Compare commits

...

378 Commits

Author SHA1 Message Date
Harry Phillips
41e31eae6d Set reserved field in CABELL packet to current channel (#593) 2021-06-24 11:49:47 +02:00
Pascal Langer
dcf20951ba Update Protocols_Details.md 2021-06-20 18:51:23 +02:00
Pascal Langer
6e9ebfd695 Mould King: control up to 4 bricks at the same time 2021-06-20 18:39:27 +02:00
Pascal Langer
c36b112437 Update Multi_Config.ino 2021-06-17 15:42:09 +02:00
Pascal Langer
24fbd44f5b Multi Config: eeprom format for atmega 2021-06-17 15:40:28 +02:00
Pascal Langer
d0db7829e5 Multi config: enabled by default, LUA script update 2021-06-17 15:30:46 +02:00
Pascal Langer
58ed8ca60f Mould King: Analog and digital sub protocols 2021-05-27 19:01:08 +02:00
Pascal Langer
4d2c8ef04e Fix RadioLink: request telemetry every time to time like original instead of all the time 2021-05-25 14:54:17 +02:00
Pascal Langer
438e85c551 MouldKing: match original 2021-05-09 03:36:42 +02:00
Pascal Langer
06b336ee59 Mould King: fix frequencies 2021-05-04 14:58:40 +02:00
pascallanger
a93adeb75e Update Protocols_Details.md 2021-05-04 11:29:44 +02:00
Pascal Langer
802e69563e ... 2021-05-04 10:53:38 +02:00
Pascal Langer
a8897df3f2 New protocol: Mould King 2021-05-04 10:39:13 +02:00
Pascal Langer
7157d3d906 Losi: optimization 2021-05-03 16:57:08 +02:00
Pascal Langer
96b8a500b4 New protocol: Losi 2021-05-03 15:29:24 +02:00
Pascal Langer
51a3ef8ee9 Update XN297Dump_nrf24l01.ino 2021-05-01 18:45:20 +02:00
Pascal Langer
652d6604e7 Update Multiprotocol.h 2021-05-01 18:35:47 +02:00
Pascal Langer
b9028ab4b4 XN297Dump: CC2500 dump @250K 2021-05-01 18:15:34 +02:00
Konstantin Tretyakov
62c509b03c Add the IKEA Ansluta remote-controllable lighting protocol (#566)
* Add the IKEA Ansluta remote-controllable lighting protocol

