]=Failsafe_data[CH_AETR[ch_offset+i]];
if(ch[i]==FAILSAFE_CHANNEL_HOLD)
uint16_t val=Failsafe_data[CH_AETR[ch_offset+i]];
if(val==FAILSAFE_CHANNEL_HOLD)
ch[i]=1024;
else if(ch[i]==FAILSAFE_CHANNEL_NOPULSES)
else if(val==FAILSAFE_CHANNEL_NOPULSES)
ch[i]=0;
else
{ //Use channel value
ch[i]=(ch[i]>>1)+2560;
//if(IS_DISABLE_CH_MAP_off && ch_offset+i==CH3 && ch[i]<3072) // Throttle
// ch[i]+=1024;
ch[i] = convert_channel_16b_nolimit(CH_AETR[ch_offset+i],3571,2571,true); //3472,2672: not enough throw
}
}
}
@@ -203,15 +202,17 @@ static void __attribute__((unused)) SFHSS_build_data_packet()
packet[10] = (ch[2] << 7) | ((ch[3] >> 5) & 0x7F );
packet[11] = (ch[3] << 3) | ((fhss_code >> 2) & 0x07 );
packet[12] = (fhss_code << 6) | command;
}
static void __attribute__((unused)) SFHSS_send_packet()
{
CC2500_WriteData(packet, SFHSS_PACKET_LEN);
}
uint16_t ReadSFHSS()
uint16_t SFHSS_callback()
{
#ifdef SFHSS_DEBUG_TIMING
static uint16_t prev_adjust_timing=1024;
uint16_t adjust_timing = (Channel_data[CH15]>>3) - (1024>>3); // +-102 @ 100%
#endif
switch(phase)
{
case SFHSS_START:
@@ -238,16 +239,27 @@ uint16_t ReadSFHSS()
#ifdef MULTI_SYNC
telemetry_set_input_sync(6800);
#endif
SFHSS_build_data_packet();
SFHSS_send_packet();
phase = SFHSS_DATA2;
#ifdef SFHSS_DEBUG_TIMING
return SFHSS_DATA2_TIMING - adjust_timing;
#else
return SFHSS_DATA2_TIMING; // original 1650
#endif
case SFHSS_DATA2:
SFHSS_build_data_packet();
SFHSS_send_packet();
SFHSS_calc_next_chan();
phase = SFHSS_TUNE;
return (SFHSS_PACKET_PERIOD -2000 -SFHSS_DATA2_TIMING); // original 2000
#ifdef SFHSS_DEBUG_TIMING
if(prev_adjust_timing != adjust_timing)
{
debugln("A:%d",(uint16_t)(SFHSS_DATA2_TIMING - adjust_timing));
prev_adjust_timing = adjust_timing;
}
return SFHSS_PACKET_PERIOD -2000 -(SFHSS_DATA2_TIMING - adjust_timing);
#else
return SFHSS_PACKET_PERIOD -2000 -SFHSS_DATA2_TIMING; // original 2000
#endif
case SFHSS_TUNE:
phase = SFHSS_DATA1;
SFHSS_tune_freq();
@@ -288,7 +300,7 @@ static void __attribute__((unused)) SFHSS_get_tx_id()
rx_tx_addr[1] = fixed_id >> 0;
}
uint16_t initSFHSS()
void SFHSS_init()
{
BIND_DONE; // Not a TX bind protocol
SFHSS_get_tx_id();
@@ -297,7 +309,6 @@ uint16_t initSFHSS()
SFHSS_rf_init();
phase = SFHSS_START;
return 10000;
}
#endif

View File

@@ -14,9 +14,9 @@ Multiprotocol is distributed in the hope that it will be useful,
*/
// Compatible with GD005 C-17 and GD006 DA62 planes.
#if defined(GD00X_NRF24L01_INO)
#if defined(GD00X_CCNRF_INO)
#include "iface_nrf250k.h"
#include "iface_xn297.h"
//#define FORCE_GD00X_ORIGINAL_ID
@@ -113,7 +113,7 @@ static void __attribute__((unused)) GD00X_send_packet()
if(IS_BIND_DONE)
{
XN297L_Hopping(hopping_frequency_no);
XN297_Hopping(hopping_frequency_no);
if(sub_protocol==GD_V1)
{
hopping_frequency_no++;
@@ -121,21 +121,22 @@ static void __attribute__((unused)) GD00X_send_packet()
}
}
XN297L_WritePayload(packet, packet_length);
XN297L_SetPower(); // Set tx_power
XN297L_SetFreqOffset(); // Set frequency offset
// Send
XN297_SetFreqOffset();
XN297_SetPower();
XN297_SetTxRxMode(TX_EN);
XN297_WritePayload(packet, packet_length);
}
static void __attribute__((unused)) GD00X_init()
static void __attribute__((unused)) GD00X_RF_init()
{
XN297L_Init();
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_250K);
if(sub_protocol==GD_V1)
XN297L_SetTXAddr((uint8_t*)"\xcc\xcc\xcc\xcc\xcc", 5);
XN297_SetTXAddr((uint8_t*)"\xcc\xcc\xcc\xcc\xcc", 5);
else
XN297L_SetTXAddr((uint8_t*)"GDKNx", 5);
XN297L_HoppingCalib(sub_protocol==GD_V1?GD00X_RF_NUM_CHANNELS:GD00X_V2_RF_NUM_CHANNELS); // Calibrate all channels
XN297L_RFChannel(sub_protocol==GD_V1?GD00X_RF_BIND_CHANNEL:GD00X_V2_RF_BIND_CHANNEL); // Set bind channel
XN297_SetTXAddr((uint8_t*)"GDKNx", 5);
XN297_HoppingCalib(sub_protocol==GD_V1?GD00X_RF_NUM_CHANNELS:GD00X_V2_RF_NUM_CHANNELS); // Calibrate all channels
XN297_RFChannel(sub_protocol==GD_V1?GD00X_RF_BIND_CHANNEL:GD00X_V2_RF_BIND_CHANNEL); // Set bind channel
}
static void __attribute__((unused)) GD00X_initialize_txid()
@@ -204,28 +205,27 @@ static void __attribute__((unused)) GD00X_initialize_txid()
uint16_t GD00X_callback()
{
if(IS_BIND_IN_PROGRESS)
if(--bind_counter==0)
BIND_DONE;
GD00X_send_packet();
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
if(bind_counter)
if(--bind_counter==0)
BIND_DONE;
GD00X_send_packet();
return packet_period;
}
uint16_t initGD00X()
void GD00X_init()
{
BIND_IN_PROGRESS; // autobind protocol
GD00X_initialize_txid();
GD00X_init();
GD00X_RF_init();
hopping_frequency_no = 0;
bind_counter=GD00X_BIND_COUNT;
packet_period=sub_protocol==GD_V1?GD00X_PACKET_PERIOD:GD00X_V2_BIND_PACKET_PERIOD;
packet_length=sub_protocol==GD_V1?GD00X_PAYLOAD_SIZE:GD00X_V2_PAYLOAD_SIZE;
packet_count=0;
len=0;
return GD00X_INITIAL_WAIT;
}
#endif

View File

@@ -19,7 +19,7 @@ Multiprotocol is distributed in the hope that it will be useful,
#if defined(GW008_NRF24L01_INO)
#include "iface_nrf24l01.h"
#include "iface_xn297.h"
#define GW008_INITIAL_WAIT 500
#define GW008_PACKET_PERIOD 2400
@@ -32,10 +32,10 @@ enum {
GW008_DATA
};
static void __attribute__((unused)) GW008_send_packet(uint8_t bind)
static void __attribute__((unused)) GW008_send_packet()
{
packet[0] = rx_tx_addr[0];
if(bind)
if(IS_BIND_IN_PROGRESS)
{
packet[1] = 0x55;
packet[2] = hopping_frequency[0];
@@ -47,6 +47,9 @@ static void __attribute__((unused)) GW008_send_packet(uint8_t bind)
}
else
{
XN297_Hopping((hopping_frequency_no++)/2);
hopping_frequency_no %= 8;
packet[1] = 0x01 | GET_FLAG(CH5_SW, 0x40); // flip
packet[2] = convert_channel_16b_limit(AILERON , 200, 0); // aileron
packet[3] = convert_channel_16b_limit(ELEVATOR, 0, 200); // elevator
@@ -63,38 +66,21 @@ static void __attribute__((unused)) GW008_send_packet(uint8_t bind)
}
packet[14] = rx_tx_addr[1];
// Power on, TX mode, CRC enabled
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP));
NRF24L01_WriteReg(NRF24L01_05_RF_CH, bind ? GW008_RF_BIND_CHANNEL : hopping_frequency[(hopping_frequency_no++)/2]);
hopping_frequency_no %= 8;
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
// Send
XN297_SetPower();
XN297_SetTxRxMode(TX_EN);
XN297_WriteEnhancedPayload(packet, GW008_PAYLOAD_SIZE, 0);
NRF24L01_SetPower(); // Set tx_power
}
static void __attribute__((unused)) GW008_init()
static void __attribute__((unused)) GW008_RF_init()
{
NRF24L01_Initialize();
NRF24L01_SetTxRxMode(TX_EN);
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_1M);
XN297_SetTXAddr((uint8_t*)"\xcc\xcc\xcc\xcc\xcc", 5);
XN297_SetRXAddr((uint8_t*)"\xcc\xcc\xcc\xcc\xcc", 5);
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowldgement on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01);
NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, GW008_PAYLOAD_SIZE+2); // payload + 2 bytes for pcf
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x03);
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0x00); // no retransmits
NRF24L01_SetBitrate(NRF24L01_BR_1M);
NRF24L01_SetPower();
NRF24L01_Activate(0x73); // Activate feature register
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 0x00); // Disable dynamic payload length on all pipes
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, 0x01); // Set feature bits on
NRF24L01_Activate(0x73);
XN297_SetRXAddr((uint8_t*)"\xcc\xcc\xcc\xcc\xcc", GW008_PAYLOAD_SIZE);
//XN297_HoppingCalib(8);
XN297_RFChannel(GW008_RF_BIND_CHANNEL);
}
static void __attribute__((unused)) GW008_initialize_txid()
@@ -109,53 +95,48 @@ uint16_t GW008_callback()
switch(phase)
{
case GW008_BIND1:
if((NRF24L01_ReadReg(NRF24L01_07_STATUS) & _BV(NRF24L01_07_RX_DR)) && // RX fifo data ready
if(XN297_IsRX() && // RX fifo data ready
XN297_ReadEnhancedPayload(packet, GW008_PAYLOAD_SIZE) == GW008_PAYLOAD_SIZE && // check payload size
packet[0] == rx_tx_addr[0] && packet[14] == rx_tx_addr[1]) // check tx id
{
NRF24L01_SetTxRxMode(TXRX_OFF);
NRF24L01_SetTxRxMode(TX_EN);
XN297_SetTxRxMode(TXRX_OFF);
XN297_SetTxRxMode(TX_EN);
rx_tx_addr[2] = packet[13];
BIND_DONE;
phase = GW008_DATA;
}
else
{
NRF24L01_SetTxRxMode(TXRX_OFF);
NRF24L01_SetTxRxMode(TX_EN);
GW008_send_packet(1);
XN297_SetTxRxMode(TXRX_OFF);
XN297_SetTxRxMode(TX_EN);
GW008_send_packet();
phase = GW008_BIND2;
return 850; // minimum value 750 for STM32
}
break;
case GW008_BIND2:
// switch to RX mode
NRF24L01_SetTxRxMode(TXRX_OFF);
NRF24L01_FlushRx();
NRF24L01_SetTxRxMode(RX_EN);
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO)
| _BV(NRF24L01_00_PWR_UP) | _BV(NRF24L01_00_PRIM_RX));
XN297_SetTxRxMode(TXRX_OFF);
XN297_SetTxRxMode(RX_EN);
phase = GW008_BIND1;
return 5000;
break;
case GW008_DATA:
#ifdef MULTI_SYNC
telemetry_set_input_sync(GW008_PACKET_PERIOD);
#endif
GW008_send_packet(0);
GW008_send_packet();
break;
}
return GW008_PACKET_PERIOD;
}
uint16_t initGW008()
void GW008_init()
{
BIND_IN_PROGRESS; // autobind protocol
GW008_initialize_txid();
phase = GW008_BIND1;
GW008_init();
GW008_RF_init();
hopping_frequency_no = 0;
return GW008_INITIAL_WAIT;
}
#endif

View File

@@ -19,7 +19,7 @@
#if defined(H8_3D_NRF24L01_INO)
#include "iface_nrf24l01.h"
#include "iface_xn297.h"
#define H8_3D_PACKET_PERIOD 1800
#define H20H_PACKET_PERIOD 9340
@@ -50,7 +50,7 @@ enum H8_3D_FLAGS_2 {
H8_3D_FLAG_CAM_UP = 0x04,
};
static void __attribute__((unused)) H8_3D_send_packet(uint8_t bind)
static void __attribute__((unused)) H8_3D_send_packet()
{
if(sub_protocol==H20H)
packet[0] = 0x14;
@@ -63,7 +63,7 @@ static void __attribute__((unused)) H8_3D_send_packet(uint8_t bind)
packet[4] = rx_tx_addr[3];
packet[8] = rx_tx_addr[0]+rx_tx_addr[1]+rx_tx_addr[2]+rx_tx_addr[3]; // txid checksum
memset(&packet[9], 0, 10);
if (bind)
if (IS_BIND_IN_PROGRESS)
{
packet[5] = 0x00;
packet[6] = 0x00;
@@ -122,18 +122,16 @@ static void __attribute__((unused)) H8_3D_send_packet(uint8_t bind)
sum += packet[i];
packet[19] = sum; // data checksum
// Power on, TX mode, 2byte CRC
// Why CRC0? xn297 does not interpret it - either 16-bit CRC or nothing
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP));
// RF channel
if(sub_protocol!=H20H)
{ // H8_3D, H20MINI, H30MINI
NRF24L01_WriteReg(NRF24L01_05_RF_CH, bind ? hopping_frequency[0] : hopping_frequency[hopping_frequency_no++]);
XN297_RFChannel(IS_BIND_IN_PROGRESS ? hopping_frequency[0] : hopping_frequency[hopping_frequency_no++]);
hopping_frequency_no %= H8_3D_RF_NUM_CHANNELS;
}
else
{ //H20H
NRF24L01_WriteReg(NRF24L01_05_RF_CH, bind ? H20H_BIND_RF : hopping_frequency[packet_count>>3]);
if(!bind)
{ // H20H
XN297_RFChannel(IS_BIND_IN_PROGRESS ? H20H_BIND_RF : hopping_frequency[packet_count>>3]);
if(IS_BIND_DONE)
{
packet_count++;
if(packet_count>15)
@@ -147,55 +145,39 @@ static void __attribute__((unused)) H8_3D_send_packet(uint8_t bind)
}
}
// clear packet status bits and TX FIFO
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
// Send
XN297_SetPower();
XN297_SetTxRxMode(TX_EN);
XN297_WritePayload(packet, H8_3D_PACKET_SIZE);
NRF24L01_SetPower(); // Set tx_power
}
static void __attribute__((unused)) H8_3D_init()
static void __attribute__((unused)) H8_3D_RF_init()
{
NRF24L01_Initialize();
NRF24L01_SetTxRxMode(TX_EN);
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_1M);
if(sub_protocol==H20H)
XN297_SetTXAddr((uint8_t *)"\xEE\xDD\xCC\xBB\x11", 5);
else // H8_3D, H20MINI, H30MINI
XN297_SetTXAddr((uint8_t *)"\xC4\x57\x09\x65\x21", 5);
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowldgement on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0x00); // no retransmits
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps
NRF24L01_SetPower();
}
uint16_t H8_3D_callback()
{
if(IS_BIND_DONE)
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
H8_3D_send_packet(0);
}
else
if(bind_counter)
{
bind_counter--;
if (bind_counter == 0)
{
BIND_DONE;
packet_count=0;
}
else
{
H8_3D_send_packet(1);
bind_counter--;
}
}
#ifdef MULTI_SYNC
else
telemetry_set_input_sync(packet_period);
#endif
H8_3D_send_packet();
return packet_period;
}
@@ -238,12 +220,12 @@ static void __attribute__((unused)) H8_3D_initialize_txid()
}
}
uint16_t initH8_3D(void)
void H8_3D_init(void)
{
BIND_IN_PROGRESS; // autobind protocol
bind_counter = H8_3D_BIND_COUNT;
H8_3D_initialize_txid();
H8_3D_init();
H8_3D_RF_init();
switch(sub_protocol)
{
case H8_3D:
@@ -257,7 +239,6 @@ uint16_t initH8_3D(void)
packet_period=H20MINI_PACKET_PERIOD;
break;
}
return H8_3D_INITIAL_WAIT;
}
#endif

View File

@@ -86,7 +86,6 @@ static void __attribute__((unused)) HOTT_rf_init()
for (uint8_t i = 0; i < 39; ++i)
CC2500_WriteReg(i, pgm_read_byte_near(&HOTT_init_values[i]));
prev_option = option;
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
CC2500_SetTxRxMode(TX_EN);
@@ -138,7 +137,7 @@ const uint8_t PROGMEM HOTT_hop[][HOTT_NUM_RF_CHANNELS]=
};
const uint16_t PROGMEM HOTT_hop_val[] = { 0xC06B, 0xC34A, 0xDB24, 0x8E09, 0x272E, 0x217F, 0x155B, 0xEDE8, 0x1D31, 0x0986, 0x56F7, 0x6454, 0xC42D, 0x01D2, 0xC253, 0x1180 };
static void __attribute__((unused)) HOTT_init()
static void __attribute__((unused)) HOTT_TXID_init()
{
packet[0] = pgm_read_word_near( &HOTT_hop_val[num_ch] );
packet[1] = pgm_read_word_near( &HOTT_hop_val[num_ch] )>>8;
@@ -170,64 +169,77 @@ static void __attribute__((unused)) HOTT_init()
}
}
static void __attribute__((unused)) HOTT_prep_data_packet()
{
static uint8_t upper=0;
static void __attribute__((unused)) HOTT_prep_data_packet() {
static uint8_t upper = 0; // toggles between sending channels 1..8,9..12 and 1..8,13..16
packet[2] = hopping_frequency_no; // send next frequency to be used
packet[3] = upper; // indicate upper or lower channels (only supporting 16 channels)
packet[2] = hopping_frequency_no;
packet[3] = upper; // used for failsafe and upper channels (only supporting 16 channels)
#ifdef FAILSAFE_ENABLE
static uint8_t failsafe_count=0;
if(IS_FAILSAFE_VALUES_on && IS_BIND_DONE)
{
failsafe_count++;
if(failsafe_count>=3)
{
FAILSAFE_VALUES_off;
failsafe_count=0;
static uint8_t failsafe_count = 0; // failsafe packet state machine (need to send two packets)
if(IS_FAILSAFE_VALUES_on && IS_BIND_DONE) { // if TX wants to send failsafe data and RX is connected
failsafe_count++; // prepare to send next packet
if(failsafe_count >= 3) { // done sending two failsafe channel data packets
FAILSAFE_VALUES_off;
failsafe_count = 0;
}
}
else
failsafe_count=0;
failsafe_count = 0;
#endif
// Channels value are PPM*2, -100%=1100µs, +100%=1900µs, order TAER
//
// Note: failsafe packets are differnt to normal operation packets
// normal operation toggles between sending channels 1..8,9..12 and 1..8,13..16 using bit0 as high/low indicator in packet[3]
// while failsafe packets send channels 1..12, 13..24 (and probably 25..32) using bit0 in packet[3] as packet type indicator
// packet[3] = 0x40 -> failsafe packet with data for channels 1..12
// packet[3] = 0x41 -> failsafe packet with data for channels 13..24
//
uint16_t val;
for(uint8_t i=4;i<28;i+=2)
{
uint8_t ch=(i-4)>>1;
if(upper && ch >= 8)
ch+=4; // when upper swap CH9..CH12 by CH13..16
val=Channel_data[ch];
val=(((val<<2)+val)>>2)+860*2; // value range 860<->2140 *2 <-> -125%<->+125%
for(uint8_t i = 0 ; i < 12*2 ; i += 2) { // working 12 channels (using 2 bytes per channel)
uint8_t chIndex = i >> 1 ; // normal operation channel number
uint8_t fschIndex = chIndex; // linear channel number for failsafe
if(upper && chIndex >= 8) chIndex += 4; // for normal operation toggle between channels 1..8,9..12 and 1..8,13..16
val = Channel_data[chIndex]; // get normal operation channel data
val = (((val << 2) + val) >> 2)+ 860*2; // convert channel data 0..2047 to 1720..4278 <-> -125%<->+125%
// val = (val*5/4+860*2)
#ifdef FAILSAFE_ENABLE
if(failsafe_count==1)
{ // first failsafe packet
packet[3] |= 0x40;
uint16_t fs=Failsafe_data[ch];
if( fs == FAILSAFE_CHANNEL_HOLD || fs == FAILSAFE_CHANNEL_NOPULSES)
val|=0x8000; // channel hold flag
else
{
val=(((fs<<2)+fs)>>2)+860*2; // value range 860<->2140 *2 <-> -125%<->+125%
val|=0x4000; // channel specific position flag
if(failsafe_count == 1 || failsafe_count == 2) {// failsafe data needs to be sent to RX
uint16_t fs = 0x8000; // default failsafe mode is hold
if(failsafe_count == 1) { // send fail safe packet containing channels 1..12
packet[3] = 0x40; // indicate packet has failsafe values for channels 1..12
fs = Failsafe_data[fschIndex]; // get failsafe channel data
} else { // send fail safe packet containing channels 13..24
packet[3] = 0x41; // indicate packet has failsafe values for channels 13..24
if(fschIndex < 4) // we only work 16 channels so send channels 13..16, rest default
fs = Failsafe_data[fschIndex+12]; // get failsafe channel data 13..16
}
if( fs == FAILSAFE_CHANNEL_HOLD || // treat HOLD and NOPULSES as channel hold
fs == FAILSAFE_CHANNEL_NOPULSES)
val = 0x8000; // set channel failsafe mode hold flag
else {
val = (((fs << 2) + fs) >> 2) +860*2; // convert channel data 0..2047 to 1720..4278 <-> -125%<->+125%
val |= 0x4000; // set channel failsafe mode position flag
}
}
else if(failsafe_count==2)
{ // second failsafe packet=timing?
packet[3] |= 0x50;
if(i==4)
val=2;
else
val=0;
}
}
#endif
packet[i] = val;
packet[i+1] = val>>8;
packet[i + 4] = val; // first channel data at packet[4] and packet[5]
packet[i + 4+1] = val >> 8;
}
upper ^= 0x01; // toggle between CH9..CH12 and CH13..16
upper ^= 0x01; // toggle to upper and lower channels
packet[28] = 0x80; // no sensor
packet[29] = 0x02; // 0x02 when bind starts then when RX replies cycle in sequence 0x1A/22/2A/0A/12, 0x02 during normal packets, 0x01->text config menu, 0x0A->no more RX telemetry
#ifdef HOTT_FW_TELEMETRY
if(IS_BIND_DONE)
{
@@ -245,25 +257,23 @@ static void __attribute__((unused)) HOTT_prep_data_packet()
}
else
packet[28] = HoTT_SerialRX_val | 0x0F; // no button pressed
packet[29] = 0x01; // 0x01->Text config menu
}
else
packet[28] = 0x0F; // RX, no button pressed
if(sub_protocol == HOTT_SYNC)
packet[29] = ((HOTT_sensor_seq+1)<<3) | 1; // Telemetry packet sequence
else
packet[29] = 0x01; // 0x01->Text config menu
}
else
{
packet[28] = 0x89+HOTT_sensor_cur; // 0x89/8A/8B/8C/8D/8E during normal packets
if(sub_protocol == HOTT_SYNC)
packet[29] = ((HOTT_sensor_seq+1)<<3) | 2; // Telemetry packet sequence
else
packet[29] = 0x02;
//debugln("28=%02X,29=%02X",packet[28],packet[29]);
}
//debugln("28=%02X,29=%02X",packet[28],packet[29]);
}
else
#endif
{
packet[28] = 0x80; // no sensor
packet[29] = 0x02; // unknown 0x02 when bind starts then when RX replies cycle in sequence 0x1A/22/2A/0A/12, 0x02 during normal packets, 0x01->text config menu, 0x0A->no more RX telemetry
}
CC2500_WriteReg(CC2500_06_PKTLEN, HOTT_TX_PACKET_LEN);
CC2500_WriteRegisterMulti(CC2500_3F_TXFIFO, packet, HOTT_TX_PACKET_LEN);
@@ -278,7 +288,7 @@ static void __attribute__((unused)) HOTT_prep_data_packet()
rf_ch_num=hopping_frequency[hopping_frequency_no];
}
uint16_t ReadHOTT()
uint16_t HOTT_callback()
{
switch(phase)
{
@@ -351,7 +361,7 @@ uint16_t ReadHOTT()
CC2500_Strobe(CC2500_SFRX);
//RX
if(packet[29] & 0xF8)
{// binary telemetry
{// Sync telemetry
CC2500_WriteReg(CC2500_04_SYNC1, 0x2C);
CC2500_WriteReg(CC2500_05_SYNC0, 0x6E);
}
@@ -384,14 +394,14 @@ uint16_t ReadHOTT()
for(uint8_t i=0; i<5; i++)
eeprom_write_byte((EE_ADDR)(addr+i),packet_in[5+i]);
BIND_DONE;
HOTT_init();
HOTT_TXID_init();
}
#ifdef HOTT_FW_TELEMETRY
else
{ //Telemetry
// [0..4] = TXID
// [5..9] = RXID
// [10] = 0x40 bind, 0x00 normal, 0x80 config menu
// [10] = holds warnings issued by hott devices
// [11] = telmetry pages. For sensors 0x00 to 0x04, for config mennu 0x00 to 0x12.
// Normal telem page 0 = 0x55, 0x32, 0x38, 0x55, 0x64, 0x32, 0xD0, 0x07, 0x00, 0x55
// Page 0 [12] = [21] = [15]
@@ -401,7 +411,7 @@ uint16_t ReadHOTT()
// Page 0 [16] = RX_LQI in %
// Page 0 [17] = RX_Voltage Min*10 in V
// Page 0 [18,19] = [19]<<8+[18]=max lost packet time in ms, max value seems 2s=0x7D0
// Page 0 [20] = 0x00 ??
// Page 0 [20] = rx events
//
// Config menu consists of the different telem pages put all together
// Page X [12] = seems like all the telem pages with the same value are going together to make the full config menu text. Seen so far 'a', 'b', 'c', 'd'
@@ -413,9 +423,12 @@ uint16_t ReadHOTT()
// Reduce telemetry to 14 bytes
packet_in[0]= packet_in[HOTT_RX_PACKET_LEN];
packet_in[1]= TX_LQI;
uint8_t hott_warnings = packet_in[10]; // save warnings from hott devices
bool send_telem=true;
if(packet[29]==1)
HOTT_sensor_seq++; // Increment RX sequence counter
if(packet[29] & 1)
{ //Text mode
HOTT_sensor_seq %= 19; // 19 pages in Text mode
HOTT_sensor_pages = 0;
HOTT_sensor_valid = false;
packet_in[10] = 0x80; // Marking telem Text mode
@@ -425,7 +438,6 @@ uint16_t ReadHOTT()
}
else
{ //Binary sensor
HOTT_sensor_seq++; // Increment RX sequence counter
HOTT_sensor_seq %= 5; // 5 pages in binary mode per sensor
if(state==0 && HOTT_sensor_ok[0]==false && HOTT_sensor_ok[1]==false && HOTT_sensor_ok[2]==false && HOTT_sensor_ok[3]==false && HOTT_sensor_ok[4]==false && HOTT_sensor_ok[5]==false)
HOTT_sensor_seq=0; // No sensors always ask page 0
@@ -464,6 +476,7 @@ uint16_t ReadHOTT()
packet_in[i-8]=packet_in[i];
debug(" %02X",packet_in[i]);
}
packet_in[14] = hott_warnings; // restore saved warnings from hott devices
debugln("");
if(send_telem)
telemetry_link=2;
@@ -510,10 +523,10 @@ uint16_t ReadHOTT()
return 0;
}
uint16_t initHOTT()
void HOTT_init()
{
num_ch=random(0xfefefefe)%16;
HOTT_init();
HOTT_TXID_init();
HOTT_rf_init();
#ifdef HOTT_FW_TELEMETRY
HoTT_SerialRX_val=0;
@@ -528,7 +541,6 @@ uint16_t initHOTT()
state=HOTT_SENSOR_SEARCH_PERIOD;
#endif
phase = HOTT_START;
return 10000;
}
#endif

View File

@@ -0,0 +1,112 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef CYRF6936_INSTALLED
#include "iface_hs6200.h"
static bool HS6200_crc;
static uint16_t HS6200_crc_init;
static uint8_t HS6200_address_length, HS6200_tx_addr[5];
static void __attribute__((unused)) HS6200_Init(bool crc_en)
{
CYRF_GFSK1M_Init(32, 1); //Dummy number of bytes for now
HS6200_crc = crc_en;
}
static void __attribute__((unused)) HS6200_SetTXAddr(const uint8_t* addr, uint8_t addr_len)
{
// precompute address crc
crc = 0xffff;
for(uint8_t i=0; i<addr_len; i++)
crc16_update(addr[addr_len-1-i], 8);
HS6200_crc_init=crc;
memcpy(HS6200_tx_addr, addr, addr_len);
HS6200_address_length = addr_len;
}
static uint16_t __attribute__((unused)) HS6200_calc_crc(uint8_t* msg, uint8_t len)
{
uint8_t pos;
crc = HS6200_crc_init;
// pcf + payload
for(pos=0; pos < len-1; pos++)
crc16_update(msg[pos], 8);
// last byte (1 bit only)
if(len > 0)
crc16_update(msg[pos+1], 1);
return crc;
}
static void __attribute__((unused)) HS6200_SendPayload(uint8_t* msg, uint8_t len)
{
static const uint8_t HS6200_scramble[] = { 0x80,0xf5,0x3b,0x0d,0x6d,0x2a,0xf9,0xbc,0x51,0x8e,0x4c,0xfd,0xc1,0x65,0xd0 }; // todo: find all 32 bytes ...
uint8_t payload[32];
const uint8_t no_ack = 1; // never ask for an ack
static uint8_t pid;
uint8_t pos = 0;
if(len > sizeof(HS6200_scramble))
len = sizeof(HS6200_scramble);
// address
for(int8_t i=HS6200_address_length-1; i>=0; i--)
payload[pos++] = HS6200_tx_addr[i];
// guard bytes
payload[pos++] = HS6200_tx_addr[0];
payload[pos++] = HS6200_tx_addr[0];
// packet control field
payload[pos++] = ((len & 0x3f) << 2) | (pid & 0x03);
payload[pos] = (no_ack & 0x01) << 7;
pid++;
// scrambled payload
if(len > 0)
{
payload[pos++] |= (msg[0] ^ HS6200_scramble[0]) >> 1;
for(uint8_t i=1; i<len; i++)
payload[pos++] = ((msg[i-1] ^ HS6200_scramble[i-1]) << 7) | ((msg[i] ^ HS6200_scramble[i]) >> 1);
payload[pos] = (msg[len-1] ^ HS6200_scramble[len-1]) << 7;
}
// crc
if(HS6200_crc)
{
uint16_t crc = HS6200_calc_crc(&payload[HS6200_address_length+2], len+2);
uint8_t hcrc = crc >> 8;
uint8_t lcrc = crc & 0xff;
payload[pos++] |= (hcrc >> 1);
payload[pos++] = (hcrc << 7) | (lcrc >> 1);
payload[pos++] = lcrc << 7;
}
#if 0
debug("E:");
for(uint8_t i=0; i<pos; i++)
debug(" %02X",payload[i]);
debugln("");
#endif
//CYRF wants LSB first
for(uint8_t i=0; i<pos; i++)
payload[i]=bit_reverse(payload[i]);
//Send
CYRF_WriteRegister(CYRF_01_TX_LENGTH, pos);
CYRF_GFSK1M_SendPayload(payload, pos);
}
#endif

View File

@@ -41,7 +41,7 @@ static void __attribute__((unused)) HEIGHT_build_packet()
}
}
uint16_t ReadHeight()
uint16_t HEIGHT_callback()
{
#ifndef FORCE_HEIGHT_TUNING
A7105_AdjustLOBaseFreq(1);
@@ -78,7 +78,7 @@ uint16_t ReadHeight()
return 1500;
}
uint16_t initHeight()
void HEIGHT_init()
{
A7105_Init();
@@ -94,7 +94,6 @@ uint16_t initHeight()
phase=255;
bind_counter = HEIGHT_BIND_COUNT;
return 2400;
}
#endif
// Normal packet is 8 bytes: 0xA5 0xAF 0x59 0x84 0x7A 0x00 0x80 0xFF

View File

@@ -24,44 +24,7 @@
//
uint8_t bind_buf_arry[4][10];
// HiSky protocol uses TX id as an address for nRF24L01, and uses frequency hopping sequence
// which does not depend on this id and is passed explicitly in binding sequence. So we are free
// to generate this sequence as we wish. It should be in the range [02..77]
static void __attribute__((unused)) calc_fh_channels()
{
uint8_t idx = 0;
uint32_t rnd = MProtocol_id;
while (idx < HISKY_FREQUENCE_NUM)
{
uint8_t i;
uint8_t count_2_26 = 0, count_27_50 = 0, count_51_74 = 0;
rnd = rnd * 0x0019660D + 0x3C6EF35F; // Randomization
// Use least-significant byte. 73 is prime, so channels 76..77 are unused
uint8_t next_ch = ((rnd >> 8) % 73) + 2;
// Keep the distance 2 between the channels - either odd or even
if (((next_ch ^ (uint8_t)rx_tx_addr[3]) & 0x01 )== 0)
continue;
// Check that it's not duplicated and spread uniformly
for (i = 0; i < idx; i++) {
if(hopping_frequency[i] == next_ch)
break;
if(hopping_frequency[i] <= 26)
count_2_26++;
else if (hopping_frequency[i] <= 50)
count_27_50++;
else
count_51_74++;
}
if (i != idx)
continue;
if ( (next_ch <= 26 && count_2_26 < 8) || (next_ch >= 27 && next_ch <= 50 && count_27_50 < 8) || (next_ch >= 51 && count_51_74 < 8) )
hopping_frequency[idx++] = next_ch;//find hopping frequency
}
}
static void __attribute__((unused)) build_binding_packet(void)
static void __attribute__((unused)) HISKY_build_binding_packet(void)
{
uint8_t i;
uint16_t sum=0;
@@ -95,28 +58,21 @@ static void __attribute__((unused)) build_binding_packet(void)
}
}
static void __attribute__((unused)) hisky_init()
static void __attribute__((unused)) HISKY_RF_init()
{
NRF24L01_Initialize();
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowledgement
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable p0 rx
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x03); // 5-byte RX/TX address (byte -2)
NRF24L01_WriteReg(NRF24L01_05_RF_CH, 81); // binding packet must be set in channel 81
NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, rx_tx_addr, 5);
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, rx_tx_addr, 5);
NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, 10); // payload size = 10
if(sub_protocol==HK310)
NRF24L01_SetBitrate(NRF24L01_BR_250K); // 250Kbps
else
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps
NRF24L01_SetPower(); // Set power
NRF24L01_SetTxRxMode(TX_EN); // TX mode, 2-bytes CRC, radio on
NRF24L01_SetBitrate(NRF24L01_BR_250K); // 250Kbps
}
// HiSky channel sequence: AILE ELEV THRO RUDD GEAR PITCH, channel data value is from 0 to 1000
// Channel 7 - Gyro mode, 0 - 6 axis, 3 - 3 axis
static void __attribute__((unused)) build_ch_data()
static void __attribute__((unused)) HISKY_build_ch_data()
{
uint16_t temp;
uint8_t i,j;
@@ -133,7 +89,7 @@ static void __attribute__((unused)) build_ch_data()
}
}
uint16_t hisky_cb()
uint16_t HISKY_callback()
{
phase++;
if(sub_protocol==HK310)
@@ -223,7 +179,7 @@ uint16_t hisky_cb()
#ifdef MULTI_SYNC
telemetry_set_input_sync(9000);
#endif
build_ch_data();
HISKY_build_ch_data();
break;
case 8:
break;
@@ -236,7 +192,7 @@ uint16_t hisky_cb()
return 1000; // send 1 binding packet and 1 data packet per 9ms
}
static void __attribute__((unused)) initialize_tx_id()
static void __attribute__((unused)) HISKY_initialize_tx_id()
{
//Generate frequency hopping table
if(sub_protocol==HK310)
@@ -248,14 +204,17 @@ static void __attribute__((unused)) initialize_tx_id()
hopping_frequency[i]=hopping_frequency_no++; // Sequential order hop channels...
}
else
calc_fh_channels();
calc_fh_channels(HISKY_FREQUENCE_NUM);
// HiSky air protocol uses TX id as an address for nRF24L01, and uses frequency hopping sequence
// which does not depend on this id and is passed explicitly in binding sequence. So we are free
// to generate this sequence as we wish. It should be in the range [02..77]
}
uint16_t initHiSky()
void HISKY_init()
{
initialize_tx_id();
build_binding_packet();
hisky_init();
HISKY_initialize_tx_id();
HISKY_build_binding_packet();
HISKY_RF_init();
phase = 0;
hopping_frequency_no = 0;
binding_idx = 0;
@@ -264,7 +223,6 @@ uint16_t initHiSky()
bind_counter = HISKY_BIND_COUNT;
else
bind_counter = 0;
return 1000;
}
#endif

View File

@@ -54,9 +54,9 @@ static void __attribute__((unused)) HITEC_CC2500_init()
for (uint8_t i = 0; i < 39; ++i)
CC2500_WriteReg(i, pgm_read_byte_near(&HITEC_init_values[i]));
prev_option = option;
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
prev_option = option;
CC2500_SetTxRxMode(TX_EN);
CC2500_SetPower();
}
@@ -220,7 +220,7 @@ static void __attribute__((unused)) HITEC_send_packet()
packet[23] >>= 1; // packet sequence
}
uint16_t ReadHITEC()
uint16_t HITEC_callback()
{
switch(phase)
{
@@ -390,7 +390,7 @@ uint16_t ReadHITEC()
return 0;
}
uint16_t initHITEC()
void HITEC_init()
{
HITEC_RF_channels();
#ifdef HITEC_FORCE_ID // ID and channels taken from dump
@@ -400,7 +400,6 @@ uint16_t initHITEC()
memcpy((void *)hopping_frequency,(void *)"\x00\x3A\x4A\x32\x0C\x58\x2A\x10\x26\x20\x08\x60\x68\x70\x78\x80\x88\x56\x5E\x66\x6E",HITEC_NUM_FREQUENCE);
#endif
phase = HITEC_START;
return 10000;
}
/* Full telemetry