* Fixes to IKEA Ansluta implementation
2021-04-24 21:46:29 +02:00
Pascal Langer
1648a0780a XK: fix twitch on other channels than rudder 2021-04-24 12:54:17 +02:00
pascallanger
3b1af68ed6 Update FUNDING.yml 2021-04-21 13:17:46 +02:00
pascallanger
aeed7bac57 Create FUNDING.yml 2021-04-20 23:17:50 +02:00
Pascal Langer
2bb76a40f3 Pelikan/SCX24: add second hopping table 2021-04-20 22:24:01 +02:00
Pascal Langer
0c129a45aa SCX24 IDs 2021-04-18 16:41:49 +02:00
Pascal Langer
2a383c7285 Pelikan/SCX24: fix? 2021-04-17 22:55:43 +02:00
Pascal Langer
34f16b0b66 MT99XX/Dragon: batt telemetry correction & low batt flag 2021-04-17 18:31:41 +02:00
Pascal Langer
a9d9c4cdfa Update A7105_SPI.ino 2021-04-17 11:57:00 +02:00
Pascal Langer
4a1c986dd0 Kyosho/FHSS fix? 2021-04-17 11:52:21 +02:00
Pascal Langer
756e9b3213 Update Protocols_Details.md 2021-04-16 15:00:33 +02:00
Pascal Langer
61a284863e Update Protocols_Details.md 2021-04-16 14:59:10 +02:00
Pascal Langer
39410c290b Pelikan/SCX24: new sub protocol 2021-04-16 14:50:53 +02:00
Pascal Langer
9e0684b6cb CABELL: code optimization 2021-04-07 09:02:50 +02:00
Pascal Langer
13add5b9f2 Devo: fix GPS year 2021-04-06 18:15:34 +02:00
Pascal Langer
475cd1af98 Atmega CC2500 build: remove FRSKYL to fit 2021-04-06 10:36:15 +02:00
Pascal Langer
04d08c6d67 FrSkyX2: changed bind bytes 2021-04-06 10:18:48 +02:00
Pascal Langer
6295bb1bbc Packed protocols definition to save space 2021-04-05 17:43:42 +02:00
Pascal Langer
931ba2bd68 Hitec: fix freq tune 2021-04-02 17:42:44 +02:00
Pascal Langer
769fb4ff94 Update Protocols_Details.md 2021-03-30 16:41:29 +02:00
Pascal Langer
aa7c18a2bd FrSkyX: fix the need to rebind RXs 2021-03-30 15:13:00 +02:00
Pascal Langer
f95cfa1261 Update Protocols_Details.md 2021-03-30 14:13:18 +02:00
Pascal Langer
8c12aaf2c1 DSMR: new surface protocol 2021-03-30 12:10:29 +02:00
Pascal Langer
94f73bd54f MT99xx: Added voltage telemetry for the Dragon sub protocol 2021-03-27 11:51:53 +01:00
Pascal Langer
9b3549d4a9 FrSkyX: code review 2021-03-25 10:10:53 +01:00
Pascal Langer
7bc05cb63c Update Multiprotocol.h 2021-03-19 17:11:06 +01:00
Pascal Langer
84780a9d90 Multi Config 2021-03-19 17:06:58 +01:00
Pascal Langer
37e029c612 Bug fix in XN297 emu layer when address is 3 bytes and CC2500 in use 2021-03-17 19:24:42 +01:00
Pascal Langer
c47ed8aca8 E016H has its own protocol now 2021-03-17 18:46:48 +01:00
Pascal Langer
5bb0752d5e Update include to xn297... 2021-03-17 17:19:41 +01:00
Pascal Langer
4a626eaf14 Change XN297 emulation layer
Loads of protocols have been touched by this change. Some testing has been done but please test on all your models.
The XN297 emulation selects in this order:
 - the CC2500 if it is available and bitrate=250K. Configure the option field automatically for RF tune.
 - the NRF for all bitrates if it is available
 - if NRF is not available and bitrate=1M then an invalid protocol is sent automatically to the radio.
CC2500 @250K can now receive normal and enhanced payloads.
OMP protocol supports telemetry on CC2500 and is also for NRF only modules including telemetry.
Separation of E016H (new protocol) from E01X due to different structure.
MJXQ, MT99XX, Q303 and XK: some sub protocols available on CC2500 only.
2021-03-17 17:05:42 +01:00
pascallanger
47de19c8a5 DSM RX output ranges 2021-03-15 08:45:27 +01:00
Pascal Langer
3d4cfa30ac Remove spaces 2021-03-15 08:43:25 +01:00
pascallanger
d658bee05a Add files via upload 2021-03-15 08:39:06 +01:00
pascallanger
820c181394 Update CPPM_HW_Mod.md 2021-03-15 08:07:42 +01:00
pascallanger
c9774f557e Add files via upload 2021-03-15 08:06:24 +01:00
Pascal Langer
b17618a5a8 Update Protocols_Details.md 2021-03-14 19:22:49 +01:00
Pascal Langer
03d0adbd74 CCPM: added comment to disable the telemetry after setup 2021-03-14 19:00:45 +01:00
Pascal Langer
905ee4b1ed Fix module boot issue? 2021-03-14 11:15:24 +01:00
Pascal Langer
dbc33951a4 Fix for module boot issue? 2021-03-13 18:18:07 +01:00
Pascal Langer
732e66cab2 HoTT: fix Text config in Sync mode 2021-03-13 11:01:51 +01:00
pascallanger
0dab92552a Update CPPM_HW_Mod.md 2021-03-08 17:47:28 +01:00
pascallanger
047952537a Update CPPM_HW_Mod.md 2021-03-08 13:39:59 +01:00
pascallanger
d4bf1fb36e Update CPPM_HW_Mod.md 2021-03-08 13:36:43 +01:00
pascallanger
ff817cd098 Update Protocols_Details.md 2021-03-08 11:36:59 +01:00
pascallanger
04ea44ed4b Update CPPM_HW_Mod.md 2021-03-08 11:19:10 +01:00
pascallanger
e23c8e2216 Add files via upload 2021-03-08 10:15:47 +01:00
pascallanger
afb4802a2c Update CPPM_HW_Mod.md 2021-03-07 17:34:16 +01:00
pascallanger
3a5d341514 CPPM hardware mod initial page 2021-03-07 17:31:45 +01:00
pascallanger
b6bcab1604 CPPM hardware mod images 2021-03-07 17:24:15 +01:00
Pascal Langer
0a998d2dc5 Enable CPPM by default 2021-03-07 11:12:49 +01:00
Pascal Langer
7927bc601e CPPM for RX protocols 2021-03-06 18:51:53 +01:00
Pascal Langer
f8cc913898 Update Multiprotocol.ino 2021-03-06 12:00:05 +01:00
Pascal Langer
a5428bc180 Removed SBUS trainer option 2021-03-06 11:33:32 +01:00
Pascal Langer
c0285f81f0 JOYSWAY: fix? 2021-03-05 19:57:33 +01:00
Pascal Langer
600049898a SBUS/CPPM: fixed switching from CPPM to SBUS 2021-03-04 21:28:06 +01:00
Pascal Langer
0e1db8f06b SBUS/CPPM: fixed switching from SBUS to CPPM
There is still an issue from CPPM to SBUS...
2021-03-04 19:02:45 +01:00
Pascal Langer
ec83f1e5a3 Disable SBUS serial when switching to CPPM 2021-03-04 15:23:23 +01:00
Pascal Langer
f8f7769d9c Update DSM subprotocols naming 2021-03-04 10:08:52 +01:00
Pascal Langer
4dacac29c6 SBUS/CPPM: restore normal telemetry on student link lost
Once the setup is done check the "Disable telemetry" box to make sure that there is no interference between the internal module and Multi telemetry.
2021-03-04 09:52:54 +01:00
Pascal Langer
593f3b87f1 SBUS/CPPM: fixed telemetry_link 2021-03-04 09:11:20 +01:00
Pascal Langer
bb70116df0 SBUS and CPPM output 2021-03-03 10:07:19 +01:00
Pascal Langer
d7c24d62ed Update Devo_cyrf6936.ino 2021-03-02 18:32:02 +01:00
Pascal Langer
07df1a8959 DEVO telemetry: reduce the voltage and RSSI refresh frequency 2021-03-02 17:37:28 +01:00
Pascal Langer
ca9e2870ab DEVO: temp telem fix 2021-03-02 16:30:14 +01:00
Pascal Langer
99ca6fa36c DEVO: fix temp telemetry 2021-03-02 16:26:30 +01:00
Pascal Langer
3d82560f71 Update Protocols_Details.md 2021-03-02 16:20:05 +01:00
Pascal Langer
44d362aeb4 DEVO: improve telemetry 2021-03-02 16:14:14 +01:00
Pascal Langer
3d4ed5ad11 SFHSS: Timing debug 2021-03-02 12:01:23 +01:00
Pascal Langer
ca3c2bbdc8 Update Protocols_Details.md 2021-03-02 10:42:25 +01:00
Pascal Langer
90c226c748 LOLI lua script 2021-03-02 10:39:11 +01:00
Pascal Langer
b757283f41 JOYSWAY: new protocol UNTESTED 2021-03-02 10:00:33 +01:00
Pascal Langer
b3132c7bf1 Devo: added telemetry voltage 3 2021-03-02 09:32:59 +01:00
Pascal Langer
9ba56f040a Update Futaba_cc2500.ino 2021-03-01 16:31:11 +01:00
Pascal Langer
ac71b4d981 Update Devo_cyrf6936.ino 2021-03-01 14:02:39 +01:00
Pascal Langer
6bb2c06cf6 Fix compilation 2021-03-01 13:53:39 +01:00
Pascal Langer
2ad3c727fd Few changes... 2021-03-01 13:48:23 +01:00
Pascal Langer
d36af55b84 DEVO: full telemetry 2021-03-01 13:47:44 +01:00
Pascal Langer
f19bb05c7a WFLY: Failsafe values 2021-02-24 16:29:24 +01:00
Pascal Langer
08ea8818fb E010R5: 5th ID 2021-02-24 10:26:58 +01:00
Pascal Langer
59c541d013 MT99xx missing break 2021-02-23 09:52:46 +01:00
Ben Lye
37e2b5f41c Merge pull request #532 from benlye/new-builds
5-in-1 builds for DIY and T-Lite
2021-02-21 19:16:24 +00:00
Ben Lye
614a330cf2 5-in-1 builds for DIY and T-Lite 2021-02-21 18:58:02 +00:00
Pascal Langer
9106548859 T18 default build 2021-02-21 18:56:48 +01:00
Pascal Langer
2f07e79e50 T18 build by default 2021-02-21 18:35:24 +01:00
Pascal Langer
2233f6f862 SX1276: RF power adjustment for DIY & Jumper T-Lite 2021-02-21 16:05:25 +01:00
Pascal Langer
ae842f0bdc MT99XX Dragon telem prep 2021-02-17 10:26:38 +01:00
Ben Lye
4b36656246 Merge pull request #529 from benlye/build-fix
Update MT99xx_nrf24l01.ino
2021-02-16 19:39:55 +00:00
Ben Lye
ea282489f9 Update MT99xx_nrf24l01.ino 2021-02-16 19:34:01 +00:00
Ben Lye
6f2d9430d0 Merge pull request #528 from benlye/build-fix
Disable CCNRF protocols when needed
2021-02-16 18:40:58 +00:00
Pascal Langer
bccd9dc0d9 Fix XK protocol with latest change 2021-02-16 19:38:34 +01:00
Ben Lye
af919fb940 Fix CCNRF_PROTOCOLS 2021-02-16 18:31:40 +00:00
Ben Lye
7dab0de3c5 Update main.yml 2021-02-16 18:26:14 +00:00
Pascal Langer
2c0525421a Update Protocols_Details.md 2021-02-16 19:08:57 +01:00
Pascal Langer
0844ec2efd Add more protocols which can run with the CC2500
Use CC2500 only when emulating NRF250K/XN297_250K
2021-02-16 19:06:23 +01:00
Pascal Langer
49c3af12f9 AFHDS2A: fix issue with fs-x6b 2021-02-14 20:51:15 +01:00
Pascal Langer
96d335f458 Hide scanner from the available protocols 2021-02-13 20:39:00 +01:00
Pascal Langer
eae412fe41 E010r5: 1 more ID 2021-02-13 09:26:03 +01:00
Pascal Langer
0270420531 XN297dump: increase polling 2021-02-12 19:05:39 +01:00
Pascal Langer
93bb117961 RF switch fix... 2021-02-12 16:29:36 +01:00
Pascal Langer
29d1fb00b1 More code optimization 2021-02-12 11:21:42 +01:00
Pascal Langer
5a49d99c4f Update _Config.h 2021-02-11 20:09:40 +01:00
Pascal Langer
d66bf1a5b3 NRF init changed to most likely default 2021-02-11 18:40:29 +01:00
Pascal Langer
b41dccef67 HONTAI: use the global CRC calculation routine 2021-02-11 10:54:55 +01:00
Pascal Langer
addf2c5143 MT99XX/Dragon: beginner and intermediate swapped... 2021-02-11 09:50:41 +01:00
Pascal Langer
ff829f1f7b M-Link telemetry forwarded to OpenTX 2021-02-10 12:31:37 +01:00
Pascal Langer
7ee72976c4 M-Link: added vario 2021-02-10 10:13:51 +01:00
Pascal Langer
dc18e8e5b2 MT99XX: new subproto Dragon 2021-02-10 09:59:30 +01:00
Pascal Langer
97de2aaf3d One file missing in the push... 2021-02-09 18:31:13 +01:00
Pascal Langer
3b8b2ef376 Protocol init function modified 2021-02-09 18:23:33 +01:00
Pascal Langer
d496f62719 Removed depreciated MULTI_STATUS 2021-02-08 09:36:47 +01:00
Pascal Langer
fc978f95ef Disabling AFHDS2A Hub telemetry to fit in flash... 2021-02-07 19:20:12 +01:00
Pascal Langer
596e8c9b55 Update MLINK_cyrf6936.ino 2021-02-07 18:57:59 +01:00
Pascal Langer
0cf58c2990 MLink: added voltage, current, rpm, temp sensors and lqi 2021-02-07 18:51:36 +01:00
Pascal Langer
6ba1c8b118 Update Protocols_Details.md 2021-02-06 10:36:14 +01:00
Pascal Langer
b949ac0fed Update Protocols_Details.md 2021-02-06 10:35:15 +01:00
Pascal Langer
510f892d2f MLink: use only odd channels like original 2021-02-06 10:23:10 +01:00
Pascal Langer
17750e774a M-Link Failsafe 2021-02-06 09:58:36 +01:00
Pascal Langer
be1591c489 Update Protocols_Details.md 2021-02-05 18:44:48 +01:00
Pascal Langer
3b22705166 Exclude MLink from T18 build to save Flash space 2021-02-05 17:21:07 +01:00
Ben Lye
c05c0a5693 Merge pull request #518 from pascallanger/benlye-patch-1
Update main.yml
2021-02-05 16:15:36 +00:00
Ben Lye
d6fc6a3517 Update main.yml
Disable default configuration builds for T18 and 4in1.
2021-02-05 16:09:30 +00:00
Pascal Langer
7bfaee8b4f Update MLINK_cyrf6936.ino 2021-02-05 16:20:42 +01:00
Pascal Langer
89c00e8f17 Initial M-LINK release 2021-02-05 12:28:35 +01:00
pascallanger
447a58966f Update Compiling_STM32.md 2021-02-04 14:19:29 +01:00
pascallanger
74162aa972 Update Compiling_STM32.md 2021-02-04 14:15:57 +01:00
Pascal Langer
78a1e61f7a Update Telemetry.ino 2021-02-04 14:07:15 +01:00
Pascal Langer
a917227ddc Bayang: generic frsky hub function 2021-02-04 12:05:57 +01:00
Pascal Langer
c866d07743 Bayang: add PID to telemetry 2021-02-03 19:44:59 +01:00
Pascal Langer
43d969f962 FrSky RX: sub protocol to erase clone IDs 2021-02-03 16:57:14 +01:00
Pascal Langer
3973b42f81 MT99XX fix bind hopping 2021-02-02 17:55:40 +01:00
Pascal Langer
6046ad81db Update Protocols_Details.md 2021-02-02 14:42:22 +01:00
Pascal Langer
63a9874aea Futaba S-FHSS: another fs throw test 2021-02-02 12:06:54 +01:00
Pascal Langer
89420fe2d4 Futaba S-FHSS: failsafe throw test 2021-02-02 10:06:24 +01:00
Pascal Langer
9769354989 MT99XX: no autobind, 1 ID 2021-02-01 21:31:34 +01:00
Pascal Langer
580b996215 MT99XX: code optimization 2021-02-01 19:26:34 +01:00
Pascal Langer
8f5fb5083f MT99X sub A180: timing 2021-02-01 19:06:47 +01:00
Pascal Langer
821076ce95 MT99XX: code cleanup 2021-02-01 18:25:11 +01:00
Pascal Langer
0bfe1f8e63 MT99XX: new sub protocol A180 2021-02-01 15:21:39 +01:00
Pascal Langer
9c35f6f73c Futaba S-FHSS: Fist attempt to fix failsafe 2021-02-01 11:54:16 +01:00
Pascal Langer
983debe6ce WFLY2: Failsafe working for values, hold and no pulse 2021-01-29 15:41:47 +01:00
Pascal Langer
66704b5a13 AFHDS2A: common timing 2021-01-28 15:41:59 +01:00
Pascal Langer
f11da0c1de DSM: fix low power 2021-01-28 09:09:43 +01:00
Pascal Langer
7676398aab Fix OMP protocol 2021-01-25 11:33:30 +01:00
Pascal Langer
9c6c55fa00 E010r5: added 2 TX IDs 2021-01-21 15:31:37 +01:00
Pascal Langer
5b9ca3ba06 Move the CYRF emulation functions around for future 2021-01-21 12:24:46 +01:00
Pascal Langer
23141b6087 E016Hv2 and ESKY150V2 don't need the NRF code anymore 2021-01-21 11:46:54 +01:00
Pascal Langer
6d4b4bd2c0 Update MultiChannelsUpdater.lua 2021-01-21 09:32:45 +01:00
Pascal Langer
5cec22a757 AFHDS2A RX: trial to fix bind with original TX 2021-01-19 22:50:55 +01:00
pascallanger
153ba2e090 Update Transmitters.md 2021-01-19 12:26:15 +01:00
Pascal Langer
21e8bed52b E016HV2: fixed a left over from protocol reverse engineering 2021-01-19 12:15:23 +01:00
Pascal Langer
ecfc5b0313 End bind as requested by the radio on more protocols 2021-01-19 12:13:24 +01:00
Pascal Langer
2bcebbda45 LOLI: adjust timing 2021-01-18 15:51:35 +01:00
Pascal Langer
52e8d87ab1 LOLI RX configuration script 2021-01-18 11:46:19 +01:00
pascallanger
b613345da4 Update Protocols_Details.md 2021-01-17 17:16:11 +01:00
pascallanger
f2665ca786 Update Protocols_Details.md 2021-01-17 16:53:42 +01:00
Pascal Langer
e3189d3aed E010r5: add GLIDE channel 2021-01-17 15:59:05 +01:00
pascallanger
c829e1c86f Protocol E129: Add E130 model, Protocol E010r5: Add GLIDE channel 2021-01-17 15:57:52 +01:00
pascallanger
8499a508f5 Protocol E129: Add E130 model, Protocol E010r5: Add GLIDE channel 2021-01-17 15:57:42 +01:00
Pascal Langer
50dec0e55d AFHDS2A RX: fixed 2021-01-16 18:33:10 +01:00
Pascal Langer
6f419adb7f Fix CRC in various places 2021-01-16 16:50:45 +01:00
pascallanger
502e8beafb Update Protocols_Details.md 2021-01-16 15:48:40 +01:00
Pascal Langer
5aae065dc0 New protocol: E129 2021-01-16 15:45:19 +01:00
pascallanger
152dbed3fa Add Kyosho FHS details 2021-01-14 08:51:22 +01:00
Pascal Langer
b516bb8d20 Fix AFHDS2A RX 2021-01-12 14:02:13 +01:00
Pascal Langer
30e3e84066 LOLI: RX config 2021-01-11 16:27:59 +01:00
Pascal Langer
8338104266 Update XN297Dump_nrf24l01.ino 2021-01-11 12:37:58 +01:00
Pascal Langer
00c6aa52b9 Fix NCC1701... 2021-01-11 12:33:29 +01:00
Pascal Langer
e5689d2f1b Fix FQ777 2021-01-11 12:30:12 +01:00
Pascal Langer
b51dedcea1 M-Link: still work in progress 2021-01-11 12:13:03 +01:00
Pascal Langer
49f004e53f E010r5: added flip, led and calib channels 2021-01-11 12:12:26 +01:00
Pascal Langer
062fc05eac Fix FrSky RX protocol not ending bind when requested 2021-01-11 09:42:16 +01:00
Pascal Langer
6d080d5d5f New LOLI protocol 2021-01-09 18:39:31 +01:00
Pascal Langer
0955340a93 New protocol: E010r5 2021-01-08 21:16:07 +01:00
Ben Lye
9b2318cc7e Fix EEPROM address variable types (#494) 2020-12-27 09:57:41 +01:00
Pascal Langer
2098cdc5e0 Merge branch 'master' of https://github.com/pascallanger/DIY-Multiprotocol-TX-Module 2020-12-23 10:54:43 +01:00
Pascal Langer
d19b5187c5 AFHDS2A RX: stop bind when requested 2020-12-23 10:54:39 +01:00
pascallanger
2a78b1d6b7 Update README.md 2020-12-22 12:01:05 +01:00
pascallanger
84ae6366eb Update README.md 2020-12-21 16:12:04 +01:00