View File

@@ -15,7 +15,7 @@
#if defined(HONTAI_NRF24L01_INO)
#include "iface_nrf24l01.h"
#include "iface_xn297.h" // mix of nrf and xn297 at 1Mb...
#define HONTAI_BIND_COUNT 80
#define HONTAI_PACKET_PERIOD 13500
@@ -34,40 +34,21 @@ enum{
HONTAI_FLAG_CALIBRATE = 0x20,
};
// proudly swiped from http://www.drdobbs.com/implementing-the-ccitt-cyclical-redundan/199904926
#define HONTAI_POLY 0x8408
static void __attribute__((unused)) crc16(uint8_t *data_p, uint8_t length)
static void __attribute__((unused)) HONTAI_send_packet()
{
crc = 0xffff;
length -= 2;
do
{
for (uint8_t i = 0, data = (uint8_t)*data_p++;
i < 8;
i++, data >>= 1)
{
if ((crc & 0x01) ^ (data & 0x01))
crc = (crc >> 1) ^ HONTAI_POLY;
else
crc >>= 1;
}
} while (--length);
crc = ~crc;
*data_p++ = crc & 0xff;
*data_p = crc >> 8;
}
static void __attribute__((unused)) HONTAI_send_packet(uint8_t bind)
{
if (bind)
if (IS_BIND_IN_PROGRESS)
{
memcpy(packet, rx_tx_addr, 5);
memset(&packet[5], 0, 3);
packet_length = HONTAI_BIND_PACKET_SIZE;
}
else
{
/*if(sub_protocol == JJRCX1)
NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency[hopping_frequency_no++]);
else*/
XN297_Hopping(hopping_frequency_no++);
hopping_frequency_no %= 3;
memset(packet,0,HONTAI_PACKET_SIZE);
packet[3] = convert_channel_16b_limit(THROTTLE, 0, 127) << 1; // Throttle
packet[4] = convert_channel_16b_limit(AILERON, 63, 0); // Aileron
@@ -125,60 +106,56 @@ static void __attribute__((unused)) HONTAI_send_packet(uint8_t bind)
packet[6] |= GET_FLAG(CH9_SW, 0x40); // Headless
break;
}
packet_length = HONTAI_PACKET_SIZE;
}
crc16(packet, bind ? HONTAI_BIND_PACKET_SIZE:HONTAI_PACKET_SIZE);
// CRC 16 bits reflected in and out
crc=0xFFFF;
for(uint8_t i=0; i< packet_length-2; i++)
crc16_update(bit_reverse(packet[i]),8);
crc ^= 0xFFFF;
packet[packet_length-2]=bit_reverse(crc>>8);
packet[packet_length-1]=bit_reverse(crc);
// Power on, TX mode, 2byte CRC
if(sub_protocol == JJRCX1)
/*if(sub_protocol == JJRCX1)
{
NRF24L01_SetPower();
NRF24L01_SetTxRxMode(TX_EN);
else
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP));
NRF24L01_WriteReg(NRF24L01_05_RF_CH, bind ? HONTAI_RF_BIND_CHANNEL : hopping_frequency[hopping_frequency_no++]);
hopping_frequency_no %= 3;
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
}
else*/
{
XN297_SetPower();
XN297_SetTxRxMode(TX_EN);
}
if(sub_protocol == JJRCX1)
NRF24L01_WritePayload(packet, bind ? HONTAI_BIND_PACKET_SIZE:HONTAI_PACKET_SIZE);
NRF24L01_WritePayload(packet, packet_length);
else
XN297_WritePayload(packet, bind ? HONTAI_BIND_PACKET_SIZE:HONTAI_PACKET_SIZE);
NRF24L01_SetPower();
XN297_WritePayload(packet, packet_length);
}
static void __attribute__((unused)) HONTAI_init()
static void __attribute__((unused)) HONTAI_RF_init()
{
NRF24L01_Initialize();
NRF24L01_SetTxRxMode(TX_EN);
if(sub_protocol == JJRCX1)
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, (uint8_t*)"\xd2\xb5\x99\xb3\x4a", 5);
else
XN297_SetTXAddr((const uint8_t*)"\xd2\xb5\x99\xb3\x4a", 5);
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowldgement on all data pipes
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps
NRF24L01_SetPower();
NRF24L01_Activate(0x73); // Activate feature register
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_1M); // this will select the nrf and initialize it, therefore both sub protocols can use common instructions
if(sub_protocol == JJRCX1)
{
//NRF24L01_Initialize();
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, (uint8_t*)"\xd2\xb5\x99\xb3\x4a", 5);
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0xff); // JJRC uses dynamic payload length
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 0x3f); // match other stock settings even though AA disabled...
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, 0x07);
//NRF24L01_WriteReg(NRF24L01_05_RF_CH, HONTAI_RF_BIND_CHANNEL);
}
else
{
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0x00); // no retransmits
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 0x00); // Disable dynamic payload length on all pipes
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, 0x00);
XN297_SetTXAddr((const uint8_t*)"\xd2\xb5\x99\xb3\x4a", 5);
//XN297_HoppingCalib(3);
}
NRF24L01_Activate(0x73); // Deactivate feature register
XN297_RFChannel(HONTAI_RF_BIND_CHANNEL);
}
const uint8_t PROGMEM HONTAI_hopping_frequency_nonels[][3] = {
@@ -202,9 +179,9 @@ static void __attribute__((unused)) HONTAI_init2()
data_tx_addr[3] = pgm_read_byte_near( &HONTAI_addr_vals[3][(rx_tx_addr[4] >> 4) & 0x0f]);
data_tx_addr[4] = 0x24;
if(sub_protocol == JJRCX1)
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, data_tx_addr, sizeof(data_tx_addr));
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, data_tx_addr, 5);
else
XN297_SetTXAddr(data_tx_addr, sizeof(data_tx_addr));
XN297_SetTXAddr(data_tx_addr, 5);
//Hopping frequency table
for(uint8_t i=0;i<3;i++)
@@ -231,9 +208,11 @@ static void __attribute__((unused)) HONTAI_initialize_txid()
uint16_t HONTAI_callback()
{
if(bind_counter!=0)
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
if(bind_counter)
{
HONTAI_send_packet(1);
bind_counter--;
if (bind_counter == 0)
{
@@ -241,24 +220,16 @@ uint16_t HONTAI_callback()
BIND_DONE;
}
}
else
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
HONTAI_send_packet(0);
}
HONTAI_send_packet();
return packet_period;
}
uint16_t initHONTAI()
void HONTAI_init()
{
BIND_IN_PROGRESS; // autobind protocol
bind_counter = HONTAI_BIND_COUNT;
HONTAI_initialize_txid();
HONTAI_init();
HONTAI_RF_init();
packet_period = sub_protocol == FQ777_951 ? FQ777_951_PACKET_PERIOD : HONTAI_PACKET_PERIOD;
return HONTAI_INITIAL_WAIT;
}
#endif

View File

@@ -285,7 +285,7 @@ static uint8_t __attribute__((unused)) hubsan_check_integrity()
}
#endif
uint16_t ReadHubsan()
uint16_t HUBSAN_callback()
{
#ifdef HUBSAN_HUB_TELEMETRY
static uint8_t rfMode=0;
@@ -446,7 +446,7 @@ uint16_t ReadHubsan()
return 0;
}
uint16_t initHubsan()
void HUBSAN_init()
{
const uint8_t allowed_ch[] = {0x14, 0x1e, 0x28, 0x32, 0x3c, 0x46, 0x50, 0x5a, 0x64, 0x6e, 0x78, 0x82};
A7105_Init();
@@ -467,7 +467,6 @@ uint16_t initHubsan()
}
packet_count=0;
bind_phase=0;
return 10000;
}
#endif

View File

@@ -0,0 +1,122 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// This module makes it possible to bind to and control the IKEA "Ansluta" line
// of remote-controlled lights.
// To bind, first switch the receiver into binding mode, then the TX.
// Once bound, the TX can send one of three commands:
// lights off, lights dimmed 50% and lights on.
// Those are mapped to throttle ranges 0..0x55, 0x56..0xAA, 0xAB..0xFF.
#if defined(IKEAANSLUTA_CC2500_INO)
#include "iface_cc2500.h"
#define IKEAANSLUTA_BIND_COUNT 30 // ~ 2sec autobind/65ms per loop = 30 binding packets
// Commands
#define IKEAANSLUTA_LIGHT_OFF 0x01
#define IKEAANSLUTA_LIGHT_DIM 0x02 // 50% dimmed light
#define IKEAANSLUTA_LIGHT_ON 0x03
#define IKEAANSLUTA_PAIR 0xFF
void IKEAANSLUTA_send_command(uint8_t command){
CC2500_Strobe(CC2500_SIDLE);
packet[4] = option;
packet[5] = command;
CC2500_WriteData(packet, 8);
}
uint16_t IKEAANSLUTA_callback(void)
{
if (bind_counter) {
IKEAANSLUTA_send_command(IKEAANSLUTA_PAIR);
if(--bind_counter == 0) {
BIND_DONE;
CC2500_SetPower();
}
}
else {
uint8_t throttle = convert_channel_8b(THROTTLE);
uint8_t cmd = throttle <= 0x55 ? IKEAANSLUTA_LIGHT_OFF :
throttle <= 0xAA ? IKEAANSLUTA_LIGHT_DIM :
IKEAANSLUTA_LIGHT_ON;
IKEAANSLUTA_send_command(cmd);
}
return 65535; // 65ms loop cycle is more than enough here (we could make it even longer if not for uint16_t)
}
// Register initialization values as a continuous memory block (to save on flash memory)
const PROGMEM uint8_t IKEAANSLUTA_init_values[] = {
0xFF, // CC2500_06_PKTLEN
0x04, // CC2500_07_PKTCTRL1
0x05, // CC2500_08_PKTCTRL0
0x00, // CC2500_09_ADDR (unused, default)
0x10, // CC2500_0A_CHANNR
0x09, // CC2500_0B_FSCTRL1
0x00, // CC2500_0C_FSCTRL0
0x5D, // CC2500_0D_FREQ2
0x93, // CC2500_0E_FREQ1
0xB1, // CC2500_0F_FREQ0
0x2D, // CC2500_10_MDMCFG4
0x3B, // CC2500_11_MDMCFG3
0x73, // CC2500_12_MDMCFG2
0xA2, // CC2500_13_MDMCFG1
0xF8, // CC2500_14_MDMCFG0
0x01, // CC2500_15_DEVIATN
0x07, // CC2500_16_MCSM2
0x30, // CC2500_17_MCSM1
0x18, // CC2500_18_MCSM0
0x1D, // CC2500_19_FOCCFG
0x1C, // CC2500_1A_BSCFG
0xC7, // CC2500_1B_AGCCTRL2
0x00, // CC2500_1C_AGCCTRL1
0xB2, // CC2500_1D_AGCCTRL0
0x87, // CC2500_1E_WOREVT1 (unused, default)
0x6b, // CC2500_1F_WOREVT0 (unused, default)
0xf8, // CC2500_20_WORCTRL (unused, default)
0xB6, // CC2500_21_FREND1
0x10, // CC2500_22_FREND0
0xEA, // CC2500_23_FSCAL3
0x0A, // CC2500_24_FSCAL2
0x00, // CC2500_25_FSCAL1
0x11, // CC2500_26_FSCAL0
0x41, // CC2500_27_RCCTRL1
0x00, // CC2500_28_RCCTRL0
};
void IKEAANSLUTA_init(void)
{
if (IS_BIND_DONE) bind_counter = 0;
else bind_counter = IKEAANSLUTA_BIND_COUNT;
// All packets we send are the same
packet[0] = 0x06;
packet[1] = 0x55;
packet[2] = 0x01;
// Bytes 3&4 are the transmitter address (to which the RX binds)
// Byte 5 is the command.
packet[3] = rx_tx_addr[3]; // <pseudorandom tx-fixed value> + <rx_num>
// packet[4] = option;
// packet[5] = 0x00; // Command goes here
packet[6] = 0xAA;
packet[7] = 0xFF;
// Configure & initialize CC2500
for (uint8_t i = 0; i <= CC2500_28_RCCTRL0-CC2500_06_PKTLEN; ++i)
CC2500_WriteReg(CC2500_06_PKTLEN+i, pgm_read_byte_near(&IKEAANSLUTA_init_values[i]));
CC2500_SetTxRxMode(TX_EN);
CC2500_SetPower();
}
#endif

View File

@@ -126,7 +126,7 @@ static void __attribute__((unused)) j6pro_set_radio_channels()
hopping_frequency[3] = hopping_frequency[0];
}
uint16_t ReadJ6Pro()
uint16_t J6PRO_callback()
{
uint16_t start;
@@ -226,7 +226,7 @@ uint16_t ReadJ6Pro()
return 0;
}
uint16_t initJ6Pro()
void J6PRO_init()
{
j6pro_cyrf_init();
@@ -234,7 +234,6 @@ uint16_t initJ6Pro()
phase = J6PRO_BIND;
else
phase = J6PRO_CHANSEL;
return 2400;
}
#endif

View File

@@ -16,7 +16,7 @@
#if defined(JJRC345_NRF24L01_INO)
#include "iface_nrf24l01.h"
#include "iface_xn297.h"
//#define JJRC345_FORCE_ID
@@ -71,7 +71,7 @@ static void __attribute__((unused)) JJRC345_send_packet()
}
else
{ //00 41 00 0A 00 80 80 80 00 00 40 46 00 49 F1 18
NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency[hopping_frequency_no]);
XN297_Hopping(hopping_frequency_no);
hopping_frequency_no++;
hopping_frequency_no %= JJRC345_NUM_CHANNELS;
packet[1] = hopping_frequency[hopping_frequency_no]; // next packet will be sent on this channel
@@ -121,28 +121,18 @@ static void __attribute__((unused)) JJRC345_send_packet()
packet[14] = rx_tx_addr[2];
packet[15] = rx_tx_addr[3];
// Power on, TX mode
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP));
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
// Send
XN297_SetPower();
XN297_SetTxRxMode(TX_EN);
XN297_WritePayload(packet, JJRC345_PACKET_SIZE);
NRF24L01_SetPower(); // Set tx_power
}
static void __attribute__((unused)) JJRC345_init()
static void __attribute__((unused)) JJRC345_RF_init()
{
NRF24L01_Initialize();
NRF24L01_SetTxRxMode(TX_EN);
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_1M);
XN297_SetTXAddr((uint8_t*)"\xcc\xcc\xcc\xcc\xcc", 5);
NRF24L01_WriteReg(NRF24L01_05_RF_CH, sub_protocol == JJRC345 ? JJRC345_RF_BIND_CHANNEL:SKYTMBLR_RF_BIND_CHANNEL); // Bind channel
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowldgement on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1 Mbps
NRF24L01_SetPower();
//XN297_HoppingCalib(JJRC345_NUM_CHANNELS);
XN297_RFChannel(sub_protocol == JJRC345 ? JJRC345_RF_BIND_CHANNEL:SKYTMBLR_RF_BIND_CHANNEL); // Bind channel
}
uint16_t JJRC345_callback()
@@ -150,11 +140,10 @@ uint16_t JJRC345_callback()
#ifdef MULTI_SYNC
telemetry_set_input_sync(JJRC345_PACKET_PERIOD);
#endif
if(IS_BIND_IN_PROGRESS)
if(bind_counter)
{
if (bind_counter)
bind_counter--;
else
bind_counter--;
if (bind_counter==0)
BIND_DONE;
}
JJRC345_send_packet();
@@ -183,13 +172,12 @@ static void __attribute__((unused)) JJRC345_initialize_txid()
#endif
}
uint16_t initJJRC345(void)
void JJRC345_init(void)
{
BIND_IN_PROGRESS; // autobind protocol
bind_counter = JJRC345_BIND_COUNT;
JJRC345_initialize_txid();
JJRC345_init();
return JJRC345_INITIAL_WAIT;
JJRC345_RF_init();
}
#endif

View File

@@ -0,0 +1,115 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(JOYSWAY_A7105_INO)
#include "iface_a7105.h"
//#define JOYSWAY_FORCE_ID
static void __attribute__((unused)) JOYSWAY_send_packet()
{
static uint8_t next_ch = 0x30;
//RF frequency
if (packet_count == 254)
{
packet_count = 0;
A7105_WriteID(0x5475c52a);
rf_ch_num = 0x0a;
}
else if (packet_count == 2)
{
A7105_WriteID(MProtocol_id);
rf_ch_num = 0x30;
}
else
{
if (packet_count & 0x01)
rf_ch_num = 0x30;
else
rf_ch_num = next_ch;
}
if (! (packet_count & 0x01))
{
next_ch++;
if (next_ch >= 0x45)
next_ch = 0x30;
}
//Payload
packet[0] = packet_count == 0 ? 0xdd : 0xff;
//ID
packet[1] = rx_tx_addr[0];
packet[2] = rx_tx_addr[1];
packet[3] = rx_tx_addr[2];
packet[4] = rx_tx_addr[3];
packet[5] = 0x00;
//Channels
for (uint8_t i = 0; i < 4; i++)
packet[ 6 + (i & 0x01) + ((i & 0x02)<<1)] = convert_channel_16b_limit(i, 0x00, 0xCC);
packet[8] = 0x64;
packet[9] = 0x64;
packet[12] = 0x64;
packet[13] = 0x64;
packet[14] = packet_count == 0 ? 0x30 : 0xaa;
//Check
uint8_t value = 0;
for (uint8_t i = 0; i < 15; i++)
value += packet[i];
packet[15] = value;
//Send
#if 0
debug("ch=%02X P=",rf_ch_num);
for(uint8_t i=0; i<16; i++)
debug("%02X ", packet[i]);
debugln("");
#endif
A7105_WriteData(16, rf_ch_num);
A7105_SetPower();
packet_count++;
}
uint16_t JOYSWAY_callback()
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(6000);
#endif
#ifndef FORCE_JOYSWAY_TUNING
A7105_AdjustLOBaseFreq(1);
#endif
JOYSWAY_send_packet();
return 6000;
}
void JOYSWAY_init()
{
BIND_DONE; // not a bind protocol
MProtocol_id &= 0x00FFFFFF;
MProtocol_id |= 0xF8000000;
#ifdef JOYSWAY_FORCE_ID
MProtocol_id = 0xf82dcaa0;
#endif
set_rx_tx_addr(MProtocol_id);
A7105_Init();
packet_count = 2;
}
#endif

View File

@@ -0,0 +1,155 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// Compatible with KF606 plane.
#if defined(KF606_CCNRF_INO)
#include "iface_xn297.h"
//#define FORCE_KF606_ORIGINAL_ID
//#define FORCE_MIG320_ORIGINAL_ID
#define KF606_INITIAL_WAIT 500
#define KF606_PACKET_PERIOD 3000
#define KF606_RF_BIND_CHANNEL 7
#define KF606_PAYLOAD_SIZE 4
#define KF606_BIND_COUNT 857 //3sec
#define KF606_RF_NUM_CHANNELS 2
static void __attribute__((unused)) KF606_send_packet()
{
if(IS_BIND_IN_PROGRESS)
{
packet[0] = 0xAA;
memcpy(&packet[1],rx_tx_addr,3);
}
else
{
XN297_Hopping(hopping_frequency_no);
hopping_frequency_no ^= 1; // 2 RF channels
packet[0] = 0x55;
packet[1] = convert_channel_8b(THROTTLE); // 0..255
// Deadband is needed on aileron, 40 gives +-6%
if(sub_protocol == KF606_KF606)
{
packet[2] = convert_channel_8b_limit_deadband(AILERON,0x20,0x80,0xE0,40); // Aileron: Max values:20..80..E0, Low rates:50..80..AF, High rates:3E..80..C1
packet[3] = convert_channel_16b_limit(CH5,0xC1,0xDF); // Aileron trim must be on a separated channel C1..D0..DF
}
else
{
packet[2] = convert_channel_8b_limit_deadband(AILERON,0x00,0x80,0xFF,40); // Aileron: High rate:2B..80..DA
packet[3] = convert_channel_16b_limit(CH5,0x01,0x1F); // Aileron trim must be on a separated channel 01..10..1F
packet[3] += (packet[2]-0x80)>>3; // Drive trims for more aileron authority
if(packet[3] > 0x80)
packet[3] = 0x01;
else if(packet[3] > 0x1F)
packet[3] = 0x1F;
packet[3] |= GET_FLAG(CH6_SW, 0xC0); // 0xC0 and 0xE0 are both turning the LED off, not sure if there is another hidden feature
}
}
uint8_t len = KF606_PAYLOAD_SIZE;
if(sub_protocol == KF606_MIG320)
{
len++;
packet[4] = 0; // additional channel?
}
#if 0
for(uint8_t i=0; i<len; i++)
debug("%02X ",packet[i]);
debugln("");
#endif
// Send
XN297_SetPower();
XN297_SetFreqOffset();
XN297_SetTxRxMode(TX_EN);
XN297_WritePayload(packet, len);
}
static void __attribute__((unused)) KF606_initialize_txid()
{
rx_tx_addr[0]=rx_tx_addr[3]; // Use RX_num;
hopping_frequency[0]=(rx_tx_addr[0]&0x3F)+9;
hopping_frequency[1]=hopping_frequency[0]+3;
#ifdef FORCE_KF606_ORIGINAL_ID
//TX1
rx_tx_addr[0]=0x57;
rx_tx_addr[1]=0x02;
rx_tx_addr[2]=0x00;
hopping_frequency[0]=0x20;
hopping_frequency[1]=0x23;
//TX2
rx_tx_addr[0]=0x25;
rx_tx_addr[1]=0x04;
rx_tx_addr[2]=0x00;
hopping_frequency[0]=0x2E;
hopping_frequency[1]=0x31;
#endif
#ifdef FORCE_MIG320_ORIGINAL_ID
rx_tx_addr[0]=0xBB;
rx_tx_addr[1]=0x13;
rx_tx_addr[2]=0x00;
hopping_frequency[0]=68;
hopping_frequency[1]=71;
#endif
}
static void __attribute__((unused)) KF606_RF_init()
{
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_250K);
XN297_SetTXAddr((uint8_t*)"\xe7\xe7\xe7\xe7\xe7", 5);
XN297_HoppingCalib(KF606_RF_NUM_CHANNELS); // Calibrate all channels
XN297_RFChannel(KF606_RF_BIND_CHANNEL); // Set bind channel
}
uint16_t KF606_callback()
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(KF606_PACKET_PERIOD);
#endif
if(bind_counter)
if(--bind_counter==0)
{
BIND_DONE;
XN297_SetTXAddr(rx_tx_addr, 3);
}
KF606_send_packet();
return KF606_PACKET_PERIOD;
}
void KF606_init()
{
BIND_IN_PROGRESS; // autobind protocol
KF606_initialize_txid();
KF606_RF_init();
hopping_frequency_no = 0;
bind_counter=KF606_BIND_COUNT;
}
#endif
// MIG320 protocol
// Bind
// 250K C=7 S=Y A= E7 E7 E7 E7 E7 P(5)= AA BB 13 00 00
// 3ms on ch7
// Normal
// 250K C=68 S=Y A= BB 13 00 P(5)= 55 00 80 10 00
// P[1] = THR 00..FF
// P[2] = AIL 2B..80..DA
// P[3] = TRIM 01..10..1F
// channels 68=BB&3F+9 and 71

View File

@@ -1,112 +0,0 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// Compatible with KF606 plane.
#if defined(KF606_NRF24L01_INO)
#include "iface_nrf250k.h"
//#define FORCE_KF606_ORIGINAL_ID
#define KF606_INITIAL_WAIT 500
#define KF606_PACKET_PERIOD 3000
#define KF606_RF_BIND_CHANNEL 7
#define KF606_PAYLOAD_SIZE 4
#define KF606_BIND_COUNT 857 //3sec
#define KF606_RF_NUM_CHANNELS 2
static void __attribute__((unused)) KF606_send_packet()
{
if(IS_BIND_IN_PROGRESS)
{
packet[0] = 0xAA;
memcpy(&packet[1],rx_tx_addr,3);
}
else
{
packet[0]= 0x55;
packet[1]= convert_channel_8b(THROTTLE); // 0..255
// Deadband is needed on aileron, 40 gives +-6%
packet[2]=convert_channel_8b_limit_deadband(AILERON,0x20,0x80,0xE0,40); // Aileron: Max values:20..80..E0, Low rates:50..80..AF, High rates:3E..80..C1
// Aileron trim must be on a separated channel C1..D0..DF
packet[3]= convert_channel_16b_limit(CH5,0xC1,0xDF);
}
if(IS_BIND_DONE)
{
XN297L_Hopping(hopping_frequency_no);
hopping_frequency_no ^= 1; // 2 RF channels
}
XN297L_WritePayload(packet, KF606_PAYLOAD_SIZE);
XN297L_SetPower(); // Set tx_power
XN297L_SetFreqOffset(); // Set frequency offset
}
static void __attribute__((unused)) KF606_initialize_txid()
{
rx_tx_addr[0]=rx_tx_addr[3]; // Use RX_num;
hopping_frequency[0]=(rx_tx_addr[0]&0x3F)+9;
hopping_frequency[1]=hopping_frequency[0]+3;
#ifdef FORCE_KF606_ORIGINAL_ID
//TX1
rx_tx_addr[0]=0x57;
rx_tx_addr[1]=0x02;
rx_tx_addr[2]=0x00;
hopping_frequency[0]=0x20;
hopping_frequency[0]=0x23;
//TX2
rx_tx_addr[0]=0x25;
rx_tx_addr[1]=0x04;
rx_tx_addr[2]=0x00;
hopping_frequency[0]=0x2E;
hopping_frequency[0]=0x31;
#endif
}
static void __attribute__((unused)) KF606_init()
{
XN297L_Init();
XN297L_SetTXAddr((uint8_t*)"\xe7\xe7\xe7\xe7\xe7", 5);
XN297L_HoppingCalib(KF606_RF_NUM_CHANNELS); // Calibrate all channels
XN297L_RFChannel(KF606_RF_BIND_CHANNEL); // Set bind channel
}
uint16_t KF606_callback()
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(KF606_PACKET_PERIOD);
#endif
if(IS_BIND_IN_PROGRESS)
if(--bind_counter==0)
{
BIND_DONE;
XN297_SetTXAddr(rx_tx_addr, 3);
}
KF606_send_packet();
return KF606_PACKET_PERIOD;
}
uint16_t initKF606()
{
BIND_IN_PROGRESS; // autobind protocol
KF606_initialize_txid();
KF606_init();
hopping_frequency_no = 0;
bind_counter=KF606_BIND_COUNT;
return KF606_INITIAL_WAIT;
}
#endif

View File

@@ -239,40 +239,25 @@ static void __attribute__((unused)) kn_calculate_freqency_hopping_channels()
// V977 needs payload length in the packet. We should configure 24L01 to enable Packet Control Field(PCF)
// Some RX reg settings are actually for enable PCF
//-------------------------------------------------------------------------------------------------
static void __attribute__((unused)) kn_init()
static void __attribute__((unused)) KN_RF_init()
{
kn_calculate_tx_addr();
kn_calculate_freqency_hopping_channels();
NRF24L01_Initialize();
NRF24L01_WriteReg(NRF24L01_00_CONFIG, _BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO));
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknoledgement
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x03); // 5-byte RX/TX address
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0); // Disable retransmit
NRF24L01_SetPower();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, 0x20); // bytes of data payload for pipe 0
NRF24L01_Activate(0x73);
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 1); // Dynamic payload for data pipe 0
// Enable: Dynamic Payload Length to enable PCF
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, _BV(NRF2401_1D_EN_DPL));
NRF24L01_SetPower();
NRF24L01_FlushTx();
// Turn radio power on
NRF24L01_SetTxRxMode(TX_EN);
NRF24L01_SetBitrate(NRF24L01_BR_1M); //USE1MBPS_YES ? NRF24L01_BR_1M : NRF24L01_BR_250K;
NRF24L01_SetTxRxMode(TX_EN); // Clear data ready, data sent, retransmit and enable CRC 16bits, ready for TX
}
//================================================================================================
// Private Functions
//================================================================================================
uint16_t initKN()
void KN_init()
{
if(sub_protocol==WLTOYS)
{
@@ -288,13 +273,11 @@ uint16_t initKN()
packet_count = KN_FX_PACKET_SEND_COUNT;
seed = KN_FX_PACKET_SEND_COUNT * KN_FX_SENDING_PACKET_PERIOD;
}
kn_init();
KN_RF_init();
phase = IS_BIND_IN_PROGRESS ? KN_PHASE_PRE_BIND : KN_PHASE_PRE_SEND;
return KN_INIT_WAIT_MS;
}
uint16_t kn_callback()
uint16_t KN_callback()
{
switch (phase)
{

View File

@@ -23,7 +23,7 @@
//Kyosho constants & variables
#define KYOSHO_BIND_COUNT 2500
static void __attribute__((unused)) kyosho_send_packet()
static void __attribute__((unused)) KYOSHO_send_packet()
{
//ID
packet[1] = rx_tx_addr[0];
@@ -77,7 +77,7 @@ static void __attribute__((unused)) kyosho_send_packet()
A7105_WriteData(37, rf_ch_num);
}
static void __attribute__((unused)) kyosho_hype_send_packet()
static void __attribute__((unused)) KYOSHO_hype_send_packet()
{
if(IS_BIND_IN_PROGRESS)
{
@@ -124,7 +124,7 @@ static void __attribute__((unused)) kyosho_hype_send_packet()
}
}
uint16_t ReadKyosho()
uint16_t KYOSHO_callback()
{
#ifndef FORCE_KYOSHO_TUNING
A7105_AdjustLOBaseFreq(1);
@@ -151,13 +151,13 @@ uint16_t ReadKyosho()
#endif
}
if(sub_protocol==KYOSHO_FHSS)
kyosho_send_packet();
KYOSHO_send_packet();
else//HYPE
kyosho_hype_send_packet();
KYOSHO_hype_send_packet();
return packet_period;
}
uint16_t initKyosho()
void KYOSHO_init()
{
A7105_Init();
@@ -197,6 +197,5 @@ uint16_t initKyosho()
packet_sent=0;
packet_period=3852; //FHSS
return 2000;
}
#endif

View File

@@ -21,23 +21,14 @@ Multiprotocol is distributed in the hope that it will be useful,
#define LOLI_PACKET_SIZE 11
#define LOLI_NUM_CHANNELS 5
static void __attribute__((unused)) LOLI_init()
static void __attribute__((unused)) LOLI_RF_init()
{
NRF24L01_Initialize();
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowldgement on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x03); // 5-bytes RX/TX address
NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, (uint8_t*)"LOVE!", 5);
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, (uint8_t*)"LOVE!", 5);
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0x00); // No retransmits
NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, LOLI_PACKET_SIZE); // RX FIFO size
NRF24L01_SetBitrate(NRF24L01_BR_250K); // 250Kbps
NRF24L01_SetPower();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_SetTxRxMode(TX_EN);
}
// flags going to packet[1] for packet type 0xa2 (Rx config)
@@ -175,14 +166,11 @@ uint16_t LOLI_callback()
{
case LOLI_BIND1:
if(bind_counter)
{
bind_counter--;
if(bind_counter==0)
if(--bind_counter==0)
{
phase=LOLI_PREP_DATA;
break;
}
}
// send bind packet
NRF24L01_SetTxRxMode(TXRX_OFF);
NRF24L01_SetTxRxMode(TX_EN);
@@ -290,7 +278,7 @@ uint16_t LOLI_callback()
return 20000;
}
uint16_t initLOLI()
void LOLI_init()
{
rx_tx_addr[1] %= 0x30;
calc_fh_channels(LOLI_NUM_CHANNELS);
@@ -306,9 +294,7 @@ uint16_t initLOLI()
else
phase = LOLI_PREP_DATA;
LOLI_init();
return 500;
LOLI_RF_init();
}
#endif

View File

@@ -0,0 +1,147 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(LOSI_CYRF6936_INO)
#include "iface_cyrf6936.h"
#define LOSI_FORCE_ID
const uint8_t PROGMEM LOSI_bind_sop_code[] = {0x62, 0xdf, 0xc1, 0x49, 0xdf, 0xb1, 0xc0, 0x49};
const uint8_t LOSI_data_code[][16] = {
{ 0xD7, 0xA1, 0x54, 0xB1, 0x5E, 0x89, 0xAE, 0x86, 0xC9, 0x2C, 0x06, 0x93, 0x86, 0xB9, 0x9E, 0xD7 }, //bind
/* { 0xE1, 0xD6, 0x31, 0x26, 0x5F, 0xBD, 0x40, 0x93, 0xDC, 0x68, 0x08, 0x99, 0x97, 0xAE, 0xAF, 0x8C },
{ 0xDC, 0x68, 0x08, 0x99, 0x97, 0xAE, 0xAF, 0x8C, 0xC3, 0x0E, 0x01, 0x16, 0x0E, 0x32, 0x06, 0xBA },
{ 0xC3, 0x0E, 0x01, 0x16, 0x0E, 0x32, 0x06, 0xBA, 0xE0, 0x83, 0x01, 0xFA, 0xAB, 0x3E, 0x8F, 0xAC },
{ 0xE0, 0x83, 0x01, 0xFA, 0xAB, 0x3E, 0x8F, 0xAC, 0x5C, 0xD5, 0x9C, 0xB8, 0x46, 0x9C, 0x7D, 0x84 },
{ 0x5C, 0xD5, 0x9C, 0xB8, 0x46, 0x9C, 0x7D, 0x84, 0xF1, 0xC6, 0xFE, 0x5C, 0x9D, 0xA5, 0x4F, 0xB7 },
{ 0xF1, 0xC6, 0xFE, 0x5C, 0x9D, 0xA5, 0x4F, 0xB7, 0x58, 0xB5, 0xB3, 0xDD, 0x0E, 0x28, 0xF1, 0xB0 },
{ 0x58, 0xB5, 0xB3, 0xDD, 0x0E, 0x28, 0xF1, 0xB0, 0x5F, 0x30, 0x3B, 0x56, 0x96, 0x45, 0xF4, 0xA1 },*/
{ 0x5F, 0x30, 0x3B, 0x56, 0x96, 0x45, 0xF4, 0xA1, 0x03, 0xBC, 0x6E, 0x8A, 0xEF, 0xBD, 0xFE, 0xF8 } //normal
};
static uint16_t __attribute__((unused)) LOSI_check(uint16_t val)
{
const uint8_t PROGMEM tab[] = { 0xF1, 0xDA, 0xB6, 0xC8 };
uint8_t res = 0x0B, tmp;
uint16_t calc = val>>2; // don't care about the 2 first bits
for(uint8_t i=0; i<5; i++)
{
tmp=pgm_read_byte_near(&tab[i&0x03]);
if(calc&0x0001)
res ^= tmp>>4;
calc >>= 1;
if(calc&0x0001)
res ^= tmp;
calc >>= 1;
}
return val ^ (res<<12);
}
static void __attribute__((unused)) LOSI_send_packet()
{
memcpy(packet, rx_tx_addr, 4);
if(IS_BIND_IN_PROGRESS)
{
memcpy(&packet[4], rx_tx_addr, 4);
packet[8] = 0x05; // CRC?
packet[9] = 0x52; // CRC?
}
else
{
for(uint8_t i=0; i<3; i++)
{
uint16_t val = LOSI_check(Channel_data[i]<<1);
packet[4+i*2] = val >> 8;
packet[5+i*2] = val;
}
}
CYRF_SetPower(0x38);
CYRF_WriteDataPacketLen(packet, 0x0A);
#if 0
for(uint8_t i=0; i < 0x0A; i++)
debug("%02X ", packet[i]);
debugln();
#endif
}
static void __attribute__((unused)) LOSI_cyrf_init()
{
/* Initialise CYRF chip */
CYRF_WriteRegister(CYRF_28_CLK_EN, 0x02);
CYRF_WriteRegister(CYRF_32_AUTO_CAL_TIME, 0x3C);
CYRF_WriteRegister(CYRF_35_AUTOCAL_OFFSET, 0x14);
CYRF_WriteRegister(CYRF_06_RX_CFG, 0x48);
CYRF_WriteRegister(CYRF_1B_TX_OFFSET_LSB, 0x55);
CYRF_WriteRegister(CYRF_1C_TX_OFFSET_MSB, 0x05);
//CYRF_WriteRegister(CYRF_0F_XACT_CFG, 0x24);
CYRF_SetPower(0x38);
CYRF_WriteRegister(CYRF_12_DATA64_THOLD, 0x0A);
CYRF_WriteRegister(CYRF_39_ANALOG_CTRL, 0x01);
CYRF_WritePreamble(0x333304);
//CYRF_WriteRegister(CYRF_27_CLK_OVERRIDE, 0x00);
CYRF_WriteRegister(CYRF_10_FRAMING_CFG, 0x4A);
CYRF_WriteRegister(CYRF_1F_TX_OVERRIDE, 0x04); // No CRC
//CYRF_WriteRegister(CYRF_1E_RX_OVERRIDE, 0x14);
//CYRF_WriteRegister(CYRF_14_EOP_CTRL, 0x02);
}
uint16_t LOSI_callback()
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(19738);
#endif
LOSI_send_packet();
if(bind_counter)
{
bind_counter--;
if(bind_counter==0)
{
BIND_DONE;
CYRF_ConfigDataCode(LOSI_data_code[1], 16); // Load normal data code
}
return 8763;
}
return 19738;
}
void LOSI_init()
{
LOSI_cyrf_init();
//CYRF_FindBestChannels(hopping_frequency, 1, 0, 0x13, 75); // 75 is unknown since dump stops at 0x27, this routine resets the CRC Seed to 0
//CYRF_ConfigRFChannel(hopping_frequency[0] | 1); // Only odd channels
#ifdef LOSI_FORCE_ID
rx_tx_addr[0] = 0x47;
rx_tx_addr[1] = 0x52;
rx_tx_addr[2] = 0xAE;
rx_tx_addr[3] = 0xAA;
CYRF_ConfigRFChannel(0x27);
#endif
if(IS_BIND_IN_PROGRESS)
{
bind_counter = 300;
CYRF_ConfigDataCode(LOSI_data_code[0], 16); // Load bind data code
}
else
{
CYRF_ConfigDataCode(LOSI_data_code[1], 16); // Load normal data code
bind_counter = 0;
}
}
#endif

View File

@@ -15,10 +15,9 @@
// compatible with MJX WLH08, X600, X800, H26D, Eachine E010
// Last sync with hexfet new_protocols/mjxq_nrf24l01.c dated 2016-01-17
#if defined(MJXQ_NRF24L01_INO)
#if defined(MJXQ_CCNRF_INO)
#include "iface_nrf24l01.h"
#include "iface_nrf250k.h"
#include "iface_xn297.h"
#define MJXQ_BIND_COUNT 150
#define MJXQ_PACKET_PERIOD 4000 // Timeout for callback in uSec
@@ -103,6 +102,12 @@ static uint8_t __attribute__((unused)) MJXQ_pan_tilt_value()
#define MJXQ_CHAN2TRIM(X) (((X) & 0x80 ? (X) : 0x7f - (X)) >> 1)
static void __attribute__((unused)) MJXQ_send_packet(uint8_t bind)
{
//RF freq
hopping_frequency_no++;
XN297_Hopping(hopping_frequency_no / 2);
hopping_frequency_no %= 2 * MJXQ_RF_NUM_CHANNELS; // channels repeated
//Build packet
packet[0] = convert_channel_8b(THROTTLE);
packet[1] = convert_channel_s8b(RUDDER);
packet[4] = 0x40; // rudder does not work well with dyntrim
@@ -192,38 +197,29 @@ static void __attribute__((unused)) MJXQ_send_packet(uint8_t bind)
uint8_t sum = packet[0];
for (uint8_t i=1; i < MJXQ_PACKET_SIZE-1; i++) sum += packet[i];
packet[15] = sum;
hopping_frequency_no++;
if (sub_protocol == E010 || sub_protocol == PHOENIX)
// Send
XN297_SetTxRxMode(TX_EN);
XN297_SetPower();
#ifdef NRF24L01_INSTALLED
if (sub_protocol == H26D || sub_protocol == H26WH)
{
XN297L_Hopping(hopping_frequency_no / 2);
XN297L_SetFreqOffset();
XN297L_SetPower();
XN297L_WritePayload(packet, MJXQ_PACKET_SIZE);
//NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency[hopping_frequency_no / 2]);
//NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
//NRF24L01_FlushTx();
//NRF24L01_SetTxRxMode(TX_EN);
//NRF24L01_SetPower();
NRF24L01_WritePayload(packet, MJXQ_PACKET_SIZE);
}
else
{
NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency[hopping_frequency_no / 2]);
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
// Power on, TX mode, 2byte CRC and send packet
if (sub_protocol == H26D || sub_protocol == H26WH)
{
NRF24L01_SetTxRxMode(TX_EN);
NRF24L01_WritePayload(packet, MJXQ_PACKET_SIZE);
}
else
{
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP));
XN297_WritePayload(packet, MJXQ_PACKET_SIZE);
}
NRF24L01_SetPower();
#endif
{//E010, PHOENIX, WLH08, X600, X800
XN297_SetFreqOffset();
XN297_WritePayload(packet, MJXQ_PACKET_SIZE);
}
hopping_frequency_no %= 2 * MJXQ_RF_NUM_CHANNELS; // channels repeated
}
static void __attribute__((unused)) MJXQ_init()
static void __attribute__((unused)) MJXQ_RF_init()
{
uint8_t addr[MJXQ_ADDRESS_LENGTH];
memcpy(addr, "\x6d\x6a\x77\x77\x77", MJXQ_ADDRESS_LENGTH);
@@ -239,32 +235,20 @@ static void __attribute__((unused)) MJXQ_init()
}
if (sub_protocol == E010 || sub_protocol == PHOENIX)
{
XN297L_Init();
XN297L_SetTXAddr(addr, sizeof(addr));
XN297L_HoppingCalib(MJXQ_RF_NUM_CHANNELS);
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_250K);
XN297_SetTXAddr(addr, MJXQ_ADDRESS_LENGTH);
XN297_HoppingCalib(MJXQ_RF_NUM_CHANNELS);
}
else
{
NRF24L01_Initialize();
NRF24L01_SetTxRxMode(TX_EN);
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_1M); // this will select the nrf and initialize it, therefore both H26 sub protocols can use common instructions
#ifdef NRF24L01_INSTALLED
if (sub_protocol == H26D || sub_protocol == H26WH)
{
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x03); // 5-byte RX/TX address
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, addr, MJXQ_ADDRESS_LENGTH);
}
else
#endif
XN297_SetTXAddr(addr, MJXQ_ADDRESS_LENGTH);
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowledgment on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0x00); // no retransmits
NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, MJXQ_PACKET_SIZE);
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps
NRF24L01_SetPower();
//NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, MJXQ_PACKET_SIZE); // no RX???
}
}
@@ -285,7 +269,7 @@ static void __attribute__((unused)) MJXQ_init2()
hopping_frequency[i]=pgm_read_byte_near( &E010_map_rfchan[rx_tx_addr[3]&0x0F][i] );
hopping_frequency[i+2]=hopping_frequency[i]+0x10;
}
XN297L_HoppingCalib(MJXQ_RF_NUM_CHANNELS);
XN297_HoppingCalib(MJXQ_RF_NUM_CHANNELS);
break;
case WLH08:
// do nothing
@@ -350,14 +334,13 @@ uint16_t MJXQ_callback()
return MJXQ_PACKET_PERIOD;
}
uint16_t initMJXQ(void)
void MJXQ_init(void)
{
BIND_IN_PROGRESS; // autobind protocol
bind_counter = MJXQ_BIND_COUNT;
MJXQ_initialize_txid();
MJXQ_init();
MJXQ_RF_init();
packet_count=0;
return MJXQ_INITIAL_WAIT+MJXQ_PACKET_PERIOD;
}
#endif

View File

@@ -17,9 +17,7 @@
#include "iface_cyrf6936.h"
#undef MLINK_HUB_TELEMETRY
#define MLINK_FORCE_ID
//#define MLINK_FORCE_ID
#define MLINK_BIND_COUNT 696 // around 20s
#define MLINK_NUM_FREQ 78
#define MLINK_BIND_CHANNEL 0x01
@@ -31,13 +29,11 @@ enum {
MLINK_BIND_RX,
MLINK_PREP_DATA,
MLINK_SEND1,
MLINK_CHECK1,
MLINK_SEND2,
MLINK_CHECK2,
MLINK_SEND3,
MLINK_CHECK3,
MLINK_RX,
MLINK_CHECK4,
MLINK_BUILD4,
};
uint8_t MLINK_Data_Code[16], MLINK_CRC_Init, MLINK_Unk_6_2;
@@ -80,7 +76,7 @@ static void __attribute__((unused)) MLINK_cyrf_config()
CYRF_SetTxRxMode(TX_EN);
}
static void __attribute__((unused)) MLINK_send_bind_data_packet()
static void __attribute__((unused)) MLINK_send_bind_packet()
{
uint8_t p_c=packet_count>>1;
@@ -146,7 +142,7 @@ static void __attribute__((unused)) MLINK_send_bind_data_packet()
packet[7] = bit_reverse(crc8); // CRC reflected out
//Debug
#if 1
#if 0
debug("P(%02d):",p_c);
for(uint8_t i=0;i<8;i++)
debug(" %02X",packet[i]);
@@ -157,48 +153,87 @@ static void __attribute__((unused)) MLINK_send_bind_data_packet()
CYRF_WriteDataPacketLen(packet, MLINK_PACKET_SIZE);
}
static void __attribute__((unused)) MLINK_build_data_packet()
static void __attribute__((unused)) MLINK_send_data_packet()
{
static uint8_t tog=0;
if(hopping_frequency_no==0)
tog=1;
//Channels to be sent
if(phase==MLINK_SEND1 || ((hopping_frequency_no%5==0) && (phase==MLINK_SEND2)))
uint8_t start;
#ifdef FAILSAFE_ENABLE
static uint8_t fs=0;
if(IS_FAILSAFE_VALUES_on && phase==MLINK_SEND1)
{
if((hopping_frequency_no&1)==0)
packet[0] = 0x09; //10,8,6
else
packet[0] = 0x01; //11,9,7
fs=10; // Original radio is sending 70 packets
FAILSAFE_VALUES_off;
}
if(fs)
{// Failsafe packets
switch(phase)
{
case MLINK_SEND2:
packet[0]=0x06;
start=17;
break;
case MLINK_SEND3:
packet[0]=0x84;
start=5;
fs--;
break;
default: //MLINK_SEND1:
packet[0]=0x05;
start=11;
break;
}
//Pack 6 channels per packet
for(uint8_t i=0;i<6;i++)
{
uint8_t val=start<16 ? convert_channel_16b_nolimit(start,426 >> 4,3448 >> 4,true) : 0x00;
start--; // switch to next channel
packet[i+1]=val;
}
}
else
if(phase==MLINK_SEND2)
#endif
{// Normal packets
if(hopping_frequency_no==0)
tog=1;
//Channels to be sent
if(phase==MLINK_SEND1 || ((hopping_frequency_no%5==0) && (phase==MLINK_SEND2)))
{
if(tog)
packet[0] = 0x02; //x,15,13
if((hopping_frequency_no&1)==0)
packet[0] = 0x09; //10,8,6
else
packet[0] = 0x0A; //x,14,12
tog^=1;
packet[0] = 0x01; //11,9,7
}
else
{//phase==MLINK_SEND3
if((hopping_frequency_no&1)==0)
packet[0] = 0x88; //4,2,0
if(phase==MLINK_SEND2)
{
if(tog)
packet[0] = 0x02; //x,15,13
else
packet[0] = 0x0A; //x,14,12
tog^=1;
}
else
packet[0] = 0x80; //5,3,1
}
{//phase==MLINK_SEND3
if((hopping_frequency_no&1)==0)
packet[0] = 0x88; //4,2,0
else
packet[0] = 0x80; //5,3,1
}
//Start channel
uint8_t ch=4+6*(packet[0]&3);
if((packet[0]&0x08)==0)
ch++;
//Channels 426..1937..3448
for(uint8_t i=0;i<3;i++)
{
uint16_t tmp=ch<16 ? convert_channel_16b_nolimit(ch,426,3448,false) : 0x0000;
ch-=2; // switch to next channel
packet[i*2+1]=tmp>>8;
packet[i*2+2]=tmp;
//Start channel
start=4+6*(packet[0]&3);
if((packet[0]&0x08)==0)
start++;
//Channels 426..1937..3448
for(uint8_t i=0;i<3;i++)
{
uint16_t val=start<16 ? convert_channel_16b_nolimit(start,426,3448,false) : 0x0000;
start-=2; // switch to next channel
packet[i*2+1]=val>>8;
packet[i*2+2]=val;
}
}
//Calculate CRC
@@ -207,6 +242,9 @@ static void __attribute__((unused)) MLINK_build_data_packet()
crc8_update(bit_reverse(packet[i]));
packet[7] = bit_reverse(crc8); // CRC reflected out
//Send
CYRF_WriteDataPacketLen(packet, MLINK_PACKET_SIZE);
//Debug
#if 0
debug("P(%02d):",hopping_frequency_no);
@@ -218,34 +256,93 @@ static void __attribute__((unused)) MLINK_build_data_packet()
#ifdef MLINK_HUB_TELEMETRY
static void __attribute__((unused)) MLINK_Send_Telemetry()
{
if(packet[0]==0x03)
{//Basic telemetry
//Incoming packet values
RX_RSSI = packet_in[2*2]; // Looks to be the RX RSSI value
RX_LQI = packet_in[5*2]; // Looks to be connection lost
{ // not sure how MLINK telemetry works, the 2 RXs I have are sending something completly different...
telemetry_counter += 2; // TX LQI counter
telemetry_link = 1;
if(packet_in[0]==0x13)
{ // RX-9-DR : 13 1A C8 00 01 64 00
uint8_t id;
for(uint8_t i=1; i<5; i+=3)
{//2 sensors per packet
id=0x00;
switch(packet_in[i]&0x0F)
{
case 1: //voltage
if((packet_in[i]&0xF0) == 0x00)
v_lipo1 = packet_in[i+1]; // Rx_Batt*20
else
v_lipo2 = packet_in[i+1];
break;
case 2: //current
id = 0x28;
break;
case 3: //vario
id = 0x30;
break;
case 5: //rpm
id = 0x03;
break;
case 6: //temp
id = 0x02;
break;
case 10: //lqi
RX_RSSI=RX_LQI=packet_in[i+1]>>1;
break;
}
#if defined HUB_TELEMETRY
if(id)
{
uint16_t val=((packet_in[i+2]&0x80)<<8)|((packet_in[i+2]&0x7F)<<7)|(packet_in[i+1]>>1); //remove the alarm LSB bit, move the sign bit to MSB
frsky_send_user_frame(id, val, val>>8);
}
#endif
}
}
else
if(packet_in[0]==0x03)
{ // RX-5 : 03 15 23 00 00 01 02
//Incoming packet values
RX_RSSI = packet_in[2]<<1; // Looks to be the RX RSSI value
RX_LQI = packet_in[5]; // Looks to be connection lost
}
else
RX_RSSI = TX_LQI;
// Read TX RSSI
TX_RSSI = CYRF_ReadRegister(CYRF_13_RSSI)&0x1F;
telemetry_counter++; // TX LQI counter
telemetry_link = 1;
if(telemetry_lost)
{
telemetry_lost = 0;
packet_count = 100;
packet_count = 50;
telemetry_counter = 100;
}
}
#endif
uint16_t ReadMLINK()
#ifdef MLINK_FW_TELEMETRY
static void __attribute__((unused)) MLINK_Send_Telemetry()
{
telemetry_counter += 2; // TX LQI counter
telemetry_link = 4;
// Read TX RSSI
TX_RSSI = CYRF_ReadRegister(CYRF_13_RSSI)&0x1F;
if(telemetry_lost)
{
telemetry_lost = 0;
packet_count = 50;
telemetry_counter = 100;
}
}
#endif
uint16_t MLINK_callback()
{
uint8_t status;//,len,sum=0,check=0;
uint8_t start;
//uint16_t sum=0;
//static uint8_t retry;
uint8_t status;
uint16_t start;
switch(phase)
{
@@ -300,7 +397,7 @@ uint16_t ReadMLINK()
phase=MLINK_PREP_DATA;
return 22720;
}
MLINK_send_bind_data_packet();
MLINK_send_bind_packet();
if(packet_count == 0 || packet_count > 0x19*2)
{
phase++; // MLINK_BIND_PREP_RX
@@ -312,12 +409,14 @@ uint16_t ReadMLINK()
return 22720;
case MLINK_BIND_PREP_RX:
start=micros();
while ((uint8_t)((uint8_t)micros()-(uint8_t)start) < 200) // Wait max 200µs for TX to finish
while ((uint16_t)((uint16_t)micros()-(uint16_t)start) < 200) // Wait max 200µs for TX to finish
if((CYRF_ReadRegister(CYRF_02_TX_CTRL) & 0x80) == 0x00)
break; // Packet transmission complete
CYRF_SetTxRxMode(RX_EN); // Receive mode
CYRF_WriteRegister(CYRF_05_RX_CTRL, 0x82); // Prepare to receive
phase++; //MLINK_BIND_RX
if(packet_count > 0x19*2)
return 28712; // Give more time to the RX to confirm that the bind is ok...
return 28712-4700;
@@ -327,61 +426,29 @@ uint16_t ReadMLINK()
hopping_frequency_no = 0x00;
CYRF_ConfigRFChannel(hopping_frequency[hopping_frequency_no]);
CYRF_SetPower(0x38);
#ifdef MLINK_HUB_TELEMETRY
#if defined(MLINK_HUB_TELEMETRY) || defined(MLINK_FW_TELEMETRY)
packet_count = 0;
telemetry_lost = 1;
#endif
phase++;
case MLINK_SEND1:
MLINK_build_data_packet();
CYRF_WriteRegister(CYRF_02_TX_CTRL, 0x40);
CYRF_WriteRegisterMulti(CYRF_20_TX_BUFFER, packet, MLINK_PACKET_SIZE);
CYRF_WriteRegister(CYRF_02_TX_CTRL, 0x82);
MLINK_send_data_packet();
phase++;
return 4880;
case MLINK_CHECK1:
status=CYRF_ReadRegister(CYRF_04_TX_IRQ_STATUS);
//debugln("C1:%02X",status);
CYRF_WriteRegister(CYRF_02_TX_CTRL, 0x00);
phase++;
return 1111;
return 4880+1111;
case MLINK_SEND2:
MLINK_build_data_packet();
CYRF_WriteRegister(CYRF_02_TX_CTRL, 0x40);
CYRF_WriteRegisterMulti(CYRF_20_TX_BUFFER, packet, MLINK_PACKET_SIZE);
CYRF_WriteRegister(CYRF_02_TX_CTRL, 0x82);
phase++;
return 4617;
case MLINK_CHECK2:
status=CYRF_ReadRegister(CYRF_04_TX_IRQ_STATUS);
//debugln("C2:%02X",status);
CYRF_WriteRegister(CYRF_02_TX_CTRL, 0x00);
MLINK_send_data_packet();
phase++;
if(hopping_frequency_no%5==0)
return 1017;
return 1422;
return 4617+1017;
return 4617+1422;
case MLINK_SEND3:
MLINK_build_data_packet();
CYRF_WriteRegister(CYRF_02_TX_CTRL, 0x40);
CYRF_WriteRegisterMulti(CYRF_20_TX_BUFFER, packet, MLINK_PACKET_SIZE);
CYRF_WriteRegister(CYRF_02_TX_CTRL, 0x82);
MLINK_send_data_packet();
phase++;
return 4611;
case MLINK_CHECK3:
status=CYRF_ReadRegister(CYRF_04_TX_IRQ_STATUS);
//debugln("C3:%02X",status);
CYRF_WriteRegister(CYRF_02_TX_CTRL, 0x00);
//check RX but there is nothing to check...
status=CYRF_ReadRegister(CYRF_05_RX_CTRL);
//debugln("CTRL:%02X",status);
len=CYRF_ReadRegister(CYRF_09_RX_COUNT);
//debugln("L=%02X",len)
if( len && len<=8 )
CYRF_ReadDataPacketLen(packet, len*2);
CYRF_WriteRegister(CYRF_05_RX_CTRL,0x00);
//Next channel
//Switch to next channel
hopping_frequency_no++;
if(hopping_frequency_no>=MLINK_NUM_FREQ)
hopping_frequency_no=0;
@@ -393,17 +460,17 @@ uint16_t ReadMLINK()
CYRF_SetTxRxMode(RX_EN); // Receive mode
CYRF_WriteRegister(CYRF_05_RX_CTRL, 0x82); // Prepare to receive
phase++; //MLINK_RX
return 8038;
return 8038+2434+410-1000;
}
else
CYRF_SetPower(0x38);
phase=MLINK_SEND1;
return 4470;
case MLINK_RX:
#ifdef MLINK_HUB_TELEMETRY
#if defined(MLINK_HUB_TELEMETRY) || defined(MLINK_FW_TELEMETRY)
//TX LQI calculation
packet_count++;
if(packet_count>=100)
if(packet_count>=50)
{
packet_count=0;
TX_LQI=telemetry_counter;
@@ -412,29 +479,31 @@ uint16_t ReadMLINK()
telemetry_counter = 0;
}
#endif
status=CYRF_ReadRegister(CYRF_05_RX_CTRL);//CYRF_07_RX_IRQ_STATUS);
status=CYRF_ReadRegister(CYRF_05_RX_CTRL);
debug("T(%02X):",status);
//status=CYRF_ReadRegister(CYRF_05_RX_CTRL);
//if( (status&0x80) == 0 )
if( (status&0x80) == 0 )
{//Packet received
len=CYRF_ReadRegister(CYRF_09_RX_COUNT);
debug("(%X)",len)
if( len && len<=8 )
if( len && len <= MLINK_PACKET_SIZE )
{
CYRF_ReadDataPacketLen(packet_in, len*2);
#ifdef MLINK_HUB_TELEMETRY
if(len==8)
#if defined(MLINK_HUB_TELEMETRY) || defined(MLINK_FW_TELEMETRY)
if(len==MLINK_PACKET_SIZE)
{
for(uint8_t i=0;i<8;i++)
//Check CRC
crc8=bit_reverse(MLINK_CRC_Init);
for(uint8_t i=0;i<MLINK_PACKET_SIZE-1;i++)
crc8_update(bit_reverse(packet[i<<1]));
if(packet_in[14] == bit_reverse(crc8)) // Packet CRC is ok
{
MLINK_Send_Telemetry();
for(uint8_t i=0;i<8;i++)
debug(" %02X",packet_in[i*2]);
packet_in[i]=packet_in[i<<1];
crc8_update(bit_reverse(packet_in[i]));
debug(" %02X",packet_in[i]);
}
if(packet_in[14] == bit_reverse(crc8)) // Packet CRC is ok
MLINK_Send_Telemetry();
else
debug(" NOK");
}
#endif
}
@@ -444,39 +513,66 @@ uint16_t ReadMLINK()
CYRF_WriteRegister(CYRF_0F_XACT_CFG, 0x24); // Force end state
CYRF_WriteRegister(CYRF_29_RX_ABORT, 0x00); // Disable RX abort
CYRF_SetTxRxMode(TX_EN); // Transmit mode
phase++;
return 2434;
case MLINK_CHECK4:
status=CYRF_ReadRegister(CYRF_05_RX_CTRL);
debugln("C4: CTRL:%02X",status);
len=CYRF_ReadRegister(CYRF_09_RX_COUNT);
debugln("L=%02X",len)
if( len && len<=8 )
CYRF_ReadDataPacketLen(packet, len*2);
CYRF_WriteRegister(CYRF_05_RX_CTRL,0x00);
phase=MLINK_SEND2;
return 410;
return 1000;
}
return 1000;
}
uint16_t initMLINK()
static void __attribute__((unused)) MLINK_shuffle_freqs(uint32_t seed, uint8_t *hop)
{
randomSeed(seed);
for(uint8_t i=0; i < MLINK_NUM_FREQ/2; i++)
{
uint8_t r = random(0xfefefefe) % (MLINK_NUM_FREQ/2);
uint8_t tmp = hop[r];
hop[r] = hop[i];
hop[i] = tmp;
}
}
void MLINK_init()
{
MLINK_cyrf_config();
//Init ID and RF freqs
for(uint8_t i=0; i < MLINK_NUM_FREQ/2; i++)
{
hopping_frequency[i ] = (i<<1) + 3;
hopping_frequency[i+MLINK_NUM_FREQ/2] = (i<<1) + 3;
}
// part1
memcpy(MLINK_Data_Code ,rx_tx_addr,4);
MLINK_shuffle_freqs(MProtocol_id, hopping_frequency);
// part2
MProtocol_id ^= 0x6FBE3201;
set_rx_tx_addr(MProtocol_id);
memcpy(MLINK_Data_Code+4,rx_tx_addr,4);
MLINK_shuffle_freqs(MProtocol_id, &hopping_frequency[MLINK_NUM_FREQ/2]);
// part3
MLINK_CRC_Init = rx_tx_addr[3]; //value sent during bind then used to init the CRC
MLINK_Unk_6_2 = 0x3A; //unknown value sent during bind but doesn't seem to matter
#ifdef MLINK_FORCE_ID
//Cockpit SX
memcpy(MLINK_Data_Code,"\x4C\x97\x9D\xBF\xB8\x3D\xB5\xBE",8);
memcpy(hopping_frequency,"\x0D\x41\x09\x43\x17\x2D\x05\x31\x13\x3B\x1B\x3D\x0B\x41\x11\x45\x09\x2B\x17\x4D\x19\x3F\x03\x3F\x0F\x37\x1F\x47\x1B\x49\x07\x35\x27\x2F\x15\x33\x23\x39\x1F\x33\x19\x45\x0D\x2D\x11\x35\x0B\x47\x25\x3D\x21\x37\x1D\x3B\x05\x2F\x21\x39\x23\x4B\x03\x31\x25\x29\x07\x4F\x1D\x4B\x15\x4D\x13\x4F\x0F\x49\x29\x2B\x27\x43",78);
MLINK_Unk_6_2 = 0x3A; //unknown value sent during bind but doesn't seem to matter
MLINK_CRC_Init = 0x07; //value sent during bind then used to init the CRC
//HFM3
memcpy(MLINK_Data_Code,"\xC0\x90\x8F\xBB\x7C\x8E\x2B\x8E",8);
memcpy(hopping_frequency,"\x05\x41\x27\x4B\x17\x33\x11\x39\x0F\x3F\x05\x2F\x13\x2D\x25\x31\x1F\x2D\x25\x35\x03\x41\x1B\x43\x09\x3D\x1F\x29\x1D\x35\x0D\x3B\x19\x49\x23\x3B\x17\x47\x1D\x2B\x13\x37\x0B\x31\x23\x33\x29\x3F\x07\x37\x07\x43\x11\x2B\x1B\x39\x0B\x4B\x03\x4F\x21\x47\x0F\x4D\x15\x45\x21\x4F\x09\x3D\x19\x2F\x15\x45\x0D\x49\x27\x4D",78);
MLINK_Unk_6_2 = 0x02; //unknown value but doesn't seem to matter
MLINK_CRC_Init = 0x3E; //value sent during bind then used to init the CRC
if(RX_num)
{
//Cockpit SX
memcpy(MLINK_Data_Code,"\x4C\x97\x9D\xBF\xB8\x3D\xB5\xBE",8);
memcpy(hopping_frequency,"\x0D\x41\x09\x43\x17\x2D\x05\x31\x13\x3B\x1B\x3D\x0B\x41\x11\x45\x09\x2B\x17\x4D\x19\x3F\x03\x3F\x0F\x37\x1F\x47\x1B\x49\x07\x35\x27\x2F\x15\x33\x23\x39\x1F\x33\x19\x45\x0D\x2D\x11\x35\x0B\x47\x25\x3D\x21\x37\x1D\x3B\x05\x2F\x21\x39\x23\x4B\x03\x31\x25\x29\x07\x4F\x1D\x4B\x15\x4D\x13\x4F\x0F\x49\x29\x2B\x27\x43",MLINK_NUM_FREQ);
MLINK_Unk_6_2 = 0x3A; //unknown value sent during bind but doesn't seem to matter
MLINK_CRC_Init = 0x07; //value sent during bind then used to init the CRC
}
else
{
//HFM3
memcpy(MLINK_Data_Code,"\xC0\x90\x8F\xBB\x7C\x8E\x2B\x8E",8);
memcpy(hopping_frequency,"\x05\x41\x27\x4B\x17\x33\x11\x39\x0F\x3F\x05\x2F\x13\x2D\x25\x31\x1F\x2D\x25\x35\x03\x41\x1B\x43\x09\x3D\x1F\x29\x1D\x35\x0D\x3B\x19\x49\x23\x3B\x17\x47\x1D\x2B\x13\x37\x0B\x31\x23\x33\x29\x3F\x07\x37\x07\x43\x11\x2B\x1B\x39\x0B\x4B\x03\x4F\x21\x47\x0F\x4D\x15\x45\x21\x4F\x09\x3D\x19\x2F\x15\x45\x0D\x49\x27\x4D",MLINK_NUM_FREQ);
MLINK_Unk_6_2 = 0x02; //unknown value but doesn't seem to matter
MLINK_CRC_Init = 0x3E; //value sent during bind then used to init the CRC
}
//Other TX
//MLINK_Unk_6_2 = 0x7e; //unknown value but doesn't seem to matter
//MLINK_CRC_Init = 0xA2; //value sent during bind then used to init the CRC
@@ -496,7 +592,7 @@ uint16_t initMLINK()
for(uint8_t i=0;i<MLINK_NUM_FREQ;i++)
debug(" %02X", hopping_frequency[i]);
debugln("");
if(IS_BIND_IN_PROGRESS)
{
packet_count = 0;
@@ -507,7 +603,6 @@ uint16_t initMLINK()
}
else
phase = MLINK_PREP_DATA;
return 10000;
}
#endif

View File

@@ -0,0 +1,525 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// compatible with MT99xx, Eachine H7, Yi Zhan i6S and LS114/124
// Last sync with Goebish mt99xx_nrf24l01.c dated 2016-01-29
#if defined(MT99XX_CCNRF_INO)
#include "iface_xn297.h"
#define MT99XX_BIND_COUNT 928
#define MT99XX_PACKET_PERIOD_FY805 2460
#define MT99XX_PACKET_PERIOD_MT 2625
#define MT99XX_PACKET_PERIOD_YZ 3125
#define MT99XX_PACKET_PERIOD_A180 3400 // timing changes between the packets 2 x 27220 then 1x 26080, it seems that it is only on the first RF channel which jitters by 1.14ms but hard to pinpoint with XN297dump
#define MT99XX_PACKET_PERIOD_DRAGON 1038 // there is a pause of 2x1038 between two packets, no idea why and how since it is not even stable on a same dump...
#define MT99XX_PACKET_PERIOD_DRAGON_TELEM 10265 // long pause to receive the telemetry packets, 3 are sent by the RX one after the other
#define MT99XX_PACKET_PERIOD_F949G 3450
#define MT99XX_PACKET_PERIOD_PA18 1160
#define MT99XX_PA18_CRC 0x89 // Is it a constant???
#define MT99XX_INITIAL_WAIT 500
#define MT99XX_PACKET_SIZE 9
//#define FORCE_A180_ID
//#define FORCE_DRAGON_ID
//#define FORCE_F949G_ID
#define FORCE_PA18_ID
enum {
MT99XX_DATA,
MT99XX_RX,
MT99XX_CHECK,
};
enum{
// flags going to packet[6] (MT99xx, H7)
FLAG_MT_RATE1 = 0x01, // (H7 & A180 high rate)
FLAG_MT_RATE2 = 0x02, // (MT9916 only)
FLAG_MT_VIDEO = 0x10,
FLAG_MT_SNAPSHOT= 0x20,
FLAG_MT_FLIP = 0x80,
};
enum{
// flags going to packet[6] (LS)
FLAG_LS_INVERT = 0x01,
FLAG_LS_RATE = 0x02,
FLAG_LS_HEADLESS= 0x10,
FLAG_LS_SNAPSHOT= 0x20,
FLAG_LS_VIDEO = 0x40,
FLAG_LS_FLIP = 0x80,
};
enum{
// flags going to packet[7] (FY805)
FLAG_FY805_HEADLESS= 0x10,
};
enum{
// flags going to packet[6] (A180)
FLAG_A180_3D6G = 0x01,
FLAG_A180_RATE = 0x02,
};
enum{
// flags going to packet[6] (DRAGON)
FLAG_DRAGON_RATE = 0x01,
FLAG_DRAGON_RTH = 0x80,
FLAG_DRAGON_UNK = 0x04,
};
enum{
// flags going to packet[6] (F949G)
FLAG_F949G_LIGHT = 0x01,
FLAG_F949G_3D6G = 0x20,
};
enum{
// flags going to packet[6] (PA18)
FLAG_PA18_RTH = 0x08,
FLAG_PA18_FLIP = 0x80,
};
const uint8_t h7_mys_byte[] = {
0x01, 0x11, 0x02, 0x12, 0x03, 0x13, 0x04, 0x14,
0x05, 0x15, 0x06, 0x16, 0x07, 0x17, 0x00, 0x10
};
const uint8_t ls_mys_byte[] = {
0x05, 0x15, 0x25, 0x06, 0x16, 0x26,
0x07, 0x17, 0x27, 0x00, 0x10, 0x20,
0x01, 0x11, 0x21, 0x02, 0x12, 0x22,
0x03, 0x13, 0x23, 0x04, 0x14, 0x24
};
const uint8_t yz_p4_seq[] = {0xa0, 0x20, 0x60};
#ifdef MT99XX_HUB_TELEMETRY
const uint8_t DRAGON_seq[] = {0x20, 0x60, 0x20, 0x80};
#endif
static void __attribute__((unused)) MT99XX_send_packet()
{
static uint8_t seq_num=0;
//Set RF freq
if(sub_protocol == LS)
XN297_RFChannel(0x2D); // LS always transmits on the same channel
else
if(sub_protocol==FY805)
XN297_RFChannel(0x4B); // FY805 always transmits on the same channel
else // MT99 & H7 & YZ & A180 & DRAGON & F949G & PA18
XN297_Hopping(hopping_frequency_no);
if(IS_BIND_IN_PROGRESS)
{
//Bind packet
packet[0] = 0x20;
switch(sub_protocol)
{
case YZ:
packet[1] = 0x15;
packet[2] = 0x05;
packet[3] = 0x06;
break;
case LS:
packet[1] = 0x14;
packet[2] = 0x05;
packet[3] = 0x11;
break;
case FY805:
packet[1] = 0x15;
packet[2] = 0x12;
packet[3] = 0x17;
break;
default: // MT99 & H7 & A180 & DRAGON & F949G & PA18
packet[1] = 0x14;
packet[2] = 0x03;
packet[3] = 0x25;
break;
}
packet[4] = rx_tx_addr[0];
packet[5] = rx_tx_addr[1];
packet[6] = rx_tx_addr[2];
if(sub_protocol == PA18+8)
{
packet[7] = MT99XX_PA18_CRC; // checksum offset
packet[8] = 0x55; // fixed
}
else
{ // all others
packet[7] = crc8; // checksum offset
if(sub_protocol != F949G)
packet[8] = 0xAA; // fixed
else
packet[8] = 0x00;
}
}
else
{
if(sub_protocol != YZ)
{ // MT99XX & H7 & LS & FY805 & A180 & DRAGON & F949G & PA18
packet[0] = convert_channel_16b_limit(THROTTLE,0xE1,0x00); // throttle
packet[1] = convert_channel_16b_limit(RUDDER ,0x00,0xE1); // rudder
packet[2] = convert_channel_16b_limit(AILERON ,0xE1,0x00); // aileron
packet[3] = convert_channel_16b_limit(ELEVATOR,0x00,0xE1); // elevator
packet[4] = 0x20; // pitch trim (0x3f-0x20-0x00)
packet[5] = 0x20; // roll trim (0x00-0x20-0x3f)
packet[6] = GET_FLAG( CH5_SW, FLAG_MT_FLIP );
if(sub_protocol != PA18+8)
packet[7] = h7_mys_byte[hopping_frequency_no]; // next rf channel index ?
else
packet[7] = (packet[7]&0xBF)|0x20;
switch(sub_protocol)
{
case MT99:
packet[6] |= 0x40 | FLAG_MT_RATE2 // max rate on MT99xx
| GET_FLAG( CH7_SW, FLAG_MT_SNAPSHOT )
| GET_FLAG( CH8_SW, FLAG_MT_VIDEO );
break;
case H7:
packet[6] |= FLAG_MT_RATE1; // max rate on H7
break;
case LS:
packet[6] |= FLAG_LS_RATE // max rate
| GET_FLAG( CH6_SW, FLAG_LS_INVERT ) // invert
| GET_FLAG( CH7_SW, FLAG_LS_SNAPSHOT ) // snapshot
| GET_FLAG( CH8_SW, FLAG_LS_VIDEO ) // video
| GET_FLAG( CH9_SW, FLAG_LS_HEADLESS ); // Headless
packet[7] = ls_mys_byte[seq_num++];
if(seq_num >= sizeof(ls_mys_byte))
seq_num=0;
break;
case FY805:
packet[6]=0x20;
//Rate 0x01?
//Flip ?
packet[7]=0x01
|GET_FLAG( CH5_SW, FLAG_MT_FLIP )
|GET_FLAG( CH9_SW, FLAG_FY805_HEADLESS ); //HEADLESS
crc8=0;
break;
case A180:
packet[6] = GET_FLAG( !CH6_SW,FLAG_A180_RATE) // 0x02, A180=RATE, F949S=LED
|GET_FLAG( CH5_SW, FLAG_A180_3D6G ) // 0x01, A180=3D_6G, F949S=RATE
|GET_FLAG( CH7_SW, 0x20 ); // 0x20, F949S=3D_6G
packet[7] = 0x00;
break;
case DRAGON:
if(CH5_SW) // Advanced mode
packet[5] |= 0x80;
else
if(Channel_data[CH5] > CHANNEL_MIN_COMMAND) // Beginner mode
packet[5] |= 0x40;
packet[6] = FLAG_DRAGON_RATE
| GET_FLAG( CH6_SW, FLAG_DRAGON_RTH );
#ifdef MT99XX_HUB_TELEMETRY
//Telemetry
if(hopping_frequency_no == 0)
{
seq_num++;
seq_num &= 0x03;
packet_count++;
if(packet_count > 11)
packet_count = 0;
}
if(packet_count > 10) // Telemetry packet request every 10 or 11 packets
{
packet[6] |= 0x04; // Request telemetry flag
phase = MT99XX_RX;
}
packet[7] = DRAGON_seq[seq_num]; // seq: 20 80 20 60 20 80 20 60... 80 changes to 80+batt from telem
if(seq_num==3)
packet[7] |= v_lipo1;
#else
packet[7] = 0x20;
#endif
break;
case F949G:
packet[6] = 0x02
| GET_FLAG( CH5_SW, FLAG_F949G_3D6G )
| GET_FLAG( CH6_SW, FLAG_F949G_LIGHT );
packet[7] = 0x00;
break;
case PA18+8:
if(Channel_data[CH5] > CHANNEL_MAX_COMMAND) // Expert mode
packet[5] += 0xA0;
else
if(Channel_data[CH5] > CHANNEL_MIN_COMMAND) // Intermediate mode
packet[5] += 0x60;
packet[6] = GET_FLAG( CH6_SW, FLAG_PA18_FLIP ) // Flip
| GET_FLAG( CH7_SW, FLAG_PA18_RTH ); // RTH
if(hopping_frequency_no == 0)
packet[7] ^= 0x40;
break;
}
uint8_t result=crc8;
for(uint8_t i=0; i<8; i++)
result += packet[i];
if(sub_protocol == PA18+8)
result += MT99XX_PA18_CRC;
packet[8] = result;
}
else
{ // YZ
packet[0] = convert_channel_16b_limit(THROTTLE,0x00,0x64); // throttle
packet[1] = convert_channel_16b_limit(RUDDER ,0x64,0x00); // rudder
packet[2] = convert_channel_16b_limit(ELEVATOR,0x00,0x64); // elevator
packet[3] = convert_channel_16b_limit(AILERON ,0x64,0x00); // aileron
if(packet_count++ >= 23)
{
seq_num ++;
if(seq_num > 2)
seq_num = 0;
packet_count=0;
}
packet[4] = yz_p4_seq[seq_num];
packet[5] = 0x02 // expert ? (0=unarmed, 1=normal)
| GET_FLAG(CH8_SW, 0x10) //VIDEO
| GET_FLAG(CH5_SW, 0x80) //FLIP
| GET_FLAG(CH9_SW, 0x04) //HEADLESS
| GET_FLAG(CH7_SW, 0x20); //SNAPSHOT
packet[6] = GET_FLAG(CH6_SW, 0x80); //LED
packet[7] = packet[0];
for(uint8_t idx = 1; idx < MT99XX_PACKET_SIZE-2; idx++)
packet[7] += packet[idx];
packet[8] = 0xff;
}
}
//Hopp
hopping_frequency_no++;
if(sub_protocol == YZ || sub_protocol == A180 || sub_protocol == DRAGON || sub_protocol == F949G || sub_protocol == PA18+8)
hopping_frequency_no++; // skip every other channel
if(hopping_frequency_no > 15)
hopping_frequency_no = 0;
// Send
XN297_SetPower();
XN297_SetFreqOffset();
XN297_SetTxRxMode(TX_EN);
XN297_WritePayload(packet, MT99XX_PACKET_SIZE);
#if 0
for(uint8_t i=0; i<MT99XX_PACKET_SIZE; i++)
debug(" %02X",packet[i]);
debugln();
#endif
}
static void __attribute__((unused)) MT99XX_RF_init()
{
if(sub_protocol == YZ)
XN297_Configure(XN297_CRCEN, XN297_UNSCRAMBLED, XN297_250K);
else if(sub_protocol == F949G)
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_250K);
else
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_1M);
XN297_SetTXAddr((uint8_t *)"\xCC\xCC\xCC\xCC\xCC", 5);
XN297_HoppingCalib(16);
#ifdef MT99XX_HUB_TELEMETRY
XN297_SetRXAddr(rx_tx_addr, MT99XX_PACKET_SIZE);
#endif
}
static void __attribute__((unused)) MT99XX_initialize_txid()
{
rx_tx_addr[1] = rx_tx_addr[3]; // RX_Num
switch(sub_protocol)
{
case YZ:
rx_tx_addr[0] = 0x53; // test (SB id)
rx_tx_addr[1] = 0x00;
rx_tx_addr[2] = 0x00;
break;
case FY805:
rx_tx_addr[0] = 0x81; // test (SB id)
rx_tx_addr[1] = 0x0F;
rx_tx_addr[2] = 0x00;
break;
case LS:
rx_tx_addr[0] = 0xCC;
break;
#ifdef FORCE_A180_ID
case A180:
rx_tx_addr[0] = 0x84; // MikeHRC ID
rx_tx_addr[1] = 0x62;
rx_tx_addr[2] = 0x4A;
//crc8 = 0x30
//channel_offset = 0x03;
break;
#endif
#ifdef FORCE_DRAGON_ID
case DRAGON:
rx_tx_addr[0] = 0x6C; // Laurie ID
rx_tx_addr[1] = 0x00;
rx_tx_addr[2] = 0x22;
//crc8 = 0x8E
//channel_offset = 0x06
break;
#endif
#ifdef FORCE_F949G_ID
case F949G:
rx_tx_addr[0] = 0x7E; // LilTeo14 ID
rx_tx_addr[1] = 0x2F;
rx_tx_addr[2] = 0x29;
//crc8 = 0xD6
//channel_offset = 0x03
break;
#endif
#ifdef FORCE_PA18_ID
case PA18+8:
rx_tx_addr[0] = 0xC9; // zebble ID
rx_tx_addr[1] = 0x02;
rx_tx_addr[2] = 0x13;
//crc8 = 0xDE
// additional crc init of 0x89, how is this calculated???
//channel_offset = 0x03
//1Mb C=5 S=Y A= C9 02 13 CC CC P(9)= E1 70 70 70 20 20 00 20 1A
//bind S=Y A= CC CC CC CC CC P(9)= 20 14 03 25 C9 02 13 89 55
break;
#endif
default: //MT99 & H7 & A180 & DRAGON & F949G
rx_tx_addr[2] = 0x00;
break;
}
rx_tx_addr[3] = 0xCC;
rx_tx_addr[4] = 0xCC;
crc8 = rx_tx_addr[0] + rx_tx_addr[1] + rx_tx_addr[2];
//memcpy(hopping_frequency,"\x02\x48\x0C\x3e\x16\x34\x20\x2A\x2A\x20\x34\x16\x3e\x0c\x48\x02",16);
for(uint8_t i=0; i<8; i++)
{
hopping_frequency[(i<<1) ]=0x02 + (10*i);
hopping_frequency[(i<<1)+1]=0x48 - (10*i);
}
hopping_frequency_no=0;
}
uint16_t MT99XX_callback()
{
switch(phase)
{
case MT99XX_DATA:
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
if(bind_counter)
{
bind_counter--;
if (bind_counter == 0)
{
// set tx address for data packets
XN297_SetTXAddr(rx_tx_addr, 5);
// set rf channels
uint8_t channel_offset = ((crc8>>4) + (crc8 & 0x0f)) % 8;
for(uint8_t i=0;i<16;i++)
hopping_frequency[i] += channel_offset;
XN297_HoppingCalib(16);
BIND_DONE;
}
}
MT99XX_send_packet();
break;
#ifdef MT99XX_HUB_TELEMETRY
case MT99XX_RX:
//Switch to RX
XN297_SetTxRxMode(TXRX_OFF);
XN297_SetTxRxMode(RX_EN);
phase++;
return MT99XX_PACKET_PERIOD_DRAGON_TELEM - MT99XX_PACKET_PERIOD_DRAGON - 500;
case MT99XX_CHECK:
//Check telem
if(XN297_IsRX())
{
//debug("RX");
if(XN297_ReadPayload(packet_in, MT99XX_PACKET_SIZE))
{
// C=48 S=Y A= 6C 00 22 CC CC P(9)= 6C 00 22 27 00 00 00 00 60
// C=48 S=Y A= 6C 00 22 CC CC P(9)= 6C 00 22 28 00 00 00 00 61
// C=18 S=Y A= 6C 00 22 CC CC P(9)= 6C 00 22 24 00 00 00 00 5D
// 6C 00 22 = TX address, 27/28/24=vbatt, check = sum(P[0..7]) + AB
// D2 EE 00 25 00 00 00 00 90 -> check also + AB
//for(uint8_t i=0; i<MT99XX_PACKET_SIZE; i++)
// debug(" %02X",packet_in[i]);
uint8_t check=0xAB;
for(uint8_t i=0; i<8; i++)
check += packet_in[i];
if(packet_in[8] == check && packet_in[0] == rx_tx_addr[0] && packet_in[1] == rx_tx_addr[1] && packet_in[2] == rx_tx_addr[2])
{ // checksum and address are ok
// debug(" OK");
v_lipo1 = packet_in[3] & 0x7F; // Batt
v_lipo2 = packet_in[3] & 0x80; // Low batt flag
RX_RSSI=100;
telemetry_link = 1;
}
}
//debugln("");
}
//Switch to TX
XN297_SetTxRxMode(TXRX_OFF);
XN297_SetTxRxMode(TX_EN);
phase=MT99XX_DATA;
return 500;
#endif
}
return packet_period;
}
void MT99XX_init(void)
{
if(protocol == PROTO_MT99XX2)
sub_protocol|=0x08; // Increase the number of sub_protocols for MT99XX
bind_counter = MT99XX_BIND_COUNT;
if(IS_BIND_DONE)
{
if(sub_protocol != A180 && sub_protocol != DRAGON && sub_protocol != F949G && sub_protocol != PA18+8)
BIND_IN_PROGRESS; // autobind protocol
else
bind_counter = 1;
}
MT99XX_initialize_txid();
MT99XX_RF_init();
switch(sub_protocol)
{
case YZ:
packet_period = MT99XX_PACKET_PERIOD_YZ;
break;
case FY805:
packet_period = MT99XX_PACKET_PERIOD_FY805;
break;
case F949G:
case A180:
packet_period = MT99XX_PACKET_PERIOD_A180;
break;
case PA18+8:
packet_period = MT99XX_PACKET_PERIOD_PA18;
break;
default:
packet_period = MT99XX_PACKET_PERIOD_MT;
break;
}
packet_count=0;
phase=MT99XX_DATA;
}
#endif