pascallanger
e5b235ac83 Update README.md 2020-12-21 16:08:03 +01:00
Ben Lye
0195384592 Merge pull request #486 from benlye/actions-3
Various fixes for CI workflow
2020-12-21 14:56:29 +00:00
Ben Lye
0937f832fc Rename the build artifact archive 2020-12-21 14:50:31 +00:00
Ben Lye
c77b4af2a0 Various fixes for CI workflow 2020-12-21 14:33:55 +00:00
pascallanger
b943bae8dd Update README.md 2020-12-21 11:39:35 +01:00
pascallanger
4955978eb6 Update README.md 2020-12-21 11:36:39 +01:00
Ben Lye
df409fddf5 Merge pull request #485 from benlye/store-artifacts
Upload build artifacts to workflow job
2020-12-20 20:15:21 +00:00
Ben Lye
0330c596e4 Upload build artifacts to workflow job 2020-12-20 19:56:28 +00:00
Ben Lye
8c6c58f12f Update main.yml
Only run CI workflow on push or PR if firmware source code has changed.
2020-12-20 19:08:36 +00:00
Ben Lye
4bc08d22b8 Merge pull request #484 from benlye/github-actions
Configure GitHub Actions
2020-12-20 17:44:28 +00:00
Ben Lye
96fb3b20b7 Configure GitHub Actions for testing and releases 2020-12-20 17:11:18 +00:00
Ben Lye
47f713c6c8 Disable Travis 2020-12-20 11:38:34 +00:00
Pascal Langer
443c7a6b99 WFLY2: WBUS <-> PPM 2020-12-20 12:05:43 +01:00
Pascal Langer
e79ca9b7d7 E016H: Calibration on channel 8 2020-12-19 12:16:51 +01:00
Pascal Langer
b94f774f80 WFLY2: Failsafe doc update 2020-12-18 17:34:09 +01:00
Pascal Langer
5614e8bef6 E016H: Multi IDs 2020-12-18 15:30:50 +01:00
Pascal Langer
4ce3a5d298 Renamed protocol E016H to E016HV2 2020-12-18 00:09:13 +01:00
Pascal Langer
f6de3de78c Update Protocols_Details.md 2020-12-17 21:28:42 +01:00
Pascal Langer
8099018132 RLINK: subprotocol DumboRC 2020-12-17 21:24:56 +01:00
Pascal Langer
360dde2e1b E016H: compilation fix 2020-12-17 21:09:13 +01:00
Pascal Langer
cc7b7638d3 Update Protocols_Details.md 2020-12-17 18:23:38 +01:00
Pascal Langer
321e4aee34 E016H v2: new protocol WIP only 1 ID 2020-12-17 18:05:04 +01:00
Pascal Langer
f18847df57 Update Convert.ino 2020-12-17 09:02:11 +01:00
Pascal Langer
a2559a65d3 WFLY2: add switch from PPM <-> WBUS 2020-12-16 18:40:46 +01:00
Pascal Langer
5ac41fdd15 WFLY2: add failsafe (hold/no pulse not available yet) 2020-12-16 16:14:45 +01:00
Pascal Langer
6d38dd2d7a WFLY2: auto stop bind when the RX replies 2020-12-15 23:58:56 +01:00
Ben Lye
667058269c Add latest boards 2020-12-15 09:50:28 +00:00
Ben Lye
ad6f934892 Pin arduino-cli version to 0.13.0 2020-12-15 09:32:34 +00:00
Pascal Langer
714220c349 Update Protocols_Details.md 2020-12-15 10:20:05 +01:00
Pascal Langer
4887fca873 WFLY2: fix bind after code cleanup... 2020-12-15 09:51:11 +01:00
Pascal Langer
cfe80edcb6 WFLY2: update channels throw, bind frequencies 2020-12-14 18:56:12 +01:00
Pascal Langer
484588ff6b WFLY2: documentation 2020-12-14 11:07:21 +01:00
Pascal Langer
1bb059c2a2 WFLY: renamed WFLYRF to WFLY2 2020-12-13 23:15:43 +01:00
Pascal Langer
ef5d9cb6b3 HoTT: update doc for 16 channels 2020-12-13 23:00:47 +01:00
Pascal Langer
37a06c050d HoTT: added support for 16 channels (previously 12) 2020-12-13 22:56:47 +01:00
Pascal Langer
5f0ed395ba WFLYRF: use Radio ID 2020-12-11 13:55:50 +01:00
Pascal Langer
ae27c8b671 WFLYRF: Fixed partial ID for telemetry 2020-12-11 11:23:06 +01:00
Pascal Langer
088bfb9c2f WFLYRF: added ext voltage to A2 2020-12-11 10:57:14 +01:00
Pascal Langer
b01462e36b WFLYRF: fixed normal mode, added telemetry, bind is not working yet 2020-12-11 10:40:00 +01:00
Pascal Langer
abd36dc6a4 WFLY: Track changes in A7105 config (radio has A7106) 2020-12-10 18:57:06 +01:00
Pascal Langer
ebb8a33c1a Fix potential bug with wait loops 2020-12-10 16:52:34 +01:00
Pascal Langer
2b0f663482 WFLY RF: WIP protocol 2020-12-10 16:51:55 +01:00
pascallanger
956e632392 Update Protocols_Details.md 2020-12-10 13:48:04 +01:00
pascallanger
90b6bb8f7d Update Protocols_Details.md 2020-12-08 18:52:13 +01:00
pascallanger
6153e84abf Update README.md 2020-12-08 16:51:52 +01:00
pascallanger
16357f29e9 Add files via upload 2020-12-08 16:48:04 +01:00
Pascal Langer
0b8a5a7539 MLINK protocol: WIP, works only for a few sec... 2020-12-05 19:13:11 +01:00
Pascal Langer
6874e3a6a7 Template for WFLY RF 2020-12-05 19:12:11 +01:00
Pascal Langer
96263ed8a6 Prep for M-LINK 2020-12-04 09:00:17 +01:00
Ben Lye
7bb1cb9ae3 Add STM32 EEPROM initialization at startup (#475) 2020-11-30 18:11:35 +01:00
Pascal Langer
20e32c4cb0 Fix XK450 twitching? 2020-11-30 13:36:29 +01:00
Ben Lye
b4421306c0 Fix compiler errors when telemetry is disabled (#474) 2020-11-30 08:38:21 +01:00
Pascal Langer
e53f723fdb Update DSM FwdPrg.lua 2020-11-25 10:37:47 +01:00
Ben Lye
832a331437 Update Frequency_Tuning.md 2020-11-22 10:09:07 +00:00
Ben Lye
12e66bd84f Add tests for STM32F103C8 board 2020-11-09 11:09:12 +00:00
Pascal Langer
d290cc519f Bayang telemetry OpenTX Ratio and Offset 2020-11-06 10:04:01 +01:00
Ben Lye
f4b19fe33e Add module sub-type to signature
Differentiates between the STM32F1 boards.
2020-11-03 08:08:10 +00:00
pascallanger
767d2c079a Update Protocols_Details.md 2020-10-31 16:24:02 +01:00
pascallanger
7750310be5 Update Protocols_Details.md 2020-10-31 16:06:18 +01:00
Pascal Langer
6de4e1e1dd Protocols order 2020-10-31 15:59:04 +01:00
Ben Lye
627d47f139 C8 MCU flash size check (#461) 2020-10-30 12:21:39 +01:00
pascallanger
36675cf729 Change Travis links 2020-10-30 12:18:15 +01:00
Pascal Langer
33d8234eb3 Update JJRC345_nrf24l01.ino 2020-10-30 12:01:40 +01:00
Pascal Langer
347eb11328 SFHSS name change to Futaba 2020-10-30 12:01:29 +01:00
Ben Lye
5ed61f30e1 STM32 release file name standardization (#451)
Tweak the names of the STM32 serial and CC2500-only release files.
2020-10-11 14:09:42 +01:00
Ben Lye
a633f46f4f Travis release build changes (#450)
* Move the release build steps into separate shell scripts
* Remove builds that we don't need any more
  * Latest builds of er9x and erSkyTx both support MULTI_TELEMETRY so separate OpenTX / erSkyTx builds are no longer needed
  * Radio can switch telemetry inversion on or off automatically so STM32 inv / noinv builds are no longer needed
2020-10-11 12:52:05 +01:00
Pascal Langer
baf9a0f978 Update DSM FwdPrg.lua 2020-10-03 11:06:22 +02:00
Pascal Langer
c98b8fc8bf Flysky: Fix AFHDS and AFHDS2A 2020-10-03 10:52:11 +02:00
Pascal Langer
2fae0a35b8 Merge branch 'master' of https://github.com/pascallanger/DIY-Multiprotocol-TX-Module 2020-10-01 00:18:28 +02:00
Pascal Langer
b04f38ed3d Indicate ratio values to be used for A1 and A2 voltage sensors
OMP, RadioLink, Hubsan, Bayang, ...
2020-10-01 00:18:13 +02:00
pascallanger
60d5dd4101 Update Protocols_Details.md 2020-10-01 00:06:40 +02:00
Pascal Langer
75b7dd1dd7 Kyosho/Hype: channel order & doc 2020-10-01 00:05:20 +02:00
Pascal Langer
aa2717d6ab Kyosho/Hype: bind fix 2020-09-30 20:30:07 +02:00
Pascal Langer
4058f04b39 Kyosho/Hype: another attempt to fix bind... 2020-09-30 11:06:30 +02:00
Pascal Langer
25ebd55c85 Update Protocols_Details.md 2020-09-29 19:14:41 +02:00
Pascal Langer
d00b58c8ed Kyosho/Hype: fix bind 2020-09-29 17:06:01 +02:00
Pascal Langer
e7eb07a5a4 Kyosho: new sub_protocol Hype
Initial release
2020-09-29 11:24:55 +02:00
Ben Lye
a4cac50261 Add builds for modules with only CC2500 2020-09-24 14:09:08 +01:00
Pascal Langer
4f8da64822 OMP: doc update 2020-09-23 23:52:22 +02:00
Pascal Langer
4f89721cd0 RadioLink: any id
Need to rebind RXs...
2020-09-23 23:42:03 +02:00
Pascal Langer
43c2843490 Update AFHDS2A_a7105.ino 2020-09-23 23:08:26 +02:00
Pascal Langer
c152265284 OMP: doc 2020-09-23 23:05:05 +02:00
Pascal Langer
b591b92b4e Update OMP documentation 2020-09-23 09:41:26 +02:00
Pascal Langer
090388aa1b OMP: improve telemetry 2020-09-22 15:15:14 +02:00
Pascal Langer
c6ab696949 AFHDS2A: fix X6B telemetry issue? 2020-09-21 10:57:19 +02:00
Pascal Langer
df45a3ff83 OMP: prevent telemetry voltage from rolling over 2020-09-21 10:50:01 +02:00
pascallanger
fedd04b724 Update Troubleshooting.md 2020-09-19 21:23:51 +02:00
pascallanger
d8630da09d Update Troubleshooting.md 2020-09-19 20:35:44 +02:00
pascallanger
6192f7287e Update README.md 2020-09-18 17:15:18 +02:00
Pascal Langer
5b8a08ab22 OMP: added telemetry 2020-09-18 16:13:45 +02:00
Ben Lye
313b03fb84 Disable PPM/serial in builds as needed 2020-09-17 10:13:00 +01:00
Pascal Langer
5639def6fb Update DSM FwdPrg.lua 2020-09-15 12:05:26 +02:00
Pascal Langer
15a254879c DSM_RX: bind with other radio modules off 2020-09-15 12:03:16 +02:00
pascallanger
5baa9bd256 Update README.md 2020-09-13 11:34:23 +02:00
Pascal Langer
d5346c0eaf Add DISABLE_FLASH_SIZE_CHECK 2020-09-09 16:47:32 +02:00
Pascal Langer
a2213fd6dc DSM Forward Programming: work in progress 2020-09-09 10:45:14 +02:00
Pascal Langer
9b07f12f90 AFHDS2A: add sub proto 2020-09-08 08:49:38 +02:00
Pascal Langer
c9b49483e0 NanoRF 2020-09-07 22:58:37 +02:00
Pascal Langer
e2972a5823 AFHDS2A: enable 16 channels on SBUS 2020-09-07 20:31:47 +02:00
Pascal Langer
d5b3ed832d Update Multiprotocol.ino 2020-09-04 10:59:31 +02:00
Pascal Langer
9fcc030c15 STM32: test flash size 2020-09-04 10:39:30 +02:00
pascallanger
fc81b7ee5a Update Protocols_Details.md 2020-09-03 17:28:54 +02:00
Pascal Langer
f168abc2bb Fixed frame size 2020-08-31 22:21:21 +02:00
pascallanger
fe6778635e Add Realacc R11 protocol 2020-08-30 14:57:56 +02:00
Pascal Langer
65a6c19d02 OMP doc 2020-08-30 14:35:44 +02:00
pascallanger
a32b5561a1 Update Protocols_Details.md 2020-08-30 14:30:28 +02:00
pascallanger
4b4393952e Update README.md 2020-08-24 14:41:10 +02:00
Pascal Langer
ea205b1e69 Bayanf: fix telemetry batt 2020-08-20 19:00:06 +02:00
pascallanger
748140cdee Update Protocols_Details.md 2020-08-18 12:02:08 +02:00
Pascal Langer
e8037c857f OMP fixes 2020-08-17 08:26:42 +02:00
Pascal Langer
15e37cefee OMP: fix? 2020-08-16 18:48:40 +02:00
Pascal Langer
b1e4daf1c2 OMP: new protocol intial release
Untested!!!
2020-08-15 16:17:18 +02:00
Pascal Langer
4e0fccfc63 Update Protocols_Details.md 2020-08-14 19:40:25 +02:00
Pascal Langer
48b90029c4 V761: Work with any ID. Tested on Eachine RX. 2020-08-14 19:39:24 +02:00
Pascal Langer
8b189af2f9 R9: small change 2020-08-13 21:21:34 +02:00
Pascal Langer
030cdd35a2 Update REALACC_nrf24l01.ino 2020-08-11 00:02:19 +02:00
Pascal Langer
3789998ba9 Update ZSX_nrf24l01.ino 2020-08-10 23:54:51 +02:00
Pascal Langer
ea24ab6032 New protocol Realacc 2020-08-10 23:54:33 +02:00
Pascal Langer
1408431649 XN297Dump: increase the number of RF channels to look for 2020-08-10 22:52:50 +02:00
Pascal Langer
6810372064 RadioLink: enable Range test mode 2020-08-10 20:30:19 +02:00
Pascal Langer
708e2ac5f6 V761 bug fix: the model was not reconnecting unless you did a bind first 2020-08-07 15:18:15 +02:00
Pascal Langer
2178f6761d RadioLink: update A2=Batt telemetry value 2020-08-07 15:11:59 +02:00
Pascal Langer
aa5fd82004 Update FrSky_Rx_cc2500.ino 2020-08-05 09:50:40 +02:00
Pascal Langer
660282db2e RX protocols: abort RX bind as requested 2020-08-04 10:42:35 +02:00
Ben Lye
fdd357619b Fix folder structure inside LUA script zip file 2020-08-03 22:39:10 +01:00
Pascal Langer
5f12f99761 Update Validate.h 2020-08-01 19:35:39 +02:00
Pascal Langer
3d98abb6d4 Rename the Flyzone protocol by Height which is the original manufacturer 2020-08-01 19:19:11 +02:00
Pascal Langer
e35879a5d0 RadioLink: fix 2020-08-01 10:19:30 +02:00
Pascal Langer
37138f03ae Few fixes 2020-07-31 15:58:07 +02:00
Pascal Langer
51d39bbd8c RadioLink: add RXs to the supported list 2020-07-31 10:56:34 +02:00
Pascal Langer
0932a1c93f Update Protocols_Details.md 2020-07-31 10:52:37 +02:00
Pascal Langer
19164521e4 Flyzone protocol: 8 channels support 2020-07-31 10:42:10 +02:00
Pascal Langer
df28cfe3cc Radiolink: final version with 64 IDs 2020-07-31 10:41:07 +02:00
Pascal Langer
354878d542 RadioLink: preparation for final 2020-07-28 15:53:58 +02:00
Pascal Langer
695264d59a RadioLink: update 2020-07-28 00:55:47 +02:00
pascallanger
de190f3349 Update Protocols_Details.md 2020-07-25 14:43:52 +02:00
Pascal Langer
b049385094 Update Protocols_Details.md 2020-07-23 21:40:26 +02:00
Pascal Langer
75dc616130 Update RadioLink_cc2500.ino 2020-07-23 15:08:23 +02:00
Pascal Langer
b542f5e7cd RLINK: remove fixed ID 2020-07-23 10:10:08 +02:00
Pascal Langer
f3bee3cded RLINK: Fix voltage values 2020-07-23 10:03:04 +02:00
Pascal Langer
a9b7ab9a06 Update Protocols_Details.md 2020-07-22 20:13:54 +02:00
Pascal Langer
ed019e954e RadioLink: few fixes 2020-07-22 20:05:56 +02:00
Pascal Langer
65186b4356 Add Kyosho to the Lua channel namer exception list 2020-07-22 18:18:35 +02:00
Pascal Langer
e1d4f9a270 RadioLink Surface protocol: initial commit 2020-07-22 15:37:47 +02:00
Pascal Langer
69c95ca153 Fix compilation issues when Telem is disabled 2020-07-22 15:27:06 +02:00
Pascal Langer
e6976fb08d Merge branch 'master' of https://github.com/pascallanger/DIY-Multiprotocol-TX-Module 2020-07-21 01:40:19 +02:00
Pascal Langer
f502ba3659 FrSkyX Cloned: 8 channels option 2020-07-21 01:40:14 +02:00
pascallanger
e6ccc7e7cc Update Protocols_Details.md 2020-07-17 14:21:57 +02:00
Pascal Langer
da9d8851c2 Fix FrSkyX and FrSkyR9 bind options 2020-07-16 10:28:07 +02:00
pascallanger
ad48291d2a Update Protocols_Details.md 2020-07-16 00:02:29 +02:00
Pascal Langer
d6da230369 Flysky AFHDS2A: 16 channels + LQI
Use the 2 new sub protocols to extend the protocol to 16 channels on IBUS
2020-07-15 23:58:41 +02:00
pascallanger
f8ac406a94 Update Frequency_Tuning.md 2020-07-15 20:31:55 +02:00
Pascal Langer
e691ecd167 Update doc 2020-07-15 19:09:56 +02:00
Pascal Langer
930c26a111 Kyosho: new protocol 2020-07-10 15:25:32 +02:00
Pascal Langer
64419a6cf4 V2x2: fix? 2020-07-09 22:49:48 +02:00
Pascal Langer
5c59cddc7a FrSkyR9: FCC initial support 2020-07-06 09:52:43 +02:00
Ben Lye
4c7a51be46 Create folders in LUA script zip file 2020-07-05 16:54:55 +01:00
Ben Lye
7dad0fb89f Update install_drivers.bat
Change to libusbk driver for DFU device
2020-07-05 16:32:56 +01:00
Pascal Langer
adebb3fc5c FrSkyX: clean up 2020-07-05 17:19:29 +02:00
Pascal Langer
5ab00b9d18 FrSkyX: TXQly is the percentage of telemetry received packets (100...0%) 2020-07-05 00:28:43 +02:00
Pascal Langer
fbd5d7cf48 FrSky R9: telemetry TX to RX attempt 2020-07-04 22:43:19 +02:00
Pascal Langer
84132678cc FrSkyR9: TQLY = percentage of telemetry frames per second 2020-07-04 18:40:29 +02:00
Pascal Langer
78421748ba FrSky R9: fix sensors telem? 2020-07-04 17:50:05 +02:00
Pascal Langer
7112f58dae FrSkyX: fix telem 2020-07-04 15:15:55 +02:00
Pascal Langer
e56f737b34 FrSkyX: fix telemetry not stopping when RX is off 2020-07-04 13:33:56 +02:00
Pascal Langer
49d993f613 FrSkyR9: fix independant compilation issue 2020-07-04 11:48:26 +02:00
Pascal Langer
63dd8a9215 Update iface_sx1276.h 2020-07-03 19:51:22 +02:00
Pascal Langer
d5f819dd59 FrSkyR9: initial telemetry support 2020-07-03 19:51:11 +02:00
pascallanger
a68787f16e Update Protocols_Details.md 2020-07-03 18:03:36 +02:00
Pascal Langer
858ef5801c FrSkyX: fix AVR telemetry and may be improve telemetry overall 2020-07-03 17:42:12 +02:00
Pascal Langer
9e0bd29cee FrSkyD: clone mode - additional ID byte 2020-07-03 16:15:47 +02:00
Pascal Langer
15395de579 FrSky R9: adding CH1-8/CH9-16 and Telem ON/OFF (not that telem is supported yet) 2020-07-01 15:39:40 +02:00
Pascal Langer
db4aad04a7 FrSkyR9: fix 868 2020-07-01 14:39:11 +02:00
Pascal Langer
466e4cf227 Update DSM protocol details 2020-06-29 23:31:17 +02:00
Ben Lye
05a3780c38 Add latest STM32 board 2020-06-29 19:55:29 +01:00
pascallanger
85ea91cdbb Update README.md 2020-06-28 19:54:14 +02:00
pascallanger
985d7a6fd9 Update README.md 2020-06-28 19:37:58 +02:00
pascallanger
2a19b8dd45 Update README.md 2020-06-28 19:35:12 +02:00
Pascal Langer
b2b3078861 Update README.md 2020-06-28 19:17:02 +02:00
Pascal Langer
2ac92f5725 Create README.md 2020-06-28 19:15:39 +02:00
Pascal Langer
e2f5afd71e V761 doc updates 2020-06-28 19:07:34 +02:00
153 changed files with 13470 additions and 6321 deletions