View File

@@ -1,310 +0,0 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// compatible with MT99xx, Eachine H7, Yi Zhan i6S and LS114/124
// Last sync with Goebish mt99xx_nrf24l01.c dated 2016-01-29
#if defined(MT99XX_NRF24L01_INO)
#include "iface_nrf24l01.h"
#define MT99XX_BIND_COUNT 928
#define MT99XX_PACKET_PERIOD_FY805 2460
#define MT99XX_PACKET_PERIOD_MT 2625
#define MT99XX_PACKET_PERIOD_YZ 3125
#define MT99XX_INITIAL_WAIT 500
#define MT99XX_PACKET_SIZE 9
#define checksum_offset rf_ch_num
#define channel_offset phase
enum{
// flags going to packet[6] (MT99xx, H7)
FLAG_MT_RATE1 = 0x01, // (H7 high rate)
FLAG_MT_RATE2 = 0x02, // (MT9916 only)
FLAG_MT_VIDEO = 0x10,
FLAG_MT_SNAPSHOT= 0x20,
FLAG_MT_FLIP = 0x80,
};
enum{
// flags going to packet[6] (LS)
FLAG_LS_INVERT = 0x01,
FLAG_LS_RATE = 0x02,
FLAG_LS_HEADLESS= 0x10,
FLAG_LS_SNAPSHOT= 0x20,
FLAG_LS_VIDEO = 0x40,
FLAG_LS_FLIP = 0x80,
};
enum{
// flags going to packet[7] (FY805)
FLAG_FY805_HEADLESS= 0x10,
};
enum {
MT99XX_INIT = 0,
MT99XX_BIND,
MT99XX_DATA
};
const uint8_t h7_mys_byte[] = {
0x01, 0x11, 0x02, 0x12, 0x03, 0x13, 0x04, 0x14,
0x05, 0x15, 0x06, 0x16, 0x07, 0x17, 0x00, 0x10
};
static const uint8_t ls_mys_byte[] = {
0x05, 0x15, 0x25, 0x06, 0x16, 0x26,
0x07, 0x17, 0x27, 0x00, 0x10, 0x20,
0x01, 0x11, 0x21, 0x02, 0x12, 0x22,
0x03, 0x13, 0x23, 0x04, 0x14, 0x24
};
static void __attribute__((unused)) MT99XX_send_packet()
{
const uint8_t yz_p4_seq[] = {0xa0, 0x20, 0x60};
static uint8_t yz_seq_num=0;
static uint8_t ls_counter=0;
if(sub_protocol != YZ)
{ // MT99XX & H7 & LS
packet[0] = convert_channel_16b_limit(THROTTLE,0xE1,0x00); // throttle
packet[1] = convert_channel_16b_limit(RUDDER ,0x00,0xE1); // rudder
packet[2] = convert_channel_16b_limit(AILERON ,0xE1,0x00); // aileron
packet[3] = convert_channel_16b_limit(ELEVATOR,0x00,0xE1); // elevator
packet[4] = 0x20; // pitch trim (0x3f-0x20-0x00)
packet[5] = 0x20; // roll trim (0x00-0x20-0x3f)
packet[6] = GET_FLAG( CH5_SW, FLAG_MT_FLIP );
packet[7] = h7_mys_byte[hopping_frequency_no]; // next rf channel index ?
if(sub_protocol==H7)
packet[6]|=FLAG_MT_RATE1; // max rate on H7
else
if(sub_protocol==MT99)
packet[6] |= 0x40 | FLAG_MT_RATE2
| GET_FLAG( CH7_SW, FLAG_MT_SNAPSHOT )
| GET_FLAG( CH8_SW, FLAG_MT_VIDEO ); // max rate on MT99xx
else
if(sub_protocol==FY805)
{
packet[6]=0x20;
//Rate 0x01?
//Flip ?
packet[7]=0x01
|GET_FLAG( CH5_SW, FLAG_MT_FLIP )
|GET_FLAG( CH9_SW, FLAG_FY805_HEADLESS ); //HEADLESS
checksum_offset=0;
}
else //LS
{
packet[6] |= FLAG_LS_RATE // max rate
| GET_FLAG( CH6_SW, FLAG_LS_INVERT ) //INVERT
| GET_FLAG( CH7_SW, FLAG_LS_SNAPSHOT ) //SNAPSHOT
| GET_FLAG( CH8_SW, FLAG_LS_VIDEO ) //VIDEO
| GET_FLAG( CH9_SW, FLAG_LS_HEADLESS ); //HEADLESS
packet[7] = ls_mys_byte[ls_counter++];
if(ls_counter >= sizeof(ls_mys_byte))
ls_counter=0;
}
uint8_t result=checksum_offset;
for(uint8_t i=0; i<8; i++)
result += packet[i];
packet[8] = result;
}
else
{ // YZ
packet[0] = convert_channel_16b_limit(THROTTLE,0x00,0x64); // throttle
packet[1] = convert_channel_16b_limit(RUDDER ,0x64,0x00); // rudder
packet[2] = convert_channel_16b_limit(ELEVATOR,0x00,0x64); // elevator
packet[3] = convert_channel_16b_limit(AILERON ,0x64,0x00); // aileron
if(packet_count++ >= 23)
{
yz_seq_num ++;
if(yz_seq_num > 2)
yz_seq_num = 0;
packet_count=0;
}
packet[4] = yz_p4_seq[yz_seq_num];
packet[5] = 0x02 // expert ? (0=unarmed, 1=normal)
| GET_FLAG(CH8_SW, 0x10) //VIDEO
| GET_FLAG(CH5_SW, 0x80) //FLIP
| GET_FLAG(CH9_SW, 0x04) //HEADLESS
| GET_FLAG(CH7_SW, 0x20); //SNAPSHOT
packet[6] = GET_FLAG(CH6_SW, 0x80); //LED
packet[7] = packet[0];
for(uint8_t idx = 1; idx < MT99XX_PACKET_SIZE-2; idx++)
packet[7] += packet[idx];
packet[8] = 0xff;
}
if(sub_protocol == LS)
NRF24L01_WriteReg(NRF24L01_05_RF_CH, 0x2D); // LS always transmits on the same channel
else
if(sub_protocol==FY805)
NRF24L01_WriteReg(NRF24L01_05_RF_CH, 0x4B); // FY805 always transmits on the same channel
else
NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency[hopping_frequency_no] + channel_offset);
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
XN297_WritePayload(packet, MT99XX_PACKET_SIZE);
hopping_frequency_no++;
if(sub_protocol == YZ)
hopping_frequency_no++; // skip every other channel
if(hopping_frequency_no > 15)
hopping_frequency_no = 0;
NRF24L01_SetPower();
}
static void __attribute__((unused)) MT99XX_init()
{
NRF24L01_Initialize();
if(sub_protocol == YZ)
XN297_SetScrambledMode(XN297_UNSCRAMBLED);
NRF24L01_SetTxRxMode(TX_EN);
NRF24L01_FlushTx();
XN297_SetTXAddr((uint8_t *)"\xCC\xCC\xCC\xCC\xCC", 5);
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowldgement on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x03); // 5 bytes address
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0x00); // no auto retransmit
if(sub_protocol == YZ)
NRF24L01_SetBitrate(NRF24L01_BR_250K); // 250Kbps (nRF24L01+ only)
else
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps
NRF24L01_SetPower();
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP) );
}
static void __attribute__((unused)) MT99XX_initialize_txid()
{
rx_tx_addr[3] = 0xCC;
rx_tx_addr[4] = 0xCC;
if(sub_protocol == YZ)
{
rx_tx_addr[0] = 0x53; // test (SB id)
rx_tx_addr[1] = 0x00;
rx_tx_addr[2] = 0x00;
}
else
if(sub_protocol == FY805)
{
rx_tx_addr[0] = 0x81; // test (SB id)
rx_tx_addr[1] = 0x0F;
rx_tx_addr[2] = 0x00;
}
else
if(sub_protocol == LS)
rx_tx_addr[0] = 0xCC;
else //MT99 & H7
rx_tx_addr[2] = 0x00;
checksum_offset = rx_tx_addr[0] + rx_tx_addr[1] + rx_tx_addr[2];
channel_offset = (((checksum_offset & 0xf0)>>4) + (checksum_offset & 0x0f)) % 8;
}
uint16_t MT99XX_callback()
{
if(IS_BIND_DONE)
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
MT99XX_send_packet();
}
else
{
if (bind_counter == 0)
{
// set tx address for data packets
XN297_SetTXAddr(rx_tx_addr, 5);
BIND_DONE;
}
else
{
if(sub_protocol == LS)
NRF24L01_WriteReg(NRF24L01_05_RF_CH, 0x2D); // LS always transmits on the same channel
else
if(sub_protocol==FY805)
NRF24L01_WriteReg(NRF24L01_05_RF_CH, 0x4B); // FY805 always transmits on the same channel
else
NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency[hopping_frequency_no]);
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
XN297_WritePayload(packet, MT99XX_PACKET_SIZE); // bind packet
hopping_frequency_no++;
if(sub_protocol == YZ)
hopping_frequency_no++; // skip every other channel
if(hopping_frequency_no > 15)
hopping_frequency_no = 0;
bind_counter--;
}
}
return packet_period;
}
uint16_t initMT99XX(void)
{
BIND_IN_PROGRESS; // autobind protocol
bind_counter = MT99XX_BIND_COUNT;
memcpy(hopping_frequency,"\x02\x48\x0C\x3e\x16\x34\x20\x2A\x2A\x20\x34\x16\x3e\x0c\x48\x02",16);
hopping_frequency_no=0;
MT99XX_initialize_txid();
MT99XX_init();
packet[0] = 0x20;
packet_period = MT99XX_PACKET_PERIOD_MT;
switch(sub_protocol)
{ // MT99 & H7
case MT99:
case H7:
packet[1] = 0x14;
packet[2] = 0x03;
packet[3] = 0x25;
break;
case YZ:
packet_period = MT99XX_PACKET_PERIOD_YZ;
packet[1] = 0x15;
packet[2] = 0x05;
packet[3] = 0x06;
break;
case LS:
packet[1] = 0x14;
packet[2] = 0x05;
packet[3] = 0x11;
break;
case FY805:
packet_period = MT99XX_PACKET_PERIOD_FY805;
packet[1] = 0x15;
packet[2] = 0x12;
packet[3] = 0x17;
break;
}
packet[4] = rx_tx_addr[0];
packet[5] = rx_tx_addr[1];
packet[6] = rx_tx_addr[2];
packet[7] = checksum_offset; // checksum offset
packet[8] = 0xAA; // fixed
packet_count=0;
return MT99XX_INITIAL_WAIT+MT99XX_PACKET_PERIOD_MT;
}
#endif

View File

@@ -0,0 +1,241 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(MOULDKG_NRF24L01_INO)
#include "iface_xn297.h"
//#define FORCE_MOULDKG_ORIGINAL_ID
#define MOULDKG_PACKET_PERIOD 5000
#define MOULDKG_BIND_PACKET_PERIOD 12000
#define MOULDKG_TX_BIND_CHANNEL 11
#define MOULDKG_RX_BIND_CHANNEL 76
#define MOULDKG_PAYLOAD_SIZE_DIGIT 5
#define MOULDKG_PAYLOAD_SIZE_ANALOG 10
#define MOULDKG_BIND_PAYLOAD_SIZE 7
#define MOULDKG_BIND_COUNT 300
#define MOULDKG_RF_NUM_CHANNELS 4
enum {
MOULDKG_BINDTX=0,
MOULDKG_BINDRX,
MOULDKG_PREP_DATA,
MOULDKG_PREP_DATA1,
MOULDKG_DATA,
};
uint8_t MOULDKG_RX_id[4*3];
static void __attribute__((unused)) MOULDKG_send_packet()
{
uint8_t len = MOULDKG_BIND_PAYLOAD_SIZE;
memcpy(&packet[1],rx_tx_addr,3);
if(IS_BIND_IN_PROGRESS)
{
packet[0] = 0xC0;
memset(&packet[4], 0x00, 3);
}
else
{
uint8_t n = num_ch<<2;
if(sub_protocol == MOULDKG_ANALOG)
{
packet[0] = 0x36;
uint8_t ch[]={ 1,0,2,3 };
for(uint8_t i=0;i<4;i++)
packet[i+4] = convert_channel_8b(ch[i]+n);
len = MOULDKG_PAYLOAD_SIZE_ANALOG;
}
else
{//DIGIT
len = MOULDKG_PAYLOAD_SIZE_DIGIT;
uint8_t val=0;
if(packet_count&1)
{
packet[0] = 0x31;
//Button B
if(Channel_data[CH2+n]>CHANNEL_MAX_COMMAND) val |= 0x40;
else if(Channel_data[CH2+n]<CHANNEL_MIN_COMMAND) val |= 0x80;
//Button C
if(Channel_data[CH3+n]>CHANNEL_MAX_COMMAND) val |= 0x10;
else if(Channel_data[CH3+n]<CHANNEL_MIN_COMMAND) val |= 0x20;
}
else
{
packet[0] = 0x30;
val = 0x60;
// | GET_FLAG(CH5_SW, 0x80) // Button E
// | GET_FLAG(CH6_SW, 0x10); // Button F
}
//Button A
if(Channel_data[CH1+n]>CHANNEL_MAX_COMMAND) val |= 0x01;
else if(Channel_data[CH1+n]<CHANNEL_MIN_COMMAND) val |= 0x02;
//Button D
if(Channel_data[CH4+n]>CHANNEL_MAX_COMMAND) val |= 0x04;
else if(Channel_data[CH4+n]<CHANNEL_MIN_COMMAND) val |= 0x08;
packet[4]= val;
}
}
// Send
XN297_SetPower();
XN297_SetTxRxMode(TX_EN);
XN297_WritePayload(packet, len);
#if 0
for(uint8_t i=0; i < len; i++)
debug("%02X ", packet[i]);
debugln();
#endif
}
static void __attribute__((unused)) MOULDKG_initialize_txid()
{
//rx_tx_addr[0] = rx_tx_addr[3]; // Use RX_num;
#ifdef FORCE_MOULDKG_ORIGINAL_ID
rx_tx_addr[0]=0x57;
rx_tx_addr[1]=0x1B;
rx_tx_addr[2]=0xF8;
#endif
}
static void __attribute__((unused)) MOULDKG_RF_init()
{
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_1M);
XN297_SetTXAddr((uint8_t*)"KDH", 3);
XN297_SetRXAddr((uint8_t*)"KDH", MOULDKG_BIND_PAYLOAD_SIZE);
}
uint16_t MOULDKG_callback()
{
uint8_t rf,n;
uint16_t addr;
switch(phase)
{
case MOULDKG_BINDTX:
if(XN297_IsRX())
{
//Example: TX: C=11 S=Y A= 4B 44 48 P(7)= C0 37 02 4F 00 00 00
// RX: C=76 S=Y A= 4B 44 48 P(7)= 5A 37 02 4F 03 0D 8E
// 03 0D 8E => RF channels 0F,1C,39,3C
XN297_ReadPayload(packet_in, MOULDKG_BIND_PAYLOAD_SIZE);
for(uint8_t i=0; i < MOULDKG_BIND_PAYLOAD_SIZE; i++)
debug("%02X ", packet_in[i]);
debugln();
//Not sure if I should test packet_in[0]
if(memcmp(&packet_in[1],&packet[1],3)==0)
{//TX ID match
if(option == 0)
{
memcpy(MOULDKG_RX_id,&packet_in[4],3);
phase = MOULDKG_PREP_DATA1;
}
else
{// Store RX ID
addr=MOULDKG_EEPROM_OFFSET+RX_num*3;
for(uint8_t i=0;i<3;i++)
eeprom_write_byte((EE_ADDR)(addr+i),packet_in[4+i]);
phase = MOULDKG_PREP_DATA;
}
break;
}
}
XN297_RFChannel(MOULDKG_TX_BIND_CHANNEL); // Set TX bind channel
XN297_SetTxRxMode(TXRX_OFF);
MOULDKG_send_packet();
phase++;
return 600;
case MOULDKG_BINDRX:
//Wait for the packet transmission to finish
while(XN297_IsPacketSent()==false);
//Switch to RX
XN297_SetTxRxMode(TXRX_OFF);
XN297_RFChannel(MOULDKG_RX_BIND_CHANNEL); // Set RX bind channel
XN297_SetTxRxMode(RX_EN);
phase = MOULDKG_BINDTX;
return MOULDKG_BIND_PACKET_PERIOD-600;
case MOULDKG_PREP_DATA:
addr=MOULDKG_EEPROM_OFFSET+RX_num*3;
debug("RXID: ");
for(uint8_t i=0;i<3*4;i++)
{ // load 4 consecutive RX IDs
MOULDKG_RX_id[i]=eeprom_read_byte((EE_ADDR)(addr+i));
debug(" %02X",MOULDKG_RX_id[i]);
}
debugln("");
case MOULDKG_PREP_DATA1:
//Switch to normal mode
BIND_DONE;
XN297_SetTxRxMode(TXRX_OFF);
phase = MOULDKG_DATA;
break;
case MOULDKG_DATA:
#ifdef MULTI_SYNC
if(num_ch==0)
telemetry_set_input_sync(MOULDKG_PACKET_PERIOD);
#endif
if(option == 0) option++;
if(num_ch<option)
{
//Set RX ID address
n = num_ch*3;
XN297_SetTXAddr(&MOULDKG_RX_id[n], 3);
//Set frequency based on current RX ID and packet number
rf = 0x0C;
if(packet_count & 0x04)
{
n++;
rf += 0x20;
}
if(packet_count & 0x02)
rf += 0x10 + (MOULDKG_RX_id[n] >> 4);
else
rf += MOULDKG_RX_id[n] & 0x0F;
XN297_RFChannel(rf);
#if 1
debugln("num_ch=%d,packet_count=%d,rf=%02X,ID=%02X %02X %02X",num_ch,packet_count,rf,MOULDKG_RX_id[num_ch*3],MOULDKG_RX_id[num_ch*3+1],MOULDKG_RX_id[num_ch*3+2]);
#endif
MOULDKG_send_packet();
if(num_ch==0)
packet_count++;
}
num_ch++;
num_ch &= 0x03;
break;
}
return MOULDKG_PACKET_PERIOD/4;
}
void MOULDKG_init()
{
if(option == 0)
BIND_IN_PROGRESS;
MOULDKG_initialize_txid();
MOULDKG_RF_init();
bind_counter = MOULDKG_BIND_COUNT;
if(IS_BIND_IN_PROGRESS)
phase = MOULDKG_BINDTX;
else
phase = MOULDKG_PREP_DATA;
packet_count = 0;
num_ch = 0;
}
#endif
// Analog
// Bind TX: C=11 S=Y A= 4B 44 48 P(7)= C0 46 01 00 00 00 00
// Bind RX: 5A 46 01 00 63 82 4E
// Norm: C=15 S=Y A= 63 82 4E P(10)= 36 46 01 00 80 80 80 80 00 00

View File

@@ -3,7 +3,7 @@
3,FrskyD,D8,Cloned
4,Hisky,Hisky,HK310
5,V2x2,V2x2,JXD506,MR101
6,DSM,DSM2_1F,DSM2_2F,DSMX_1F,DSMX_2F,AUTO
6,DSM,DSM2_1F,DSM2_2F,DSMX_1F,DSMX_2F,AUTO,DSMR_1F
7,Devo,8CH,10CH,12CH,6CH,7CH
8,YD717,YD717,SKYWLKR,SYMAX4,XINXUN,NIHUI
9,KN,WLTOYS,FEILUN
@@ -14,7 +14,7 @@
14,Bayang,Bayang,H8S3D,X16_AH,IRDRONE,DHD_D4,QX100
15,FrskyX,CH_16,CH_8,EU_16,EU_8,Cloned,Clon_8
16,ESky,Std,ET4
17,MT99xx,MT,H7,YZ,LS,FY805
17,MT99xx,MT,H7,YZ,LS,FY805,A180,Dragon,F949G
18,MJXq,WLH08,X600,X800,H26D,E010,H26WH,PHOENIX
19,Shenqi
20,FY326,FY326,FY319
@@ -25,7 +25,7 @@
25,FrskyV
26,HONTAI,HONTAI,JJRCX1,X5C1,FQ777_951
27,OpnLrs
28,AFHDS2A,PWM_IBUS,PPM_IBUS,PWM_SBUS,PPM_SBUS,PWM_IB16,PPM_IB16
28,AFHDS2A,PWM_IBUS,PPM_IBUS,PWM_SBUS,PPM_SBUS,PWM_IB16,PPM_IB16,PWM_SB16,PPM_SB16
29,Q2X2,Q222,Q242,Q282
30,WK2x01,WK2801,WK2401,W6_5_1,W6_6_1,W6_HEL,W6_HEL_I
31,Q303,Q303,CX35,CX10D,CX10WD
@@ -42,22 +42,22 @@
42,BUGSMINI,BUGSMINI,BUGS3H
43,Traxxas,RX6519
44,NCC1701
45,E01X,E012,E015,E016H
45,E01X,E012,E015
46,V911S,V911S,E119
47,GD00x,GD_V1,GD_V2
48,V761,3CH,4CH
49,KF606
49,KF606,KF606,MIG320
50,Redpine,Fast,Slow
51,Potensic,A20
52,ZSX,280
53,Height,5ch,8ch
54,Scanner
55,Frsky_RX,RX,CloneTX
56,AFHDS2A_RX
55,Frsky_RX,Multi,CloneTX,EraseTX,CPPM
56,AFHDS2A_RX,Multi,CPPM
57,HoTT,Sync,No_Sync
58,FX816,P38
59,Bayang_RX
60,Pelikan,Pro,Lite
58,FX816
59,Bayang_RX,Multi,CPPM
60,Pelikan,Pro,Lite,SCX24
61,Tiger
62,XK,X450,X420
63,XN_DUMP,250K,1M,2M,AUTO
@@ -67,7 +67,7 @@
67,LR12,LR12,LR12_6ch
68,Skyartec
69,ESKYv2,150V2
70,DSM_RX
70,DSM_RX,Multi,CPPM
71,JJRC345,JJRC345,SkyTmblr
72,Q90C
73,Kyosho,FHSS,Hype
@@ -80,4 +80,12 @@
80,E016H,E016Hv2
81,E010r5
82,LOLI
83,E129
83,E129,E129,C186
84,JOYSWAY
85,E016H
87,IKEA
88,WILLIFM
89,Losi
90,MouldKg,Analog,Digit
91,Xerall
92,MT99xx,PA18

View File

@@ -0,0 +1,192 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(MULTI_CONFIG_INO)
#ifdef CYRF6936_INSTALLED
#include "iface_cyrf6936.h"
#endif
void CONFIG_write_GID(uint32_t id)
{
for(uint8_t i=0;i<4;i++)
eeprom_write_byte((EE_ADDR)EEPROM_ID_OFFSET+i,id >> (i*8));
//eeprom_write_byte((EE_ADDR)(EEPROM_ID_OFFSET+10),0xf0);
}
void CONFIG_write_CID(uint8_t *data)
{
for(uint8_t i=0;i<6;i++)
eeprom_write_byte((EE_ADDR)EEPROM_CID_OFFSET+i, data[i]);
//eeprom_write_byte((EE_ADDR)EEPROM_CID_INIT_OFFSET, 0xf0);
}
uint16_t CONFIG_callback()
{
static uint8_t line=0, page=0;
uint32_t id=0;
// [0] = page<<4|line number
// [1..6] = max 6 bytes
if(CONFIG_SerialRX)
{
debug("config");
for(uint8_t i=0; i<7; i++)
debug("%02X ",CONFIG_SerialRX_val[i]);
debugln("");
CONFIG_SerialRX = false;
switch(CONFIG_SerialRX_val[0]&0x0F)
{
//case 0:
// Page change
// break;
case 1:
for(uint8_t i=0; i<4; i++)
{
id <<= 8;
id |= CONFIG_SerialRX_val[i+1];
}
debugln("Update ID to %lx", id);
CONFIG_write_GID(id);
break;
case 2:
if(CONFIG_SerialRX_val[1]==0xAA)
{
#define STM32_UUID ((uint32_t *)0x1FFFF7E8)
id = STM32_UUID[0] ^ STM32_UUID[1] ^ STM32_UUID[2];
debugln("Reset GID to %lx", id);
CONFIG_write_GID(id);
}
break;
#ifdef CYRF6936_INSTALLED
case 4:
debug("Update CID to ");
for(uint8_t i=0; i<6; i++)
debug("%02X ",CONFIG_SerialRX_val[i+1]);
debugln("");
CONFIG_write_CID(&CONFIG_SerialRX_val[1]);
case 5:
if(CONFIG_SerialRX_val[1]==0xAA)
{
uint8_t data[6];
CYRF_WriteRegister(CYRF_25_MFG_ID, 0xFF); /* Fuses power on */
CYRF_ReadRegisterMulti(CYRF_25_MFG_ID, data, 6);
CYRF_WriteRegister(CYRF_25_MFG_ID, 0x00); /* Fuses power off */
debug("Reset CID to ");
for(uint8_t i=0; i<6; i++)
debug("%02X ",data[i]);
debugln("");
CONFIG_write_CID(data);
}
break;
#endif
case 7:
if(CONFIG_SerialRX_val[1]==0xAA)
{
debugln("Format EE");
#if defined(STM32_BOARD)
EEPROM.format();
#else
for (uint16_t i = 0; i < 512; i++)
eeprom_write_byte((EE_ADDR)i, 0xFF);
#endif
}
break;
}
}
if( telemetry_link )
return 10000;
// [0] = page<<4|line number
// line=0: VERSION_MAJOR, VERSION_MINOR, VERSION_REVISION, VERSION_PATCH_LEVEL, Channel order:RUDDER<<6|THROTTLE<<4|ELEVATOR<<2|AILERON
// [1..21] = max 20 characters, any displayable chars followed by:
// 0x00 : end of line
// 0x80+len: selectable text to follow
// 0x90+len: selectable text to follow with "Are you sure?"
// 0xA0+len: not editable dec value
// 0xB0+len: editable dec value
// 0xC0+len: not editable hex value
// 0xD0+len: editable hex value
memset(&packet_in[1],0,20);
do
{
packet_in[0] = (page<<4) | line;
switch(line)
{
case 0:
packet_in[1]=VERSION_MAJOR;
packet_in[2]=VERSION_MINOR;
packet_in[3]=VERSION_REVISION;
packet_in[4]=VERSION_PATCH_LEVEL;
packet_in[5]=RUDDER<<6|THROTTLE<<4|ELEVATOR<<2|AILERON;
break;
case 1:
//Global ID
#ifndef FORCE_GLOBAL_ID
memcpy(&packet_in[1],"Global ID",9);
packet_in[10] = 0xD0 + 4;
#else
memcpy(&packet_in[1],"Fixed ID ",9);
packet_in[10] = 0xC0 + 4;
#endif
MProtocol_id_master = random_id(EEPROM_ID_OFFSET,false);
set_rx_tx_addr(MProtocol_id_master);
for(uint8_t i=0; i<4; i++)
packet_in[11+i]=rx_tx_addr[i];
break;
#if defined(STM32_BOARD) && not defined(FORCE_GLOBAL_ID)
case 2:
//Reset global ID
packet_in[1] = 0x90+9;
memcpy(&packet_in[2],"Reset GID",9);
break;
#endif
#ifdef CYRF6936_INSTALLED
case 4:
//Cyrf ID
#ifndef FORCE_CYRF_ID
memcpy(&packet_in[1],"Cyrf ID",7);
packet_in[8] = 0xD0 + 6;
CYRF_GetMfgData(&packet_in[9]);
#else
memcpy(&packet_in[1],"Fixed CID",9);
packet_in[10] = 0xC0 + 6;
CYRF_GetMfgData(&packet_in[11]);
#endif
break;
#ifndef FORCE_CYRF_ID
case 5:
//Reset Cyrf ID
packet_in[1] = 0x90+9;
memcpy(&packet_in[2],"Reset CID",9);
break;
#endif
#endif
case 7:
packet_in[1] = 0x90+13;
memcpy(&packet_in[2],"Format EEPROM",13);
break;
}
line++;
line %= 8;
}
while(packet_in[1]==0); // next line if empty
telemetry_link = 1;
return 10000;
}
void CONFIG_init()
{
}
#endif

View File

@@ -1,429 +0,0 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(MULTI_NAMES)
const char STR_FLYSKY[] ="FlySky";
const char STR_HUBSAN[] ="Hubsan";
const char STR_FRSKYD[] ="FrSky D";
const char STR_HISKY[] ="Hisky";
const char STR_V2X2[] ="V2x2";
const char STR_DSM[] ="DSM";
const char STR_DSM_RX[] ="DSM_RX";
const char STR_DEVO[] ="Devo";
const char STR_YD717[] ="YD717";
const char STR_KN[] ="KN";
const char STR_SYMAX[] ="SymaX";
const char STR_SLT[] ="SLT";
const char STR_CX10[] ="CX10";
const char STR_CG023[] ="CG023";
const char STR_BAYANG[] ="Bayang";
const char STR_FRSKYL[] ="FrSky L";
const char STR_FRSKYX[] ="FrSky X";
const char STR_FRSKYX2[] ="FrSkyX2";
const char STR_ESKY[] ="ESky";
const char STR_MT99XX[] ="MT99XX";
const char STR_MJXQ[] ="MJXq";
const char STR_SHENQI[] ="Shenqi";
const char STR_FY326[] ="FY326";
const char STR_FUTABA[] ="Futaba";
const char STR_J6PRO[] ="J6 Pro";
const char STR_JJRC345[] ="JJRC345";
const char STR_FQ777[] ="FQ777";
const char STR_ASSAN[] ="Assan";
const char STR_FRSKYV[] ="FrSky V";
const char STR_HONTAI[] ="Hontai";
const char STR_AFHDS2A[] ="FlSky2A";
const char STR_Q2X2[] ="Q2x2";
const char STR_WK2x01[] ="Walkera";
const char STR_Q303[] ="Q303";
const char STR_Q90C[] ="Q90C";
const char STR_GW008[] ="GW008";
const char STR_DM002[] ="DM002";
const char STR_CABELL[] ="Cabell";
const char STR_ESKY150[] ="Esky150";
const char STR_ESKY150V2[] ="EskyV2";
const char STR_H8_3D[] ="H8 3D";
const char STR_CORONA[] ="Corona";
const char STR_CFLIE[] ="CFlie";
const char STR_HITEC[] ="Hitec";
const char STR_WFLY[] ="WFLY";
const char STR_WFLY2[] ="WFLY2";
const char STR_BUGS[] ="Bugs";
const char STR_BUGSMINI[] ="BugMini";
const char STR_TRAXXAS[] ="Traxxas";
const char STR_NCC1701[] ="NCC1701";
const char STR_E01X[] ="E01X";
const char STR_V911S[] ="V911S";
const char STR_GD00X[] ="GD00x";
const char STR_V761[] ="V761";
const char STR_KF606[] ="KF606";
const char STR_REDPINE[] ="Redpine";
const char STR_POTENSIC[] ="Potensi";
const char STR_ZSX[] ="ZSX";
const char STR_HEIGHT[] ="Height";
const char STR_SCANNER[] ="Scanner";
const char STR_FRSKY_RX[] ="FrSkyRX";
const char STR_AFHDS2A_RX[] ="FS2A_RX";
const char STR_HOTT[] ="HoTT";
const char STR_FX816[] ="FX816";
const char STR_BAYANG_RX[] ="BayanRX";
const char STR_PELIKAN[] ="Pelikan";
const char STR_TIGER[] ="Tiger";
const char STR_XK[] ="XK";
const char STR_XN297DUMP[] ="XN297DP";
const char STR_FRSKYR9[] ="FrSkyR9";
const char STR_PROPEL[] ="Propel";
const char STR_SKYARTEC[] ="Skyartc";
const char STR_KYOSHO[] ="Kyosho";
const char STR_RLINK[] ="RadLink";
const char STR_REALACC[] ="Realacc";
const char STR_OMP[] ="OMP";
const char STR_MLINK[] ="M-Link";
const char STR_TEST[] ="Test";
const char STR_NANORF[] ="NanoRF";
const char STR_E016HV2[] ="E016Hv2";
const char STR_E010R5[] ="E010r5";
const char STR_LOLI[] ="LOLI";
const char STR_E129[] ="E129";
const char STR_SUBTYPE_FLYSKY[] = "\x04""Std\0""V9x9""V6x6""V912""CX20";
const char STR_SUBTYPE_HUBSAN[] = "\x04""H107""H301""H501";
const char STR_SUBTYPE_FRSKYD[] = "\x06""D8\0 ""Cloned";
const char STR_SUBTYPE_FRSKYX[] = "\x07""D16\0 ""D16 8ch""LBT(EU)""LBT 8ch""Cloned\0""Clo 8ch";
const char STR_SUBTYPE_HISKY[] = "\x05""Std\0 ""HK310";
const char STR_SUBTYPE_V2X2[] = "\x06""Std\0 ""JXD506""MR101\0";
const char STR_SUBTYPE_DSM[] = "\x04""2 1F""2 2F""X 1F""X 2F""Auto";
const char STR_SUBTYPE_DEVO[] = "\x04""8ch\0""10ch""12ch""6ch\0""7ch\0";
const char STR_SUBTYPE_YD717[] = "\x07""Std\0 ""SkyWlkr""Syma X4""XINXUN\0""NIHUI\0 ";
const char STR_SUBTYPE_KN[] = "\x06""WLtoys""FeiLun";
const char STR_SUBTYPE_SYMAX[] = "\x03""Std""X5C";
const char STR_SUBTYPE_SLT[] = "\x06""V1_6ch""V2_8ch""Q100\0 ""Q200\0 ""MR100\0";
const char STR_SUBTYPE_CX10[] = "\x07""Green\0 ""Blue\0 ""DM007\0 ""-\0 ""JC3015a""JC3015b""MK33041";
const char STR_SUBTYPE_CG023[] = "\x05""Std\0 ""YD829";
const char STR_SUBTYPE_BAYANG[] = "\x07""Std\0 ""H8S3D\0 ""X16 AH\0""IRDrone""DHD D4\0""QX100\0 ";
const char STR_SUBTYPE_MT99[] = "\x06""MT99\0 ""H7\0 ""YZ\0 ""LS\0 ""FY805";
const char STR_SUBTYPE_MJXQ[] = "\x07""WLH08\0 ""X600\0 ""X800\0 ""H26D\0 ""E010\0 ""H26WH\0 ""Phoenix";
const char STR_SUBTYPE_FY326[] = "\x05""Std\0 ""FY319";
const char STR_SUBTYPE_HONTAI[] = "\x07""Std\0 ""JJRC X1""X5C1\0 ""FQ_951";
const char STR_SUBTYPE_AFHDS2A[] = "\x08""PWM,IBUS""PPM,IBUS""PWM,SBUS""PPM,SBUS""PWM,IB16""PPM,IB16""PWM,SB16""PPM,SB16";
const char STR_SUBTYPE_Q2X2[] = "\x04""Q222""Q242""Q282";
const char STR_SUBTYPE_WK2x01[] = "\x06""WK2801""WK2401""W6_5_1""W6_6_1""W6_HeL""W6_HeI";
const char STR_SUBTYPE_Q303[] = "\x06""Std\0 ""CX35\0 ""CX10D\0""CX10WD";
const char STR_SUBTYPE_CABELL[] = "\x07""V3\0 ""V3 Telm""-\0 ""-\0 ""-\0 ""-\0 ""F-Safe\0""Unbind\0";
const char STR_SUBTYPE_H83D[] = "\x07""Std\0 ""H20H\0 ""H20Mini""H30Mini";
const char STR_SUBTYPE_CORONA[] = "\x05""V1\0 ""V2\0 ""FD V3";
const char STR_SUBTYPE_HITEC[] = "\x07""Optima\0""Opt Hub""Minima\0";
const char STR_SUBTYPE_BUGS_MINI[] = "\x06""Std\0 ""Bugs3H";
const char STR_SUBTYPE_TRAXXAS[] = "\x04""6519";
const char STR_SUBTYPE_E01X[] = "\x05""E012\0""E015\0""E016H";
const char STR_SUBTYPE_GD00X[] = "\x05""GD_V1""GD_V2";
const char STR_SUBTYPE_REDPINE[] = "\x04""Fast""Slow";
const char STR_SUBTYPE_POTENSIC[] = "\x03""A20";
const char STR_SUBTYPE_ZSX[] = "\x07""280JJRC";
const char STR_SUBTYPE_HEIGHT[] = "\x03""5ch""8ch";
const char STR_SUBTYPE_FX816[] = "\x03""P38";
const char STR_SUBTYPE_XN297DUMP[] = "\x07""250Kbps""1Mbps\0 ""2Mbps\0 ""Auto\0 ""NRF\0 ";
const char STR_SUBTYPE_ESKY150[] = "\x03""4ch""7ch";
const char STR_SUBTYPE_ESKY150V2[] = "\x05""150V2";
const char STR_SUBTYPE_V911S[] = "\x05""V911S""E119\0";
const char STR_SUBTYPE_XK[] = "\x04""X450""X420";
const char STR_SUBTYPE_FRSKYR9[] = "\x07""915MHz\0""868MHz\0""915 8ch""868 8ch""FCC\0 ""--\0 ""FCC 8ch""-- 8ch\0";
const char STR_SUBTYPE_ESKY[] = "\x03""Std""ET4";
const char STR_SUBTYPE_PROPEL[] = "\x04""74-Z";
const char STR_SUBTYPE_FRSKY_RX[] = "\x07""RX\0 ""CloneTX";
const char STR_SUBTYPE_FRSKYL[] = "\x08""LR12\0 ""LR12 6ch";
const char STR_SUBTYPE_WFLY[] = "\x05""WFR0x";
const char STR_SUBTYPE_WFLY2[] = "\x05""RF20x";
const char STR_SUBTYPE_HOTT[] = "\x07""Sync\0 ""No_Sync";
const char STR_SUBTYPE_PELIKAN[] = "\x04""Pro\0""Lite";
const char STR_SUBTYPE_V761[] = "\x03""3ch""4ch";
const char STR_SUBTYPE_RLINK[] = "\x07""Surface""Air\0 ""DumboRC";
const char STR_SUBTYPE_REALACC[] = "\x03""R11";
const char STR_SUBTYPE_KYOSHO[] = "\x04""FHSS""Hype";
const char STR_SUBTYPE_FUTABA[] = "\x05""SFHSS";
const char STR_SUBTYPE_JJRC345[] = "\x08""JJRC345\0""SkyTmblr";
enum
{
OPTION_NONE,
OPTION_OPTION,
OPTION_RFTUNE,
OPTION_VIDFREQ,
OPTION_FIXEDID,
OPTION_TELEM,
OPTION_SRVFREQ,
OPTION_MAXTHR,
OPTION_RFCHAN,
OPTION_RFPOWER,
};
#define NO_SUBTYPE nullptr
const mm_protocol_definition multi_protocols[] = {
// Protocol number, Protocol String, Number of sub_protocols, Sub_protocol strings, Option type
#if defined(ASSAN_NRF24L01_INO)
{PROTO_ASSAN, STR_ASSAN, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(BAYANG_NRF24L01_INO)
{PROTO_BAYANG, STR_BAYANG, 6, STR_SUBTYPE_BAYANG, OPTION_TELEM },
#endif
#if defined(BAYANG_RX_NRF24L01_INO)
{PROTO_BAYANG_RX, STR_BAYANG_RX, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(BUGS_A7105_INO)
{PROTO_BUGS, STR_BUGS, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(BUGSMINI_NRF24L01_INO)
{PROTO_BUGSMINI, STR_BUGSMINI, 2, STR_SUBTYPE_BUGS_MINI, OPTION_NONE },
#endif
#if defined(CABELL_NRF24L01_INO)
{PROTO_CABELL, STR_CABELL, 8, STR_SUBTYPE_CABELL, OPTION_OPTION },
#endif
#if defined(CFLIE_NRF24L01_INO)
{PROTO_CFLIE, STR_CFLIE, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(CG023_NRF24L01_INO)
{PROTO_CG023, STR_CG023, 2, STR_SUBTYPE_CG023, OPTION_NONE },
#endif
#if defined(CORONA_CC2500_INO)
{PROTO_CORONA, STR_CORONA, 3, STR_SUBTYPE_CORONA, OPTION_RFTUNE },
#endif
#if defined(CX10_NRF24L01_INO)
{PROTO_CX10, STR_CX10, 7, STR_SUBTYPE_CX10, OPTION_NONE },
#endif
#if defined(DEVO_CYRF6936_INO)
{PROTO_DEVO, STR_DEVO, 5, STR_SUBTYPE_DEVO, OPTION_FIXEDID },
#endif
#if defined(DM002_NRF24L01_INO)
{PROTO_DM002, STR_DM002, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(DSM_CYRF6936_INO)
{PROTO_DSM, STR_DSM, 5, STR_SUBTYPE_DSM, OPTION_MAXTHR },
#endif
#if defined(DSM_RX_CYRF6936_INO)
{PROTO_DSM_RX, STR_DSM_RX, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(E010R5_CYRF6936_INO)
{PROTO_E010R5, STR_E010R5, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(E016HV2_CC2500_INO)
{PROTO_E016HV2, STR_E016HV2, 0, NO_SUBTYPE, OPTION_RFTUNE },
#endif
#if defined(E01X_NRF24L01_INO)
{PROTO_E01X, STR_E01X, 3, STR_SUBTYPE_E01X, OPTION_OPTION },
#endif
#if defined(E129_CYRF6936_INO)
{PROTO_E129, STR_E129, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(ESKY_NRF24L01_INO)
{PROTO_ESKY, STR_ESKY, 2, STR_SUBTYPE_ESKY, OPTION_NONE },
#endif
#if defined(ESKY150_NRF24L01_INO)
{PROTO_ESKY150, STR_ESKY150, 2, STR_SUBTYPE_ESKY150, OPTION_NONE },
#endif
#if defined(ESKY150V2_CC2500_INO)
{PROTO_ESKY150V2, STR_ESKY150V2, 1, STR_SUBTYPE_ESKY150V2, OPTION_RFTUNE },
#endif
#if defined(FLYSKY_A7105_INO)
{PROTO_FLYSKY, STR_FLYSKY, 5, STR_SUBTYPE_FLYSKY, OPTION_NONE },
#endif
#if defined(AFHDS2A_A7105_INO)
{PROTO_AFHDS2A, STR_AFHDS2A, 8, STR_SUBTYPE_AFHDS2A, OPTION_SRVFREQ },
#endif
#if defined(AFHDS2A_RX_A7105_INO)
{PROTO_AFHDS2A_RX, STR_AFHDS2A_RX,0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(FQ777_NRF24L01_INO)
{PROTO_FQ777, STR_FQ777, 0, NO_SUBTYPE, OPTION_NONE },
#endif
//OpenTX 2.3.x issue: DO NOT CHANGE ORDER below
#if defined(FRSKY_RX_CC2500_INO)
{PROTO_FRSKY_RX, STR_FRSKY_RX, 2, STR_SUBTYPE_FRSKY_RX, OPTION_RFTUNE },
#endif
#if defined(FRSKYD_CC2500_INO)
{PROTO_FRSKYD, STR_FRSKYD, 2, STR_SUBTYPE_FRSKYD, OPTION_RFTUNE },
#endif
#if defined(FRSKYV_CC2500_INO)
{PROTO_FRSKYV, STR_FRSKYV, 0, NO_SUBTYPE, OPTION_RFTUNE },
#endif
#if defined(FRSKYX_CC2500_INO)
{PROTO_FRSKYX, STR_FRSKYX, 6, STR_SUBTYPE_FRSKYX, OPTION_RFTUNE },
{PROTO_FRSKYX2, STR_FRSKYX2, 6, STR_SUBTYPE_FRSKYX, OPTION_RFTUNE },
#endif
//OpenTX 2.3.x issue: DO NOT CHANGE ORDER above
#if defined(FRSKYL_CC2500_INO)
{PROTO_FRSKYL, STR_FRSKYL, 2, STR_SUBTYPE_FRSKYL, OPTION_RFTUNE },
#endif
#if defined(FRSKYR9_SX1276_INO)
{PROTO_FRSKY_R9, STR_FRSKYR9, 8, STR_SUBTYPE_FRSKYR9, OPTION_NONE },
#endif
#if defined(FUTABA_CC2500_INO)
{PROTO_FUTABA, STR_FUTABA, 1, STR_SUBTYPE_FUTABA, OPTION_RFTUNE },
#endif
#if defined(FX816_NRF24L01_INO)
{PROTO_FX816, STR_FX816, 1, STR_SUBTYPE_FX816, OPTION_NONE },
#endif
#if defined(FY326_NRF24L01_INO)
{PROTO_FY326, STR_FY326, 2, STR_SUBTYPE_FY326, OPTION_NONE },
#endif
#if defined(GD00X_NRF24L01_INO)
{PROTO_GD00X, STR_GD00X, 2, STR_SUBTYPE_GD00X, OPTION_RFTUNE },
#endif
#if defined(GW008_NRF24L01_INO)
{PROTO_GW008, STR_GW008, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(H8_3D_NRF24L01_INO)
{PROTO_H8_3D, STR_H8_3D, 4, STR_SUBTYPE_H83D, OPTION_NONE },
#endif
#if defined(HEIGHT_A7105_INO)
{PROTO_HEIGHT, STR_HEIGHT, 2, STR_SUBTYPE_HEIGHT, OPTION_NONE },
#endif
#if defined(HISKY_NRF24L01_INO)
{PROTO_HISKY, STR_HISKY, 2, STR_SUBTYPE_HISKY, OPTION_NONE },
#endif
#if defined(HITEC_CC2500_INO)
{PROTO_HITEC, STR_HITEC, 3, STR_SUBTYPE_HITEC, OPTION_RFTUNE },
#endif
#if defined(HONTAI_NRF24L01_INO)
{PROTO_HONTAI, STR_HONTAI, 4, STR_SUBTYPE_HONTAI, OPTION_NONE },
#endif
#if defined(HOTT_CC2500_INO)
{PROTO_HOTT, STR_HOTT, 2, STR_SUBTYPE_HOTT, OPTION_RFTUNE },
#endif
#if defined(HUBSAN_A7105_INO)
{PROTO_HUBSAN, STR_HUBSAN, 3, STR_SUBTYPE_HUBSAN, OPTION_VIDFREQ },
#endif
#if defined(J6PRO_CYRF6936_INO)
{PROTO_J6PRO, STR_J6PRO, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(JJRC345_NRF24L01_INO)
{PROTO_JJRC345, STR_JJRC345, 2, STR_SUBTYPE_JJRC345, OPTION_NONE },
#endif
#if defined(KF606_NRF24L01_INO)
{PROTO_KF606, STR_KF606, 0, NO_SUBTYPE, OPTION_RFTUNE },
#endif
#if defined(KN_NRF24L01_INO)
{PROTO_KN, STR_KN, 2, STR_SUBTYPE_KN, OPTION_NONE },
#endif
#if defined(KYOSHO_A7105_INO)
{PROTO_KYOSHO, STR_KYOSHO, 2, STR_SUBTYPE_KYOSHO, OPTION_NONE },
#endif
#if defined(LOLI_NRF24L01_INO)
{PROTO_LOLI, STR_LOLI, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(MJXQ_NRF24L01_INO)
{PROTO_MJXQ, STR_MJXQ, 7, STR_SUBTYPE_MJXQ, OPTION_RFTUNE },
#endif
#if defined(MLINK_CYRF6936_INO)
{PROTO_MLINK, STR_MLINK, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(MT99XX_NRF24L01_INO)
{PROTO_MT99XX, STR_MT99XX, 5, STR_SUBTYPE_MT99, OPTION_NONE },
#endif
#if defined(NCC1701_NRF24L01_INO)
{PROTO_NCC1701, STR_NCC1701, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(OMP_CC2500_INO)
{PROTO_OMP, STR_OMP, 0, NO_SUBTYPE, OPTION_RFTUNE },
#endif
#if defined(PELIKAN_A7105_INO)
{PROTO_PELIKAN, STR_PELIKAN , 2, STR_SUBTYPE_PELIKAN, OPTION_NONE },
#endif
#if defined(POTENSIC_NRF24L01_INO)
{PROTO_POTENSIC, STR_POTENSIC, 1, STR_SUBTYPE_POTENSIC, OPTION_NONE },
#endif
#if defined(PROPEL_NRF24L01_INO)
{PROTO_PROPEL, STR_PROPEL, 1, STR_SUBTYPE_PROPEL, OPTION_NONE },
#endif
#if defined(CX10_NRF24L01_INO)
{PROTO_Q2X2, STR_Q2X2, 3, STR_SUBTYPE_Q2X2, OPTION_NONE },
#endif
#if defined(Q303_NRF24L01_INO)
{PROTO_Q303, STR_Q303, 4, STR_SUBTYPE_Q303, OPTION_NONE },
#endif
#if defined(Q90C_NRF24L01_INO)
{PROTO_Q90C, STR_Q90C, 0, NO_SUBTYPE, OPTION_RFTUNE },
#endif
#if defined(RLINK_CC2500_INO)
{PROTO_RLINK, STR_RLINK, 3, STR_SUBTYPE_RLINK, OPTION_RFTUNE },
#endif
#if defined(REALACC_NRF24L01_INO)
{PROTO_REALACC, STR_REALACC, 1, STR_SUBTYPE_REALACC, OPTION_NONE },
#endif
#if defined(REDPINE_CC2500_INO)
{PROTO_REDPINE, STR_REDPINE, 2, STR_SUBTYPE_REDPINE, OPTION_RFTUNE },
#endif
#if defined(SCANNER_CC2500_INO)
// {PROTO_SCANNER, STR_SCANNER, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(SHENQI_NRF24L01_INO)
{PROTO_SHENQI, STR_SHENQI, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(SKYARTEC_CC2500_INO)
{PROTO_SKYARTEC, STR_SKYARTEC, 0, NO_SUBTYPE, OPTION_RFTUNE },
#endif
#if defined(SLT_NRF24L01_INO)
{PROTO_SLT, STR_SLT, 5, STR_SUBTYPE_SLT, OPTION_RFTUNE },
#endif
#if defined(SYMAX_NRF24L01_INO)
{PROTO_SYMAX, STR_SYMAX, 2, STR_SUBTYPE_SYMAX, OPTION_NONE },
#endif
#if defined(TIGER_NRF24L01_INO)
{PROTO_TIGER, STR_TIGER , 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(TRAXXAS_CYRF6936_INO)
{PROTO_TRAXXAS, STR_TRAXXAS, 1, STR_SUBTYPE_TRAXXAS, OPTION_NONE },
#endif
#if defined(V2X2_NRF24L01_INO)
{PROTO_V2X2, STR_V2X2, 3, STR_SUBTYPE_V2X2, OPTION_NONE },
#endif
#if defined(V761_NRF24L01_INO)
{PROTO_V761, STR_V761, 2, STR_SUBTYPE_V761, OPTION_NONE },
#endif
#if defined(V911S_NRF24L01_INO)
{PROTO_V911S, STR_V911S, 2, STR_SUBTYPE_V911S, OPTION_RFTUNE },
#endif
#if defined(WK2x01_CYRF6936_INO)
{PROTO_WK2x01, STR_WK2x01, 6, STR_SUBTYPE_WK2x01, OPTION_NONE },
#endif
#if defined(WFLY_CYRF6936_INO)
{PROTO_WFLY, STR_WFLY, 1, STR_SUBTYPE_WFLY, OPTION_NONE },
#endif
#if defined(WFLY2_A7105_INO)
{PROTO_WFLY2, STR_WFLY2, 1, STR_SUBTYPE_WFLY2, OPTION_OPTION },
#endif
#if defined(XK_NRF24L01_INO)
{PROTO_XK, STR_XK , 2, STR_SUBTYPE_XK, OPTION_RFTUNE },
#endif
#if defined(XN297DUMP_NRF24L01_INO)
{PROTO_XN297DUMP, STR_XN297DUMP, 5, STR_SUBTYPE_XN297DUMP, OPTION_RFCHAN },
#endif
#if defined(YD717_NRF24L01_INO)
{PROTO_YD717, STR_YD717, 5, STR_SUBTYPE_YD717, OPTION_NONE },
#endif
#if defined(ZSX_NRF24L01_INO)
{PROTO_ZSX, STR_ZSX, 1, STR_SUBTYPE_ZSX, OPTION_NONE },
#endif
#if defined(TEST_CC2500_INO)
{PROTO_TEST, STR_TEST, 0, NO_SUBTYPE, OPTION_RFTUNE },
#endif
#if defined(NANORF_NRF24L01_INO)
{PROTO_NANORF, STR_NANORF, 0, NO_SUBTYPE, OPTION_NONE },
#endif
{0x00, nullptr, 0, nullptr, 0 }
};
#endif

View File

@@ -0,0 +1,543 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
const char STR_FLYSKY[] ="FlySky";
const char STR_HUBSAN[] ="Hubsan";
const char STR_FRSKYD[] ="FrSky D";
const char STR_HISKY[] ="Hisky";
const char STR_V2X2[] ="V2x2";
const char STR_DSM[] ="DSM";
const char STR_DSM_RX[] ="DSM_RX";
const char STR_DEVO[] ="Devo";
const char STR_YD717[] ="YD717";
const char STR_KN[] ="KN";
const char STR_SYMAX[] ="SymaX";
const char STR_SLT[] ="SLT";
const char STR_CX10[] ="CX10";
const char STR_CG023[] ="CG023";
const char STR_BAYANG[] ="Bayang";
const char STR_FRSKYL[] ="FrSky L";
const char STR_FRSKYX[] ="FrSky X";
const char STR_FRSKYX2[] ="FrSkyX2";
const char STR_ESKY[] ="ESky";
const char STR_MT99XX[] ="MT99XX";
const char STR_MT99XX2[] ="MT99XX2";
const char STR_MJXQ[] ="MJXq";
const char STR_SHENQI[] ="Shenqi";
const char STR_FY326[] ="FY326";
const char STR_FUTABA[] ="Futaba";
const char STR_J6PRO[] ="J6 Pro";
const char STR_JJRC345[] ="JJRC345";
const char STR_JOYSWAY[] ="JOYSWAY";
const char STR_FQ777[] ="FQ777";
const char STR_ASSAN[] ="Assan";
const char STR_FRSKYV[] ="FrSky V";
const char STR_HONTAI[] ="Hontai";
const char STR_AFHDS2A[] ="FlSky2A";
const char STR_Q2X2[] ="Q2x2";
const char STR_WK2x01[] ="Walkera";
const char STR_Q303[] ="Q303";
const char STR_Q90C[] ="Q90C";
const char STR_GW008[] ="GW008";
const char STR_DM002[] ="DM002";
const char STR_CABELL[] ="Cabell";
const char STR_ESKY150[] ="Esky150";
const char STR_ESKY150V2[] ="EskyV2";
const char STR_H8_3D[] ="H8 3D";
const char STR_CORONA[] ="Corona";
const char STR_CFLIE[] ="CFlie";
const char STR_HITEC[] ="Hitec";
const char STR_WFLY[] ="WFLY";
const char STR_WFLY2[] ="WFLY2";
const char STR_BUGS[] ="Bugs";
const char STR_BUGSMINI[] ="BugMini";
const char STR_TRAXXAS[] ="Traxxas";
const char STR_NCC1701[] ="NCC1701";
const char STR_E01X[] ="E01X";
const char STR_V911S[] ="V911S";
const char STR_GD00X[] ="GD00x";
const char STR_V761[] ="V761";
const char STR_KF606[] ="KF606";
const char STR_REDPINE[] ="Redpine";
const char STR_POTENSIC[] ="Potensi";
const char STR_ZSX[] ="ZSX";
const char STR_HEIGHT[] ="Height";
const char STR_SCANNER[] ="Scanner";
const char STR_FRSKY_RX[] ="FrSkyRX";
const char STR_AFHDS2A_RX[] ="FS2A_RX";
const char STR_HOTT[] ="HoTT";
const char STR_FX816[] ="FX816";
const char STR_BAYANG_RX[] ="BayanRX";
const char STR_PELIKAN[] ="Pelikan";
const char STR_TIGER[] ="Tiger";
const char STR_XK[] ="XK";
const char STR_XN297DUMP[] ="XN297DP";
const char STR_FRSKYR9[] ="FrSkyR9";
const char STR_PROPEL[] ="Propel";
const char STR_SKYARTEC[] ="Skyartc";
const char STR_KYOSHO[] ="Kyosho";
const char STR_RLINK[] ="RadLink";
const char STR_REALACC[] ="Realacc";
const char STR_OMP[] ="OMP";
const char STR_MLINK[] ="M-Link";
const char STR_TEST[] ="Test";
const char STR_NANORF[] ="NanoRF";
const char STR_E016HV2[] ="E016Hv2";
const char STR_E010R5[] ="E010r5";
const char STR_LOLI[] ="LOLI";
const char STR_E129[] ="E129";
const char STR_E016H[] ="E016H";
const char STR_IKEAANSLUTA[]="Ansluta";
const char STR_CONFIG[] ="Config";
const char STR_LOSI[] ="Losi";
const char STR_MOULDKG[] ="MouldKg";
const char STR_XERALL[] ="Xerall";
const char STR_SUBTYPE_FLYSKY[] = "\x04""Std\0""V9x9""V6x6""V912""CX20";
const char STR_SUBTYPE_HUBSAN[] = "\x04""H107""H301""H501";
const char STR_SUBTYPE_FRSKYD[] = "\x06""D8\0 ""Cloned";
const char STR_SUBTYPE_FRSKYX[] = "\x07""D16\0 ""D16 8ch""LBT(EU)""LBT 8ch""Cloned\0""Clo 8ch";
const char STR_SUBTYPE_HISKY[] = "\x05""Std\0 ""HK310";
const char STR_SUBTYPE_V2X2[] = "\x06""Std\0 ""JXD506""MR101\0";
const char STR_SUBTYPE_DSM[] = "\x04""2 1F""2 2F""X 1F""X 2F""Auto""R 1F";
const char STR_SUBTYPE_DEVO[] = "\x04""8ch\0""10ch""12ch""6ch\0""7ch\0";
const char STR_SUBTYPE_YD717[] = "\x07""Std\0 ""SkyWlkr""Syma X4""XINXUN\0""NIHUI\0 ";
const char STR_SUBTYPE_KN[] = "\x06""WLtoys""FeiLun";
const char STR_SUBTYPE_SYMAX[] = "\x03""Std""X5C";
const char STR_SUBTYPE_SLT[] = "\x06""V1_6ch""V2_8ch""Q100\0 ""Q200\0 ""MR100\0";
const char STR_SUBTYPE_CX10[] = "\x07""Green\0 ""Blue\0 ""DM007\0 ""-\0 ""JC3015a""JC3015b""MK33041";
const char STR_SUBTYPE_CG023[] = "\x05""Std\0 ""YD829";
const char STR_SUBTYPE_BAYANG[] = "\x07""Std\0 ""H8S3D\0 ""X16 AH\0""IRDrone""DHD D4\0""QX100\0 ";
const char STR_SUBTYPE_MT99[] = "\x06""MT99\0 ""H7\0 ""YZ\0 ""LS\0 ""FY805\0""A180\0 ""Dragon""F949G\0";
const char STR_SUBTYPE_MT992[] = "\x04""PA18";
const char STR_SUBTYPE_MJXQ[] = "\x07""WLH08\0 ""X600\0 ""X800\0 ""H26D\0 ""E010\0 ""H26WH\0 ""Phoenix";
const char STR_SUBTYPE_FY326[] = "\x05""Std\0 ""FY319";
const char STR_SUBTYPE_HONTAI[] = "\x07""Std\0 ""JJRC X1""X5C1\0 ""FQ_951";
const char STR_SUBTYPE_AFHDS2A[] = "\x08""PWM,IBUS""PPM,IBUS""PWM,SBUS""PPM,SBUS""PWM,IB16""PPM,IB16""PWM,SB16""PPM,SB16";
const char STR_SUBTYPE_Q2X2[] = "\x04""Q222""Q242""Q282";
const char STR_SUBTYPE_WK2x01[] = "\x06""WK2801""WK2401""W6_5_1""W6_6_1""W6_HeL""W6_HeI";
const char STR_SUBTYPE_Q303[] = "\x06""Std\0 ""CX35\0 ""CX10D\0""CX10WD";
const char STR_SUBTYPE_CABELL[] = "\x07""V3\0 ""V3 Telm""-\0 ""-\0 ""-\0 ""-\0 ""F-Safe\0""Unbind\0";
const char STR_SUBTYPE_H83D[] = "\x07""Std\0 ""H20H\0 ""H20Mini""H30Mini";
const char STR_SUBTYPE_CORONA[] = "\x05""V1\0 ""V2\0 ""FD V3";
const char STR_SUBTYPE_HITEC[] = "\x07""Optima\0""Opt Hub""Minima\0";
const char STR_SUBTYPE_BUGS_MINI[] = "\x06""Std\0 ""Bugs3H";
const char STR_SUBTYPE_TRAXXAS[] = "\x04""6519";
const char STR_SUBTYPE_E01X[] = "\x05""E012\0""E015\0";
const char STR_SUBTYPE_GD00X[] = "\x05""GD_V1""GD_V2";
const char STR_SUBTYPE_REDPINE[] = "\x04""Fast""Slow";
const char STR_SUBTYPE_POTENSIC[] = "\x03""A20";
const char STR_SUBTYPE_ZSX[] = "\x07""280JJRC";
const char STR_SUBTYPE_HEIGHT[] = "\x03""5ch""8ch";
const char STR_SUBTYPE_XN297DUMP[] = "\x07""250Kbps""1Mbps\0 ""2Mbps\0 ""Auto\0 ""NRF\0 ""CC2500\0";
const char STR_SUBTYPE_ESKY150[] = "\x03""4ch""7ch";
const char STR_SUBTYPE_ESKY150V2[] = "\x05""150V2";
const char STR_SUBTYPE_V911S[] = "\x05""V911S""E119\0";
const char STR_SUBTYPE_XK[] = "\x04""X450""X420";
const char STR_SUBTYPE_FRSKYR9[] = "\x07""915MHz\0""868MHz\0""915 8ch""868 8ch""FCC\0 ""--\0 ""FCC 8ch""-- 8ch\0";
const char STR_SUBTYPE_ESKY[] = "\x03""Std""ET4";
const char STR_SUBTYPE_PROPEL[] = "\x04""74-Z";
const char STR_SUBTYPE_FRSKYL[] = "\x08""LR12\0 ""LR12 6ch";
const char STR_SUBTYPE_WFLY[] = "\x05""WFR0x";
const char STR_SUBTYPE_WFLY2[] = "\x05""RF20x";
const char STR_SUBTYPE_HOTT[] = "\x07""Sync\0 ""No_Sync";
const char STR_SUBTYPE_PELIKAN[] = "\x05""Pro\0 ""Lite\0""SCX24";
const char STR_SUBTYPE_V761[] = "\x03""3ch""4ch";
const char STR_SUBTYPE_RLINK[] = "\x07""Surface""Air\0 ""DumboRC";
const char STR_SUBTYPE_REALACC[] = "\x03""R11";
const char STR_SUBTYPE_KYOSHO[] = "\x04""FHSS""Hype";
const char STR_SUBTYPE_FUTABA[] = "\x05""SFHSS";
const char STR_SUBTYPE_JJRC345[] = "\x08""JJRC345\0""SkyTmblr";
const char STR_SUBTYPE_MOULKG[] = "\x06""Analog""Digit\0";
const char STR_SUBTYPE_KF606[] = "\x06""KF606\0""MIG320";
const char STR_SUBTYPE_E129[] = "\x04""E129""C186";
#define NO_SUBTYPE nullptr
#ifdef SEND_CPPM
const char STR_SUB_FRSKY_RX[] = "\x07""Multi\0 ""CloneTX""EraseTX""CPPM\0 ";
#define FRCPPM 4
const char STR_CPPM[] = "\x05""Multi""CPPM\0";
#define NBR_CPPM 2
#else
const char STR_SUB_FRSKY_RX[] = "\x07""Multi\0 ""CloneTX""EraseTX";
#define FRCPPM 3
#define STR_CPPM NO_SUBTYPE
#define NBR_CPPM 0
#endif
enum
{
OPTION_NONE,
OPTION_OPTION,
OPTION_RFTUNE,
OPTION_VIDFREQ,
OPTION_FIXEDID,
OPTION_TELEM,
OPTION_SRVFREQ,
OPTION_MAXTHR,
OPTION_RFCHAN,
OPTION_RFPOWER,
OPTION_WBUS,
};
const mm_protocol_definition multi_protocols[] = {
// Protocol number, Protocol String, Sub_protocol strings, Number of sub_protocols, Option type, Failsafe, ChMap, RF switch, Init, Callback
#if defined(MULTI_CONFIG_INO)
{PROTO_CONFIG, STR_CONFIG, NO_SUBTYPE, 0, OPTION_NONE, 0, 0, 0, CONFIG_init, CONFIG_callback },
#endif
#if defined(ASSAN_NRF24L01_INO)
{PROTO_ASSAN, STR_ASSAN, NO_SUBTYPE, 0, OPTION_NONE, 0, 0, SW_NRF, ASSAN_init, ASSAN_callback },
#endif
#if defined(BAYANG_NRF24L01_INO)
{PROTO_BAYANG, STR_BAYANG, STR_SUBTYPE_BAYANG, 6, OPTION_TELEM, 0, 0, SW_NRF, BAYANG_init, BAYANG_callback },
#endif
#if defined(BAYANG_RX_NRF24L01_INO)
{PROTO_BAYANG_RX, STR_BAYANG_RX, STR_CPPM, NBR_CPPM, OPTION_NONE, 0, 0, SW_NRF, BAYANG_RX_init, BAYANG_RX_callback },
#endif
#if defined(BUGS_A7105_INO)
{PROTO_BUGS, STR_BUGS, NO_SUBTYPE, 0, OPTION_NONE, 0, 0, SW_A7105, BUGS_init, BUGS_callback },
#endif
#if defined(BUGSMINI_NRF24L01_INO)
{PROTO_BUGSMINI, STR_BUGSMINI, STR_SUBTYPE_BUGS_MINI, 2, OPTION_NONE, 0, 0, SW_NRF, BUGSMINI_init, BUGSMINI_callback },
#endif
#if defined(CABELL_NRF24L01_INO)
{PROTO_CABELL, STR_CABELL, STR_SUBTYPE_CABELL, 8, OPTION_OPTION, 0, 0, SW_NRF, CABELL_init, CABELL_callback },
#endif
#if defined(CFLIE_NRF24L01_INO)
{PROTO_CFLIE, STR_CFLIE, NO_SUBTYPE, 0, OPTION_NONE, 0, 0, SW_NRF, CFLIE_init, CFLIE_callback }, // review protocol
#endif
#if defined(CG023_NRF24L01_INO)
{PROTO_CG023, STR_CG023, STR_SUBTYPE_CG023, 2, OPTION_NONE, 0, 0, SW_NRF, CG023_init, CG023_callback },
#endif
#if defined(CORONA_CC2500_INO)
{PROTO_CORONA, STR_CORONA, STR_SUBTYPE_CORONA, 3, OPTION_RFTUNE, 0, 0, SW_CC2500, CORONA_init, CORONA_callback },
#endif
#if defined(CX10_NRF24L01_INO)
{PROTO_CX10, STR_CX10, STR_SUBTYPE_CX10, 7, OPTION_NONE, 0, 0, SW_NRF, CX10_init, CX10_callback },
#endif
#if defined(DEVO_CYRF6936_INO)
{PROTO_DEVO, STR_DEVO, STR_SUBTYPE_DEVO, 5, OPTION_FIXEDID, 1, 1, SW_CYRF, DEVO_init, DEVO_callback },
#endif
#if defined(DM002_NRF24L01_INO)
{PROTO_DM002, STR_DM002, NO_SUBTYPE, 0, OPTION_NONE, 0, 0, SW_NRF, DM002_init, DM002_callback },
#endif
#if defined(DSM_CYRF6936_INO)
{PROTO_DSM, STR_DSM, STR_SUBTYPE_DSM, 6, OPTION_MAXTHR, 0, 1, SW_CYRF, DSM_init, DSM_callback },
#endif
#if defined(DSM_RX_CYRF6936_INO)
{PROTO_DSM_RX, STR_DSM_RX, STR_CPPM, NBR_CPPM, OPTION_NONE, 0, 1, SW_CYRF, DSM_RX_init, DSM_RX_callback },
#endif
#if defined(E010R5_CYRF6936_INO)
{PROTO_E010R5, STR_E010R5, NO_SUBTYPE, 0, OPTION_NONE, 0, 0, SW_CYRF, E010R5_init, E010R5_callback },
#endif
#if defined(E016H_NRF24L01_INO)
{PROTO_E016H, STR_E016H, NO_SUBTYPE, 0, OPTION_NONE, 0, 0, SW_NRF, E016H_init, E016H_callback },
#endif
#if defined(E016HV2_CC2500_INO)
{PROTO_E016HV2, STR_E016HV2, NO_SUBTYPE, 0, OPTION_RFTUNE, 0, 0, SW_CC2500, E016HV2_init, E016HV2_callback },
#endif
#if defined(E01X_CYRF6936_INO)
{PROTO_E01X, STR_E01X, STR_SUBTYPE_E01X, 2, OPTION_NONE, 0, 0, SW_CYRF, E01X_init, E01X_callback },
#endif
#if defined(E129_CYRF6936_INO)
{PROTO_E129, STR_E129, STR_SUBTYPE_E129, 2, OPTION_NONE, 0, 0, SW_CYRF, E129_init, E129_callback },
#endif
#if defined(ESKY_NRF24L01_INO)
{PROTO_ESKY, STR_ESKY, STR_SUBTYPE_ESKY, 2, OPTION_NONE, 0, 1, SW_NRF, ESKY_init, ESKY_callback },
#endif
#if defined(ESKY150_NRF24L01_INO)
{PROTO_ESKY150, STR_ESKY150, STR_SUBTYPE_ESKY150, 2, OPTION_NONE, 0, 0, SW_NRF, ESKY150_init, ESKY150_callback },
#endif
#if defined(ESKY150V2_CC2500_INO)
{PROTO_ESKY150V2, STR_ESKY150V2, STR_SUBTYPE_ESKY150V2, 1, OPTION_RFTUNE, 0, 1, SW_CC2500, ESKY150V2_init, ESKY150V2_callback },
#endif
#if defined(FLYSKY_A7105_INO)
{PROTO_FLYSKY, STR_FLYSKY, STR_SUBTYPE_FLYSKY, 5, OPTION_NONE, 0, 1, SW_A7105, FLYSKY_init, FLYSKY_callback },
#endif
#if defined(AFHDS2A_A7105_INO)
{PROTO_AFHDS2A, STR_AFHDS2A, STR_SUBTYPE_AFHDS2A, 8, OPTION_SRVFREQ, 1, 1, SW_A7105, AFHDS2A_init, AFHDS2A_callback },
#endif
#if defined(AFHDS2A_RX_A7105_INO)
{PROTO_AFHDS2A_RX, STR_AFHDS2A_RX,STR_CPPM, NBR_CPPM, OPTION_NONE, 0, 0, SW_A7105, AFHDS2A_RX_init, AFHDS2A_RX_callback },
#endif
#if defined(FQ777_NRF24L01_INO)
{PROTO_FQ777, STR_FQ777, NO_SUBTYPE, 0, OPTION_NONE, 0, 0, SW_NRF, FQ777_init, FQ777_callback },
#endif
//OpenTX 2.3.x issue: DO NOT CHANGE ORDER below
#if defined(FRSKY_RX_CC2500_INO)
{PROTO_FRSKY_RX, STR_FRSKY_RX, STR_SUB_FRSKY_RX, FRCPPM, OPTION_RFTUNE, 0, 0, SW_CC2500, FRSKY_RX_init, FRSKY_RX_callback },
#endif
#if defined(FRSKYD_CC2500_INO)
{PROTO_FRSKYD, STR_FRSKYD, STR_SUBTYPE_FRSKYD, 2, OPTION_RFTUNE, 0, 0, SW_CC2500, FRSKYD_init, FRSKYD_callback },
#endif
#if defined(FRSKYV_CC2500_INO)
{PROTO_FRSKYV, STR_FRSKYV, NO_SUBTYPE, 0, OPTION_RFTUNE, 0, 0, SW_CC2500, FRSKYV_init, FRSKYV_callback },
#endif
#if defined(FRSKYX_CC2500_INO)
{PROTO_FRSKYX, STR_FRSKYX, STR_SUBTYPE_FRSKYX, 6, OPTION_RFTUNE, 1, 0, SW_CC2500, FRSKYX_init, FRSKYX_callback },
{PROTO_FRSKYX2, STR_FRSKYX2, STR_SUBTYPE_FRSKYX, 6, OPTION_RFTUNE, 1, 0, SW_CC2500, FRSKYX_init, FRSKYX_callback },
#endif
//OpenTX 2.3.x issue: DO NOT CHANGE ORDER above
#if defined(FRSKYL_CC2500_INO)
{PROTO_FRSKYL, STR_FRSKYL, STR_SUBTYPE_FRSKYL, 2, OPTION_RFTUNE, 0, 0, SW_CC2500, FRSKYL_init, FRSKYL_callback },
#endif
#if defined(FRSKYR9_SX1276_INO)
#if MULTI_5IN1_INTERNAL == T18
{PROTO_FRSKY_R9, STR_FRSKYR9, STR_SUBTYPE_FRSKYR9, 8, OPTION_NONE, 1, 0, 0, FRSKYR9_init, FRSKYR9_callback },
#else // DIY & T-Lite
{PROTO_FRSKY_R9, STR_FRSKYR9, STR_SUBTYPE_FRSKYR9, 8, OPTION_RFPOWER, 1, 0, 0, FRSKYR9_init, FRSKYR9_callback },
#endif
#endif
#if defined(FUTABA_CC2500_INO)
{PROTO_FUTABA, STR_FUTABA, STR_SUBTYPE_FUTABA, 1, OPTION_RFTUNE, 1, 1, SW_CC2500, SFHSS_init, SFHSS_callback },
#endif
#if defined(FX816_NRF24L01_INO)
{PROTO_FX816, STR_FX816, NO_SUBTYPE, 0, OPTION_NONE, 0, 0, SW_NRF, FX816_init, FX816_callback },
#endif
#if defined(FY326_NRF24L01_INO)
{PROTO_FY326, STR_FY326, STR_SUBTYPE_FY326, 2, OPTION_NONE, 0, 0, SW_NRF, FY326_init, FY326_callback },
#endif
#if defined(GD00X_CCNRF_INO)
{PROTO_GD00X, STR_GD00X, STR_SUBTYPE_GD00X, 2, OPTION_RFTUNE, 0, 0, SW_NRF, GD00X_init, GD00X_callback },
#endif
#if defined(GW008_NRF24L01_INO)
{PROTO_GW008, STR_GW008, NO_SUBTYPE, 0, OPTION_NONE, 0, 0, SW_NRF, GW008_init, GW008_callback },
#endif
#if defined(H8_3D_NRF24L01_INO)
{PROTO_H8_3D, STR_H8_3D, STR_SUBTYPE_H83D, 4, OPTION_NONE, 0, 0, SW_NRF, H8_3D_init, H8_3D_callback },
#endif
#if defined(HEIGHT_A7105_INO)
{PROTO_HEIGHT, STR_HEIGHT, STR_SUBTYPE_HEIGHT, 2, OPTION_NONE, 0, 0, SW_A7105, HEIGHT_init, HEIGHT_callback },
#endif
#if defined(HISKY_NRF24L01_INO)
{PROTO_HISKY, STR_HISKY, STR_SUBTYPE_HISKY, 2, OPTION_NONE, 1, 1, SW_NRF, HISKY_init, HISKY_callback },
#endif
#if defined(HITEC_CC2500_INO)
{PROTO_HITEC, STR_HITEC, STR_SUBTYPE_HITEC, 3, OPTION_RFTUNE, 0, 0, SW_CC2500, HITEC_init, HITEC_callback },
#endif
#if defined(HONTAI_NRF24L01_INO)
{PROTO_HONTAI, STR_HONTAI, STR_SUBTYPE_HONTAI, 4, OPTION_NONE, 0, 0, SW_NRF, HONTAI_init, HONTAI_callback },
#endif
#if defined(HOTT_CC2500_INO)
{PROTO_HOTT, STR_HOTT, STR_SUBTYPE_HOTT, 2, OPTION_RFTUNE, 1, 0, SW_CC2500, HOTT_init, HOTT_callback },
#endif
#if defined(HUBSAN_A7105_INO)
{PROTO_HUBSAN, STR_HUBSAN, STR_SUBTYPE_HUBSAN, 3, OPTION_VIDFREQ, 0, 0, SW_A7105, HUBSAN_init, HUBSAN_callback },
#endif
#if defined(IKEAANSLUTA_CC2500_INO)
{PROTO_IKEAANSLUTA,STR_IKEAANSLUTA,NO_SUBTYPE, 0, OPTION_OPTION, 0, 0, SW_CC2500, IKEAANSLUTA_init,IKEAANSLUTA_callback },
#endif
#if defined(J6PRO_CYRF6936_INO)
{PROTO_J6PRO, STR_J6PRO, NO_SUBTYPE, 0, OPTION_NONE, 0, 1, SW_CYRF, J6PRO_init, J6PRO_callback },
#endif
#if defined(JJRC345_NRF24L01_INO)
{PROTO_JJRC345, STR_JJRC345, STR_SUBTYPE_JJRC345, 2, OPTION_NONE, 0, 0, SW_NRF, JJRC345_init, JJRC345_callback },
#endif
#if defined(JOYSWAY_A7105_INO)
{PROTO_JOYSWAY, STR_JOYSWAY, NO_SUBTYPE, 0, OPTION_NONE, 0, 0, SW_A7105, JOYSWAY_init, JOYSWAY_callback },
#endif
#if defined(KF606_CCNRF_INO)
{PROTO_KF606, STR_KF606, STR_SUBTYPE_KF606, 2, OPTION_RFTUNE, 0, 0, SW_NRF, KF606_init, KF606_callback },
#endif
#if defined(KN_NRF24L01_INO)
{PROTO_KN, STR_KN, STR_SUBTYPE_KN, 2, OPTION_NONE, 0, 0, SW_NRF, KN_init, KN_callback },
#endif
#if defined(KYOSHO_A7105_INO)
{PROTO_KYOSHO, STR_KYOSHO, STR_SUBTYPE_KYOSHO, 2, OPTION_NONE, 0, 1, SW_A7105, KYOSHO_init, KYOSHO_callback },
#endif
#if defined(LOLI_NRF24L01_INO)
{PROTO_LOLI, STR_LOLI, NO_SUBTYPE, 0, OPTION_NONE, 1, 0, SW_NRF, LOLI_init, LOLI_callback },
#endif
#if defined(LOSI_CYRF6936_INO)
{PROTO_LOSI, STR_LOSI, NO_SUBTYPE, 0, OPTION_NONE, 0, 0, SW_CYRF, LOSI_init, LOSI_callback },
#endif
#if defined(MJXQ_CCNRF_INO)
{PROTO_MJXQ, STR_MJXQ, STR_SUBTYPE_MJXQ, 7, OPTION_NONE, 0, 0, SW_NRF, MJXQ_init, MJXQ_callback },
#endif
#if defined(MLINK_CYRF6936_INO)
{PROTO_MLINK, STR_MLINK, NO_SUBTYPE, 0, OPTION_NONE, 1, 0, SW_CYRF, MLINK_init, MLINK_callback },
#endif
#if defined(MOULDKG_NRF24L01_INO)
{PROTO_MOULDKG, STR_MOULDKG, STR_SUBTYPE_MOULKG, 2, OPTION_OPTION, 0, 0, SW_NRF, MOULDKG_init, MOULDKG_callback },
#endif
#if defined(MT99XX_CCNRF_INO)
{PROTO_MT99XX, STR_MT99XX, STR_SUBTYPE_MT99, 8, OPTION_NONE, 0, 0, SW_NRF, MT99XX_init, MT99XX_callback },
#endif
#if defined(MT99XX_CCNRF_INO)
{PROTO_MT99XX2, STR_MT99XX2, STR_SUBTYPE_MT992, 1, OPTION_NONE, 0, 0, SW_NRF, MT99XX_init, MT99XX_callback },
#endif
#if defined(NCC1701_NRF24L01_INO)
{PROTO_NCC1701, STR_NCC1701, NO_SUBTYPE, 0, OPTION_NONE, 0, 0, SW_NRF, NCC_init, NCC_callback },
#endif
#if defined(OMP_CCNRF_INO)
{PROTO_OMP, STR_OMP, NO_SUBTYPE, 0, OPTION_NONE, 0, 0, SW_NRF, OMP_init, OMP_callback },
#endif
#if defined(PELIKAN_A7105_INO)
{PROTO_PELIKAN, STR_PELIKAN, STR_SUBTYPE_PELIKAN, 3, OPTION_NONE, 0, 1, SW_A7105, PELIKAN_init, PELIKAN_callback },
#endif
#if defined(POTENSIC_NRF24L01_INO)
{PROTO_POTENSIC, STR_POTENSIC, STR_SUBTYPE_POTENSIC, 1, OPTION_NONE, 0, 0, SW_NRF, POTENSIC_init, POTENSIC_callback },
#endif
#if defined(PROPEL_NRF24L01_INO)
{PROTO_PROPEL, STR_PROPEL, STR_SUBTYPE_PROPEL, 1, OPTION_NONE, 0, 0, SW_NRF, PROPEL_init, PROPEL_callback },
#endif
#if defined(CX10_NRF24L01_INO)
{PROTO_Q2X2, STR_Q2X2, STR_SUBTYPE_Q2X2, 3, OPTION_NONE, 0, 0, SW_NRF, CX10_init, CX10_callback },
#endif
#if defined(Q303_CCNRF_INO)
{PROTO_Q303, STR_Q303, STR_SUBTYPE_Q303, 4, OPTION_NONE, 0, 0, SW_NRF, Q303_init, Q303_callback },
#endif
#if defined(Q90C_CCNRF_INO)
{PROTO_Q90C, STR_Q90C, NO_SUBTYPE, 0, OPTION_RFTUNE, 0, 0, SW_NRF, Q90C_init, Q90C_callback },
#endif
#if defined(RLINK_CC2500_INO)
{PROTO_RLINK, STR_RLINK, STR_SUBTYPE_RLINK, 3, OPTION_RFTUNE, 0, 0, SW_CC2500, RLINK_init, RLINK_callback },
#endif
#if defined(REALACC_NRF24L01_INO)
{PROTO_REALACC, STR_REALACC, STR_SUBTYPE_REALACC, 1, OPTION_NONE, 0, 0, SW_NRF, REALACC_init, REALACC_callback },
#endif
#if defined(REDPINE_CC2500_INO)
{PROTO_REDPINE, STR_REDPINE, STR_SUBTYPE_REDPINE, 2, OPTION_RFTUNE, 0, 0, SW_CC2500, REDPINE_init, REDPINE_callback },
#endif
#if defined(SCANNER_CC2500_INO)
{PROTO_SCANNER, STR_SCANNER, NO_SUBTYPE, 0, OPTION_NONE, 0, 0, SW_CC2500, SCANNER_init, SCANNER_callback },
#endif
#if defined(SHENQI_NRF24L01_INO)
{PROTO_SHENQI, STR_SHENQI, NO_SUBTYPE, 0, OPTION_NONE, 0, 0, SW_NRF, SHENQI_init, SHENQI_callback },
#endif
#if defined(SKYARTEC_CC2500_INO)
{PROTO_SKYARTEC, STR_SKYARTEC, NO_SUBTYPE, 0, OPTION_RFTUNE, 0, 1, SW_CC2500, SKYARTEC_init, SKYARTEC_callback },
#endif
#if defined(SLT_CCNRF_INO)
{PROTO_SLT, STR_SLT, STR_SUBTYPE_SLT, 5, OPTION_RFTUNE, 0, 1, SW_NRF, SLT_init, SLT_callback },
#endif
#if defined(SYMAX_NRF24L01_INO)
{PROTO_SYMAX, STR_SYMAX, STR_SUBTYPE_SYMAX, 2, OPTION_NONE, 0, 0, SW_NRF, SYMAX_init, SYMAX_callback },
#endif
#if defined(TIGER_NRF24L01_INO)
{PROTO_TIGER, STR_TIGER, NO_SUBTYPE, 0, OPTION_NONE, 0, 0, SW_NRF, TIGER_init, TIGER_callback },
#endif
#if defined(TRAXXAS_CYRF6936_INO)
{PROTO_TRAXXAS, STR_TRAXXAS, STR_SUBTYPE_TRAXXAS, 1, OPTION_NONE, 0, 0, SW_CYRF, TRAXXAS_init, TRAXXAS_callback },
#endif
#if defined(V2X2_NRF24L01_INO)
{PROTO_V2X2, STR_V2X2, STR_SUBTYPE_V2X2, 3, OPTION_NONE, 0, 0, SW_NRF, V2X2_init, V2X2_callback },
#endif
#if defined(V761_NRF24L01_INO)
{PROTO_V761, STR_V761, STR_SUBTYPE_V761, 2, OPTION_NONE, 0, 0, SW_NRF, V761_init, V761_callback },
#endif
#if defined(V911S_CCNRF_INO)
{PROTO_V911S, STR_V911S, STR_SUBTYPE_V911S, 2, OPTION_RFTUNE, 0, 0, SW_NRF, V911S_init, V911S_callback },
#endif
#if defined(WK2x01_CYRF6936_INO)
{PROTO_WK2x01, STR_WK2x01, STR_SUBTYPE_WK2x01, 6, OPTION_NONE, 1, 1, SW_CYRF, WK_init, WK_callback },
#endif
#if defined(WFLY_CYRF6936_INO)
{PROTO_WFLY, STR_WFLY, STR_SUBTYPE_WFLY, 1, OPTION_NONE, 1, 0, SW_CYRF, WFLY_init, WFLY_callback },
#endif
#if defined(WFLY2_A7105_INO)
{PROTO_WFLY2, STR_WFLY2, STR_SUBTYPE_WFLY2, 1, OPTION_OPTION, 1, 0, SW_A7105, WFLY2_init, WFLY2_callback },
// {PROTO_WFLY2, STR_WFLY2, STR_SUBTYPE_WFLY2, 1, OPTION_WBUS, 1, 0, SW_A7105, WFLY2_init, WFLY2_callback },// crash OpenTX...
#endif
#if defined(XERALL_NRF24L01_INO)
{PROTO_XERALL, STR_XERALL, NO_SUBTYPE, 0, OPTION_NONE, 0, 0, SW_NRF, XERALL_init, XERALL_callback },
#endif
#if defined(XK_CCNRF_INO)
{PROTO_XK, STR_XK, STR_SUBTYPE_XK, 2, OPTION_RFTUNE, 0, 0, SW_NRF, XK_init, XK_callback },
#endif
#if defined(XN297DUMP_NRF24L01_INO)
{PROTO_XN297DUMP, STR_XN297DUMP, STR_SUBTYPE_XN297DUMP, 6, OPTION_RFCHAN, 0, 0, SW_NRF, XN297Dump_init, XN297Dump_callback },
#endif
#if defined(YD717_NRF24L01_INO)
{PROTO_YD717, STR_YD717, STR_SUBTYPE_YD717, 5, OPTION_NONE, 0, 0, SW_NRF, YD717_init, YD717_callback },
#endif
#if defined(ZSX_NRF24L01_INO)
{PROTO_ZSX, STR_ZSX, STR_SUBTYPE_ZSX, 1, OPTION_NONE, 0, 0, SW_NRF, ZSX_init, ZSX_callback },
#endif
#if defined(TEST_CC2500_INO)
{PROTO_TEST, STR_TEST, NO_SUBTYPE, 0, OPTION_RFTUNE, 0, 0, SW_NRF, TEST_init, TEST_callback },
#endif
#if defined(NANORF_NRF24L01_INO)
{PROTO_NANORF, STR_NANORF, NO_SUBTYPE, 0, OPTION_NONE, 0, 0, SW_NRF, NANORF_init, NANORF_callback },
#endif
{0xFF, nullptr, nullptr, 0, 0, 0, 0, 0, nullptr, nullptr }
};
#ifdef MULTI_TELEMETRY
uint16_t PROTOLIST_callback()
{
if(option != prev_option)
{//Only send once
/* Type 0x11 Protocol list export via telemetry. Used by the protocol PROTO_PROTOLIST=0, the list entry is given by the Option field.
length: variable
data[0] = protocol number, 0xFF is an invalid list entry (Option value too large), Option == 0xFF -> number of protocols in the list
data[1..n] = protocol name null terminated
data[n+1] = flags
flags>>4 Option text number to be displayed (check multi status for description)
flags&0x01 failsafe supported
flags&0x02 Channel Map Disabled supported
data[n+2] = number of sub protocols
data[n+3] = sub protocols text length, only sent if nbr_sub != 0
data[n+4..] = sub protocol names, only sent if nbr_sub != 0
*/
prev_option = option;
if(option >= (sizeof(multi_protocols)/sizeof(mm_protocol_definition)) - 1)
{//option is above the end of the list
//Header
multi_send_header(MULTI_TELEMETRY_PROTO, 1);
if(option == 0xFF)
Serial_write((sizeof(multi_protocols)/sizeof(mm_protocol_definition)) - 1); //Nbr proto
else
Serial_write(0xFF); //Error
}
else
{//valid option value
uint8_t proto_len = strlen(multi_protocols[option].ProtoString) + 1;
uint8_t nbr_sub = multi_protocols[option].nbrSubProto;
uint8_t sub_len = 0;
if(nbr_sub)
sub_len = multi_protocols[option].SubProtoString[0];
//Header
multi_send_header(MULTI_TELEMETRY_PROTO, 1 + proto_len + 1 + 1 + (nbr_sub?1:0) + (nbr_sub * sub_len));
//Protocol number
Serial_write(multi_protocols[option].protocol);
//Protocol name
for(uint8_t i=0;i<proto_len;i++)
Serial_write(multi_protocols[option].ProtoString[i]);
//Flags
uint8_t flags=0;
#ifdef FAILSAFE_ENABLE
if(multi_protocols[option].failSafe)
flags |= 0x01; //Failsafe supported
#endif
if(multi_protocols[option].chMap)
flags |= 0x02; //Disable_ch_mapping supported
Serial_write( flags | (multi_protocols[option].optionType<<4)); // flags && option type
//Number of sub protocols
Serial_write(nbr_sub);
if(nbr_sub !=0 )
{//Sub protocols length and texts
for(uint8_t i=0;i<=nbr_sub*sub_len;i++)
Serial_write(multi_protocols[option].SubProtoString[i]);
}
}
}
return 1000;
}
#endif