12
.github/FUNDING.yml vendored Normal file
View File

@@ -0,0 +1,12 @@
# These are supported funding model platforms
github: [pascallanger]
patreon: # Replace with a single Patreon username
open_collective: # Replace with a single Open Collective username
ko_fi: # Replace with a single Ko-fi username
tidelift: # Replace with a single Tidelift platform-name/package-name e.g., npm/babel
community_bridge: # Replace with a single Community Bridge project-name e.g., cloud-foundry
liberapay: # Replace with a single Liberapay username
issuehunt: # Replace with a single IssueHunt username
otechie: # Replace with a single Otechie username
custom: https://www.paypal.com/cgi-bin/webscr?cmd=_donations&business=VF2K9T23DRY56&lc=US&item_name=DIY%20Multiprotocol&currency_code=EUR&bn=PP%2dDonationsBF%3abtn_donate_SM%2egif%3aNonHosted

195
.github/workflows/main.yml vendored Normal file
View File

@@ -0,0 +1,195 @@
# Workflow for testing MULTI-Module firmware builds
name: CI
on:
# Trigger the workflow on pushes, except those that are tagged (avoids double-testing releases)
push:
branches:
- '**'
tags-ignore:
- '**'
paths:
- '.github/workflows/**'
- 'buildroot/bin/**'
- 'Multiprotocol/**'
# Trigger the workflow on pull requests to the master branch
pull_request:
branches:
- master
paths:
- '.github/workflows/**'
- 'buildroot/bin/**'
- 'Multiprotocol/**'
# Triggers the workflow on release creation
release:
types:
- created
# Allows the workflow to be triggered manually from the Actions tab
workflow_dispatch:
jobs:
build:
runs-on: ubuntu-latest
# Configure the board matrix
strategy:
fail-fast: false
matrix:
board: [
"multi4in1:avr:multiatmega328p:bootloader=none",
"multi4in1:avr:multiatmega328p:bootloader=optiboot",
"multi4in1:avr:multixmega32d4",
"multi4in1:STM32F1:multi5in1t18int",
"multi4in1:STM32F1:multistm32f103cb:debug_option=none",
"multi4in1:STM32F1:multistm32f103cb:debug_option=native",
"multi4in1:STM32F1:multistm32f103cb:debug_option=ftdi",
"multi4in1:STM32F1:multistm32f103c8:debug_option=none"
]
# Set the environment variables
env:
BOARD: ${{ matrix.board }}
steps:
- uses: actions/checkout@v2
- name: Install Arduino CLI
uses: arduino/setup-arduino-cli@v1.1.1
- name: Prepare build environment
run: |
echo "Github Ref: $GITHUB_REF"
echo "Event name: ${{ github.event_name }}"
echo "Event action: ${{ github.event.action }}"
echo "Tag name: ${{ github.event.release.tag_name }}"
arduino-cli config init --additional-urls https://raw.githubusercontent.com/pascallanger/DIY-Multiprotocol-TX-Module-Boards/master/package_multi_4in1_board_index.json
arduino-cli core update-index
if [[ "$BOARD" =~ "multi4in1:avr:" ]]; then
arduino-cli core install arduino:avr;
arduino-cli core install multi4in1:avr
fi
if [[ "$BOARD" =~ "multi4in1:STM32F1:" ]]; then
arduino-cli core install multi4in1:STM32F1
fi
chmod +x ${GITHUB_WORKSPACE}/buildroot/bin/*
echo "${GITHUB_WORKSPACE}/buildroot/bin" >> $GITHUB_PATH
mkdir ./build
mkdir ./binaries
- name: Configure MULTI-Module firmware options
run: |
# Load the build functions
source ./buildroot/bin/buildFunctions;
# Get the version
getMultiVersion
echo "MULTI_VERSION=$(echo $MULTI_VERSION)" >> $GITHUB_ENV
# Get all the protocols for this board
getAllProtocols
echo "A7105_PROTOCOLS=$(echo $A7105_PROTOCOLS)" >> $GITHUB_ENV
echo "CC2500_PROTOCOLS=$(echo $CC2500_PROTOCOLS)" >> $GITHUB_ENV
echo "CYRF6936_PROTOCOLS=$(echo $CYRF6936_PROTOCOLS)" >> $GITHUB_ENV
echo "NRF24L01_PROTOCOLS=$(echo $NRF24L01_PROTOCOLS)" >> $GITHUB_ENV
echo "SX1276_PROTOCOLS=$(echo $SX1276_PROTOCOLS)" >> $GITHUB_ENV
echo "CCNRF_INO_PROTOCOLS=$(echo $CCNRF_INO_PROTOCOLS)" >> $GITHUB_ENV
echo "ALL_PROTOCOLS=$(echo $ALL_PROTOCOLS)" >> $GITHUB_ENV
# Get all the RF modules for this board
getAllRFModules
echo "ALL_RFMODULES=$(echo $ALL_RFMODULES)" >> $GITHUB_ENV
# Disable CHECK_FOR_BOOTLOADER when not needed
if [[ "$BOARD" == "multi4in1:avr:multiatmega328p:bootloader=none" ]]; then
opt_disable CHECK_FOR_BOOTLOADER;
fi
# Trim the build down for the Atmega328p board
if [[ "$BOARD" =~ "multi4in1:avr:multiatmega328p:" ]]; then
opt_disable $ALL_PROTOCOLS
opt_enable FRSKYX_CC2500_INO AFHDS2A_A7105_INO MJXQ_NRF24L01_INO DSM_CYRF6936_INO;
fi
# Trim the enabled protocols down for the STM32F103CB board with debugging or the STM32F103C8 board in general
if [[ "$BOARD" == "multi4in1:STM32F1:multistm32f103cb:debug_option=ftdi" ]] || [[ "$BOARD" == "multi4in1:STM32F1:multistm32f103cb:debug_option=native" ]] || [[ "$BOARD" =~ "multi4in1:STM32F1:multistm32f103c8" ]]; then
opt_disable $ALL_PROTOCOLS;
opt_enable FRSKYX_CC2500_INO AFHDS2A_A7105_INO MJXQ_NRF24L01_INO DSM_CYRF6936_INO;
fi
- name: Save default firmware configuration
run: |
cat Multiprotocol/_Config.h
cp Multiprotocol/_Config.h ./_Config.h.bak
- name: Build default configuration
run: |
# Skip the default build for boards where it's too large now
if [[ "$BOARD" == "multi4in1:STM32F1:multistm32f103cb:debug_option=none" ]] || [[ "$BOARD" == "multi4in1:STM32F1:multi5in1t18int" ]]; then
printf "Not testing default build for $BOARD.";
else
source ./buildroot/bin/buildFunctions;
buildMulti
fi
- name: Build serial only
run: |
source ./buildroot/bin/buildFunctions;
cp ./_Config.h.bak Multiprotocol/_Config.h
opt_disable ENABLE_PPM;
buildMulti;
- name: Build PPM only
run: |
source ./buildroot/bin/buildFunctions;
cp ./_Config.h.bak Multiprotocol/_Config.h
opt_disable ENABLE_SERIAL;
buildMulti;
- name: Build each RF module individually
run: |
source ./buildroot/bin/buildFunctions;
cp ./_Config.h.bak Multiprotocol/_Config.h;
buildEachRFModule;
- name: Build each protocol individually
run: |
source ./buildroot/bin/buildFunctions;
cp ./_Config.h.bak Multiprotocol/_Config.h;
buildEachProtocol;
- name: Build release files
run: |
source ./buildroot/bin/buildFunctions;
cp ./_Config.h.bak Multiprotocol/_Config.h;
buildReleaseFiles;
ls -al ./binaries;
NUM_FILES=$(ls -l ./binaries | grep ^- | wc -l);
if [ $NUM_FILES -gt 0 ]; then
echo "HAVE_FILES=true" >> $GITHUB_ENV
else
echo "HAVE_FILES=false" >> $GITHUB_ENV
fi
- name: Deploy files to release
if: github.event_name == 'release' && github.event.action == 'created' && env.HAVE_FILES == 'true'
uses: AButler/upload-release-assets@v2.0
with:
files: './binaries/*'
repo-token: ${{ secrets.GITHUB_TOKEN }}
- name: 'Upload Artifacts'
if: env.HAVE_FILES == 'true'
uses: actions/upload-artifact@v2
with:
name: multi-test-build
path: ./binaries/