View File

@@ -18,15 +18,17 @@
//******************
#define VERSION_MAJOR 1
#define VERSION_MINOR 3
#define VERSION_REVISION 2
#define VERSION_PATCH_LEVEL 11
#define VERSION_REVISION 3
#define VERSION_PATCH_LEVEL 14
#define MODE_SERIAL 0
//******************
// Protocols
//******************
enum PROTOCOLS
{
MODE_SERIAL = 0, // Serial commands
PROTO_PROTOLIST = 0, // NO RF
PROTO_FLYSKY = 1, // =>A7105
PROTO_HUBSAN = 2, // =>A7105
PROTO_FRSKYD = 3, // =>CC2500
@@ -71,7 +73,7 @@ enum PROTOCOLS
PROTO_BUGSMINI = 42, // =>NRF24L01
PROTO_TRAXXAS = 43, // =>CYRF6936
PROTO_NCC1701 = 44, // =>NRF24L01
PROTO_E01X = 45, // =>NRF24L01
PROTO_E01X = 45, // =>CYRF6936
PROTO_V911S = 46, // =>NRF24L01
PROTO_GD00X = 47, // =>NRF24L01
PROTO_V761 = 48, // =>NRF24L01
@@ -109,6 +111,15 @@ enum PROTOCOLS
PROTO_E010R5 = 81, // =>CYRF6936
PROTO_LOLI = 82, // =>NRF24L01
PROTO_E129 = 83, // =>CYRF6936
PROTO_JOYSWAY = 84, // =>A7105
PROTO_E016H = 85, // =>NRF24L01
PROTO_CONFIG = 86, // Module config
PROTO_IKEAANSLUTA = 87, // =>CC2500
PROTO_WILLIFM = 88, // 27/35ab/40/41/72 MHz module external project
PROTO_LOSI = 89, // =>CYRF6936
PROTO_MOULDKG = 90, // =>NRF24L01
PROTO_XERALL = 91, // =>NRF24L01
PROTO_MT99XX2 = 92, // =>NRF24L01, extension of MT99XX protocol
PROTO_NANORF = 126, // =>NRF24L01
PROTO_TEST = 127, // =>CC2500
@@ -140,6 +151,8 @@ enum AFHDS2A
PPM_SBUS = 3,
PWM_IB16 = 4,
PPM_IB16 = 5,
PWM_SB16 = 6,
PPM_SB16 = 7,
};
enum Hisky
{
@@ -148,11 +161,12 @@ enum Hisky
};
enum DSM
{
DSM2_22 = 0,
DSM2_11 = 1,
DSMX_22 = 2,
DSMX_11 = 3,
DSM_AUTO = 4,
DSM2_1F = 0,
DSM2_2F = 1,
DSMX_1F = 2,
DSMX_2F = 3,
DSM_AUTO = 4,
DSMR = 5,
};
enum YD717
{
@@ -219,6 +233,13 @@ enum MT99XX
YZ = 2,
LS = 3,
FY805 = 4,
A180 = 5,
DRAGON = 6,
F949G = 7,
};
enum MT99XX2
{
PA18 = 0,
};
enum MJXQ
{
@@ -350,6 +371,8 @@ enum XN297DUMP
XN297DUMP_1M = 1,
XN297DUMP_2M = 2,
XN297DUMP_AUTO = 3,
XN297DUMP_NRF = 4,
XN297DUMP_CC2500 = 5,
};
enum FRSKY_R9
{
@@ -372,6 +395,8 @@ enum FRSKY_RX
{
FRSKY_RX = 0,
FRSKY_CLONE = 1,
FRSKY_ERASE = 2,
FRSKY_CPPM = 3,
};
enum FRSKYL
@@ -390,6 +415,7 @@ enum PELIKAN
{
PELIKAN_PRO = 0,
PELIKAN_LITE= 1,
PELIKAN_SCX24=2,
};
enum V761
@@ -423,12 +449,31 @@ enum RLINK
RLINK_DUMBORC = 2,
};
enum MOULDKG
{
MOULDKG_ANALOG = 0,
MOULDKG_DIGIT = 1,
};
enum KF606
{
KF606_KF606 = 0,
KF606_MIG320 = 1,
};
enum E129
{
E129_E129 = 0,
E129_C186 = 1,
};
#define NONE 0
#define P_HIGH 1
#define P_LOW 0
#define AUTOBIND 1
#define NO_AUTOBIND 0
//PPM protocols
struct PPM_Parameters
{
uint8_t protocol;
@@ -440,6 +485,33 @@ struct PPM_Parameters
uint32_t chan_order;
};
//Callback
typedef uint16_t (*uint16_function_t) (void); //pointer to a function with no parameters which return an uint16_t integer
typedef void (*void_function_t ) (void); //pointer to a function with no parameters which returns nothing
//Protocols definition
struct __attribute__((__packed__)) mm_protocol_definition {
uint8_t protocol;
const char *ProtoString;
const char *SubProtoString;
uint8_t nbrSubProto : 4;
uint8_t optionType : 4;
uint8_t failSafe : 1;
uint8_t chMap : 1;
uint8_t rfSwitch : 2;
void_function_t Init;
uint16_function_t CallBack;
};
extern const mm_protocol_definition multi_protocols[];
enum RF_SWITCH
{
SW_A7105 = 0, //antenna RF1
SW_CC2500 = 1, //antenna RF2
SW_NRF = 2, //antenna RF3
SW_CYRF = 3, //antenna RF4
};
// Telemetry
enum MultiPacketTypes
{
@@ -457,17 +529,14 @@ enum MultiPacketTypes
MULTI_TELEMETRY_AFHDS2A_AC = 12,
MULTI_TELEMETRY_RX_CHANNELS = 13,
MULTI_TELEMETRY_HOTT = 14,
MULTI_TELEMETRY_MLINK = 15,
MULTI_TELEMETRY_CONFIG = 16,
MULTI_TELEMETRY_PROTO = 17,
};
// Macros
#define NOP() __asm__ __volatile__("nop")
//***************
//*** Tests ***
//***************
#define IS_FAILSAFE_PROTOCOL ( (protocol==PROTO_HISKY && sub_protocol==HK310) || protocol==PROTO_AFHDS2A || protocol==PROTO_DEVO || protocol==PROTO_FUTABA || protocol==PROTO_WK2x01 || protocol== PROTO_HOTT || protocol==PROTO_FRSKYX || protocol==PROTO_FRSKYX2 || protocol==PROTO_FRSKY_R9 || protocol==PROTO_WFLY2 || protocol==PROTO_LOLI)
#define IS_CHMAP_PROTOCOL ( (protocol==PROTO_HISKY && sub_protocol==HK310) || protocol==PROTO_AFHDS2A || protocol==PROTO_DEVO || protocol==PROTO_FUTABA || protocol==PROTO_WK2x01 || protocol== PROTO_DSM || protocol==PROTO_SLT || protocol==PROTO_FLYSKY || (protocol==PROTO_KYOSHO && sub_protocol==KYOSHO_HYPE) || protocol==PROTO_ESKY || protocol==PROTO_J6PRO || protocol==PROTO_PELIKAN || protocol==PROTO_SKYARTEC || protocol==PROTO_ESKY150V2 || protocol==PROTO_DSM_RX)
//***************
//*** Flags ***
//***************
@@ -556,6 +625,11 @@ enum MultiPacketTypes
#define DISABLE_TELEM_on protocol_flags3 |= _BV(3)
#define IS_DISABLE_TELEM_on ( ( protocol_flags3 & _BV(3) ) !=0 )
#define IS_DISABLE_TELEM_off ( ( protocol_flags3 & _BV(3) ) ==0 )
//Valid/invalid sub_proto
#define SUB_PROTO_VALID protocol_flags3 &= ~_BV(6)
#define SUB_PROTO_INVALID protocol_flags3 |= _BV(6)
#define IS_SUB_PROTO_INVALID ( ( protocol_flags3 & _BV(6) ) !=0 )
#define IS_SUB_PROTO_VALID ( ( protocol_flags3 & _BV(6) ) ==0 )
//LBT power
#define LBT_POWER_off protocol_flags3 &= ~_BV(7)
#define LBT_POWER_on protocol_flags3 |= _BV(7)
@@ -572,8 +646,9 @@ enum MultiPacketTypes
//********************
#if defined(STM32_BOARD) && (defined (DEBUG_SERIAL) || defined (ARDUINO_MULTI_DEBUG))
uint16_t debug_time=0;
#define debug(msg, ...) {char debug_buf[64]; sprintf(debug_buf, msg, ##__VA_ARGS__); Serial.write(debug_buf);}
#define debugln(msg, ...) {char debug_buf[64]; sprintf(debug_buf, msg "\r\n", ##__VA_ARGS__); Serial.write(debug_buf);}
char debug_buf[64];
#define debug(msg, ...) { sprintf(debug_buf, msg, ##__VA_ARGS__); Serial.write(debug_buf);}
#define debugln(msg, ...) { sprintf(debug_buf, msg "\r\n", ##__VA_ARGS__); Serial.write(debug_buf);}
#define debug_time(msg) { uint16_t debug_time_TCNT1=TCNT1; debug_time=debug_time_TCNT1-debug_time; debug(msg "%u", debug_time>>1); debug_time=debug_time_TCNT1; }
#define debugln_time(msg) { uint16_t debug_time_TCNT1=TCNT1; debug_time=debug_time_TCNT1-debug_time; debug(msg "%u\r\n", debug_time>>1); debug_time=debug_time_TCNT1; }
#else
@@ -707,6 +782,10 @@ enum CYRF_POWER
#define CYRF_RANGE_POWER CYRF_POWER_1 // 1/30 of the full power distance
#define CYRF_BIND_POWER CYRF_POWER_0
// SX1276
#define JP_T18 1
#define JP_TLite 2
enum TXRX_State {
TXRX_OFF,
TX_EN,
@@ -727,6 +806,8 @@ enum {
#define SPEED_125K 3
/** EEPROM Layout */
#define EEPROM_CID_INIT_OFFSET 0 // 1 byte flag that Cyrf ID is initialized
#define EEPROM_CID_OFFSET 1 // 6 bytes Cyrf ID
#define EEPROM_ID_OFFSET 10 // Module ID (4 bytes)
#define EEPROM_BANK_OFFSET 15 // Current bank number (1 byte)
#define EEPROM_ID_VALID_OFFSET 20 // 1 byte flag that ID is valid
@@ -743,7 +824,8 @@ enum {
#define FRSKYX_CLONE_EEPROM_OFFSET 822 // (1) format + (3) TX ID + (47) channels, 51 bytes, end is 873
#define FRSKYX2_CLONE_EEPROM_OFFSET 873 // (1) format + (3) TX ID, 4 bytes, end is 877
#define DSM_RX_EEPROM_OFFSET 877 // (4) TX ID + format, 5 bytes, end is 882
//#define CONFIG_EEPROM_OFFSET 882 // Current configuration of the multimodule
#define MOULDKG_EEPROM_OFFSET 882 // RX ID, 3 bytes per model, end is 882+64*3=1074
//#define CONFIG_EEPROM_OFFSET 1074 // Current configuration of the multimodule
/* STM32 Flash Size */
#ifndef DISABLE_FLASH_SIZE_CHECK
@@ -854,6 +936,9 @@ Serial: 100000 Baud 8e2 _ xxxx xxxx p --
E010R5 81
LOLI 82
E129 83
JOYSWAY 84
E016H 85
XERALL 91
BindBit=> 0x80 1=Bind/0=No
AutoBindBit=> 0x40 1=Yes /0=No
RangeCheck=> 0x20 1=Yes /0=No
@@ -874,10 +959,10 @@ Serial: 100000 Baud 8e2 _ xxxx xxxx p --
Hisky 0
HK310 1
sub_protocol==DSM
DSM2_22 0
DSM2_11 1
DSMX_22 2
DSMX_11 3
DSM2_1F 0
DSM2_2F 1
DSMX_1F 2
DSMX_2F 3
DSM_AUTO 4
sub_protocol==YD717
YD717 0
@@ -999,7 +1084,6 @@ Serial: 100000 Baud 8e2 _ xxxx xxxx p --
sub_protocol==E01X
E012 0
E015 1
E016H 2
sub_protocol==GD00X
GD_V1 0
GD_V2 1
@@ -1041,6 +1125,7 @@ Serial: 100000 Baud 8e2 _ xxxx xxxx p --
sub_protocol==PELIKAN
PELIKAN_PRO 0
PELIKAN_LITE 1
PELIKAN_SCX24 2
sub_protocol==V761
V761_3CH 0
V761_4CH 1
@@ -1083,35 +1168,8 @@ Serial: 100000 Baud 8e2 _ xxxx xxxx p --
DSM: Stream[27..33] Forward Programming
*/
/*
Multimodule Status
Based on #define MULTI_STATUS
Serial: 100000 Baud 8e2 (same as input)
Format: header (2 bytes) + data (variable)
[0] = 'M' (0x4d)
[1] Length (excluding the 2 header bytes)
[2-xx] data
Type = 0x01 Multimodule Status:
[2] Flags
0x01 = Input signal detected
0x02 = Serial mode enabled
0x04 = Protocol is valid
0x08 = Module is in binding mode
0x10 = Module waits a bind event to load the protocol
0x20 = Current protocol supports failsafe
0x40 = Current protocol supports disable channel mapping
0x80 = Data buffer is almost full
[3] major
[4] minor
[5] revision
[6] patchlevel,
version of multi code, should be displayed as major.minor.revision.patchlevel
*/
/*
Multiprotocol telemetry/command definition for OpenTX
Based on #define MULTI_TELEMETRY enables OpenTX to get the multimodule status and select the correct telemetry type automatically.
Multiprotocol telemetry/command definition for OpenTX and erskyTX
Based on #define MULTI_TELEMETRY enables OpenTX and erskyTX to get the multimodule status and select the correct telemetry type automatically.
Serial: 100000 Baud 8e2 (same as input)
@@ -1152,16 +1210,17 @@ Serial: 100000 Baud 8e2 _ xxxx xxxx p --
[11] Prev valid protocol number, can be used to skip invalid protocols
[12..18] Protocol name [7], not null terminated if prototcol len == 7
[19>>4] Option text to be displayed:
OPTION_NONE 0
OPTION_OPTION 1
OPTION_RFTUNE 2
OPTION_VIDFREQ 3
OPTION_FIXEDID 4
OPTION_TELEM 5
OPTION_SRVFREQ 6
OPTION_MAXTHR 7
OPTION_RFCHAN 8
OPTION_RFPOWER 9
OPTION_NONE 0 Hidden field
OPTION_OPTION 1 "Option:" value=-128..0(default)..127
OPTION_RFTUNE 2 "RF freq tune:" value=-128..0(default)..127
OPTION_VIDFREQ 3 "Video freq:" value=-128..0(default)..127
OPTION_FIXEDID 4 "ID type:" value="Auto":0(default), "Fixed":1
OPTION_TELEM 5 "Telem:" value="Off":0(default), "On":1, "Off+Aux":2, "On+Aux":3
OPTION_SRVFREQ 6 "Servo freq(Hz):" value="50":0(default).."400":70 => display=50+5*option with option=0..70
OPTION_MAXTHR 7 "Max throw:" value="Disabled":0, "Enabled":1
OPTION_RFCHAN 8 "Select RF chan:" value=-128..0(default)..127
OPTION_RFPOWER 9 "RF power:" "1.6mW":0(default),"2.0mW":1,"2.5mW":2,"3.2mW":3,"4.0mW":4,"5.0mW":5,"6.3mW":6,"7.9mW":7,"10mW\0":8,"13mW\0":9,"16mW\0":10,"20mW\0":11,"25mW\0":12,"32mW\0":13,"40mW\0":14,"50mW\0":15
OPTION_WBUS 10 "Output:" "WBUS":0(default),"PPM":1
[19&0x0F] Number of sub protocols
[20..27] Sub protocol name [8], not null terminated if sub prototcol len == 8
If the current protocol is invalid [12..27] are all 0x00.
@@ -1228,11 +1287,34 @@ Serial: 100000 Baud 8e2 _ xxxx xxxx p --
data[4-]= packed channels data, 11 bit per channel
Type 0x0E HoTT telemetry
length: 14
length: 15
data[0] = TX_RSSI
data[1] = TX_LQI
data[2] = type
data[3] = page
data[4-13] = data
data[4-14] = data
Type 0x0F M-Link telemetry
length: 10
data[0] = TX_RSSI
data[1] = TX_LQI
data[2] = telem_type
data[3-9] = data
Type 0x10 Config telemetry
length: 22
data[0..21] = Config data
Type 0x11 Protocol list export via telemetry. Used by the protocol PROTO_PROTOLIST=0, the list entry is given by the Option field.
length: variable
data[0] = protocol number, 0xFF is an invalid list entry (Option value too large), Option == 0xFF -> number of protocols in the list
data[1..n] = protocol name null terminated
data[n+1] = flags
flags>>4 Option text number to be displayed (check multi status for description)
flags&0x01 failsafe supported
flags&0x02 Channel Map Disabled supported
data[n+2] = number of sub protocols
data[n+3] = sub protocols text length, only sent if nbr_sub != 0
data[n+4..] = sub protocol names, only sent if nbr_sub != 0
*/

File diff suppressed because it is too large Load Diff

View File

@@ -31,25 +31,16 @@ enum {
NCC_RX3,
};
static void __attribute__((unused)) NCC_init()
static void __attribute__((unused)) NCC_RF_init()
{
NRF24L01_Initialize();
NRF24L01_SetTxRxMode(TX_EN);
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x03); // 5-byte RX/TX address
NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, (uint8_t*)"\xE7\xE7\xC7\xD7\x67",5);
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, (uint8_t*)"\xE7\xE7\xC7\xD7\x67",5);
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowledgment on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, NCC_RX_PACKET_LEN); // Enable rx pipe 0
NRF24L01_SetBitrate(NRF24L01_BR_250K); // NRF24L01_BR_1M, NRF24L01_BR_2M, NRF24L01_BR_250K
NRF24L01_SetPower();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_00_CONFIG, (0 << NRF24L01_00_EN_CRC) // switch to TX mode and disable CRC
NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, NCC_RX_PACKET_LEN); // Enable rx pipe 0
NRF24L01_SetBitrate(NRF24L01_BR_250K); // NRF24L01_BR_1M, NRF24L01_BR_2M, NRF24L01_BR_250K
NRF24L01_WriteReg(NRF24L01_00_CONFIG, (0 << NRF24L01_00_EN_CRC) // switch to TX mode and disable CRC
| (1 << NRF24L01_00_CRCO)
| (1 << NRF24L01_00_PWR_UP)
| (0 << NRF24L01_00_PRIM_RX));
@@ -247,7 +238,7 @@ const uint8_t PROGMEM NCC_TX_DATA[][6]= {
{ 0xC2, 0x93, 0x55, 0x44, 0x4C, 0x0B },
};
uint16_t initNCC(void)
void NCC_init(void)
{
BIND_IN_PROGRESS; // autobind protocol
@@ -269,9 +260,8 @@ uint16_t initNCC(void)
hopping_frequency[4]=0x08; // bind channel 1
hopping_frequency[5]=0x2A; // bind channel 2
hopping_frequency_no=4; // start with bind
NCC_init();
NCC_RF_init();
phase=NCC_BIND_TX1;
return 10000;
}
#endif

View File

@@ -16,7 +16,7 @@
#ifdef NRF24L01_INSTALLED
#include "iface_nrf24l01.h"
#include "iface_xn297.h"
//---------------------------
// NRF24L01+ SPI Specific Functions
@@ -28,7 +28,19 @@ void NRF24L01_Initialize()
{
rf_setup = 0x09;
prev_power = 0x00; // Make sure prev_power is inline with current power
XN297_SetScrambledMode(XN297_SCRAMBLED);
//Load most likely default NRF config
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowldgement on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x03); // 5 bytes rx/tx address
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0x00); // no retransmits
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 0x00); // Disable dynamic payload length on all pipes
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, 0x01); // Set feature bits off and enable the command NRF24L01_B0_TX_PYLD_NOACK
NRF24L01_SetPower();
NRF24L01_SetTxRxMode(TX_EN); // Clear data ready, data sent, retransmit and enable CRC 16bits, ready for TX
}
void NRF24L01_WriteReg(uint8_t reg, uint8_t data)
@@ -117,13 +129,13 @@ static uint8_t NRF24L01_GetDynamicPayloadSize()
return len;
}
void NRF24L01_Activate(uint8_t code)
/*void NRF24L01_Activate(uint8_t code)
{
NRF_CSN_off;
SPI_Write(ACTIVATE);
SPI_Write(code);
NRF_CSN_on;
}
}*/
void NRF24L01_SetBitrate(uint8_t bitrate)
{
@@ -171,11 +183,9 @@ void NRF24L01_SetPower()
power=NRF_POWER_0;
if(prev_power != power)
{
rf_setup = (rf_setup & 0xF9) | (power << 1);
rf_setup = (rf_setup & 0xF8) | (power << 1);
if(power==3)
rf_setup |=0x01; // Si24r01 full power, unused bit for NRF
else
rf_setup &=0xFE;
rf_setup |= 0x01; // Si24r01 full power, unused bit for NRF
NRF24L01_WriteReg(NRF24L01_06_RF_SETUP, rf_setup);
prev_power=power;
}
@@ -183,11 +193,11 @@ void NRF24L01_SetPower()
void NRF24L01_SetTxRxMode(enum TXRX_State mode)
{
NRF24L01_WriteReg(NRF24L01_07_STATUS, (1 << NRF24L01_07_RX_DR) //reset the flag(s)
| (1 << NRF24L01_07_TX_DS)
| (1 << NRF24L01_07_MAX_RT));
if(mode == TX_EN) {
NRF_CE_off;
NRF24L01_WriteReg(NRF24L01_07_STATUS, (1 << NRF24L01_07_RX_DR) //reset the flag(s)
| (1 << NRF24L01_07_TX_DS)
| (1 << NRF24L01_07_MAX_RT));
NRF24L01_WriteReg(NRF24L01_00_CONFIG, (1 << NRF24L01_00_EN_CRC) // switch to TX mode
| (1 << NRF24L01_00_CRCO)
| (1 << NRF24L01_00_PWR_UP));
@@ -198,9 +208,6 @@ void NRF24L01_SetTxRxMode(enum TXRX_State mode)
if (mode == RX_EN)
{
NRF_CE_off;
NRF24L01_WriteReg(NRF24L01_07_STATUS, (1 << NRF24L01_07_RX_DR) //reset the flag(s)
| (1 << NRF24L01_07_TX_DS)
| (1 << NRF24L01_07_MAX_RT));
NRF24L01_WriteReg(NRF24L01_00_CONFIG, (1 << NRF24L01_00_EN_CRC) // switch to RX mode
| (1 << NRF24L01_00_CRCO)
| (1 << NRF24L01_00_PWR_UP)
@@ -217,13 +224,6 @@ void NRF24L01_SetTxRxMode(enum TXRX_State mode)
void NRF24L01_Reset()
{
//** not in deviation but needed to hot switch between models
NRF24L01_Activate(0x73); // Activate feature register
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 0x00); // Disable dynamic payload length on all pipes
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, 0x00); // Set feature bits off
NRF24L01_Activate(0x73);
//**
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_Strobe(0xff); // NOP
@@ -244,425 +244,6 @@ uint8_t NRF24L01_packet_ack()
return PKT_PENDING;
}
///////////////
// XN297 emulation layer
uint8_t xn297_scramble_enabled=XN297_SCRAMBLED; //enabled by default
uint8_t xn297_addr_len;
uint8_t xn297_tx_addr[5];
uint8_t xn297_rx_addr[5];
uint8_t xn297_crc = 0;
// xn297 address / pcf / payload scramble table
const uint8_t xn297_scramble[] = {
0xE3, 0xB1, 0x4B, 0xEA, 0x85, 0xBC, 0xE5, 0x66,
0x0D, 0xAE, 0x8C, 0x88, 0x12, 0x69, 0xEE, 0x1F,
0xC7, 0x62, 0x97, 0xD5, 0x0B, 0x79, 0xCA, 0xCC,
0x1B, 0x5D, 0x19, 0x10, 0x24, 0xD3, 0xDC, 0x3F,
0x8E, 0xC5, 0x2F, 0xAA, 0x16, 0xF3, 0x95 };
// scrambled, standard mode crc xorout table
const uint16_t PROGMEM xn297_crc_xorout_scrambled[] = {
0x0000, 0x3448, 0x9BA7, 0x8BBB, 0x85E1, 0x3E8C,
0x451E, 0x18E6, 0x6B24, 0xE7AB, 0x3828, 0x814B,
0xD461, 0xF494, 0x2503, 0x691D, 0xFE8B, 0x9BA7,
0x8B17, 0x2920, 0x8B5F, 0x61B1, 0xD391, 0x7401,
0x2138, 0x129F, 0xB3A0, 0x2988, 0x23CA, 0xC0CB,
0x0C6C, 0xB329, 0xA0A1, 0x0A16, 0xA9D0 };
// unscrambled, standard mode crc xorout table
const uint16_t PROGMEM xn297_crc_xorout[] = {
0x0000, 0x3D5F, 0xA6F1, 0x3A23, 0xAA16, 0x1CAF,
0x62B2, 0xE0EB, 0x0821, 0xBE07, 0x5F1A, 0xAF15,
0x4F0A, 0xAD24, 0x5E48, 0xED34, 0x068C, 0xF2C9,
0x1852, 0xDF36, 0x129D, 0xB17C, 0xD5F5, 0x70D7,
0xB798, 0x5133, 0x67DB, 0xD94E, 0x0A5B, 0xE445,
0xE6A5, 0x26E7, 0xBDAB, 0xC379, 0x8E20 };
// scrambled enhanced mode crc xorout table
const uint16_t PROGMEM xn297_crc_xorout_scrambled_enhanced[] = {
0x0000, 0x7EBF, 0x3ECE, 0x07A4, 0xCA52, 0x343B,
0x53F8, 0x8CD0, 0x9EAC, 0xD0C0, 0x150D, 0x5186,
0xD251, 0xA46F, 0x8435, 0xFA2E, 0x7EBD, 0x3C7D,
0x94E0, 0x3D5F, 0xA685, 0x4E47, 0xF045, 0xB483,
0x7A1F, 0xDEA2, 0x9642, 0xBF4B, 0x032F, 0x01D2,
0xDC86, 0x92A5, 0x183A, 0xB760, 0xA953 };
// unscrambled enhanced mode crc xorout table
// unused so far
#ifdef XN297DUMP_NRF24L01_INO
const uint16_t xn297_crc_xorout_enhanced[] = {
0x0000, 0x8BE6, 0xD8EC, 0xB87A, 0x42DC, 0xAA89,
0x83AF, 0x10E4, 0xE83E, 0x5C29, 0xAC76, 0x1C69,
0xA4B2, 0x5961, 0xB4D3, 0x2A50, 0xCB27, 0x5128,
0x7CDB, 0x7A14, 0xD5D2, 0x57D7, 0xE31D, 0xCE42,
0x648D, 0xBF2D, 0x653B, 0x190C, 0x9117, 0x9A97,
0xABFC, 0xE68E, 0x0DE7, 0x28A2, 0x1965 };
#endif
void XN297_SetTXAddr(const uint8_t* addr, uint8_t len)
{
if (len > 5) len = 5;
if (len < 3) len = 3;
uint8_t buf[] = { 0x55, 0x0F, 0x71, 0x0C, 0x00 }; // bytes for XN297 preamble 0xC710F55 (28 bit)
xn297_addr_len = len;
if (xn297_addr_len < 4)
for (uint8_t i = 0; i < 4; ++i)
buf[i] = buf[i+1];
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, len-2);
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, buf, 5);
// Receive address is complicated. We need to use scrambled actual address as a receive address
// but the TX code now assumes fixed 4-byte transmit address for preamble. We need to adjust it
// first. Also, if the scrambled address begins with 1 nRF24 will look for preamble byte 0xAA
// instead of 0x55 to ensure enough 0-1 transitions to tune the receiver. Still need to experiment
// with receiving signals.
memcpy(xn297_tx_addr, addr, len);
}
void XN297_SetRXAddr(const uint8_t* addr, uint8_t len)
{
if (len > 5) len = 5;
if (len < 3) len = 3;
uint8_t buf[] = { 0, 0, 0, 0, 0 };
memcpy(buf, addr, len);
memcpy(xn297_rx_addr, addr, len);
for (uint8_t i = 0; i < xn297_addr_len; ++i)
{
buf[i] = xn297_rx_addr[i];
if(xn297_scramble_enabled)
buf[i] ^= xn297_scramble[xn297_addr_len-i-1];
}
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, len-2);
NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, buf, 5);
}
void XN297_Configure(uint8_t flags)
{
xn297_crc = !!(flags & _BV(NRF24L01_00_EN_CRC));
flags &= ~(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO));
NRF24L01_WriteReg(NRF24L01_00_CONFIG, flags & 0xFF);
}
void XN297_SetScrambledMode(const uint8_t mode)
{
xn297_scramble_enabled = mode;
}
void XN297_WritePayload(uint8_t* msg, uint8_t len)
{
uint8_t buf[32];
uint8_t last = 0;
if (xn297_addr_len < 4)
{
// If address length (which is defined by receive address length)
// is less than 4 the TX address can't fit the preamble, so the last
// byte goes here
buf[last++] = 0x55;
}
for (uint8_t i = 0; i < xn297_addr_len; ++i)
{
buf[last] = xn297_tx_addr[xn297_addr_len-i-1];
if(xn297_scramble_enabled)
buf[last] ^= xn297_scramble[i];
last++;
}
for (uint8_t i = 0; i < len; ++i)
{
// bit-reverse bytes in packet
buf[last] = bit_reverse(msg[i]);
if(xn297_scramble_enabled)
buf[last] ^= xn297_scramble[xn297_addr_len+i];
last++;
}
if (xn297_crc)
{
uint8_t offset = xn297_addr_len < 4 ? 1 : 0;
crc = 0xb5d2;
for (uint8_t i = offset; i < last; ++i)
crc16_update( buf[i], 8);
if(xn297_scramble_enabled)
crc ^= pgm_read_word(&xn297_crc_xorout_scrambled[xn297_addr_len - 3 + len]);
else
crc ^= pgm_read_word(&xn297_crc_xorout[xn297_addr_len - 3 + len]);
buf[last++] = crc >> 8;
buf[last++] = crc & 0xff;
}
NRF24L01_WritePayload(buf, last);
}
void XN297_WriteEnhancedPayload(uint8_t* msg, uint8_t len, uint8_t noack)
{
uint8_t packet[32];
uint8_t scramble_index=0;
uint8_t last = 0;
static uint8_t pid=0;
// address
if (xn297_addr_len < 4)
{
// If address length (which is defined by receive address length)
// is less than 4 the TX address can't fit the preamble, so the last
// byte goes here
packet[last++] = 0x55;
}
for (uint8_t i = 0; i < xn297_addr_len; ++i)
{
packet[last] = xn297_tx_addr[xn297_addr_len-i-1];
if(xn297_scramble_enabled)
packet[last] ^= xn297_scramble[scramble_index++];
last++;
}
// pcf
packet[last] = (len << 1) | (pid>>1);
if(xn297_scramble_enabled)
packet[last] ^= xn297_scramble[scramble_index++];
last++;
packet[last] = (pid << 7) | (noack << 6);
// payload
packet[last]|= bit_reverse(msg[0]) >> 2; // first 6 bit of payload
if(xn297_scramble_enabled)
packet[last] ^= xn297_scramble[scramble_index++];
for (uint8_t i = 0; i < len-1; ++i)
{
last++;
packet[last] = (bit_reverse(msg[i]) << 6) | (bit_reverse(msg[i+1]) >> 2);
if(xn297_scramble_enabled)
packet[last] ^= xn297_scramble[scramble_index++];
}
last++;
packet[last] = bit_reverse(msg[len-1]) << 6; // last 2 bit of payload
if(xn297_scramble_enabled)
packet[last] ^= xn297_scramble[scramble_index++] & 0xc0;
// crc
if (xn297_crc)
{
uint8_t offset = xn297_addr_len < 4 ? 1 : 0;
crc = 0xb5d2;
for (uint8_t i = offset; i < last; ++i)
crc16_update( packet[i], 8);
crc16_update( packet[last] & 0xc0, 2);
if (xn297_scramble_enabled)
crc ^= pgm_read_word(&xn297_crc_xorout_scrambled_enhanced[xn297_addr_len-3+len]);
//else
// crc ^= pgm_read_word(&xn297_crc_xorout_enhanced[xn297_addr_len - 3 + len]);
packet[last++] |= (crc >> 8) >> 2;
packet[last++] = ((crc >> 8) << 6) | ((crc & 0xff) >> 2);
packet[last++] = (crc & 0xff) << 6;
}
NRF24L01_WritePayload(packet, last);
pid++;
if(pid>3)
pid=0;
}
boolean XN297_ReadPayload(uint8_t* msg, uint8_t len)
{ //!!! Don't forget if using CRC to do a +2 on any of the used NRF24L01_11_RX_PW_Px !!!
uint8_t buf[32];
if (xn297_crc)
NRF24L01_ReadPayload(buf, len+2); // Read payload + CRC
else
NRF24L01_ReadPayload(buf, len);
// Decode payload
for(uint8_t i=0; i<len; i++)
{
uint8_t b_in=buf[i];
if(xn297_scramble_enabled)
b_in ^= xn297_scramble[i+xn297_addr_len];
msg[i] = bit_reverse(b_in);
}
if (!xn297_crc)
return true; // No CRC so OK by default...
// Calculate CRC
crc = 0xb5d2;
//process address
for (uint8_t i = 0; i < xn297_addr_len; ++i)
{
uint8_t b_in=xn297_rx_addr[xn297_addr_len-i-1];
if(xn297_scramble_enabled)
b_in ^= xn297_scramble[i];
crc16_update( b_in, 8);
}
//process payload
for (uint8_t i = 0; i < len; ++i)
crc16_update( buf[i], 8);
//xorout
if(xn297_scramble_enabled)
crc ^= pgm_read_word(&xn297_crc_xorout_scrambled[xn297_addr_len - 3 + len]);
else
crc ^= pgm_read_word(&xn297_crc_xorout[xn297_addr_len - 3 + len]);
//test
if( (crc >> 8) == buf[len] && (crc & 0xff) == buf[len+1])
return true; // CRC OK
return false; // CRC NOK
}
uint8_t XN297_ReadEnhancedPayload(uint8_t* msg, uint8_t len)
{ //!!! Don't forget do a +2 and if using CRC add +4 on any of the used NRF24L01_11_RX_PW_Px !!!
uint8_t buffer[32];
uint8_t pcf_size; // pcf payload size
if (xn297_crc)
NRF24L01_ReadPayload(buffer, len+4); // Read pcf + payload + CRC
else
NRF24L01_ReadPayload(buffer, len+2); // Read pcf + payload
pcf_size = buffer[0];
if(xn297_scramble_enabled)
pcf_size ^= xn297_scramble[xn297_addr_len];
pcf_size = pcf_size >> 1;
for(int i=0; i<len; i++)
{
msg[i] = bit_reverse((buffer[i+1] << 2) | (buffer[i+2] >> 6));
if(xn297_scramble_enabled)
msg[i] ^= bit_reverse((xn297_scramble[xn297_addr_len+i+1] << 2) |
(xn297_scramble[xn297_addr_len+i+2] >> 6));
}
if (!xn297_crc)
return pcf_size; // No CRC so OK by default...
// Calculate CRC
crc = 0xb5d2;
//process address
for (uint8_t i = 0; i < xn297_addr_len; ++i)
{
uint8_t b_in=xn297_rx_addr[xn297_addr_len-i-1];
if(xn297_scramble_enabled)
b_in ^= xn297_scramble[i];
crc16_update( b_in, 8);
}
//process payload
for (uint8_t i = 0; i < len+1; ++i)
crc16_update( buffer[i], 8);
crc16_update( buffer[len+1] & 0xc0, 2);
//xorout
if (xn297_scramble_enabled)
crc ^= pgm_read_word(&xn297_crc_xorout_scrambled_enhanced[xn297_addr_len-3+len]);
#ifdef XN297DUMP_NRF24L01_INO
else
crc ^= pgm_read_word(&xn297_crc_xorout_enhanced[xn297_addr_len - 3 + len]);
#endif
uint16_t crcxored=(buffer[len+1]<<10)|(buffer[len+2]<<2)|(buffer[len+3]>>6) ;
if( crc == crcxored)
return pcf_size; // CRC OK
return 0; // CRC NOK
}
// End of XN297 emulation
//
// HS6200 emulation layer
///////////////////////////
static uint8_t hs6200_crc;
static uint16_t hs6200_crc_init;
static uint8_t hs6200_tx_addr[5];
static uint8_t hs6200_address_length;
static const uint8_t hs6200_scramble[] = {
0x80,0xf5,0x3b,0x0d,0x6d,0x2a,0xf9,0xbc,
0x51,0x8e,0x4c,0xfd,0xc1,0x65,0xd0 }; // todo: find all 32 bytes ...
void HS6200_SetTXAddr(const uint8_t* addr, uint8_t len)
{
if(len < 4)
len = 4;
else if(len > 5)
len = 5;
// use nrf24 address field as a longer preamble
if(addr[len-1] & 0x80)
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, (uint8_t*)"\x55\x55\x55\x55\x55", 5);
else
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, (uint8_t*)"\xaa\xaa\xaa\xaa\xaa", 5);
// precompute address crc
crc = 0xffff;
for(int i=0; i<len; i++)
crc16_update(addr[len-1-i], 8);
hs6200_crc_init=crc;
memcpy(hs6200_tx_addr, addr, len);
hs6200_address_length = len;
}
static uint16_t hs6200_calc_crc(uint8_t* msg, uint8_t len)
{
uint8_t pos;
crc = hs6200_crc_init;
// pcf + payload
for(pos=0; pos < len-1; pos++)
crc16_update(msg[pos], 8);
// last byte (1 bit only)
if(len > 0)
crc16_update(msg[pos+1], 1);
return crc;
}
void HS6200_Configure(uint8_t flags)
{
hs6200_crc = !!(flags & _BV(NRF24L01_00_EN_CRC));
flags &= ~(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO));
NRF24L01_WriteReg(NRF24L01_00_CONFIG, flags & 0xff);
}
void HS6200_WritePayload(uint8_t* msg, uint8_t len)
{
uint8_t payload[32];
const uint8_t no_ack = 1; // never ask for an ack
static uint8_t pid;
uint8_t pos = 0;
if(len > sizeof(hs6200_scramble))
len = sizeof(hs6200_scramble);
// address
for(int i=hs6200_address_length-1; i>=0; i--)
payload[pos++] = hs6200_tx_addr[i];
// guard bytes
payload[pos++] = hs6200_tx_addr[0];
payload[pos++] = hs6200_tx_addr[0];
// packet control field
payload[pos++] = ((len & 0x3f) << 2) | (pid & 0x03);
payload[pos] = (no_ack & 0x01) << 7;
pid++;
// scrambled payload
if(len > 0)
{
payload[pos++] |= (msg[0] ^ hs6200_scramble[0]) >> 1;
for(uint8_t i=1; i<len; i++)
payload[pos++] = ((msg[i-1] ^ hs6200_scramble[i-1]) << 7) | ((msg[i] ^ hs6200_scramble[i]) >> 1);
payload[pos] = (msg[len-1] ^ hs6200_scramble[len-1]) << 7;
}
// crc
if(hs6200_crc)
{
uint16_t crc = hs6200_calc_crc(&payload[hs6200_address_length+2], len+2);
uint8_t hcrc = crc >> 8;
uint8_t lcrc = crc & 0xff;
payload[pos++] |= (hcrc >> 1);
payload[pos++] = (hcrc << 7) | (lcrc >> 1);
payload[pos++] = lcrc << 7;
}
NRF24L01_WritePayload(payload, pos);
delayMicroseconds(option+20);
NRF24L01_WritePayload(payload, pos);
}
//
// End of HS6200 emulation
////////////////////////////
///////////////
// LT8900 emulation layer
uint8_t LT8900_buffer[64];

View File

@@ -12,321 +12,108 @@
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef NRF24L01_INSTALLED
#if defined(CC2500_INSTALLED) || defined(NRF24L01_INSTALLED)
#include "iface_nrf250k.h"
static void __attribute__((unused)) XN297L_Init()
{
prev_option = option;
#ifdef CC2500_INSTALLED
if(option==0)
#endif
{//NRF
debugln("Using NRF");
PE1_on; //NRF24L01 antenna RF3 by default
PE2_off; //NRF24L01 antenna RF3 by default
NRF24L01_Initialize();
NRF24L01_SetTxRxMode(TX_EN);
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowldgement on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_SetBitrate(NRF24L01_BR_250K); // 250Kbps
NRF24L01_SetPower();
return;
}
//CC2500
#ifdef CC2500_INSTALLED
debugln("Using CC2500");
xn297_scramble_enabled=XN297_SCRAMBLED; //enabled by default
PE1_off; // antenna RF2
PE2_on;
CC2500_250K_Init();
#endif
}
static void __attribute__((unused)) XN297L_SetTXAddr(const uint8_t* addr, uint8_t len)
{
#ifdef CC2500_INSTALLED
if(option==0)
#endif
{//NRF
XN297_SetTXAddr(addr,len);
return;
}
//CC2500
#ifdef CC2500_INSTALLED
if (len > 5) len = 5;
if (len < 3) len = 3;
xn297_addr_len = len;
memcpy(xn297_tx_addr, addr, len);
#endif
}
static void __attribute__((unused)) XN297L_WritePayload(uint8_t* msg, uint8_t len)
{
#ifdef CC2500_INSTALLED
if(option==0)
#endif
{//NRF
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP));
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
XN297_WritePayload(msg, len);
return;
}
//CC2500
#ifdef CC2500_INSTALLED
uint8_t buf[32];
uint8_t last = 0;
uint8_t i;
// address
for (i = 0; i < xn297_addr_len; ++i)
{
buf[last] = xn297_tx_addr[xn297_addr_len - i - 1];
if(xn297_scramble_enabled)
buf[last] ^= xn297_scramble[i];
last++;
}
// payload
for (i = 0; i < len; ++i) {
// bit-reverse bytes in packet
buf[last] = bit_reverse(msg[i]);
if(xn297_scramble_enabled)
buf[last] ^= xn297_scramble[xn297_addr_len+i];
last++;
}
// crc
crc = 0xb5d2;
for (uint8_t i = 0; i < last; ++i)
crc16_update( buf[i], 8);
if(xn297_scramble_enabled)
crc ^= pgm_read_word(&xn297_crc_xorout_scrambled[xn297_addr_len - 3 + len]);
else
crc ^= pgm_read_word(&xn297_crc_xorout[xn297_addr_len - 3 + len]);
buf[last++] = crc >> 8;
buf[last++] = crc & 0xff;
// stop TX/RX
CC2500_Strobe(CC2500_SIDLE);
// flush tx FIFO
CC2500_Strobe(CC2500_SFTX);
// packet length
CC2500_WriteReg(CC2500_3F_TXFIFO, last + 3);
// xn297L preamble
CC2500_WriteRegisterMulti(CC2500_3F_TXFIFO, (uint8_t*)"\x71\x0f\x55", 3);
// xn297 packet
CC2500_WriteRegisterMulti(CC2500_3F_TXFIFO, buf, last);
// transmit
CC2500_Strobe(CC2500_STX);
#endif
}
static void __attribute__((unused)) XN297L_WriteEnhancedPayload(uint8_t* msg, uint8_t len, uint8_t noack)
{
#ifdef CC2500_INSTALLED
if(option==0)
#endif
{//NRF
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP));
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
XN297_WriteEnhancedPayload(msg, len, noack);
return;
}
//CC2500
#ifdef CC2500_INSTALLED
uint8_t buf[32];
uint8_t scramble_index=0;
uint8_t last = 0;
static uint8_t pid=0;
// address
for (uint8_t i = 0; i < xn297_addr_len; ++i)
{
buf[last] = xn297_tx_addr[xn297_addr_len-i-1];
if(xn297_scramble_enabled)
buf[last] ^= xn297_scramble[scramble_index++];
last++;
}
// pcf
buf[last] = (len << 1) | (pid>>1);
if(xn297_scramble_enabled)
buf[last] ^= xn297_scramble[scramble_index++];
last++;
buf[last] = (pid << 7) | (noack << 6);
// payload
buf[last]|= bit_reverse(msg[0]) >> 2; // first 6 bit of payload
if(xn297_scramble_enabled)
buf[last] ^= xn297_scramble[scramble_index++];
for (uint8_t i = 0; i < len-1; ++i)
{
last++;
buf[last] = (bit_reverse(msg[i]) << 6) | (bit_reverse(msg[i+1]) >> 2);
if(xn297_scramble_enabled)
buf[last] ^= xn297_scramble[scramble_index++];
}
last++;
buf[last] = bit_reverse(msg[len-1]) << 6; // last 2 bit of payload
if(xn297_scramble_enabled)
buf[last] ^= xn297_scramble[scramble_index++] & 0xc0;
// crc
//if (xn297_crc)
{
crc = 0xb5d2;
for (uint8_t i = 0; i < last; ++i)
crc16_update( buf[i], 8);
crc16_update( buf[last] & 0xc0, 2);
if (xn297_scramble_enabled)
crc ^= pgm_read_word(&xn297_crc_xorout_scrambled_enhanced[xn297_addr_len-3+len]);
//else
// crc ^= pgm_read_word(&xn297_crc_xorout_enhanced[xn297_addr_len - 3 + len]);
buf[last++] |= (crc >> 8) >> 2;
buf[last++] = ((crc >> 8) << 6) | ((crc & 0xff) >> 2);
buf[last++] = (crc & 0xff) << 6;
}
pid++;
pid &= 3;
// stop TX/RX
CC2500_Strobe(CC2500_SIDLE);
// flush tx FIFO
CC2500_Strobe(CC2500_SFTX);
// packet length
CC2500_WriteReg(CC2500_3F_TXFIFO, last + 3);
// xn297L preamble
CC2500_WriteRegisterMulti(CC2500_3F_TXFIFO, (uint8_t*)"\x71\x0F\x55", 3);
// xn297 packet
CC2500_WriteRegisterMulti(CC2500_3F_TXFIFO, buf, last);
// transmit
CC2500_Strobe(CC2500_STX);
#endif
}
static void __attribute__((unused)) XN297L_HoppingCalib(uint8_t num_freq)
{ //calibrate hopping frequencies
#ifdef CC2500_INSTALLED
if(option==0)
#endif
return; //NRF
#ifdef CC2500_INSTALLED
CC2500_250K_HoppingCalib(num_freq);
#endif
}
static void __attribute__((unused)) XN297L_Hopping(uint8_t index)
{
#ifdef CC2500_INSTALLED
if(option==0)
#endif
{//NRF
NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency[index]);
return;
}
#ifdef CC2500_INSTALLED
CC2500_250K_Hopping(index);
#endif
}
static void __attribute__((unused)) XN297L_RFChannel(uint8_t number)
{ //change channel
#ifdef CC2500_INSTALLED
if(option==0)
#endif
{//NRF
NRF24L01_WriteReg(NRF24L01_05_RF_CH, number);
return;
}
#ifdef CC2500_INSTALLED
CC2500_250K_RFChannel(number);
#endif
}
static void __attribute__((unused)) XN297L_SetPower()
{
#ifdef CC2500_INSTALLED
if(option==0)
#endif
{//NRF
NRF24L01_SetPower();
return;
}
#ifdef CC2500_INSTALLED
CC2500_SetPower();
#endif
}
static void __attribute__((unused)) XN297L_SetFreqOffset()
{ // Frequency offset
#ifdef CC2500_INSTALLED
if(option==0 && prev_option==0)
#endif
return; //NRF
#ifdef CC2500_INSTALLED
if (prev_option != option)
{
if(prev_option==0 || option==0)
CHANGE_PROTOCOL_FLAG_on; // switch from NRF <-> CC2500
CC2500_SetFreqOffset();
}
#endif
}
uint8_t cc2500_nrf_tx_addr[5], cc2500_nrf_addr_len;
static void __attribute__((unused)) NRF250K_SetTXAddr(uint8_t* addr, uint8_t len)
{
if (len > 5) len = 5;
if (len < 3) len = 3;
#ifdef CC2500_INSTALLED
if(option==0)
#endif
{//NRF
#if defined(CC2500_INSTALLED)
cc2500_nrf_addr_len = len;
memcpy(cc2500_nrf_tx_addr, addr, len);
#elif defined(NRF24L01_INSTALLED)
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, len-2);
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, addr, len);
return;
}
//CC2500
#ifdef CC2500_INSTALLED
CC2500_250K_NRF_SetTXAddr(addr, len);
#endif
}
static void __attribute__((unused)) NRF250K_WritePayload(uint8_t* msg, uint8_t len)
{
#ifdef CC2500_INSTALLED
if(option==0)
#endif
{//NRF
NRF24L01_FlushTx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, _BV(NRF24L01_07_TX_DS) | _BV(NRF24L01_07_RX_DR) | _BV(NRF24L01_07_MAX_RT));
NRF24L01_WritePayload(msg, len);
return;
}
//CC2500
#ifdef CC2500_INSTALLED
CC2500_250K_NRF_WritePayload(msg, len);
#if defined(CC2500_INSTALLED)
#if defined(ESKY150V2_CC2500_INO)
uint8_t buf[158];
#else
uint8_t buf[35];
#endif
uint8_t last = 0;
uint8_t i;
//nrf preamble
if(cc2500_nrf_tx_addr[cc2500_nrf_addr_len - 1] & 0x80)
buf[0]=0xAA;
else
buf[0]=0x55;
last++;
// address
for (i = 0; i < cc2500_nrf_addr_len; ++i)
buf[last++] = cc2500_nrf_tx_addr[cc2500_nrf_addr_len - i - 1];
// payload
for (i = 0; i < len; ++i)
buf[last++] = msg[i];
// crc
crc = 0xffff;
for (uint8_t i = 1; i < last; ++i)
crc16_update( buf[i], 8);
buf[last++] = crc >> 8;
buf[last++] = crc & 0xff;
buf[last++] = 0;
//for(uint8_t i=0;i<last;i++)
// debug("%02X ",buf[i]);
//debugln("");
// stop TX/RX
CC2500_Strobe(CC2500_SIDLE);
// flush tx FIFO
CC2500_Strobe(CC2500_SFTX);
// packet length
CC2500_WriteReg(CC2500_3F_TXFIFO, last);
// transmit nrf packet
uint8_t *buff=buf;
uint8_t status;
if(last>63)
{
CC2500_WriteRegisterMulti(CC2500_3F_TXFIFO, buff, 63);
CC2500_Strobe(CC2500_STX);
last-=63;
buff+=63;
while(last)
{//Loop until all the data is sent
do
{// Wait for the FIFO to become available
status=CC2500_ReadReg(CC2500_3A_TXBYTES | CC2500_READ_BURST);
}
while((status&0x7F)>31 && (status&0x80)==0);
if(last>31)
{//Send 31 bytes
CC2500_WriteRegisterMulti(CC2500_3F_TXFIFO, buff, 31);
last-=31;
buff+=31;
}
else
{//Send last bytes
CC2500_WriteRegisterMulti(CC2500_3F_TXFIFO, buff, last);
last=0;
}
}
}
else
{//Send packet
CC2500_WriteRegisterMulti(CC2500_3F_TXFIFO, buff, last);
CC2500_Strobe(CC2500_STX);
}
#elif defined(NRF24L01_INSTALLED)
if(len<=32)
{
NRF24L01_FlushTx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, _BV(NRF24L01_07_TX_DS) | _BV(NRF24L01_07_RX_DR) | _BV(NRF24L01_07_MAX_RT));
NRF24L01_WritePayload(msg, len);
}
#endif
}
static boolean __attribute__((unused)) NRF250K_IsPacketSent()
{
#ifdef CC2500_INSTALLED
if(option==0)
#endif
{ //NRF
return NRF24L01_ReadReg(NRF24L01_07_STATUS) & _BV(NRF24L01_07_TX_DS);
}
return true; // don't know on the CC2500 how to detect if the packet has been transmitted...
}
#endif
#endif

View File

@@ -42,19 +42,12 @@ static void __attribute__((unused)) NANORF_send_packet()
}
static void __attribute__((unused)) NANORF_init()
static void __attribute__((unused)) NANORF_RF_init()
{
NRF24L01_Initialize();
NRF24L01_SetTxRxMode(TX_EN);
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR , (uint8_t *)"Nano1",5);
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknoledgement
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable all data pipes (even though not used?)
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x03); // 5-byte RX/TX address
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0x00); // 4mS retransmit t/o, 15 tries (retries w/o AA?)
NRF24L01_WriteReg(NRF24L01_05_RF_CH, NANORF_RF_CHANNEL);
NRF24L01_SetBitrate(NRF24L01_BR_1M);
NRF24L01_SetPower(); // Set tx_power
NRF24L01_WriteReg(NRF24L01_00_CONFIG, _BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP)); //
}
uint16_t NANORF_callback()
@@ -63,11 +56,10 @@ uint16_t NANORF_callback()
return NANORF_PACKET_PERIOD;
}
uint16_t initNANORF()
void NANORF_init()
{
BIND_DONE;
NANORF_init();
return NANORF_INITIAL_WAIT;
NANORF_RF_init();
}
#endif

View File

@@ -13,9 +13,9 @@ Multiprotocol is distributed in the hope that it will be useful,
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(OMP_CC2500_INO)
#if defined(OMP_CCNRF_INO)
#include "iface_nrf250k.h"
#include "iface_xn297.h"
//#define FORCE_OMP_ORIGINAL_ID
//#define OMP_TELEM_DEBUG
@@ -29,11 +29,6 @@ Multiprotocol is distributed in the hope that it will be useful,
static void __attribute__((unused)) OMP_send_packet()
{
#ifdef OMP_HUB_TELEMETRY
if(option==0) option=1; // Select the CC2500 by default
PE1_off; PE2_on; // CC2500 antenna RF2
#endif
if(IS_BIND_IN_PROGRESS)
{
memcpy(packet,"BND",3);
@@ -49,15 +44,12 @@ static void __attribute__((unused)) OMP_send_packet()
packet_sent++;
packet_sent %= OMP_RF_NUM_CHANNELS-1; // Change telem RX channels every time
if(packet_sent==0)
{
packet[0] |= 0x40; // |0x40 to request RX telemetry
NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency[hopping_frequency_no]);
}
#endif
//hopping frequency
packet[0 ] |= hopping_frequency_no;
XN297L_Hopping(hopping_frequency_no);
XN297_Hopping(hopping_frequency_no);
hopping_frequency_no++;
hopping_frequency_no &= OMP_RF_NUM_CHANNELS-1; // 8 RF channels
@@ -100,31 +92,22 @@ static void __attribute__((unused)) OMP_send_packet()
packet[15] = 0x04;
}
XN297L_SetPower(); // Set tx_power
XN297L_SetFreqOffset(); // Set frequency offset
XN297L_WriteEnhancedPayload(packet, OMP_PAYLOAD_SIZE, packet_sent!=0);
XN297_SetPower(); // Set tx_power
XN297_SetFreqOffset(); // Set frequency offset
XN297_SetTxRxMode(TX_EN);
XN297_WriteEnhancedPayload(packet, OMP_PAYLOAD_SIZE, packet_sent!=0);
}
static void __attribute__((unused)) OMP_init()
static void __attribute__((unused)) OMP_RF_init()
{
//Config CC2500
#ifdef OMP_HUB_TELEMETRY
if(option==0)
option=1; // Select the CC2500
#endif
XN297L_Init();
XN297L_SetTXAddr((uint8_t*)"FLPBD", 5);
XN297L_HoppingCalib(OMP_RF_NUM_CHANNELS); // Calibrate all channels
XN297L_RFChannel(OMP_RF_BIND_CHANNEL); // Set bind channel
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_250K);
XN297_SetTXAddr((uint8_t*)"FLPBD", 5);
XN297_HoppingCalib(OMP_RF_NUM_CHANNELS); // Calibrate all channels
XN297_RFChannel(OMP_RF_BIND_CHANNEL); // Set bind channel
#ifdef OMP_HUB_TELEMETRY
//Config NRF
option=0; // Select the NRF
XN297L_Init();
XN297_Configure(_BV(NRF24L01_00_EN_CRC));
XN297_SetRXAddr(rx_tx_addr, 5); // Set the RX address
NRF24L01_SetTxRxMode(TXRX_OFF); // Turn it off for now
NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, OMP_PAYLOAD_SIZE + 4); // packet length +4 bytes of PCF+CRC
XN297_SetRXAddr(rx_tx_addr, OMP_PAYLOAD_SIZE);
#endif
}
@@ -168,6 +151,8 @@ enum {
uint16_t OMP_callback()
{
bool rx;
switch(phase)
{
case OMP_BIND:
@@ -177,23 +162,29 @@ uint16_t OMP_callback()
return OMP_PACKET_PERIOD;
case OMP_PREPDATA:
BIND_DONE;
XN297L_SetTXAddr(rx_tx_addr, 5);
XN297_SetTXAddr(rx_tx_addr, 5);
phase++; // OMP_DATA
case OMP_DATA:
#ifdef MULTI_SYNC
telemetry_set_input_sync(OMP_PACKET_PERIOD);
#endif
#ifdef OMP_HUB_TELEMETRY
rx = XN297_IsRX(); // Needed for the NRF24L01 since otherwise the bit gets cleared
#endif
OMP_send_packet();
#ifdef OMP_HUB_TELEMETRY
if(packet_sent == 0)
{
phase++; // OMP_RX
phase++; // OMP_RX
return OMP_WRITE_TIME;
}
else if(packet_sent == 1)
{
if( NRF24L01_ReadReg(NRF24L01_07_STATUS) & _BV(NRF24L01_07_RX_DR))
if( rx )
{ // a packet has been received
#ifdef OMP_TELEM_DEBUG
debug("RX :");
#endif
if(XN297_ReadEnhancedPayload(packet_in, OMP_PAYLOAD_SIZE) == OMP_PAYLOAD_SIZE)
{ // packet with good CRC and length
#ifdef OMP_TELEM_DEBUG
@@ -239,7 +230,7 @@ uint16_t OMP_callback()
debugln("");
#endif
}
NRF24L01_SetTxRxMode(TXRX_OFF);
XN297_SetTxRxMode(TXRX_OFF);
packet_count++;
if(packet_count>=100)
{//LQI calculation
@@ -255,21 +246,15 @@ uint16_t OMP_callback()
return OMP_PACKET_PERIOD;
#ifdef OMP_HUB_TELEMETRY
case OMP_RX:
NRF24L01_WriteReg(NRF24L01_07_STATUS, (1 << NRF24L01_07_RX_DR) //reset the flag(s)
| (1 << NRF24L01_07_TX_DS)
| (1 << NRF24L01_07_MAX_RT));
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_00_CONFIG, (1 << NRF24L01_00_PWR_UP) | (1 << NRF24L01_00_PRIM_RX) ); // Start RX
{
uint16_t start=(uint16_t)micros();
while ((uint16_t)((uint16_t)micros()-(uint16_t)start) < 500)
{
if(CC2500_ReadReg(CC2500_35_MARCSTATE | CC2500_READ_BURST) != 0x13)
if(XN297_IsPacketSent())
break;
}
}
NRF_CE_on;
PE1_on;PE2_off; // NRF24L01 antenna RF3
XN297_SetTxRxMode(RX_EN);
phase = OMP_DATA;
return OMP_PACKET_PERIOD-OMP_WRITE_TIME;
#endif
@@ -277,10 +262,10 @@ uint16_t OMP_callback()
return OMP_PACKET_PERIOD;
}
uint16_t initOMP()
void OMP_init()
{
OMP_initialize_txid();
OMP_init();
OMP_RF_init();
hopping_frequency_no = 0;
packet_sent = 0;
#ifdef OMP_HUB_TELEMETRY
@@ -294,7 +279,6 @@ uint16_t initOMP()
}
else
phase = OMP_PREPDATA;
return OMP_INITIAL_WAIT;
}
#endif

View File

@@ -13,7 +13,7 @@ Multiprotocol is distributed in the hope that it will be useful,
#if defined(POTENSIC_NRF24L01_INO)
#include "iface_nrf24l01.h"
#include "iface_xn297.h"
//#define FORCE_POTENSIC_ORIGINAL_ID
@@ -61,36 +61,25 @@ static void __attribute__((unused)) POTENSIC_send_packet()
}
POTENSIC_set_checksum();
packet[9] = hopping_frequency_no;
NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency[hopping_frequency_no&0x03]);
//RF channel
XN297_Hopping(hopping_frequency_no&0x03);
hopping_frequency_no++;
// Power on, TX mode, 2byte CRC
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP));
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
// Send
XN297_SetPower();
XN297_SetTxRxMode(TX_EN);
XN297_WritePayload(packet, POTENSIC_PACKET_SIZE);
NRF24L01_SetPower();
}
static void __attribute__((unused)) POTENSIC_init()
static void __attribute__((unused)) POTENSIC_RF_init()
{
NRF24L01_Initialize();
NRF24L01_SetTxRxMode(TX_EN);
NRF24L01_FlushTx();
NRF24L01_FlushRx();
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_1M);
if(IS_BIND_IN_PROGRESS)
XN297_SetTXAddr((uint8_t*)"\x01\x01\x01\x01\x06", 5); // Bind address
else
XN297_SetTXAddr(rx_tx_addr,5); // Normal address
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowldgement on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x03); // set address length (5 bytes)
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0x00); // no retransmits
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps
NRF24L01_SetPower();
NRF24L01_Activate(0x73); // Activate feature register
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 0x00); // Disable dynamic payload length on all pipes
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, 0x01);
NRF24L01_Activate(0x73);
}
static void __attribute__((unused)) POTENSIC_initialize_txid()
@@ -103,26 +92,25 @@ static void __attribute__((unused)) POTENSIC_initialize_txid()
uint16_t POTENSIC_callback()
{
if(IS_BIND_IN_PROGRESS)
#ifdef MULTI_SYNC
telemetry_set_input_sync(POTENSIC_PACKET_PERIOD);
#endif
if(bind_counter)
if(--bind_counter==0)
{
BIND_DONE;
XN297_SetTXAddr(rx_tx_addr,5);
}
#ifdef MULTI_SYNC
telemetry_set_input_sync(POTENSIC_PACKET_PERIOD);
#endif
POTENSIC_send_packet();
return POTENSIC_PACKET_PERIOD;
}
uint16_t initPOTENSIC(void)
void POTENSIC_init(void)
{
bind_counter = POTENSIC_BIND_COUNT;
POTENSIC_initialize_txid();
POTENSIC_init();
POTENSIC_RF_init();
hopping_frequency_no = 0;
return POTENSIC_INITIAL_WAIT;
}
#endif

View File

@@ -20,97 +20,143 @@
//#define PELIKAN_FORCE_ID
//#define PELIKAN_LITE_FORCE_ID
#define PELIKAN_LITE_FORCE_HOP
#define PELIKAN_LITE_FORCE_HOP // hop sequence creation is unknown
//#define PELIKAN_SCX24_FORCE_ID
#define PELIKAN_SCX24_FORCE_HOP // hop sequence creation is unknown
#define PELIKAN_BIND_COUNT 400
#define PELIKAN_BIND_COUNT 400 // 3sec
#define PELIKAN_BIND_RF 0x3C
#define PELIKAN_NUM_RF_CHAN 0x1D
#define PELIKAN_PACKET_PERIOD 7980
#define PELIKAN_LITE_PACKET_PERIOD 18000
#define PELIKAN_SCX24_PACKET_PERIOD 15069
static void __attribute__((unused)) pelikan_build_packet()
{
static boolean upper=false;
packet[0] = 0x15;
uint8_t sum;
uint16_t channel;
if(sub_protocol == PELIKAN_SCX24)
packet[0] = 0x11;
else //PELIKAN_PRO & PELIKAN_LITE
packet[0] = 0x15;
if(IS_BIND_IN_PROGRESS)
{
packet[1] = 0x04; //version??
packet[2] = rx_tx_addr[0];
packet[3] = rx_tx_addr[1];
packet[4] = rx_tx_addr[2];
packet[5] = rx_tx_addr[3];
if(sub_protocol==PELIKAN_PRO)
packet[6] = 0x05; //sub version??
else //PELIKAN_LITE
packet[6] = 0x03; //sub version??
packet[7] = 0x00; //??
packet[8] = 0x55; //??
if(sub_protocol == PELIKAN_SCX24)
{
packet[1] = 0x65; //??
packet[6] = 0x55; //??
packet[7] = 0xAA; //??
}
else
{//PELIKAN_PRO & PELIKAN_LITE
packet[1] = 0x04; //version??
if(sub_protocol==PELIKAN_PRO)
packet[6] = 0x05; //sub version??
else //PELIKAN_LITE
packet[6] = 0x03; //sub version??
packet[7] = 0x00; //??
}
packet[8] = 0x55; //??
packet_length = 10;
}
else
{
//ID
packet[1] = rx_tx_addr[0];
packet[7] = rx_tx_addr[1];
packet[12] = rx_tx_addr[2];
packet[13] = rx_tx_addr[3];
//Channels
uint8_t offset=upper?4:0;
uint16_t channel=convert_channel_16b_nolimit(CH_AETR[offset++], 153, 871,false);
uint8_t top=(channel>>2) & 0xC0;
packet[2] = channel;
channel=convert_channel_16b_nolimit(CH_AETR[offset++], 153, 871,false);
top|=(channel>>4) & 0x30;
packet[3] = channel;
channel=convert_channel_16b_nolimit(CH_AETR[offset++], 153, 871,false);
top|=(channel>>6) & 0x0C;
packet[4] = channel;
channel=convert_channel_16b_nolimit(CH_AETR[offset], 153, 871,false);
top|=(channel>>8) & 0x03;
packet[5] = channel;
packet[6] = top;
//Check
crc8=0x15;
for(uint8_t i=1;i<8;i++)
crc8+=packet[i];
packet[8]=crc8;
//Low/Up channel flag
packet[9]=upper?0xAA:0x00;
upper=!upper;
//Hopping counters
if(sub_protocol==PELIKAN_LITE || ++packet_count>4)
if(sub_protocol == PELIKAN_SCX24)
{
packet_count=0;
if(++hopping_frequency_no>=PELIKAN_NUM_RF_CHAN)
hopping_frequency_no=0;
//ID
packet[4] = rx_tx_addr[1];
//Channels
channel = Channel_data[0]; //STEERING: 1B1..23B..2C5 ???
packet[2] = channel >> 9;
packet[3] = channel >> 1;
channel = Channel_data[1]; //THROTTLE: 0DB..1FF..30E
packet[5] = channel >> 9;
packet[6] = channel >> 1;
channel = Channel_data[2]; //CH3: 055..3AA
packet[7] = channel >> 9;
packet[8] = channel >> 1;
//Hopping counters
if(++packet_count>2)
{
packet_count=0;
if(++hopping_frequency_no>=PELIKAN_NUM_RF_CHAN)
hopping_frequency_no=0;
}
//Length
packet_length = 14;
}
packet[10]=hopping_frequency_no;
packet[11]=packet_count;
packet_length = 15;
else
{//PELIKAN_PRO & PELIKAN_LITE
//ID
packet[7] = rx_tx_addr[1];
//Channels
uint8_t offset=upper?4:0;
channel=convert_channel_16b_nolimit(CH_AETR[offset++], 153, 871,false);
uint8_t top=(channel>>2) & 0xC0;
packet[2] = channel;
channel=convert_channel_16b_nolimit(CH_AETR[offset++], 153, 871,false);
top|=(channel>>4) & 0x30;
packet[3] = channel;
channel=convert_channel_16b_nolimit(CH_AETR[offset++], 153, 871,false);
top|=(channel>>6) & 0x0C;
packet[4] = channel;
channel=convert_channel_16b_nolimit(CH_AETR[offset], 153, 871,false);
top|=(channel>>8) & 0x03;
packet[5] = channel;
packet[6] = top;
//Check
sum=0x00;
for(uint8_t i=0;i<8;i++)
sum+=packet[i];
packet[8]=sum;
//Low/Up channel flag
packet[9]=upper?0xAA:0x00;
upper=!upper;
//Hopping counters
if(sub_protocol==PELIKAN_LITE || ++packet_count>4)
{
packet_count=0;
if(++hopping_frequency_no>=PELIKAN_NUM_RF_CHAN)
hopping_frequency_no=0;
}
//Length
packet_length = 15;
}
//Hopping
packet[packet_length-5] = hopping_frequency_no;
packet[packet_length-4] = packet_count;
//ID
packet[packet_length-3] = rx_tx_addr[2];
packet[packet_length-2] = rx_tx_addr[3];
}
//Check
crc8=0x15;
for(uint8_t i=1; i<packet_length-1 ;i++)
crc8+=packet[i];
packet[packet_length-1]=crc8;
sum=0x00;
for(uint8_t i=0; i<packet_length-1 ;i++)
sum+=packet[i];
packet[packet_length-1] = sum;
//Send
#ifdef DEBUG_SERIAL
if(packet[9]==0x00)
{
debug("C: %02X P(%d):",IS_BIND_IN_PROGRESS?PELIKAN_BIND_RF:hopping_frequency[hopping_frequency_no],packet_length);
for(uint8_t i=0;i<packet_length;i++)
debug(" %02X",packet[i]);
debugln("");
}
debug("C: %02X P(%d):",IS_BIND_IN_PROGRESS?PELIKAN_BIND_RF:hopping_frequency[hopping_frequency_no],packet_length);
for(uint8_t i=0;i<packet_length;i++)
debug(" %02X",packet[i]);
debugln("");
#endif
A7105_WriteData(packet_length, IS_BIND_IN_PROGRESS?PELIKAN_BIND_RF:hopping_frequency[hopping_frequency_no]);
A7105_SetPower();
}
uint16_t ReadPelikan()
uint16_t PELIKAN_callback()
{
if(phase==0)
{
@@ -125,17 +171,19 @@ uint16_t ReadPelikan()
BIND_DONE;
A7105_Strobe(A7105_STANDBY);
if(sub_protocol==PELIKAN_PRO)
A7105_WriteReg(A7105_03_FIFOI,0x28);
A7105_WriteReg(A7105_03_FIFOI,0x28); //????
else if(sub_protocol==PELIKAN_SCX24)
A7105_WriteReg(A7105_03_FIFOI,0x0D);
else//PELIKAN_LITE
A7105_WriteID(MProtocol_id);
}
}
#ifdef MULTI_SYNC
telemetry_set_input_sync(sub_protocol==PELIKAN_PRO?PELIKAN_PACKET_PERIOD:PELIKAN_LITE_PACKET_PERIOD);
telemetry_set_input_sync(packet_period);
#endif
pelikan_build_packet();
if(sub_protocol==PELIKAN_PRO || IS_BIND_IN_PROGRESS)
return PELIKAN_PACKET_PERIOD;
if(IS_BIND_IN_PROGRESS || sub_protocol != PELIKAN_LITE)
return packet_period;
//PELIKAN_LITE
phase++;
return 942;
@@ -241,19 +289,26 @@ const uint8_t PROGMEM pelikan_lite_hopp[][PELIKAN_NUM_RF_CHAN] = {
{ 0x46,0x2A,0x3E,0x5A,0x5C,0x24,0x4E,0x32,0x54,0x26,0x2C,0x34,0x56,0x1E,0x3A,0x3C,0x50,0x4A,0x2E,0x42,0x20,0x52,0x28,0x22,0x44,0x58,0x36,0x38,0x4C }
};
#endif
#ifdef PELIKAN_SCX24_FORCE_HOP
const uint8_t PROGMEM pelikan_scx24_hopp[][PELIKAN_NUM_RF_CHAN] = {
{ 0x1E,0x32,0x46,0x5A,0x44,0x58,0x2E,0x42,0x56,0x2C,0x40,0x54,0x2A,0x3E,0x52,0x28,0x3C,0x50,0x26,0x3A,0x4E,0x24,0x38,0x4C,0x22,0x36,0x4A,0x20,0x1A },
{ 0x2C,0x44,0x1E,0x52,0x56,0x22,0x3A,0x3E,0x34,0x4C,0x26,0x5A,0x50,0x2A,0x42,0x38,0x2E,0x46,0x20,0x54,0x4A,0x24,0x3C,0x32,0x28,0x40,0x58,0x1B,0x4E }
};
#endif
uint16_t initPelikan()
void PELIKAN_init()
{
A7105_Init();
if(IS_BIND_IN_PROGRESS || sub_protocol==PELIKAN_LITE)
A7105_WriteReg(A7105_03_FIFOI,0x10);
pelikan_init_hop();
bind_counter = PELIKAN_BIND_COUNT;
//ID from dump
#if defined(PELIKAN_FORCE_ID)
if(sub_protocol==PELIKAN_PRO)
{
if(sub_protocol==PELIKAN_PRO)
{
pelikan_init_hop();
//ID from dump
#if defined(PELIKAN_FORCE_ID)
rx_tx_addr[0]=0x0D; // hopping freq
rx_tx_addr[1]=0xF4; // hopping freq
rx_tx_addr[2]=0x50; // ID
@@ -261,16 +316,14 @@ uint16_t initPelikan()
// Fill frequency table
for(uint8_t i=0;i<PELIKAN_NUM_RF_CHAN;i++)
hopping_frequency[i]=pgm_read_byte_near(&pelikan_hopp[0][i]);
}
#endif
#if defined(PELIKAN_LITE_FORCE_ID) || defined(PELIKAN_LITE_FORCE_HOP)
#endif
packet_period = PELIKAN_PACKET_PERIOD;
}
else
{
bind_counter >>= 1;
if(sub_protocol==PELIKAN_LITE)
{
#if defined(PELIKAN_LITE_FORCE_ID)
// ID
rx_tx_addr[2]=0x60;
rx_tx_addr[3]=0x18;
#endif
#if defined(PELIKAN_LITE_FORCE_HOP)
// Hop frequency table
rx_tx_addr[0]=0x04; // hopping freq
@@ -278,16 +331,52 @@ uint16_t initPelikan()
for(uint8_t i=0;i<PELIKAN_NUM_RF_CHAN;i++)
hopping_frequency[i]=pgm_read_byte_near(&pelikan_lite_hopp[0][i]);
#endif
#if defined(PELIKAN_LITE_FORCE_ID)
// ID
rx_tx_addr[2]=0x60;
rx_tx_addr[3]=0x18;
#endif
MProtocol_id = ((uint32_t)rx_tx_addr[0]<<24)|((uint32_t)rx_tx_addr[1]<<16)|((uint32_t)rx_tx_addr[2]<<8)|(rx_tx_addr[3]);
if(IS_BIND_DONE)
A7105_WriteID(MProtocol_id);
packet_period = PELIKAN_LITE_PACKET_PERIOD;
}
#endif
else// if(sub_protocol==PELIKAN_SCX24)
{
#if defined(PELIKAN_SCX24_FORCE_HOP)
// Hop frequency table
uint8_t num=rx_tx_addr[3] & 0x01;
if(num)
{//1
rx_tx_addr[0]=0x10; // hopping freq TX2
rx_tx_addr[1]=0x63; // hopping freq TX2
}
else
{//0
rx_tx_addr[0]=0x12; // hopping freq TX1
rx_tx_addr[1]=0x46; // hopping freq TX1
}
MProtocol_id=((uint32_t)rx_tx_addr[0]<<24)|((uint32_t)rx_tx_addr[1]<<16)|((uint32_t)rx_tx_addr[2]<<8)|(rx_tx_addr[3]);
if(sub_protocol==PELIKAN_LITE && IS_BIND_DONE)
A7105_WriteID(MProtocol_id);
for(uint8_t i=0;i<PELIKAN_NUM_RF_CHAN;i++)
hopping_frequency[i]=pgm_read_byte_near(&pelikan_scx24_hopp[num][i]);
#endif
#if defined(PELIKAN_SCX24_FORCE_ID)
// ID
rx_tx_addr[2]=0x80; // TX1
rx_tx_addr[3]=0x19; // TX1
rx_tx_addr[2]=0x80; // TX2
rx_tx_addr[3]=0x22; // TX2
#endif
A7105_WriteReg(A7105_0E_DATA_RATE,0x03);
if(IS_BIND_DONE)
A7105_WriteReg(A7105_03_FIFOI,0x0D);
packet_period = PELIKAN_SCX24_PACKET_PERIOD;
}
}
hopping_frequency_no=PELIKAN_NUM_RF_CHAN;
packet_count=5;
phase=0;
return 2400;
hopping_frequency_no = PELIKAN_NUM_RF_CHAN;
packet_count = 5;
phase = 0;
bind_counter = PELIKAN_BIND_COUNT;
}
#endif

View File

@@ -155,27 +155,21 @@ static void __attribute__((unused)) PROPEL_data_packet()
NRF24L01_WritePayload(packet, PROPEL_PACKET_SIZE);
}
static void __attribute__((unused)) PROPEL_init()
static void __attribute__((unused)) PROPEL_RF_init()
{
NRF24L01_Initialize();
NRF24L01_WriteReg(NRF24L01_00_CONFIG, 0x7f);
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x3f); // AA on all pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x3f); // Enable all pipes
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x03); // 5-byte address
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0x36); // retransmit 1ms, 6 times
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps
NRF24L01_SetPower();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x07); // ?? match protocol capture
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x3f); // AA on all pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x3f); // Enable all pipes
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0x36); // retransmit 1ms, 6 times
NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, (uint8_t *)"\x99\x77\x55\x33\x11", PROPEL_ADDRESS_LENGTH); //Bind address
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, (uint8_t *)"\x99\x77\x55\x33\x11", PROPEL_ADDRESS_LENGTH); //Bind address
NRF24L01_WriteReg(NRF24L01_05_RF_CH, PROPEL_BIND_RF_CHANNEL);
NRF24L01_Activate(0x73); // Activate feature register
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 0x3f); // Enable dynamic payload length
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, 0x07); // Enable all features
// Beken 2425 register bank 1 initialized here in stock tx capture
// Hopefully won't matter for nRF compatibility
NRF24L01_FlushTx();
NRF24L01_SetTxRxMode(TX_EN);
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 0x3f); // Enable dynamic payload length
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, 0x07); // Enable all features
NRF24L01_SetTxRxMode(TX_EN); // Clear data ready, data sent, retransmit and enable CRC 16bits, ready for TX
}
const uint8_t PROGMEM PROPEL_hopping []= { 0x47,0x36,0x27,0x44,0x33,0x0D,0x3C,0x2E,0x1B,0x39,0x2A,0x18 };
@@ -256,11 +250,16 @@ uint16_t PROPEL_callback()
if (_BV(NRF24L01_07_RX_DR) & NRF24L01_ReadReg(NRF24L01_07_STATUS))
{// data received from the model
NRF24L01_ReadPayload(packet_in, PROPEL_PACKET_SIZE);
#if 1
for(uint8_t i=0; i<PROPEL_PACKET_SIZE; i++)
debug("%02X ",packet_in[i]);
debugln("");
#endif
if (packet_in[0] == 0xa3 && memcmp(&packet_in[1],rx_id,3)==0)
{
telemetry_counter++; //LQI
v_lipo1=packet[5]; //number of life left?
v_lipo2=packet[4]; //bit mask: 0x80=flying, 0x08=taking off, 0x04=landing, 0x00=landed/crashed
v_lipo1=packet_in[5]; //number of life left?
v_lipo2=packet_in[4]; //bit mask: 0x80=flying, 0x08=taking off, 0x04=landing, 0x00=landed/crashed
if(telemetry_lost==0)
telemetry_link=1;
}
@@ -281,14 +280,13 @@ uint16_t PROPEL_callback()
return PROPEL_PACKET_PERIOD;
}
uint16_t initPROPEL()
void PROPEL_init()
{
BIND_IN_PROGRESS; // autobind protocol
PROPEL_initialize_txid();
PROPEL_init();
PROPEL_RF_init();
hopping_frequency_no = 0;
phase=PROPEL_BIND1;
return PROPEL_INITIAL_WAIT;
}
#endif