View File

@@ -1,389 +0,0 @@
os: linux
dist: bionic
language: c
env:
jobs:
- BOARD="multi4in1:avr:multiatmega328p:bootloader=none"
- BOARD="multi4in1:avr:multiatmega328p:bootloader=optiboot"
- BOARD="multi4in1:avr:multixmega32d4"
- BOARD="multi4in1:STM32F1:multi5in1t18int"
- BOARD="multi4in1:STM32F1:multistm32f103c:debug_option=none"
- BOARD="multi4in1:STM32F1:multistm32f103c:debug_option=native"
- BOARD="multi4in1:STM32F1:multistm32f103c:debug_option=ftdi"
notifications:
email: false
before_install:
# Fetch the tag information for the current branch
- git fetch origin --tags
# Publish the buildroot script folder
- chmod +x ${TRAVIS_BUILD_DIR}/buildroot/bin/*
- export PATH=${TRAVIS_BUILD_DIR}/buildroot/bin/:${PATH}
# Helper functions for the builds
- buildMulti() { start_fold config_diff; travis_time_start; git diff Multiprotocol/_Config.h; end_fold config_diff; exitcode=0; BUILDCMD="arduino-cli compile -b $BOARD Multiprotocol/Multiprotocol.ino --build-path ${TRAVIS_BUILD_DIR}/build/"; echo $BUILDCMD; $BUILDCMD; if [ $? -ne 0 ]; then exitcode=1; fi; echo; return $exitcode; }
- buildProtocol() { exitcode=0; opt_disable $ALL_PROTOCOLS; opt_enable $1; buildMulti; if [ $? -ne 0 ]; then exitcode=1; fi; return $exitcode; }
- buildEachProtocol() { exitcodesum=0; for PROTOCOL in $ALL_PROTOCOLS ; do printf "\e[33;1mBuilding $PROTOCOL\e[0m"; buildProtocol $PROTOCOL; if [ $? -ne 0 ]; then exitcodesum=$((exitcodesum + 1)); fi; done; return $exitcodesum; }
- buildRFModule() { exitcode=0; opt_disable $ALL_RFMODULES; opt_enable $1; buildMulti; if [ $? -ne 0 ]; then exitcode=1; fi; return $exitcode; }
- buildEachRFModule() { exitcodesum=0; for RFMODULE in $ALL_RFMODULES; do printf "\e[33;1mBuilding $RFMODULE\e[0m"; buildRFModule $RFMODULE; if [ $? -ne 0 ]; then exitcodesum=$((exitcodesum + 1)); fi; done; return $exitcodesum; }
- buildDefault() { exitcode=0; printf "\n\e[33;1mBuilding default configuration\e[0m\n"; buildMulti; if [ $? -ne 0 ]; then exitcode=1; fi; return $exitcode; }
- buildSerialOnly() { exitcode=0; printf "\n\e[33;1mBuilding serial mode only\e[0m\n"; opt_disable ENABLE_PPM; opt_enable ENABLE_SERIAL; buildMulti; if [ $? -ne 0 ]; then exitcode=1; fi; return $exitcode; }
- buildPPMOnly() { exitcode=0; printf "\n\e[33;1mBuilding PPM mode only\e[0m\n"; opt_enable ENABLE_PPM; opt_disable ENABLE_SERIAL; buildMulti; if [ $? -ne 0 ]; then exitcode=1; fi; return $exitcode; }
# Function to build the release files - dependent on board type
- if [[ "$BOARD" == "multi4in1:avr:multixmega32d4" ]]; then
buildReleaseFiles(){
exitcode=0;
printf "\n\e[33;1mBuilding multi-orangerx-aetr-green-inv-v$MULTI_VERSION.bin\e[0m";
opt_enable $ALL_PROTOCOLS;
opt_disable ORANGE_TX_BLUE;
buildMulti;
exitcode=$((exitcode+$?));
mv build/Multiprotocol.ino.bin ./binaries/multi-orangerx-aetr-green-inv-v$MULTI_VERSION.bin;
printf "\n\e[33;1mBuilding multi-orangerx-aetr-blue-inv-v$MULTI_VERSION.bin\e[0m";
opt_enable ORANGE_TX_BLUE;
buildMulti;
exitcode=$((exitcode+$?));
mv build/Multiprotocol.ino.bin ./binaries/multi-orangerx-aetr-blue-inv-v$MULTI_VERSION.bin;
cp Multiprotocol/Multi.txt ./binaries/Multi.txt;
zip -j ./binaries/MultiLuaScripts.zip Lua_scripts/*;
return $exitcode; };
elif [[ "$BOARD" == "multi4in1:avr:multiatmega328p:bootloader=none" ]]; then
buildReleaseFiles(){
printf "\n\e[33;1mBuilding multi-avr-usbasp-aetr-A7105-inv-v$MULTI_VERSION.bin\e[0m";
exitcode=0;
opt_disable CHECK_FOR_BOOTLOADER;
opt_disable $ALL_PROTOCOLS;
opt_enable $A7105_PROTOCOLS;
buildMulti;
exitcode=$((exitcode+$?));
mv build/Multiprotocol.ino.bin ./binaries/multi-avr-usbasp-aetr-A7105-inv-v$MULTI_VERSION.bin;
printf "\n\e[33;1mBuilding multi-avr-usbasp-aetr-CC2500-inv-v$MULTI_VERSION.bin\e[0m";
opt_disable $ALL_PROTOCOLS;
opt_enable $CC2500_PROTOCOLS;
opt_disable HITEC_CC2500_INO REDPINE_CC2500_INO SKYARTEC_CC2500_INO SCANNER_CC2500_INO;
buildMulti;
mv build/Multiprotocol.ino.bin ./binaries/multi-avr-usbasp-aetr-CC2500-inv-v$MULTI_VERSION.bin;
printf "\n\e[33;1mBuilding multi-avr-usbasp-aetr-CYRF6936-inv-v$MULTI_VERSION.bin\e[0m";
opt_disable $ALL_PROTOCOLS;
opt_enable $CYRF6936_PROTOCOLS;
buildMulti;
exitcode=$((exitcode+$?));
mv build/Multiprotocol.ino.bin ./binaries/multi-avr-usbasp-aetr-CYRF6936-inv-v$MULTI_VERSION.bin;
return $exitcode; };
elif [[ "$BOARD" == "multi4in1:avr:multiatmega328p:bootloader=optiboot" ]]; then
buildReleaseFiles(){
printf "\n\e[33;1mBuilding multi-avr-txflash-aetr-A7105-inv-v$MULTI_VERSION.bin\e[0m";
exitcode=0;
opt_enable CHECK_FOR_BOOTLOADER;
opt_disable $ALL_PROTOCOLS;
opt_enable $A7105_PROTOCOLS;
buildMulti;
exitcode=$((exitcode+$?));
mv build/Multiprotocol.ino.bin ./binaries/multi-avr-txflash-aetr-A7105-inv-v$MULTI_VERSION.bin;
printf "\n\e[33;1mBuilding multi-avr-txflash-aetr-CC2500-inv-v$MULTI_VERSION.bin\e[0m";
opt_disable $ALL_PROTOCOLS;
opt_enable $CC2500_PROTOCOLS;
opt_disable HITEC_CC2500_INO REDPINE_CC2500_INO SKYARTEC_CC2500_INO SCANNER_CC2500_INO;
buildMulti;
exitcode=$((exitcode+$?));
mv build/Multiprotocol.ino.bin ./binaries/multi-avr-txflash-aetr-CC2500-inv-v$MULTI_VERSION.bin;
printf "\n\e[33;1mBuilding multi-avr-txflash-aetr-CYRF6936-inv-v$MULTI_VERSION.bin\e[0m";
opt_disable $ALL_PROTOCOLS;
opt_enable $CYRF6936_PROTOCOLS;
buildMulti;
exitcode=$((exitcode+$?));
mv build/Multiprotocol.ino.bin ./binaries/multi-avr-txflash-aetr-CYRF6936-inv-v$MULTI_VERSION.bin;
return $exitcode; };
elif [[ "$BOARD" == "multi4in1:STM32F1:multistm32f103c:debug_option=none" ]]; then
buildReleaseFiles(){
printf "\n\e[33;1mBuilding multi-stm-erskytx-aetr-inv-v$MULTI_VERSION.bin\e[0m";
exitcode=0;
opt_enable CHECK_FOR_BOOTLOADER;
opt_enable $ALL_PROTOCOLS;
opt_enable MULTI_STATUS;
opt_disable MULTI_TELEMETRY;
buildMulti;
exitcode=$((exitcode+$?));
mv build/Multiprotocol.ino.bin ./binaries/multi-stm-erskytx-aetr-inv-v$MULTI_VERSION.bin;
printf "\n\e[33;1mBuilding multi-stm-erskytx-taer-inv-v$MULTI_VERSION.bin\e[0m";
opt_replace AETR TAER;
buildMulti;
exitcode=$((exitcode+$?));
mv build/Multiprotocol.ino.bin ./binaries/multi-stm-erskytx-taer-inv-v$MULTI_VERSION.bin;
printf "\n\e[33;1mBuilding multi-stm-erskytx-reta-inv-v$MULTI_VERSION.bin\e[0m";
opt_replace TAER RETA;
buildMulti;
exitcode=$((exitcode+$?));
mv build/Multiprotocol.ino.bin ./binaries/multi-stm-erskytx-reta-inv-v$MULTI_VERSION.bin;
printf "\n\e[33;1mBuilding multi-stm-erskytx-aetr-noinv-v$MULTI_VERSION.bin\e[0m";
opt_replace RETA AETR;
opt_disable INVERT_TELEMETRY;
buildMulti;
exitcode=$((exitcode+$?));
mv build/Multiprotocol.ino.bin ./binaries/multi-stm-erskytx-aetr-noinv-v$MULTI_VERSION.bin;
printf "\n\e[33;1mBuilding multi-stm-erskytx-taer-noinv-v$MULTI_VERSION.bin\e[0m";
opt_replace AETR TAER;
buildMulti;
exitcode=$((exitcode+$?));
mv build/Multiprotocol.ino.bin ./binaries/multi-stm-erskytx-taer-noinv-v$MULTI_VERSION.bin;
printf "\n\e[33;1mBuilding multi-stm-erskytx-reta-noinv-v$MULTI_VERSION.bin\e[0m";
opt_replace TAER RETA;
buildMulti;
exitcode=$((exitcode+$?));
mv build/Multiprotocol.ino.bin ./binaries/multi-stm-erskytx-reta-noinv-v$MULTI_VERSION.bin;
printf "\n\e[33;1mBuilding multi-stm-opentx-aetr-inv-v$MULTI_VERSION.bin\e[0m";
opt_replace RETA AETR;
opt_disable MULTI_STATUS;
opt_enable MULTI_TELEMETRY;
opt_enable INVERT_TELEMETRY;
buildMulti;
exitcode=$((exitcode+$?));
mv build/Multiprotocol.ino.bin ./binaries/multi-stm-opentx-aetr-inv-v$MULTI_VERSION.bin;
printf "\n\e[33;1mBuilding multi-stm-opentx-taer-inv-v$MULTI_VERSION.bin\e[0m";
opt_replace AETR TAER;
buildMulti;
exitcode=$((exitcode+$?));
mv build/Multiprotocol.ino.bin ./binaries/multi-stm-opentx-taer-inv-v$MULTI_VERSION.bin;
printf "\n\e[33;1mBuilding multi-stm-opentx-reta-inv-v$MULTI_VERSION.bin\e[0m";
opt_replace TAER RETA;
buildMulti;
exitcode=$((exitcode+$?));
mv build/Multiprotocol.ino.bin ./binaries/multi-stm-opentx-reta-inv-v$MULTI_VERSION.bin;
printf "\n\e[33;1mBuilding multi-stm-opentx-aetr-noinv-v$MULTI_VERSION.bin\e[0m";
opt_replace RETA AETR;
opt_disable INVERT_TELEMETRY;
buildMulti;
exitcode=$((exitcode+$?));
mv build/Multiprotocol.ino.bin ./binaries/multi-stm-opentx-aetr-noinv-v$MULTI_VERSION.bin;
printf "\n\e[33;1mBuilding multi-stm-opentx-taer-noinv-v$MULTI_VERSION.bin\e[0m";
opt_replace AETR TAER;
buildMulti;
exitcode=$((exitcode+$?));
mv build/Multiprotocol.ino.bin ./binaries/multi-stm-opentx-taer-noinv-v$MULTI_VERSION.bin;
printf "\n\e[33;1mBuilding multi-stm-opentx-reta-noinv-v$MULTI_VERSION.bin\e[0m";
opt_replace TAER RETA;
buildMulti;
exitcode=$((exitcode+$?));
mv build/Multiprotocol.ino.bin ./binaries/multi-stm-opentx-reta-noinv-v$MULTI_VERSION.bin;
printf "\n\e[33;1mBuilding multi-stm-ppm-aetr-noinv-v$MULTI_VERSION.bin\e[0m";
opt_replace RETA AETR;
opt_disable MULTI_STATUS;
opt_disable MULTI_TELEMETRY;
opt_set NBR_BANKS 5;
buildMulti;
exitcode=$((exitcode+$?));
mv build/Multiprotocol.ino.bin ./binaries/multi-stm-ppm-aetr-noinv-v$MULTI_VERSION.bin;
printf "\n\e[33;1mBuilding multi-stm-ppm-taer-noinv-v$MULTI_VERSION.bin\e[0m";
opt_replace AETR TAER;
buildMulti;
exitcode=$((exitcode+$?));
mv build/Multiprotocol.ino.bin ./binaries/multi-stm-ppm-taer-noinv-v$MULTI_VERSION.bin;
printf "\n\e[33;1mBuilding multi-stm-ppm-reta-noinv-v$MULTI_VERSION.bin\e[0m";
opt_replace TAER RETA;
buildMulti;
exitcode=$((exitcode+$?));
mv build/Multiprotocol.ino.bin ./binaries/multi-stm-ppm-reta-noinv-v$MULTI_VERSION.bin;
return $exitcode; };
elif [[ "$BOARD" == "multi4in1:STM32F1:multistm32f103c:debug_option=native" ]]; then
buildReleaseFiles(){
printf "\n\e[33;1mBuilding multi-stm-erskytx-xn297dump-inv-usbdebug-v$MULTI_VERSION.bin\e[0m";
exitcode=0;
opt_enable CHECK_FOR_BOOTLOADER;
opt_disable $ALL_PROTOCOLS;
opt_add XN297DUMP_NRF24L01_INO;
opt_enable MULTI_STATUS;
opt_disable MULTI_TELEMETRY;
opt_enable INVERT_TELEMETRY;
buildMulti;
exitcode=$((exitcode+$?));
mv build/Multiprotocol.ino.bin ./binaries/multi-stm-erskytx-xn297dump-inv-usbdebug-v$MULTI_VERSION.bin;
printf "\n\e[33;1mBuilding multi-stm-opentx-xn297dump-inv-usbdebug-v$MULTI_VERSION.bin\e[0m";
opt_disable $ALL_PROTOCOLS;
opt_disable MULTI_STATUS;
opt_enable MULTI_TELEMETRY;
opt_enable INVERT_TELEMETRY;
buildMulti;
exitcode=$((exitcode+$?));
mv build/Multiprotocol.ino.bin ./binaries/multi-stm-opentx-xn297dump-inv-usbdebug-v$MULTI_VERSION.bin;
return $exitcode; };
elif [[ "$BOARD" == "multi4in1:STM32F1:multistm32f103c:debug_option=ftdi" ]]; then
buildReleaseFiles(){
printf "\n\e[33;1mBuilding multi-stm-erskytx-xn297dump-inv-ftdidebug-v$MULTI_VERSION.bin\e[0m";
exitcode=0;
opt_enable CHECK_FOR_BOOTLOADER;
opt_disable $ALL_PROTOCOLS;
opt_add XN297DUMP_NRF24L01_INO;
opt_enable MULTI_STATUS;
opt_disable MULTI_TELEMETRY;
opt_enable INVERT_TELEMETRY;
buildMulti;
exitcode=$((exitcode+$?));
mv build/Multiprotocol.ino.bin ./binaries/multi-stm-erskytx-xn297dump-inv-ftdidebug-v$MULTI_VERSION.bin;
printf "\n\e[33;1mBuilding multi-stm-opentx-xn297dump-inv-ftdidebug-v$MULTI_VERSION.bin\e[0m";
opt_disable $ALL_PROTOCOLS;
opt_disable MULTI_STATUS;
opt_enable MULTI_TELEMETRY;
opt_enable INVERT_TELEMETRY;
buildMulti;
exitcode=$((exitcode+$?));
mv build/Multiprotocol.ino.bin ./binaries/multi-stm-opentx-xn297dump-inv-ftdidebug-v$MULTI_VERSION.bin;
return $exitcode; };
elif [[ "$BOARD" == "multi4in1:STM32F1:multi5in1t18int" ]]; then
buildReleaseFiles(){
printf "\n\e[33;1mBuilding multi-t18int-opentx-aetr-noinv-v$MULTI_VERSION.bin\e[0m";
opt_disable INVERT_TELEMETRY;
exitcode=0;
buildMulti;
exitcode=$((exitcode+$?));
mv build/Multiprotocol.ino.bin ./binaries/multi-t18int-opentx-aetr-noinv-v$MULTI_VERSION.bin;
printf "\n\e[33;1mBuilding multi-t18int-opentx-taer-noinv-v$MULTI_VERSION.bin\e[0m";
opt_replace AETR TAER;
exitcode=0;
buildMulti;
exitcode=$((exitcode+$?));
mv build/Multiprotocol.ino.bin ./binaries/multi-t18int-opentx-taer-noinv-v$MULTI_VERSION.bin;
printf "\n\e[33;1mBuilding multi-t18int-opentx-reta-noinv-v$MULTI_VERSION.bin\e[0m";
opt_replace TAER RETA;
exitcode=0;
buildMulti;
exitcode=$((exitcode+$?));
mv build/Multiprotocol.ino.bin ./binaries/multi-t18int-opentx-reta-noinv-v$MULTI_VERSION.bin;
return $exitcode; };
else
buildReleaseFiles() { echo "No release files for this board."; };
fi
install:
# Install Arduino CLI
- mkdir ~/arduino-cli
- curl -fsSL https://raw.githubusercontent.com/arduino/arduino-cli/master/install.sh | BINDIR=~/arduino-cli sh;
- export PATH=$PATH:$HOME/arduino-cli
# Update the board url and package index
- arduino-cli core update-index --additional-urls https://raw.githubusercontent.com/pascallanger/DIY-Multiprotocol-TX-Module-Boards/master/package_multi_4in1_board_index.json
# Install the STM32 board if needed
- if [[ "$BOARD" =~ "multi4in1:STM32F1:" ]]; then
arduino-cli core install multi4in1:STM32F1 --additional-urls https://raw.githubusercontent.com/pascallanger/DIY-Multiprotocol-TX-Module-Boards/master/package_multi_4in1_board_index.json;
fi
# Install the AVR board if needed
- if [[ "$BOARD" =~ "multi4in1:avr:" ]]; then
arduino-cli core install arduino:avr;
arduino-cli core install multi4in1:avr --additional-urls https://raw.githubusercontent.com/pascallanger/DIY-Multiprotocol-TX-Module-Boards/master/package_multi_4in1_board_index.json;
fi
before_script:
# Change current working directory to the build dir
- cd ${TRAVIS_BUILD_DIR}
# Create somwhere to put the exported binaries
- mkdir ./binaries
# Log the initial Multi config
- cat Multiprotocol/_Config.h
# Back up the configuration
- cp Multiprotocol/_Config.h ./_Config.h.bak
# Get the firmware version number from the source
- MAJOR_VERSION=$(grep "VERSION_MAJOR" "Multiprotocol/Multiprotocol.h" | awk -v N=3 '{gsub(/\r/,""); print $N}')
- MINOR_VERSION=$(grep "VERSION_MINOR" "Multiprotocol/Multiprotocol.h" | awk -v N=3 '{gsub(/\r/,""); print $N}')
- REVISION_VERSION=$(grep "VERSION_REVISION" "Multiprotocol//Multiprotocol.h" | awk -v N=3 '{gsub(/\r/,""); print $N}')
- PATCH_VERSION=$(grep "VERSION_PATCH" "Multiprotocol//Multiprotocol.h" | awk -v N=3 '{gsub(/\r/,""); print $N}')
- MULTI_VERSION=$MAJOR_VERSION.$MINOR_VERSION.$REVISION_VERSION.$PATCH_VERSION
# Derive the Multi protocols from the Multi source
- A7105_PROTOCOLS=$(sed -n 's/[\/\/]*[[:blank:]]*#define[[:blank:]]*\([[:alnum:]_]*_A7105_INO\)\(.*\)/\1/p' Multiprotocol/_Config.h)
- CC2500_PROTOCOLS=$(sed -n 's/[\/\/]*[[:blank:]]*#define[[:blank:]]*\([[:alnum:]_]*_CC2500_INO\)\(.*\)/\1/p' Multiprotocol/_Config.h)
- CYRF6936_PROTOCOLS=$(sed -n 's/[\/\/]*[[:blank:]]*#define[[:blank:]]*\([[:alnum:]_]*_CYRF6936_INO\)\(.*\)/\1/p' Multiprotocol/_Config.h)
- NRF24L01_PROTOCOLS=$(sed -n 's/[\/\/]*[[:blank:]]*#define[[:blank:]]*\([[:alnum:]_]*_NRF24L01_INO\)\(.*\)/\1/p' Multiprotocol/_Config.h)
- SX1276_PROTOCOLS=$(sed -n 's/[\/\/]*[[:blank:]]*#define[[:blank:]]*\([[:alnum:]_]*_SX1276_INO\)\(.*\)/\1/p' Multiprotocol/_Config.h)
# Get the full set of protocols for each board
- if [[ "$BOARD" =~ "multi4in1:avr:multixmega32d4" ]]; then
ALL_PROTOCOLS=$(echo $CYRF6936_PROTOCOLS);
elif [[ "$BOARD" =~ "multi4in1:avr:multiatmega328p:" ]]; then
ALL_PROTOCOLS=$(echo $A7105_PROTOCOLS $CC2500_PROTOCOLS $CYRF6936_PROTOCOLS $NRF24L01_PROTOCOLS);
elif [[ "$BOARD" =~ "multi4in1:STM32F1:" ]]; then
ALL_PROTOCOLS=$(echo $A7105_PROTOCOLS $CC2500_PROTOCOLS $CYRF6936_PROTOCOLS $NRF24L01_PROTOCOLS $SX1276_PROTOCOLS);
fi
- echo $ALL_PROTOCOLS
# Declare all the installed modules
- if [[ "$BOARD" =~ "multi4in1:STM32F1:" ]]; then
ALL_RFMODULES=$(echo A7105_INSTALLED CYRF6936_INSTALLED CC2500_INSTALLED NRF24L01_INSTALLED SX1276_INSTALLED);
else
ALL_RFMODULES=$(echo A7105_INSTALLED CYRF6936_INSTALLED CC2500_INSTALLED NRF24L01_INSTALLED);
fi
# Disable CHECK_FOR_BOOTLOADER when not needed
- if [[ "$BOARD" == "multi4in1:avr:multiatmega328p:bootloader=none" ]]; then
opt_disable CHECK_FOR_BOOTLOADER;
fi
# Trim the enabled protocols down for the STM32 board with debugging
- if [[ "$BOARD" == "multi4in1:STM32F1:multistm32f103c:debug_option=ftdi" ]] || [[ "$BOARD" == "multi4in1:STM32F1:multistm32f103c:debug_option=native" ]]; then
opt_disable $ALL_PROTOCOLS;
opt_enable FRSKYX_CC2500_INO AFHDS2A_A7105_INO MJXQ_NRF24L01_INO DSM_CYRF6936_INO;
fi
# Trim the enabled protocols down for the Atmega328p board
- if [[ "$BOARD" =~ "multi4in1:avr:multiatmega328p:" ]]; then
opt_disable $ALL_PROTOCOLS;
opt_enable FRSKYX_CC2500_INO AFHDS2A_A7105_INO MJXQ_NRF24L01_INO DSM_CYRF6936_INO;
fi
# Useful Travis functions
- export -f travis_fold
- export -f travis_nanoseconds
- export -f travis_time_start
- export -f travis_time_finish
- start_fold() { echo -e "travis_fold:start:$1"; }
- end_fold() { echo -e "\ntravis_fold:end:$1\r"; }
script:
# Build with default configuration - all protocols are enabled for STM32; a subset of protocols for Atmega or STM32 debugging
- buildDefault
# Serial only
- buildSerialOnly
# PPM only
- buildPPMOnly
# Re-enable PPM and serial
- opt_enable ENABLE_SERIAL
- opt_enable ENABLE_PPM
# Build for each RF module individually
- buildEachRFModule
# Restore the default configuration
- cp ./_Config.h.bak Multiprotocol/_Config.h
# Build each protocol individually
- buildEachProtocol
# Restore the default configuration
- cp ./_Config.h.bak Multiprotocol/_Config.h
# Restore the default configuration
- cp ./_Config.h.bak Multiprotocol/_Config.h
# Builds the files for a release - always built, but only copied to Github if the test is tagged as a release
- buildReleaseFiles
deploy:
provider: releases
token:
secure: KGXaoqvd8rbZ3AZtL9Rrn1JYiocGsPaihRUyR8gM8vTfvH9WYAE1+h6SzROQOuJSwr89MvTo3SBOTlM/0PDBnEGLec9Irt7cwO0xf9xM2vPuUG8DYcUzmJJzME9dkn/7qHof1JGgRpp1duUAN1triE9NxhKxL1hbs+tUUbDPAejxwoFNfnta/T4PfD6xmkZNJbneIfYFuFgyLpwwFhuUy9JP7s1AFOiT+fCHxPaZrPn5GsXqAi95Cb7Q3w1iVSt3BmrGxL2j3CeNpWzFY1RrMdc8ay+ppOhSPEIl2vyM7VeLRRBL3EVeFWkiS4ywevqw70wOivTczluv3OeuIJAe5o2UU+w5+59c7+i44Nih23PDAZBhAG5JkLUYUN0XUJpXJ5ZlZsb8IS8sI1txlZa5tNVoXO9+soGEY4rKSpZaPptuENm792CzzAjcaUI9pOFJ/0CBoSCbu5MpM/plkJCMd8fY27EE8cNYvolMuRATNlXs7h9mURGR69pmcR1jFShH+A7Kyp1S1sH19sGCEU16rt2aAtf2FadFg/gKACC2y9rB3wBb4Qnapu2AwNRlTYNuU1+G+kb2FXRwMl04q+38S+cIBHH9NHfdftp9MRPf8Ekatojs92be/Ux21S+hcA7sx/DV22Dl45V6l4mXzR7U4x1nQcdn1SGuy5I4lL6IYCk=
skip_cleanup: true
file_glob: true
file: binaries/*
on:
tags: true

View File

@@ -1,11 +1,11 @@
@echo off
echo Installing Maple DFU driver...
"%~dp0wdi-simple" --vid 0x1EAF --pid 0x0003 --type 1 --name "Maple DFU" --dest "%~dp0maple-dfu"
echo Installing MULTI-Module DFU Bootloader Driver...
"%~dp0wdi-simple" --vid 0x1EAF --pid 0x0003 --type 2 --name "MULTI-Module DFU Bootloader" --dest "%~dp0MULTI-DFU-Bootloader" -b
echo.
echo Installing Maple Serial driver...
"%~dp0wdi-simple" --vid 0x1EAF --pid 0x0004 --type 3 --name "Maple Serial" --dest "%~dp0maple-serial"
echo Installing MULTI-Module USB Serial Driver...
"%~dp0wdi-simple" --vid 0x1EAF --pid 0x0004 --type 3 --name "MULTI-Module USB Serial" --dest "%~dp0MULTI-USB-Serial" -b
echo.
pause

View File

@@ -170,6 +170,24 @@
],
"toolsDependencies": []
},
{
"name": "MULTI-Module AVR Boards",
"architecture": "avr",
"version": "1.1.1",
"category": "Contributed",
"help": {
"online": "https://github.com/pascallanger/DIY-Multiprotocol-TX-Module"
},
"url": "https://github.com/pascallanger/DIY-Multiprotocol-TX-Module-Boards/raw/master/archives/package_multi_4in1_avr_board_v1.1.1.tar.gz",
"archiveFileName": "package_multi_4in1_avr_board_v1.1.1.tar.gz",
"checksum": "SHA-256:02158258b4dbaca61bedbb6933336200d13b02ad0db981e2dda253682c482e99",
"size": "324512",
"boards": [
{"name": "Multi 4-in-1 (Atmega328p, 3.3V, 16MHz)"},
{"name": "Multi 4-in-1 (OrangeRX)"}
],
"toolsDependencies": []
},
{
"name": "Multi 4-in-1 STM32 Board",
"architecture": "STM32F1",
@@ -527,6 +545,95 @@
"version": "4.8.3-2014q1"
}]
},
{
"name": "Multi X-in-1 STM32 Boards",
"architecture": "STM32F1",
"version": "1.1.8",
"category": "Contributed",
"help": {
"online": "https://github.com/pascallanger/DIY-Multiprotocol-TX-Module"
},
"url": "https://github.com/pascallanger/DIY-Multiprotocol-TX-Module-Boards/raw/master/archives/package_multi_4in1_stm32_board_v1.1.8.tar.gz",
"archiveFileName": "package_multi_4in1_stm32_board_v1.1.8.tar.gz",
"checksum": "SHA-256:e9ed8055ebf72abf37e60e1b8d1c6ee5472132ea7c0a3c4a63fbb8442613e4c2",
"size": "7481800",
"boards": [
{"name": "Multi 4-in-1 (STM32F103C)"},
{"name": "Multi 5-in-1 (Jumper T18 Internal)"}
],
"toolsDependencies": [{
"packager": "arduino",
"name": "arm-none-eabi-gcc",
"version": "4.8.3-2014q1"
}]
},
{
"name": "Multi X-in-1 STM32 Boards",
"architecture": "STM32F1",
"version": "1.2.0",
"category": "Contributed",
"help": {
"online": "https://github.com/pascallanger/DIY-Multiprotocol-TX-Module"
},
"url": "https://github.com/pascallanger/DIY-Multiprotocol-TX-Module-Boards/raw/master/archives/package_multi_4in1_stm32_board_v1.2.0.tar.gz",
"archiveFileName": "package_multi_4in1_stm32_board_v1.2.0.tar.gz",
"checksum": "SHA-256:754f08ca2a553701cc9112b645c079b6041107f1bf863648305e560c136a6ac5",
"size": "7496214",
"boards": [
{"name": "Multi 4-in-1 (STM32F103C)"},
{"name": "Multi 5-in-1 (Jumper T18 Internal)"}
],
"toolsDependencies": [{
"packager": "arduino",
"name": "arm-none-eabi-gcc",
"version": "4.8.3-2014q1"
}]
},
{
"name": "Multi X-in-1 STM32 Boards",
"architecture": "STM32F1",
"version": "1.2.1",
"category": "Contributed",
"help": {
"online": "https://github.com/pascallanger/DIY-Multiprotocol-TX-Module"
},
"url": "https://github.com/pascallanger/DIY-Multiprotocol-TX-Module-Boards/raw/master/archives/package_multi_4in1_stm32_board_v1.2.1.tar.gz",
"archiveFileName": "package_multi_4in1_stm32_board_v1.2.1.tar.gz",
"checksum": "SHA-256:c66d34afadc5b21e9e28c4d477fa03a6d55db0b74b59ff2dcb07b4d6ef06da1a",
"size": "7496448",
"boards": [
{"name": "Multi 4-in-1 (STM32F103C)"},
{"name": "Multi 5-in-1 (Jumper T18 Internal)"}
],
"toolsDependencies": [{
"packager": "arduino",
"name": "arm-none-eabi-gcc",
"version": "4.8.3-2014q1"
}]
},
{
"name": "MULTI-Module STM32 Boards",
"architecture": "STM32F1",
"version": "1.2.2",
"category": "Contributed",
"help": {
"online": "https://github.com/pascallanger/DIY-Multiprotocol-TX-Module"
},
"url": "https://github.com/pascallanger/DIY-Multiprotocol-TX-Module-Boards/raw/master/archives/package_multi_4in1_stm32_board_v1.2.2.tar.gz",
"archiveFileName": "package_multi_4in1_stm32_board_v1.2.2.tar.gz",
"checksum": "SHA-256:0fe4a8899438bbc31dc37714acca13968e43d75a47e59143343d83b634d2e47d",
"size": "7485662",
"boards": [
{"name": "Multi X-in-1 STM32F103CB (128KB)"},
{"name": "Multi X-in-1 STM32F103C8 (64KB)"},
{"name": "Multi 5-in-1 (Jumper T18 Internal)"}
],
"toolsDependencies": [{
"packager": "arduino",
"name": "arm-none-eabi-gcc",
"version": "4.8.3-2014q1"
}]
},
{
"name": "Multi 4-in-1 OrangeRX Board - DEPRECATED, USE MULTI 4-IN-1 AVR BOARDS PACKAGE INSTEAD",
"architecture": "orangerx",