View File

@@ -13,9 +13,9 @@
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(Q303_NRF24L01_INO)
#if defined(Q303_CCNRF_INO)
#include "iface_nrf24l01.h"
#include "iface_xn297.h"
#define Q303_BIND_COUNT 1500
#define Q303_INITIAL_WAIT 500
@@ -174,10 +174,10 @@ static uint8_t __attribute__((unused)) cx35_lastButton()
return command;
}
static void __attribute__((unused)) Q303_send_packet(uint8_t bind)
static void __attribute__((unused)) Q303_send_packet()
{
uint16_t aileron, elevator, throttle, rudder, slider;
if(bind)
if(IS_BIND_IN_PROGRESS)
{
packet[0] = 0xaa;
memcpy(&packet[1], rx_tx_addr + 1, 4);
@@ -185,6 +185,11 @@ static void __attribute__((unused)) Q303_send_packet(uint8_t bind)
}
else
{
//RF freq
XN297_Hopping(hopping_frequency_no++);
hopping_frequency_no %= rf_ch_num;
//Build packet
packet[0] = 0x55;
// sticks
switch(sub_protocol)
@@ -267,51 +272,27 @@ static void __attribute__((unused)) Q303_send_packet(uint8_t bind)
}
}
// Power on, TX mode, CRC enabled
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP));
NRF24L01_WriteReg(NRF24L01_05_RF_CH, bind ? Q303_RF_BIND_CHANNEL : hopping_frequency[hopping_frequency_no++]);
hopping_frequency_no %= rf_ch_num;
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
// Send
XN297_SetPower();
XN297_SetFreqOffset();
XN297_SetTxRxMode(TX_EN);
XN297_WritePayload(packet, packet_length);
NRF24L01_SetPower(); // Set tx_power
}
static void __attribute__((unused)) Q303_init()
static void __attribute__((unused)) Q303_RF_init()
{
const uint8_t bind_address[] = {0xcc,0xcc,0xcc,0xcc,0xcc};
NRF24L01_Initialize();
NRF24L01_SetTxRxMode(TX_EN);
switch(sub_protocol)
if(sub_protocol==Q303)
{
case CX35:
case CX10D:
case CX10WD:
NRF24L01_SetBitrate(NRF24L01_BR_1M);
break;
case Q303:
XN297_SetScrambledMode(XN297_UNSCRAMBLED);
NRF24L01_SetBitrate(NRF24L01_BR_250K);
break;
XN297_Configure(XN297_CRCEN, XN297_UNSCRAMBLED, XN297_250K);
XN297_HoppingCalib(rf_ch_num);
}
else
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_1M);
XN297_SetTXAddr(bind_address, 5);
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowldgement on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01);
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x03);
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0x00); // no retransmits
NRF24L01_SetPower();
NRF24L01_Activate(0x73); // Activate feature register
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 0x00); // Disable dynamic payload length on all pipes
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, 0x01); // Set feature bits on
NRF24L01_Activate(0x73);
XN297_RFChannel(Q303_RF_BIND_CHANNEL);
}
static void __attribute__((unused)) Q303_initialize_txid()
@@ -353,34 +334,27 @@ static void __attribute__((unused)) Q303_initialize_txid()
uint16_t Q303_callback()
{
if(IS_BIND_DONE)
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
Q303_send_packet(0);
}
else
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
if(bind_counter)
{
bind_counter--;
if (bind_counter == 0)
{
XN297_SetTXAddr(rx_tx_addr, 5);
packet_count = 0;
BIND_DONE;
}
else
{
Q303_send_packet(1);
bind_counter--;
}
}
Q303_send_packet();
return packet_period;
}
uint16_t initQ303()
void Q303_init()
{
Q303_initialize_txid();
Q303_init();
Q303_RF_init();
bind_counter = Q303_BIND_COUNT;
switch(sub_protocol)
{
@@ -407,7 +381,6 @@ uint16_t initQ303()
}
hopping_frequency_no = 0;
BIND_IN_PROGRESS; // autobind protocol
return Q303_INITIAL_WAIT;
}
#endif

View File

@@ -14,9 +14,9 @@ Multiprotocol is distributed in the hope that it will be useful,
*/
// Compatible with Q90C quad.
#if defined(Q90C_NRF24L01_INO)
#if defined(Q90C_CCNRF_INO)
#include "iface_nrf250k.h"
#include "iface_xn297.h"
//#define FORCE_Q90C_ORIGINAL_ID
@@ -51,7 +51,7 @@ static void __attribute__((unused)) Q90C_send_packet()
}
else
{
XN297L_Hopping(hopping_frequency_no++); // RF Freq
XN297_Hopping(hopping_frequency_no++); // RF Freq
hopping_frequency_no %= Q90C_RF_NUM_CHANNELS;
packet[0]= convert_channel_8b(THROTTLE); // 0..255
// A,E,R have weird scaling, 0x00-0xff range (unsigned) but center isn't 7f or 80
@@ -108,9 +108,11 @@ static void __attribute__((unused)) Q90C_send_packet()
packet[11] = sum ^ crc8;
}
XN297L_SetFreqOffset(); // Set frequency offset
XN297L_SetPower(); // Set tx_power
XN297L_WriteEnhancedPayload(packet, Q90C_PACKET_SIZE, 0);
// Send
XN297_SetFreqOffset(); // Set frequency offset
XN297_SetPower(); // Set tx_power
XN297_SetTxRxMode(TX_EN);
XN297_WriteEnhancedPayload(packet, Q90C_PACKET_SIZE, 0);
}
static void __attribute__((unused)) Q90C_initialize_txid()
@@ -131,15 +133,15 @@ static void __attribute__((unused)) Q90C_initialize_txid()
crc8=rx_tx_addr[0]^rx_tx_addr[1]^rx_tx_addr[2]^rx_tx_addr[3];
}
static void __attribute__((unused)) Q90C_init()
static void __attribute__((unused)) Q90C_RF_init()
{
XN297L_Init();
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_250K);
if(IS_BIND_IN_PROGRESS)
XN297L_SetTXAddr((uint8_t*)"\x4F\x43\x54\x81\x81", Q90C_ADDRESS_LENGTH);
XN297_SetTXAddr((uint8_t*)"\x4F\x43\x54\x81\x81", Q90C_ADDRESS_LENGTH);
else
XN297L_SetTXAddr(rx_tx_addr, Q90C_ADDRESS_LENGTH);
XN297L_HoppingCalib(Q90C_RF_NUM_CHANNELS); // Calibrate all channels
XN297L_RFChannel(Q90C_RF_BIND_CHANNEL); // Set bind channel
XN297_SetTXAddr(rx_tx_addr, Q90C_ADDRESS_LENGTH);
XN297_HoppingCalib(Q90C_RF_NUM_CHANNELS); // Calibrate all channels
XN297_RFChannel(Q90C_RF_BIND_CHANNEL); // Set bind channel
}
uint16_t Q90C_callback()
@@ -147,20 +149,20 @@ uint16_t Q90C_callback()
#ifdef MULTI_SYNC
telemetry_set_input_sync(Q90C_PACKET_PERIOD);
#endif
if(IS_BIND_IN_PROGRESS)
if(bind_counter)
if(--bind_counter==0)
{
BIND_DONE;
XN297L_SetTXAddr(rx_tx_addr, Q90C_ADDRESS_LENGTH);
XN297_SetTXAddr(rx_tx_addr, Q90C_ADDRESS_LENGTH);
}
Q90C_send_packet();
return Q90C_PACKET_PERIOD;
}
uint16_t initQ90C()
void Q90C_init()
{
Q90C_initialize_txid();
Q90C_init();
Q90C_RF_init();
hopping_frequency_no = 0;
packet_count = 0;
bind_counter=Q90C_BIND_COUNT;
@@ -170,7 +172,6 @@ uint16_t initQ90C()
Q90C_VTX=CH6_SW;
packet[8] = 0x00;
packet[9] = 0x00;
return Q90C_INITIAL_WAIT;
}
#endif

View File

@@ -16,7 +16,7 @@ Multiprotocol is distributed in the hope that it will be useful,
#if defined(REALACC_NRF24L01_INO)
#include "iface_nrf24l01.h"
#include "iface_xn297.h"
#define FORCE_REALACC_ORIGINAL_ID
@@ -51,7 +51,7 @@ static void __attribute__((unused)) REALACC_send_packet()
| GET_FLAG(CH5_SW, 0x01) // Flip
| GET_FLAG(CH6_SW, 0x80); // Light
NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency_no);
XN297_Hopping(hopping_frequency_no);
hopping_frequency_no++;
hopping_frequency_no %= REALACC_RF_NUM_CHANNELS;
XN297_WriteEnhancedPayload(packet, REALACC_PAYLOAD_SIZE,0);
@@ -86,19 +86,11 @@ static void __attribute__((unused)) REALACC_initialize_txid()
#endif
}
static void __attribute__((unused)) REALACC_init()
static void __attribute__((unused)) REALACC_RF_init()
{
NRF24L01_Initialize();
NRF24L01_SetTxRxMode(TX_EN);
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowldgement on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps
NRF24L01_SetPower();
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_1M);
XN297_SetTXAddr((uint8_t*)"MAIN", 4);
NRF24L01_WriteReg(NRF24L01_05_RF_CH, REALACC_BIND_RF_CHANNEL); // Set bind channel
XN297_RFChannel(REALACC_BIND_RF_CHANNEL); // Set bind channel
}
uint16_t REALACC_callback()
@@ -106,10 +98,8 @@ uint16_t REALACC_callback()
#ifdef MULTI_SYNC
telemetry_set_input_sync(REALACC_PACKET_PERIOD);
#endif
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP));
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
NRF24L01_SetPower();
XN297_SetPower();
XN297_SetTxRxMode(TX_EN);
if(IS_BIND_IN_PROGRESS)
{
REALACC_send_bind_packet();
@@ -124,14 +114,13 @@ uint16_t REALACC_callback()
return REALACC_PACKET_PERIOD;
}
uint16_t initREALACC()
void REALACC_init()
{
BIND_IN_PROGRESS; // autobind protocol
REALACC_initialize_txid();
REALACC_init();
REALACC_RF_init();
bind_counter=REALACC_BIND_COUNT;
hopping_frequency_no=0;
return REALACC_INITIAL_WAIT;
}
#endif

View File

@@ -17,7 +17,7 @@
#define RF2500_ADDR_LENGTH 4
uint8_t RF2500_payload_length, RF2500_tx_addr[RF2500_ADDR_LENGTH], RF2500_buf[80];
uint8_t RF2500_payload_length, RF2500_tx_addr[RF2500_ADDR_LENGTH], RF2500_buf[100];
bool RF2500_scramble_enabled;
static void __attribute__((unused)) RF2500_Init(uint8_t payload_length, bool scramble)
@@ -35,9 +35,17 @@ static void __attribute__((unused)) RF2500_SetTXAddr(const uint8_t* addr)
static void __attribute__((unused)) RF2500_BuildPayload(uint8_t* buffer)
{
const uint8_t RF2500_scramble[] = { 0xD0, 0x9E, 0x53, 0x33, 0xD8, 0xBA, 0x98, 0x08, 0x24, 0xCB, 0x3B, 0xFC, 0x71, 0xA3, 0xF4, 0x55 };
const uint16_t RF2500_crc_xorout_scramble = 0xAEE4;
const uint8_t RF2500_scramble[] = { 0xD0, 0x9E, 0x53, 0x33, 0xD8, 0xBA, 0x98, 0x08, 0x24, 0xCB, 0x3B, 0xFC, 0x71, 0xA3, 0xF4, 0x55, 0x68, 0x4F, 0xA9 }; //0x4F: unsure
uint16_t RF2500_crc_xorout_scramble;
if(RF2500_payload_length == 16)
RF2500_crc_xorout_scramble = 0xAEE4;
else //19
RF2500_crc_xorout_scramble = 0xE7C5;
#if 0
for(uint8_t i=0; i<RF2500_payload_length; i++)
debug("%02X ", buffer[i]);
#endif
//Scramble the incoming buffer
if(RF2500_scramble_enabled)
for(uint8_t i=0; i<RF2500_payload_length; i++)
@@ -50,6 +58,10 @@ static void __attribute__((unused)) RF2500_BuildPayload(uint8_t* buffer)
buffer[RF2500_payload_length ] = bit_reverse(crc>>8);
buffer[RF2500_payload_length+1] = bit_reverse(crc);
#if 0
debugln("C:%02X %02X",buffer[RF2500_payload_length ], buffer[RF2500_payload_length+1]);
#endif
if(RF2500_scramble_enabled)
{
buffer[RF2500_payload_length ] ^= RF2500_crc_xorout_scramble>>8;

View File

@@ -95,7 +95,7 @@ static void __attribute__((unused)) RLINK_hop()
hopping_frequency[rf_ch_num]=12*16+inc;
}
static void __attribute__((unused)) RLINK_init()
static void __attribute__((unused)) RLINK_TXID_init()
{
#ifdef RLINK_FORCE_ID
//surface RC6GS
@@ -139,21 +139,11 @@ static void __attribute__((unused)) RLINK_rf_init()
CC2500_WriteReg(5, 0xDC);
}
prev_option = option;
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
CC2500_SetTxRxMode(TX_EN);
}
static void __attribute__((unused)) RLINK_tune_freq()
{
if ( prev_option != option )
{
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
prev_option = option ;
}
}
static void __attribute__((unused)) RLINK_send_packet()
{
static uint32_t pseudo=0;
@@ -168,6 +158,9 @@ static void __attribute__((unused)) RLINK_send_packet()
// header
if(packet_count>3)
packet[1] = 0x02; // 0x02 telemetry request flag
else
packet[1] = 0x00; // no telemetry
switch(sub_protocol)
{
case RLINK_SURFACE:
@@ -245,7 +238,7 @@ uint16_t RLINK_callback()
telemetry_set_input_sync(RLINK_TIMING_PROTO);
#endif
CC2500_SetPower();
RLINK_tune_freq();
CC2500_SetFreqOffset();
RLINK_send_packet();
#if not defined RLINK_HUB_TELEMETRY
return RLINK_TIMING_PROTO;
@@ -278,7 +271,7 @@ uint16_t RLINK_callback()
TX_RSSI -= 128;
else
TX_RSSI += 128;
RX_RSSI=packet_in[7]; //Should be packet_in[7]-256 but since it's an uint8_t...
RX_RSSI=packet_in[7]&0x7F; //Should be packet_in[7]-256 but since it's an uint8_t...
v_lipo1=packet_in[8]<<1; //RX Batt
v_lipo2=packet_in[9]; //Batt
telemetry_link=1; //Send telemetry out
@@ -306,14 +299,13 @@ uint16_t RLINK_callback()
return 0;
}
uint16_t initRLINK()
void RLINK_init()
{
BIND_DONE; // Not a TX bind protocol
RLINK_init();
RLINK_TXID_init();
RLINK_rf_init();
packet_count = 0;
phase = RLINK_DATA;
return 10000;
}
#endif

View File

@@ -96,17 +96,13 @@ static void REDPINE_data_frame() {
packet[10] = REDPINE_LOOPTIME_SLOW;
}
static uint16_t ReadREDPINE()
uint16_t REDPINE_callback()
{
if ( prev_option != option )
{ // Frequency adjust
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
prev_option = option ;
}
CC2500_SetFreqOffset();
if(IS_BIND_IN_PROGRESS)
{
if (state == REDPINE_BIND) {
REDPINE_init(0);
REDPINE_RF_init(0);
}
REDPINE_set_channel(49);
CC2500_SetTxRxMode(TX_EN);
@@ -118,26 +114,22 @@ static uint16_t ReadREDPINE()
if(--bind_counter==0)
{
BIND_DONE;
REDPINE_init(sub_protocol);
REDPINE_RF_init(sub_protocol);
}
return 4000;
}
else
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
CC2500_SetTxRxMode(TX_EN);
REDPINE_set_channel(hopping_frequency_no);
CC2500_SetPower();
CC2500_Strobe(CC2500_SFRX);
REDPINE_data_frame();
CC2500_Strobe(CC2500_SIDLE);
hopping_frequency_no = (hopping_frequency_no + 1) % 49;
CC2500_WriteData(packet, REDPINE_PACKET_SIZE);
return packet_period;
}
return 1;
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
CC2500_SetTxRxMode(TX_EN);
REDPINE_set_channel(hopping_frequency_no);
CC2500_SetPower();
CC2500_Strobe(CC2500_SFRX);
REDPINE_data_frame();
CC2500_Strobe(CC2500_SIDLE);
hopping_frequency_no = (hopping_frequency_no + 1) % 49;
CC2500_WriteData(packet, REDPINE_PACKET_SIZE);
return packet_period;
}
// register, fast 250k, slow
@@ -179,7 +171,7 @@ static const uint8_t REDPINE_init_data[][3] = {
{CC2500_3E_PATABLE, 0xff, 0xff}
};
static void REDPINE_init(uint8_t format)
static void REDPINE_RF_init(uint8_t format)
{
CC2500_Reset();
@@ -189,7 +181,6 @@ static void REDPINE_init(uint8_t format)
CC2500_WriteReg(REDPINE_init_data[i][0], REDPINE_init_data[i][format+1]);
}
prev_option = option;
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
CC2500_Strobe(CC2500_SIDLE);
@@ -204,7 +195,7 @@ static void REDPINE_init(uint8_t format)
}
}
static uint16_t initREDPINE()
void REDPINE_init()
{
hopping_frequency_no = 0;
// Used from kn_nrf24l01.c : kn_calculate_freqency_hopping_channels
@@ -237,8 +228,7 @@ static uint16_t initREDPINE()
packet_period = REDPINE_LOOPTIME_SLOW*1000;
bind_counter=REDPINE_BIND;
REDPINE_init(sub_protocol);
REDPINE_RF_init(sub_protocol);
CC2500_SetTxRxMode(TX_EN); // enable PA
return 10000;
}
#endif

View File

@@ -29,15 +29,9 @@ const uint8_t PROGMEM SHENQI_Freq[] = {
10,60,10,50,30,40,
20,10,40,30,60,20 };
void SHENQI_init()
void SHENQI_RF_init()
{
NRF24L01_Initialize();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowldgement on all data pipes
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps
NRF24L01_SetPower();
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x03); // 5 bytes rx/tx address
LT8900_Config(4, 8, _BV(LT8900_CRC_ON)|_BV(LT8900_PACKET_LENGTH_EN), 0xAA);
LT8900_SetChannel(2);
@@ -116,14 +110,13 @@ uint16_t SHENQI_callback()
return packet_period;
}
uint16_t initSHENQI()
void SHENQI_init()
{
BIND_IN_PROGRESS; // autobind protocol
SHENQI_init();
SHENQI_RF_init();
hopping_frequency_no = 0;
packet_count=0;
packet_period=500;
return 1000;
}
#endif

View File

@@ -1,282 +1,281 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// Last sync with deviation main github branch
#if defined(SLT_NRF24L01_INO)
#include "iface_nrf250k.h"
//#define SLT_Q200_FORCE_ID
// For code readability
#define SLT_PAYLOADSIZE_V1 7
#define SLT_PAYLOADSIZE_V2 11
#define SLT_NFREQCHANNELS 15
#define SLT_TXID_SIZE 4
#define SLT_BIND_CHANNEL 0x50
enum{
// flags going to packet[6] (Q200)
FLAG_Q200_FMODE = 0x20,
FLAG_Q200_VIDON = 0x10,
FLAG_Q200_FLIP = 0x08,
FLAG_Q200_VIDOFF= 0x04,
};
enum{
// flags going to packet[6] (MR100 & Q100)
FLAG_MR100_FMODE = 0x20,
FLAG_MR100_FLIP = 0x04,
FLAG_MR100_VIDEO = 0x02,
FLAG_MR100_PICTURE = 0x01,
};
enum {
SLT_BUILD=0,
SLT_DATA1,
SLT_DATA2,
SLT_DATA3,
SLT_BIND1,
SLT_BIND2,
};
static void __attribute__((unused)) SLT_init()
{
NRF250K_Init();
NRF250K_SetTXAddr(rx_tx_addr, SLT_TXID_SIZE);
}
static void __attribute__((unused)) SLT_set_freq(void)
{
// Frequency hopping sequence generation
for (uint8_t i = 0; i < SLT_TXID_SIZE; ++i)
{
uint8_t next_i = (i+1) % SLT_TXID_SIZE; // is & 3 better than % 4 ?
uint8_t base = i < 2 ? 0x03 : 0x10;
hopping_frequency[i*4 + 0] = (rx_tx_addr[i] & 0x3f) + base;
hopping_frequency[i*4 + 1] = (rx_tx_addr[i] >> 2) + base;
hopping_frequency[i*4 + 2] = (rx_tx_addr[i] >> 4) + (rx_tx_addr[next_i] & 0x03)*0x10 + base;
hopping_frequency[i*4 + 3] = (rx_tx_addr[i] >> 6) + (rx_tx_addr[next_i] & 0x0f)*0x04 + base;
}
// Unique freq
uint8_t max_freq=0x50; //V1 and V2
if(sub_protocol==Q200)
max_freq=45;
for (uint8_t i = 0; i < SLT_NFREQCHANNELS; ++i)
{
if(sub_protocol==Q200 && hopping_frequency[i] >= max_freq)
hopping_frequency[i] = hopping_frequency[i] - max_freq + 0x03;
uint8_t done = 0;
while (!done)
{
done = 1;
for (uint8_t j = 0; j < i; ++j)
if (hopping_frequency[i] == hopping_frequency[j])
{
done = 0;
hopping_frequency[i] += 7;
if (hopping_frequency[i] >= max_freq)
hopping_frequency[i] = hopping_frequency[i] - max_freq + 0x03;
}
}
}
//Bind channel
hopping_frequency[SLT_NFREQCHANNELS]=SLT_BIND_CHANNEL;
//Calib all channels
NRF250K_HoppingCalib(SLT_NFREQCHANNELS+1);
}
static void __attribute__((unused)) SLT_wait_radio()
{
if (packet_sent)
while (!NRF250K_IsPacketSent());
packet_sent = 0;
}
static void __attribute__((unused)) SLT_send_packet(uint8_t len)
{
SLT_wait_radio();
NRF250K_WritePayload(packet, len);
packet_sent = 1;
}
static void __attribute__((unused)) SLT_build_packet()
{
static uint8_t calib_counter=0;
// Set radio channel - once per packet batch
NRF250K_SetFreqOffset(); // Set frequency offset
NRF250K_Hopping(hopping_frequency_no);
if (++hopping_frequency_no >= SLT_NFREQCHANNELS)
hopping_frequency_no = 0;
// aileron, elevator, throttle, rudder, gear, pitch
uint8_t e = 0; // byte where extension 2 bits for every 10-bit channel are packed
for (uint8_t i = 0; i < 4; ++i)
{
uint16_t v = convert_channel_10b(CH_AETR[i], false);
if(sub_protocol>SLT_V2 && (i==CH2 || i==CH3) )
v=1023-v; // reverse throttle and elevator channels for Q100/Q200/MR100 protocols
packet[i] = v;
e = (e >> 2) | (uint8_t) ((v >> 2) & 0xC0);
}
// Extra bits for AETR
packet[4] = e;
// 8-bit channels
packet[5] = convert_channel_8b(CH5);
packet[6] = convert_channel_8b(CH6);
if(sub_protocol!=SLT_V1)
{
if(sub_protocol==Q200)
packet[6] = GET_FLAG(CH9_SW , FLAG_Q200_FMODE)
|GET_FLAG(CH10_SW, FLAG_Q200_FLIP)
|GET_FLAG(CH11_SW, FLAG_Q200_VIDON)
|GET_FLAG(CH12_SW, FLAG_Q200_VIDOFF);
else if(sub_protocol==MR100 || sub_protocol==Q100)
packet[6] = GET_FLAG(CH9_SW , FLAG_MR100_FMODE)
|GET_FLAG(CH10_SW, FLAG_MR100_FLIP)
|GET_FLAG(CH11_SW, FLAG_MR100_VIDEO) // Does not exist on the Q100 but...
|GET_FLAG(CH12_SW, FLAG_MR100_PICTURE); // Does not exist on the Q100 but...
packet[7]=convert_channel_8b(CH7);
packet[8]=convert_channel_8b(CH8);
packet[9]=0xAA; //normal mode for Q100/Q200, unknown for V2/MR100
packet[10]=0x00; //normal mode for Q100/Q200, unknown for V2/MR100
if((sub_protocol==Q100 || sub_protocol==Q200) && CH13_SW)
{//Calibrate
packet[9]=0x77; //enter calibration
if(calib_counter>=20 && calib_counter<=25) // 7 packets for Q100 / 3 packets for Q200
packet[10]=0x20; //launch calibration
calib_counter++;
if(calib_counter>250) calib_counter=250;
}
else
calib_counter=0;
}
}
static void __attribute__((unused)) SLT_send_bind_packet()
{
SLT_wait_radio();
NRF250K_Hopping(SLT_NFREQCHANNELS); //Bind channel
BIND_IN_PROGRESS; //Limit TX power to bind level
NRF250K_SetPower();
BIND_DONE;
NRF250K_SetTXAddr((uint8_t *)"\x7E\xB8\x63\xA9", SLT_TXID_SIZE);
memcpy((void*)packet,(void*)rx_tx_addr,SLT_TXID_SIZE);
if(phase==SLT_BIND2)
SLT_send_packet(SLT_TXID_SIZE);
else // SLT_BIND1
SLT_send_packet(SLT_PAYLOADSIZE_V2);
}
#define SLT_TIMING_BUILD 1000
#define SLT_V1_TIMING_PACKET 1000
#define SLT_V2_TIMING_PACKET 2042
#define SLT_V1_TIMING_BIND2 1000
#define SLT_V2_TIMING_BIND1 6507
#define SLT_V2_TIMING_BIND2 2112
uint16_t SLT_callback()
{
switch (phase)
{
case SLT_BUILD:
#ifdef MULTI_SYNC
telemetry_set_input_sync(sub_protocol==SLT_V1?20000:13730);
#endif
SLT_build_packet();
NRF250K_SetPower(); //Change power level
NRF250K_SetTXAddr(rx_tx_addr, SLT_TXID_SIZE);
phase++;
return SLT_TIMING_BUILD;
case SLT_DATA1:
case SLT_DATA2:
phase++;
if(sub_protocol==SLT_V1)
{
SLT_send_packet(SLT_PAYLOADSIZE_V1);
return SLT_V1_TIMING_PACKET;
}
else //V2
{
SLT_send_packet(SLT_PAYLOADSIZE_V2);
return SLT_V2_TIMING_PACKET;
}
case SLT_DATA3:
if(sub_protocol==SLT_V1)
SLT_send_packet(SLT_PAYLOADSIZE_V1);
else //V2
SLT_send_packet(SLT_PAYLOADSIZE_V2);
if (++packet_count >= 100)
{// Send bind packet
packet_count = 0;
if(sub_protocol==SLT_V1)
{
phase=SLT_BIND2;
return SLT_V1_TIMING_BIND2;
}
else //V2
{
phase=SLT_BIND1;
return SLT_V2_TIMING_BIND1;
}
}
else
{// Continue to send normal packets
phase = SLT_BUILD;
if(sub_protocol==SLT_V1)
return 20000-SLT_TIMING_BUILD;
else //V2
return 13730-SLT_TIMING_BUILD;
}
case SLT_BIND1:
SLT_send_bind_packet();
phase++;
return SLT_V2_TIMING_BIND2;
case SLT_BIND2:
SLT_send_bind_packet();
phase = SLT_BUILD;
if(sub_protocol==SLT_V1)
return 20000-SLT_TIMING_BUILD-SLT_V1_TIMING_BIND2;
else //V2
return 13730-SLT_TIMING_BUILD-SLT_V2_TIMING_BIND1-SLT_V2_TIMING_BIND2;
}
return 19000;
}
uint16_t initSLT()
{
BIND_DONE; // Not a TX bind protocol
packet_count = 0;
packet_sent = 0;
hopping_frequency_no = 0;
if(sub_protocol==Q200)
{ //Q200: Force high part of the ID otherwise it won't bind
rx_tx_addr[0]=0x01;
rx_tx_addr[1]=0x02;
#ifdef SLT_Q200_FORCE_ID // ID taken from TX dumps
rx_tx_addr[0]=0x01;rx_tx_addr[1]=0x02;rx_tx_addr[2]=0x6A;rx_tx_addr[3]=0x31;
/* rx_tx_addr[0]=0x01;rx_tx_addr[1]=0x02;rx_tx_addr[2]=0x0B;rx_tx_addr[3]=0x57;*/
#endif
}
SLT_init();
SLT_set_freq();
phase = SLT_BUILD;
return 50000;
}
#endif
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// Last sync with deviation main github branch
#if defined(SLT_CCNRF_INO)
#include "iface_nrf250k.h"
//#define SLT_Q200_FORCE_ID
// For code readability
#define SLT_PAYLOADSIZE_V1 7
#define SLT_PAYLOADSIZE_V2 11
#define SLT_NFREQCHANNELS 15
#define SLT_TXID_SIZE 4
#define SLT_BIND_CHANNEL 0x50
enum{
// flags going to packet[6] (Q200)
FLAG_Q200_FMODE = 0x20,
FLAG_Q200_VIDON = 0x10,
FLAG_Q200_FLIP = 0x08,
FLAG_Q200_VIDOFF= 0x04,
};
enum{
// flags going to packet[6] (MR100 & Q100)
FLAG_MR100_FMODE = 0x20,
FLAG_MR100_FLIP = 0x04,
FLAG_MR100_VIDEO = 0x02,
FLAG_MR100_PICTURE = 0x01,
};
enum {
SLT_BUILD=0,
SLT_DATA1,
SLT_DATA2,
SLT_DATA3,
SLT_BIND1,
SLT_BIND2,
};
static void __attribute__((unused)) SLT_RF_init()
{
NRF250K_Init();
NRF250K_SetTXAddr(rx_tx_addr, SLT_TXID_SIZE);
}
static void __attribute__((unused)) SLT_set_freq(void)
{
// Frequency hopping sequence generation
for (uint8_t i = 0; i < SLT_TXID_SIZE; ++i)
{
uint8_t next_i = (i+1) % SLT_TXID_SIZE; // is & 3 better than % 4 ?
uint8_t base = i < 2 ? 0x03 : 0x10;
hopping_frequency[i*4 + 0] = (rx_tx_addr[i] & 0x3f) + base;
hopping_frequency[i*4 + 1] = (rx_tx_addr[i] >> 2) + base;
hopping_frequency[i*4 + 2] = (rx_tx_addr[i] >> 4) + (rx_tx_addr[next_i] & 0x03)*0x10 + base;
hopping_frequency[i*4 + 3] = (rx_tx_addr[i] >> 6) + (rx_tx_addr[next_i] & 0x0f)*0x04 + base;
}
// Unique freq
uint8_t max_freq=0x50; //V1 and V2
if(sub_protocol==Q200)
max_freq=45;
for (uint8_t i = 0; i < SLT_NFREQCHANNELS; ++i)
{
if(sub_protocol==Q200 && hopping_frequency[i] >= max_freq)
hopping_frequency[i] = hopping_frequency[i] - max_freq + 0x03;
uint8_t done = 0;
while (!done)
{
done = 1;
for (uint8_t j = 0; j < i; ++j)
if (hopping_frequency[i] == hopping_frequency[j])
{
done = 0;
hopping_frequency[i] += 7;
if (hopping_frequency[i] >= max_freq)
hopping_frequency[i] = hopping_frequency[i] - max_freq + 0x03;
}
}
}
//Bind channel
hopping_frequency[SLT_NFREQCHANNELS]=SLT_BIND_CHANNEL;
//Calib all channels
NRF250K_HoppingCalib(SLT_NFREQCHANNELS+1);
}
static void __attribute__((unused)) SLT_wait_radio()
{
if (packet_sent)
while (!NRF250K_IsPacketSent());
packet_sent = 0;
}
static void __attribute__((unused)) SLT_send_packet(uint8_t len)
{
SLT_wait_radio();
NRF250K_WritePayload(packet, len);
packet_sent = 1;
}
static void __attribute__((unused)) SLT_build_packet()
{
static uint8_t calib_counter=0;
// Set radio channel - once per packet batch
NRF250K_SetFreqOffset(); // Set frequency offset
NRF250K_Hopping(hopping_frequency_no);
if (++hopping_frequency_no >= SLT_NFREQCHANNELS)
hopping_frequency_no = 0;
// aileron, elevator, throttle, rudder, gear, pitch
uint8_t e = 0; // byte where extension 2 bits for every 10-bit channel are packed
for (uint8_t i = 0; i < 4; ++i)
{
uint16_t v = convert_channel_10b(CH_AETR[i], false);
if(sub_protocol>SLT_V2 && (i==CH2 || i==CH3) )
v=1023-v; // reverse throttle and elevator channels for Q100/Q200/MR100 protocols
packet[i] = v;
e = (e >> 2) | (uint8_t) ((v >> 2) & 0xC0);
}
// Extra bits for AETR
packet[4] = e;
// 8-bit channels
packet[5] = convert_channel_8b(CH5);
packet[6] = convert_channel_8b(CH6);
if(sub_protocol!=SLT_V1)
{
if(sub_protocol==Q200)
packet[6] = GET_FLAG(CH9_SW , FLAG_Q200_FMODE)
|GET_FLAG(CH10_SW, FLAG_Q200_FLIP)
|GET_FLAG(CH11_SW, FLAG_Q200_VIDON)
|GET_FLAG(CH12_SW, FLAG_Q200_VIDOFF);
else if(sub_protocol==MR100 || sub_protocol==Q100)
packet[6] = GET_FLAG(CH9_SW , FLAG_MR100_FMODE)
|GET_FLAG(CH10_SW, FLAG_MR100_FLIP)
|GET_FLAG(CH11_SW, FLAG_MR100_VIDEO) // Does not exist on the Q100 but...
|GET_FLAG(CH12_SW, FLAG_MR100_PICTURE); // Does not exist on the Q100 but...
packet[7]=convert_channel_8b(CH7);
packet[8]=convert_channel_8b(CH8);
packet[9]=0xAA; //normal mode for Q100/Q200, unknown for V2/MR100
packet[10]=0x00; //normal mode for Q100/Q200, unknown for V2/MR100
if((sub_protocol==Q100 || sub_protocol==Q200) && CH13_SW)
{//Calibrate
packet[9]=0x77; //enter calibration
if(calib_counter>=20 && calib_counter<=25) // 7 packets for Q100 / 3 packets for Q200
packet[10]=0x20; //launch calibration
calib_counter++;
if(calib_counter>250) calib_counter=250;
}
else
calib_counter=0;
}
}
static void __attribute__((unused)) SLT_send_bind_packet()
{
SLT_wait_radio();
NRF250K_Hopping(SLT_NFREQCHANNELS); //Bind channel
BIND_IN_PROGRESS; //Limit TX power to bind level
NRF250K_SetPower();
BIND_DONE;
NRF250K_SetTXAddr((uint8_t *)"\x7E\xB8\x63\xA9", SLT_TXID_SIZE);
memcpy((void*)packet,(void*)rx_tx_addr,SLT_TXID_SIZE);
if(phase==SLT_BIND2)
SLT_send_packet(SLT_TXID_SIZE);
else // SLT_BIND1
SLT_send_packet(SLT_PAYLOADSIZE_V2);
}
#define SLT_TIMING_BUILD 1000
#define SLT_V1_TIMING_PACKET 1000
#define SLT_V2_TIMING_PACKET 2042
#define SLT_V1_TIMING_BIND2 1000
#define SLT_V2_TIMING_BIND1 6507
#define SLT_V2_TIMING_BIND2 2112
uint16_t SLT_callback()
{
switch (phase)
{
case SLT_BUILD:
#ifdef MULTI_SYNC
telemetry_set_input_sync(sub_protocol==SLT_V1?20000:13730);
#endif
SLT_build_packet();
NRF250K_SetPower(); //Change power level
NRF250K_SetTXAddr(rx_tx_addr, SLT_TXID_SIZE);
phase++;
return SLT_TIMING_BUILD;
case SLT_DATA1:
case SLT_DATA2:
phase++;
if(sub_protocol==SLT_V1)
{
SLT_send_packet(SLT_PAYLOADSIZE_V1);
return SLT_V1_TIMING_PACKET;
}
else //V2
{
SLT_send_packet(SLT_PAYLOADSIZE_V2);
return SLT_V2_TIMING_PACKET;
}
case SLT_DATA3:
if(sub_protocol==SLT_V1)
SLT_send_packet(SLT_PAYLOADSIZE_V1);
else //V2
SLT_send_packet(SLT_PAYLOADSIZE_V2);
if (++packet_count >= 100)
{// Send bind packet
packet_count = 0;
if(sub_protocol==SLT_V1)
{
phase=SLT_BIND2;
return SLT_V1_TIMING_BIND2;
}
else //V2
{
phase=SLT_BIND1;
return SLT_V2_TIMING_BIND1;
}
}
else
{// Continue to send normal packets
phase = SLT_BUILD;
if(sub_protocol==SLT_V1)
return 20000-SLT_TIMING_BUILD;
else //V2
return 13730-SLT_TIMING_BUILD;
}
case SLT_BIND1:
SLT_send_bind_packet();
phase++;
return SLT_V2_TIMING_BIND2;
case SLT_BIND2:
SLT_send_bind_packet();
phase = SLT_BUILD;
if(sub_protocol==SLT_V1)
return 20000-SLT_TIMING_BUILD-SLT_V1_TIMING_BIND2;
else //V2
return 13730-SLT_TIMING_BUILD-SLT_V2_TIMING_BIND1-SLT_V2_TIMING_BIND2;
}
return 19000;
}
void SLT_init()
{
BIND_DONE; // Not a TX bind protocol
packet_count = 0;
packet_sent = 0;
hopping_frequency_no = 0;
if(sub_protocol==Q200)
{ //Q200: Force high part of the ID otherwise it won't bind
rx_tx_addr[0]=0x01;
rx_tx_addr[1]=0x02;
#ifdef SLT_Q200_FORCE_ID // ID taken from TX dumps
rx_tx_addr[0]=0x01;rx_tx_addr[1]=0x02;rx_tx_addr[2]=0x6A;rx_tx_addr[3]=0x31;
/* rx_tx_addr[0]=0x01;rx_tx_addr[1]=0x02;rx_tx_addr[2]=0x0B;rx_tx_addr[3]=0x57;*/
#endif
}
SLT_RF_init();
SLT_set_freq();
phase = SLT_BUILD;
}
#endif

View File

@@ -230,11 +230,16 @@ void SX1276_SetPaConfig(bool pa_boost_pin, uint8_t max_power, uint8_t output_pow
uint8_t data = 0x00;
data = data | (pa_boost_pin << 7);
data = data | (max_power << 4);
data = data | output_power;
data = data | (output_power & 0x0F);
SX1276_WriteReg(SX1276_09_PACONFIG, data);
}
void SX1276_SetOcp(bool OcpOn, uint8_t OcpTrim)
{
SX1276_WriteReg(SX1276_0B_OCP, (OcpOn << 5) | OcpTrim);
}
void SX1276_WritePayloadToFifo(uint8_t* payload, uint8_t length)
{
SX1276_WriteReg(SX1276_22_PAYLOAD_LENGTH, length);

View File

@@ -93,7 +93,7 @@ static int __attribute__((unused)) Scanner_scan_rssi()
return rssi_rel;
}
uint16_t Scanner_callback()
uint16_t SCANNER_callback()
{
uint8_t rssi,max_rssi;
@@ -131,7 +131,7 @@ uint16_t Scanner_callback()
return 0;
}
uint16_t initScanner(void)
void SCANNER_init(void)
{
rf_ch_num = 0;
telemetry_link = 0;
@@ -141,7 +141,6 @@ uint16_t initScanner(void)
CC2500_Strobe(CC2500_SIDLE);
CC2500_SetTxRxMode(RX_EN);
CC2500_Strobe(CC2500_SRX); // Receive mode
return 1250;
}
#endif

View File

@@ -54,7 +54,6 @@ static void __attribute__((unused)) SKYARTEC_rf_init()
for (uint8_t i = 4; i <= 0x2E; ++i)
CC2500_WriteReg(i, pgm_read_byte_near(&SKYARTEC_init_values[i-4]));
prev_option = option;
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
CC2500_SetTxRxMode(TX_EN);
@@ -121,7 +120,7 @@ static void __attribute__((unused)) SKYARTEC_send_bind_packet()
CC2500_WriteData(packet, 12);
}
uint16_t ReadSKYARTEC()
uint16_t SKYARTEC_callback()
{
if (phase & 0x01)
{
@@ -130,11 +129,7 @@ uint16_t ReadSKYARTEC()
{
CC2500_SetPower();
// Tune frequency if it has been changed
if ( prev_option != option )
{
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
prev_option = option ;
}
CC2500_SetFreqOffset();
phase = SKYARTEC_PKT1;
}
else
@@ -159,7 +154,7 @@ uint16_t ReadSKYARTEC()
return 3000;
}
uint16_t initSKYARTEC()
void SKYARTEC_init()
{
SKYARTEC_rf_init();
@@ -173,7 +168,6 @@ uint16_t initSKYARTEC()
bind_counter = 250;
phase = SKYARTEC_PKT1;
return 10000;
}
#endif

Some files were not shown because too many files have changed in this diff Show More