601
Lua_scripts/DSM FwdPrg.lua Normal file
View File

@@ -0,0 +1,601 @@
local toolName = "TNS|DSM Forward Programming|TNE"
---- #########################################################################
---- # #
---- # Copyright (C) OpenTX #
-----# #
---- # License GPLv2: http://www.gnu.org/licenses/gpl-2.0.html #
---- # #
---- # This program is free software; you can redistribute it and/or modify #
---- # it under the terms of the GNU General Public License version 2 as #
---- # published by the Free Software Foundation. #
---- # #
---- # This program is distributed in the hope that it will be useful #
---- # but WITHOUT ANY WARRANTY; without even the implied warranty of #
---- # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
---- # GNU General Public License for more details. #
---- # #
---- #########################################################################
--###############################################################################
-- Multi buffer for DSM description
-- Multi_Buffer[0..2]=="DSM" -> Lua script is running
-- Multi_Buffer[3]==0x70+len -> TX to RX data ready to be sent
-- Multi_Buffer[4..9]=6 bytes of TX to RX data
-- Multi_Buffer[10..25]=16 bytes of RX to TX data
--
-- To start operation:
-- Write 0x00 at address 3
-- Write 0x00 at address 10
-- Write "DSM" at address 0..2
--###############################################################################
local RX_VERSION, WAIT_CMD, MENU_TITLE, MENU_LINES, MENU_VALUES, VALUE_CHANGING, VALUE_CHANGING_WAIT, VALUE_CHANGED = 0, 1, 2, 3, 4, 5, 6, 7
local MENU, LIST_MENU_NOCHANGING, LIST_MENU2, PERCENTAGE_VALUE = 0x1C, 0x6C, 0x4C, 0xC0
local Phase = RX_VERSION
local Waiting_RX = 0
local Text = {}
local Retry=100
local Blink = 0
local Value_Changed=0
local Menu = { Cur=nil, Id=nil, Title="", Prev=nil, PrevId=nil, Next=nil, NextId=nil, Back=nil, BackId=nil, CurLine=nil, SelLine=nil, EditLine=nil }
local Line = {}
local RX = { Name="", Version="" }
local function conv_int16(number)
if number >= 0x8000 then
return number - 0x10000
end
return number
end
local function Get_Text(index)
out = Text[index]
if out == nil then -- unknown...
out = "Unknown_"..string.format("%X",index)
end
return out
end
local function DSM_Release()
multiBuffer( 0, 0 )
end
local function DSM_Send(...)
local arg = {...}
for i = 1 , #arg do
multiBuffer( 3+i, arg[i])
end
multiBuffer( 3, 0x70+#arg)
end
local function Value_Add(dir)
local line=Line[Menu.SelLine]
Speed = getRotEncSpeed()
if Speed == ROTENC_MIDSPEED then
line.Val = line.Val + (5 * dir)
elseif Speed == ROTENC_HIGHSPEED then
line.Val = line.Val + (15 * dir)
else
line.Val = line.Val + dir
end
if line.Val > line.Max then
line.Val = line.Max
elseif line.Val < line.Min then
line.Val = line.Min
end
if Line[Menu.SelLine].Type ~= LIST_MENU_NOCHANGING then
Phase = VALUE_CHANGING
Waiting_RX = 0
end
end
local function DSM_Menu(event)
local Speed = 0
if event == EVT_VIRTUAL_NEXT then
if Menu.EditLine == nil then
-- not changing a value
if Menu.SelLine ~= nil then
if Menu.SelLine < 7 then
local num = Menu.SelLine
for i = Menu.SelLine + 1, 6, 1 do
if Line[i].Type ~= nil and Line[i].Next ~= nil then
Menu.SelLine=i
break
end
end
if num == Menu.SelLine then
if Menu.Next ~= 0 then -- Next
Menu.SelLine = 7
elseif Menu.Prev ~= 0 then -- Prev
Menu.SelLine = 8
end
end
elseif Menu.Prev ~= 0 then -- Prev
Menu.SelLine = 8
end
end
else -- need to inc the value
Value_Add(1)
end
elseif event == EVT_VIRTUAL_PREV then
if Menu.EditLine == nil then
if Menu.SelLine ~= nil then
if Menu.SelLine == 8 and Menu.Next ~= 0 then
Menu.SelLine = 7
elseif Menu.SelLine > 0 then
if Menu.SelLine > 6 then
Menu.SelLine = 7
end
local num = Menu.SelLine
for i = Menu.SelLine-1, 0, -1 do
if Line[i].Type ~= nil and Line[i].Next ~= nil then
Menu.SelLine=i
break
end
end
if num == Menu.SelLine then -- Back
Menu.SelLine = -1
end
else
Menu.SelLine = -1 -- Back
end
end
else -- need to dec the value
Value_Add(-1)
end
elseif event == EVT_VIRTUAL_ENTER then
if Menu.SelLine == -1 then -- Back
Menu.Cur = Menu.Back
Menu.Id = Menu.BackId
Menu.SelLine = 0
Phase = MENU_TITLE
Waiting_RX = 0
elseif Menu.SelLine == 7 then -- Next
Menu.Cur = Menu.Next
Menu.Id = Menu.NextId
Menu.SelLine = 0
Phase = MENU_TITLE
Waiting_RX = 0
elseif Menu.SelLine == 8 then -- Prev
Menu.Cur = Menu.Prev
Menu.Id = Menu.PrevId
Menu.SelLine = 0
Phase = MENU_TITLE
Waiting_RX = 0
elseif Menu.SelLine ~= nil and Line[Menu.SelLine].Next ~= nil then
if Line[Menu.SelLine].Type == MENU then -- Next menu exist
Menu.Cur = Line[Menu.SelLine].Next
Menu.Id = Line[Menu.SelLine].NextId
Phase = MENU_TITLE
Waiting_RX = 0
else
-- value entry
if Menu.EditLine == Menu.SelLine then
Menu.EditLine = nil
Value_Changed = 0
Phase = VALUE_CHANGED
Waiting_RX = 0
else
Menu.EditLine = Menu.SelLine
end
end
end
end
end
local function DSM_Send_Receive()
if Waiting_RX == 0 then
Waiting_RX = 1
-- Need to send a request
if Phase == RX_VERSION then -- request RX version
DSM_Send(0x11,0x06,0x00,0x14,0x00,0x00)
elseif Phase == WAIT_CMD then -- keep connection open
DSM_Send(0x00,0x04,0x00,0x00)
elseif Phase == MENU_TITLE then -- request menu title
if Menu.Cur == nil then
DSM_Send(0x12,0x06,0x00,0x14,0x00,0x00) -- first menu only
Menu.Cur = 0
else
DSM_Send(0x16,0x06,Menu.Id,Menu.Cur,0x00,Menu.SelLine)
end
elseif Phase == MENU_LINES then -- request menu lines
if Menu.CurLine == nil then
DSM_Send(0x13,0x04,Menu.Id,Menu.Cur) -- line 0
elseif Menu.CurLine >= 0x80 then
local last_byte={0x40,0x01,0x02,0x04,0x00,0x00} -- unknown...
DSM_Send(0x20,0x06,Menu.CurLine-0x80,Menu.CurLine-0x80,0x00,last_byte[Menu.CurLine-0x80+1]) -- line X
else
DSM_Send(0x14,0x06,Menu.Id,Menu.Cur,0x00,Menu.CurLine) -- line X
end
elseif Phase == MENU_VALUES then -- request menu values
DSM_Send(0x15,0x06,Menu.Id,Menu.Cur,Line[Menu.CurLine].ValId,Menu.CurLine) -- line X
elseif Phase == VALUE_CHANGING then -- send value
local value=Line[Menu.SelLine].Val
if value < 0 then
value = 0x10000 + value
end
DSM_Send(0x18,0x06,Line[Menu.SelLine].ValId,Menu.SelLine,bit32.rshift(value,8),bit32.band(value,0xFF)) -- send current value
Phase = VALUE_CHANGING_WAIT
elseif Phase == VALUE_CHANGED then -- send value
if Value_Changed == 0 then
local value=Line[Menu.SelLine].Val
if value < 0 then
value = 0x10000 + value
end
DSM_Send(0x18,0x06,Line[Menu.SelLine].ValId,Menu.SelLine,bit32.rshift(value,8),bit32.band(value,0xFF)) -- send current value
Value_Changed = Value_Changed + 1
Waiting_RX = 0
elseif Value_Changed == 1 then
DSM_Send(0x19,0x06,Line[Menu.SelLine].ValId,Menu.SelLine) -- validate
-- Value_Changed = Value_Changed + 1
-- Waiting_RX = 0
--elseif Value_Changed == 2 then
-- DSM_Send(0x1B,0x06,0x10,Menu.SelLine) -- validate again?
-- Value_Changed = Value_Changed + 1
end
elseif Phase == VALUE_CHANGING_WAIT then
DSM_Send(0x1A,0x06,Line[Menu.SelLine].ValId,Menu.SelLine)
end
multiBuffer(10,0x00);
Retry = 50
elseif multiBuffer(10) == 0x09 then
-- Answer received
--if multiBuffer(11) == 0x00 then -- waiting for commands?
if multiBuffer(11) == 0x01 then -- read version
--ex: 0x09 0x01 0x00 0x15 0x02 0x22 0x01 0x00 0x14 0x00 0x00 0x00 0x00 0x00 0x00 0x00
RX.Name = Get_Text(multiBuffer(13))
RX.Version = multiBuffer(14).."."..multiBuffer(15).."."..multiBuffer(16)
Phase = MENU_TITLE
elseif multiBuffer(11) == 0x02 then -- read menu title
--ex: 0x09 0x02 0x4F 0x10 0xA5 0x00 0x00 0x00 0x50 0x10 0x10 0x10 0x00 0x00 0x00 0x00
Menu.Cur = multiBuffer(12)
Menu.Id = multiBuffer(13)
Menu.Title = Get_Text(multiBuffer(14)+multiBuffer(15)*256)
Menu.Prev = multiBuffer(16)
Menu.PrevId = multiBuffer(17)
Menu.Next = multiBuffer(18)
Menu.NextId = multiBuffer(19)
Menu.Back = multiBuffer(20)
Menu.BackId = multiBuffer(21)
for i = 0, 6 do -- clear menu
Line[i] = { Menu = nil, Id = nil, Type = nil, Text="", Next = nil, NextId = nil, ValLine = nil, ValId = nil, Min, Max, Def, Val, Unit, Step }
end
Menu.CurLine = nil
if Menu.Next ~= 0 then
Menu.SelLine = 7 -- highlight Next
else
Menu.SelLine = -1 -- highlight Back
end
Blink = 0
Phase = MENU_LINES
elseif multiBuffer(11) == 0x03 then -- read menu lines
--ex: 0x09 0x03 0x00 0x10 0x00 0x1C 0xF9 0x00 0x10 0x10 0x00 0x00 0x00 0x00 0x03 0x00
-- Menu Id line Type Text_idx Next V_Id Val_Min Val_Max Val_Def
--ex: 0x09 0x03 0x61 0x10 0x00 0x6C 0x50 0x00 0x00 0x10 0x36 0x00 0x49 0x00 0x36 0x00
Menu.CurLine = multiBuffer(14)
local line = Line[Menu.CurLine]
line.Menu = multiBuffer(12)
line.Id = multiBuffer(13) -- not quite sure yet
line.Type = multiBuffer(15) -- not quite sure yet: 1C is text menu only, 4C/6C is text followed by text list, C0 is text followed by percentage value
line.Text = Get_Text(multiBuffer(16)+multiBuffer(17)*256)
if multiBuffer(18) == Menu.Cur then
line.Next = nil
else
line.Next = multiBuffer(18) -- not quite sure yet: 1C=text menu=>next menu, others=>line number of the value
end
if Menu.SelLine == -1 and line.Next ~= nil then -- Auto select first line of the menu
Menu.SelLine = Menu.CurLine
end
line.NextId = multiBuffer(19) -- not quite sure yet
line.ValLine = multiBuffer(18) -- not quite sure yet
line.ValId = multiBuffer(19) -- not quite sure yet
line.Min = conv_int16(multiBuffer(20)+multiBuffer(21)*256)
line.Max = conv_int16(multiBuffer(22)+multiBuffer(23)*256)
line.Def = conv_int16(multiBuffer(24)+multiBuffer(25)*256)
if line.Type == MENU then
-- nothing to do on menu entries
elseif line.Type == LIST_MENU_NOCHANGING or line.Type == LIST_MENU2 then
line.Val = nil --line.Def - line.Min -- use default value not sure if needed
line.Def = line.Min -- pointer to the start of the list in Text
line.Max = line.Max - line.Min -- max index
line.Min = 0 -- min index
else -- default to numerical value
line.Val = nil --line.Def -- use default value not sure if needed
end
if line.Type ~= 0x1C then -- value to follow
line.Text = line.Text..":"
end
Phase = MENU_LINES
elseif multiBuffer(11) == 0x04 then -- read menu values
--ex: 0x09 0x04 0x53 0x10 0x00 0x10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
-- Menu MeId line VaId Value
--ex: 0x09 0x04 0x61 0x10 0x02 0x10 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
Menu.CurLine = multiBuffer(14)
Line[Menu.CurLine].Val = conv_int16(multiBuffer(16)+multiBuffer(17)*256)
Phase = MENU_VALUES
elseif multiBuffer(11) == 0x05 then -- unknown... need to get through the lines...
Menu.CurLine = 0x80 + multiBuffer(12)
Phase = MENU_LINES
elseif multiBuffer(11) == 0x00 and Phase == VALUE_CHANGING then
Phase = VALUE_CHANGING_WAIT
end
-- Data processed
Waiting_RX = 0
multiBuffer(10,0x00)
Retry = 50
else
Retry = Retry - 1
if Retry <= 0 then
-- Retry the RX request
Retry = 50
Waiting_RX = 0
if Phase ~= RX_VERSION and Phase ~= VALUE_CHANGING_WAIT then
Phase = WAIT_CMD
end
end
end
end
local function DSM_Display()
lcd.clear()
if LCD_W == 480 then
--Draw title
lcd.drawFilledRectangle(0, 0, LCD_W, 30, TITLE_BGCOLOR)
lcd.drawText(1, 5, "DSM Forward Programming", MENU_TITLE_COLOR)
--Draw RX Menu
if Phase == RX_VERSION then
lcd.drawText(10,50,"No compatible DSM RX...", BLINK)
else
if Menu.Title ~= nil then
local attrib=0;
lcd.drawText(80,32,Menu.Title,MIDSIZE)
for i = 0, 6 do
if i == Menu.SelLine then
attrib = INVERS
else
attrib = 0
end
if Line[i] ~= nil and Line[i].Type ~= nil then
if Line[i].Type ~= MENU then -- list/value
if Line[i].Val ~= nil then
local text=""
if Line[i].Type == LIST_MENU_NOCHANGING or Line[i].Type == LIST_MENU2 then
text = Get_Text(Line[i].Val+Line[i].Def)
elseif Line[i].Type == PERCENTAGE_VALUE then
text = Line[i].Val.." %"
else
text = Line[i].Val
end
if Menu.EditLine == Menu.SelLine then -- blink edited entry
Blink = Blink + 1
if Blink > 25 then
attrib = 0
if Blink > 50 then
Blink = 0
end
end
end
lcd.drawText(240,32+20*(i+2), text, attrib) -- display value
end
attrib = 0
end
lcd.drawText(10,32+20*(i+2), Line[i].Text, attrib) -- display text
end
end
if Menu.SelLine == -1 then
lcd.drawText(437,32, "Back", INVERS)
else
lcd.drawText(437,32, "Back", 0)
end
lcd.drawRectangle(437-5, 32-2, 47, 25)
if Menu.Next ~= 0 then
if Menu.SelLine == 7 then
lcd.drawText(437,220, "Next",INVERS)
else
lcd.drawText(437,220, "Next")
end
lcd.drawRectangle(437-5, 220-2, 47, 25)
end
if Menu.Prev ~= 0 then
if Menu.SelLine == 8 then
lcd.drawText(5,220, "Prev",INVERS)
else
lcd.drawText(5,220, "Prev")
end
lcd.drawRectangle(5-5, 220-2, 47, 25)
end
end
lcd.drawText(170,252, "RX "..RX.Name.." v"..RX.Version) -- display RX info
end
else
-- --Draw RX Menu on LCD_W=128
-- if multiBuffer( 4 ) == 0xFF then
-- lcd.drawText(2,17,"No compatible DSM RX...",SMLSIZE)
-- else
-- if Retry_128 ~= 0 then
-- --Intro page
-- Retry_128 = Retry_128 - 1
-- lcd.drawScreenTitle("DSM Forward Programming",0,0)
-- lcd.drawText(2,17,"Press Prev Page for previous Menu" ,SMLSIZE)
-- else
-- --Menu page
-- for line = 0, 7, 1 do
-- for i = 0, 21-1, 1 do
-- value=multiBuffer( line*21+6+i )
-- if value > 0x80 then
-- value = value - 0x80
-- lcd.drawText(2+i*6,1+8*line,string.char(value).." ",SMLSIZE+INVERS)
-- else
-- lcd.drawText(2+i*6,1+8*line,string.char(value),SMLSIZE)
-- end
-- end
-- end
-- end
-- end
end
end
-- Init
local function DSM_Init()
--Set protocol to talk to
multiBuffer( 0, string.byte('D') )
--test if value has been written
if multiBuffer( 0 ) ~= string.byte('D') then
error("Not enough memory!")
return 2
end
--Init TX buffer
multiBuffer( 3, 0x00 )
--Init RX buffer
multiBuffer( 10, 0x00 )
--Init telemetry
multiBuffer( 0, string.byte('D') )
multiBuffer( 1, string.byte('S') )
multiBuffer( 2, string.byte('M') )
--Text to be displayed -> need to use a file instead?
--RX names--
Text[0x0014]="SPM4651T"
Text[0x0015]="AR637T"
--Lists--
Text[0x0036]="Throttle"
Text[0x0037]="Aileron"
Text[0x0038]="Elevator"
Text[0x0039]="Rudder"
Text[0x003A]="Gear"
--******
--This part is strange since the AR637T needs
for i=1,7 do -- 3B..41
Text[0x003A+i]="Aux"..i
end
for i=1,8 do -- 41..49
Text[0x0041+i]="XPlus-"..i
end
--But FOTO-PETE reports that it should be:
Text[0x0040]="Roll"
Text[0x0041]="Pitch"
Text[0x0042]="Yaw"
Text[0x0046]="Priority"
--******
Text[0x004A]="Failsafe"
Text[0x004B]="Main Menu"
Text[0x004E]="Position"
Text[0x0050]="Outputs"
Text[0x0051]="Output Channel 1"
Text[0x0052]="Output Channel 2"
Text[0x0053]="Output Channel 3"
Text[0x0054]="Output Channel 4"
Text[0x0055]="Output Channel 5"
Text[0x0056]="Output Channel 6"
--Text[0x005E]="Inhibit"
Text[0x005F]="Hold Last"
Text[0x0060]="Preset"
--Text[0x0061]="Custom"
--Messages--
Text[0x0078]="FM Channel"
Text[0x0080]="Orientation"
Text[0x0085]="Frame Rate"
Text[0x0086]="System Setup"
Text[0x0087]="F-Mode Setup"
Text[0x0088]="Enabled F-Modes"
Text[0x008A]="Gain Sensitivity"
Text[0x0090]="Apply"
Text[0x0093]="Complete"
Text[0x0094]="Done"
Text[0x0097]="Factory Reset"
Text[0x009A]="Capture Failsafe Positions"
Text[0x009C]="Custom Failsafe"
Text[0x00A5]="First Time Setup"
Text[0x00AD]="Gain Channel Select"
Text[0x00B6]="FM1"
Text[0x00B7]="FM2"
Text[0x00B8]="FM3"
Text[0x00B9]="FM4"
Text[0x00BA]="FM5"
Text[0x00BB]="FM6"
Text[0x00BC]="FM7"
Text[0x00BD]="FM8"
Text[0x00BE]="FM9"
Text[0x00BF]="FM10"
Text[0x00F9]="Gyro settings"
Text[0x00FE]="Stick Priority"
Text[0x0100]="Make sure the model has been"
Text[0x0101]="configured, including wing type,"
Text[0x0102]="reversing, travel, trimmed, etc."
Text[0x0103]="before continuing setup."
Text[0x0104]="0104"
Text[0x0105]="0105"
Text[0x0106]="Any wing type, channel assignment,"
Text[0x0107]="subtrim, or servo reversing changes"
Text[0x0108]="require running through initial"
Text[0x0109]="setup again."
Text[0x010A]="010A"
Text[0x010B]="010B"
Text[0x0190]="Relearn Servo Settings"
Text[0x019C]="Enter Receiver Bind Mode"
Text[0x01DC]="AS3X"
Text[0x01DD]="AS3X Settings"
Text[0x01DE]="AS3X Gains"
Text[0x01E0]="Rate Gains"
Text[0x020A]="Restore from Backup"
Text[0x0209]="Save to Backup"
Text[0x020D]="First Time SAFE Setup"
Text[0x021A]="Set the model level,"
Text[0x021B]="and press Continue."
Text[0x021C]="021C"
Text[0x021D]="021D"
Text[0x021F]="Set the model on its nose,"
Text[0x0220]="and press Continue. If the"
Text[0x0221]="orientation on the next"
Text[0x0222]="screen is wrong go back"
Text[0x0223]="and try again."
Text[0x0224]="Continue"
Text[0x0229]="Set Orientation Manually"
Text[0x0227]="Other settings"
Text[0x022B]="WARNING!"
Text[0x022C]="This will reset the"
Text[0x022D]="configuration to factory"
Text[0x022E]="defaults. This does not"
Text[0x022F]="affect the backup config."
Text[0x0230]="0230"
Text[0x0231]="This will overwrite the"
Text[0x0232]="backup memory with your"
Text[0x0233]="current configuartion."
Text[0x0234]="0234"
Text[0x0235]="0235"
Text[0x0236]="This will overwrite the"
Text[0x0237]="current config with"
Text[0x0238]="that which is in"
Text[0x0239]="the backup memory."
Text[0x023A]="023A"
Text[0x023D]="Copy Flight Mode Settings"
Text[0x0240]="Utilities"
Text[0x8001]="Flight Mode 1"
Text[0x8002]="Flight Mode 2"
Text[0x8003]="Flight Mode 3"
end
-- Main
local function DSM_Run(event)
if event == nil then
error("Cannot be run as a model script!")
return 2
elseif event == EVT_VIRTUAL_EXIT then
DSM_Release()
return 2
else
DSM_Menu(event)
DSM_Send_Receive()
DSM_Display()
return 0
end
end
return { init=DSM_Init, run=DSM_Run }

View File

@@ -6,6 +6,7 @@
14,4,Bayang,DHD_D4,1,Flip,RTH,Pict,Video,HLess,Invert,Rates,TakeOf,EmStop
14,5,Bayang,QX100,1,Flip,RTH,Pict,Video,HLess,Invert,Rates,TakeOf,EmStop
59,0,BayangRX,RX,1,AnAux1,AnAux2,Flip,RTH,Pict,Video
59,1,BayangRX,CPPM,1,AnAux1,AnAux2,Flip,RTH,Pict,Video
41,0,Bugs,3-6-8,0,Arm,Angle,Flip,Pict,Video,LED
42,0,BugsMini,Mini,0,Arm,Angle,Flip,Pict,Video,LED
42,1,BugsMini,3H,0,Arm,Angle,Flip,Pict,Video,LED,AltHol
@@ -28,15 +29,16 @@
7,3,Devo,6CH,0,CH5,CH6
7,4,Devo,7CH,0,CH5,CH6,CH7
33,0,DM022,Std,1,Flip,LED,Cam1,Cam2,HLess,RTH,RLow
6,0,DSM,2_22,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,n-a,ThKill
6,1,DSM,2_11,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,n-a,ThKill
6,2,DSM,X_22,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,n-a,ThKill
6,3,DSM,X_11,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,n-a,ThKill
6,0,DSM,2_1F,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,n-a,ThKill
6,1,DSM,2_2F,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,n-a,ThKill
6,2,DSM,X_1F,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,n-a,ThKill
6,3,DSM,X_2F,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,n-a,ThKill
6,4,DSM,AUTO,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,n-a,ThKill
6,5,DSM,R_1F,0,AUX3,AUX4,AUX5
70,0,DSM_RX,RX,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12
70,1,DSM_RX,CPPM,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12
45,0,E01X,E012,1,n-a,Flip,n-a,HLess,RTH
45,1,E01X,E015,1,Arm,Flip,LED,HLess,RTH
45,2,E01X,E016H,1,Stop,Flip,n-a,HLess,RTH
16,0,ESKY,Std,0,Gyro,Pitch
16,1,ESKY,ET4,0,Gyro,Pitch
35,0,ESKY150,4CH,0
@@ -51,8 +53,12 @@
28,1,Flysky_AFHDS2A,PPM_IBUS,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14
28,2,Flysky_AFHDS2A,PWM_SBUS,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14
28,3,Flysky_AFHDS2A,PPM_SBUS,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14
28,4,Flysky_AFHDS2A,PWM_IB16,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14,CH15,CH16
28,5,Flysky_AFHDS2A,PPM_IB16,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14,CH15,CH16
56,0,Flysky2A_RX,RX,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14
53,0,Flyzone,FZ-410,0
56,1,Flysky2A_RX,CPPM,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14
53,0,Height,5ch,0,Gear
53,1,Height,8ch,0,Gear,Gyro,Flap,Light
25,0,FrSkyV,V8,0,CH5,CH6,CH7,CH8
3,0,FrSkyD,D8,0,CH5,CH6,CH7,CH8
3,0,FrSkyD,D8Cloned,0,CH5,CH6,CH7,CH8
@@ -63,17 +69,21 @@
15,2,FrSkyX,D16_LBT,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14,CH15,CH16
15,3,FrSkyX,D16_8CH_LBT,0,CH5,CH6,CH7,CH8
15,4,FrSkyX,D16Cloned,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14,CH15,CH16
15,5,FrSkyX,D16Cloned_8CH,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14,CH15,CH16
64,0,FrSkyX2,D16_FCC,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14,CH15,CH16
64,1,FrSkyX2,D16_8CH_FCC,0,CH5,CH6,CH7,CH8
64,2,FrSkyX2,D16_LBT,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14,CH15,CH16
64,3,FrSkyX2,D16_8CH_LBT,1,CH5,CH6,CH7,CH8
64,4,FrSkyX2,D16Cloned,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14,CH15,CH16
64,5,FrSkyX2,D16Cloned_8CH,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14,CH15,CH16
65,0,FrSkyR9,R9_915,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14,CH15,CH16
65,1,FrSkyR9,R9_868,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14,CH15,CH16
65,2,FrSkyR9,R9_915_8CH,0,CH5,CH6,CH7,CH8
65,3,FrSkyR9,R9_968_8CH,0,CH5,CH6,CH7,CH8
55,0,FrSkyRX,RX,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14,CH15,CH16
55,1,FrSkyRX,CloneTX,0
55,2,FrSkyRX,EraseTX,0
55,3,FrSkyRX,CPPM,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14,CH15,CH16
58,0,FX816,P38,1
20,0,FY326,FY326,1,Flip,RTH,HLess,Expert,Calib
20,1,FY326,FY319,1,Flip,RTH,HLess,Expert,Calib
@@ -94,15 +104,18 @@
26,1,Hontai,JJRCX1,1,Flip,Arm,Pict,Video,HLess,RTH,Calib
26,2,Hontai,X5C1,1,Flip,Arm,Pict,Video,HLess,RTH,Calib
26,3,Hontai,FQ777_951,1,Flip,Arm,Pict,Video,HLess,RTH,Calib
57,0,HoTT,Std,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12
57,0,HoTT,Sync,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14,CH15,CH16
57,1,HoTT,No_Sync,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14,CH15,CH16
2,0,Hubsan,H107,1,Flip,Light,Pict,Video,HLess
2,1,Hubsan,H301,0,RTH,Light,Stab,Video
2,2,Hubsan,H501,0,RTH,Light,Pict,Video,HLess,GPS_H,ALT_H,Flip,FModes
22,0,J6Pro,Std,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12
71,0,JJRC345,Std,1,Flip,HLess,RTH
71,0,JJRC345,JJRC345,1,Flip,HLess,RTH,LED,UNK1,UNK2,UNK3
71,1,JJRC345,SkyTmblr,1,Flip,HLess,RTH,LED,UNK1,UNK2,UNK3
49,0,KF606,Std,1,Trim
9,0,KN,WLToys,0,DRate,THold,IdleUp,Gyro,Ttrim,Atrim,Etrim
9,1,KN,Feilun,0,DRate,THold,IdleUp,Gyro,Ttrim,Atrim,Etrim
73,0,Kyosho,Std,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14
18,0,MJXQ,WHL08,1,Flip,LED,Pict,Video,HLess,RTH,AuFlip,Pan,Tilt,Rate
18,1,MJXQ,X600,1,Flip,LED,Pict,Video,HLess,RTH,AuFlip,Pan,Tilt,Rate
18,2,MJXQ,X800,1,Flip,LED,Pict,Video,HLess,RTH,AuFlip,Pan,Tilt,Rate
@@ -115,9 +128,13 @@
17,2,MT99XX,YZ,1,Flip,LED,Pict,Video,HLess
17,3,MT99XX,LS,1,Flip,Invert,Pict,Video,HLess
17,4,MT99XX,FY805,1,Flip,n-a,n-a,n-a,HLess
17,5,MT99XX,A180,0,3D_6G
17,6,MT99XX,Dragon,0,Mode,RTH
44,0,NCC1701,Std,1,Warp
77,0,OMP,M2,0,THold,IdleUp,6G_3D
60,0,Pelikan,PRO_V4,0,CH5,CH6,CH7,CH8
60,1,Pelikan,LITE_V4,0,CH5,CH6,CH7,CH8
60,2,Pelikan,SCX24,0
51,0,Potensic,A20,1,TakLan,Emerg,Mode,HLess
66,0,Propel,74-Z,1,LEDs,RollCW,RolCCW,Fire,Weapon,Calib,AltHol,TakeOf,Land,Train
29,0,Q2x2,Q222,1,Flip,LED,Mod2,Mod1,HLess,RTH,XCal,YCal
@@ -128,9 +145,13 @@
31,2,Q303,CX10D,1,Arm,Flip
31,3,Q303,CX10WD,1,Arm,Flip
72,0,Q90C,Std,0,FMode,VTX+
74,0,RadioLink,Surface,0,CH5,CH6,CH7,CH8,FS_CH1,FS_CH2,FS_CH3,FS_CH4,FS_CH5,FS_CH6,FS_CH7,FS_CH8
74,1,RadioLink,Air,0,CH5,CH6,CH7,CH8,FS_CH1,FS_CH2,FS_CH3,FS_CH4,FS_CH5,FS_CH6,FS_CH7,FS_CH8
74,2,RadioLink,DumboRC,0,CH5,CH6,CH7,CH8,FS_CH1,FS_CH2,FS_CH3,FS_CH4,FS_CH5,FS_CH6,FS_CH7,FS_CH8
76,0,Realacc,R11,1,Flip,Light,Calib,HLess,RTH,UNK
50,0,Redpine,Fast,0,sCH5,sCH6,sCH7,sCH8,sCH9,sCH10,sCH11,sCH12,sCH13,sCH14,sCH15,sCH16
50,1,Redpine,Slow,0,sCH5,sCH6,sCH7,sCH8,sCH9,sCH10,sCH11,sCH12,sCH13,sCH14,sCH15,sCH16
21,0,SFHSS,Std,0,CH5,CH6,CH7,CH8
21,0,Futaba,SFHSS,0,CH5,CH6,CH7,CH8
19,0,Shenqi,Cycle,1
68,0,Skyartec,Std,0,CH5,CH6,CH7
11,0,SLT,V1,0,Gear,Pitch
@@ -163,3 +184,15 @@
8,3,YD717,XinXun,1,Flip,Light,Pict,Video,HLess
8,4,YD717,NiHui,1,Flip,Light,Pict,Video,HLess
52,0,ZSX,280,1,Light
78,0,M-Link,Std,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14,CH15,CH16
79,0,WFLY2,RF20x,0,CH5,CH6,CH7,CH8,CH9,CH10
80,0,E016Hv2,E016Hv2,1,TakLan,EmStop,Flip,Calib,HLess,RTH
81,0,E010r5,E010r5,1,Flip,LED,CALIB,HLess,RTH,GLIDE
82,0,LOLI,Std,0,CH5,CH6,CH7,CH8,1SwSePpPw,2SwSePw,3SwSe,4SwSe,5SwSeSb,6SwSe,7SwSePw,8SwSe
83,0,E129,E129,1,TakLan,EmStop,TrimA,TrimE,TrimR
84,0,JOYSWAY,Std,0
85,0,E016H,Std,1,Stop,Flip,n-a,HLess,RTH
87,0,IKEA
89,0,LOSI
90,0,MouldKg,Analog
90,1,MouldKg,Digit,E,F

View File

@@ -278,6 +278,31 @@ local function Multi_Init()
ch_order = math.floor(ch_order/4)
channel_names[bitand(ch_order,3)+1] = stick_names[1]
end
--Exceptions on first 4 channels...
if ( protocol == 73 or (protocol == 74 and sub_protocol == 0) or (protocol == 60 and sub_protocol == 2) or protocol == 89) then -- Kyosho or RadioLink Surface or Pelikan/SCX24 or Losi
channel_names[1] = "ST"
channel_names[2] = "THR"
channel_names[3] = "CH3"
if(protocol == 60 and sub_protocol == 2) then
channel_names[4] = "n-a"
else
channel_names[4] = "CH4"
end
end
if ( protocol == 6 and sub_protocol == 5 ) then -- DSMR
channel_names[1] = "ST"
channel_names[2] = "THR"
channel_names[3] = "AUX1"
channel_names[4] = "AUX2"
end
if ( protocol == 90 ) then -- Mould King
channel_names[1] = "A"
channel_names[2] = "B"
channel_names[3] = "C"
channel_names[4] = "D"
end
--Check MultiChan.txt
local f = io.open("/SCRIPTS/TOOLS/MultiChan.txt", "r")
if f == nil then return end

525
Lua_scripts/MultiConfig.lua Normal file
View File

@@ -0,0 +1,525 @@
---- #########################################################################
---- # #
---- # Copyright (C) OpenTX #
-----# #
---- # License GPLv2: http://www.gnu.org/licenses/gpl-2.0.html #
---- # #
---- # This program is free software; you can redistribute it and/or modify #
---- # it under the terms of the GNU General Public License version 2 as #
---- # published by the Free Software Foundation. #
---- # #
---- # This program is distributed in the hope that it will be useful #
---- # but WITHOUT ANY WARRANTY; without even the implied warranty of #
---- # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
---- # GNU General Public License for more details. #
---- # #
---- #########################################################################
--###############################################################################
-- Multi buffer for Config description
-- To start operation:
-- Write 0xFF at address 4 will request the buffer to be cleared
-- Write "Conf" at address 0..3
-- Read
-- Read at address 12 gives the current config page
-- Read at address 13..172 gives the current data of the page = 8 lines * 20 caracters
-- Write
-- Write at address 5..11 the command
-- Write 0x01 at address 4 will send the command to the module
-- !! Before exiting the script must write 0 at address 0 for normal operation !!
--###############################################################################
local Version = "v0.2"
local Focus = -1
local Page = 0
local Edit = -1
local Edit_pos = 1
local Menu = { {text = "", field_type = 0, field_len = 0, field_value = {}, field_text = ""},
{text = "", field_type = 0, field_len = 0, field_value = {}, field_text = ""},
{text = "", field_type = 0, field_len = 0, field_value = {}, field_text = ""},
{text = "", field_type = 0, field_len = 0, field_value = {}, field_text = ""},
{text = "", field_type = 0, field_len = 0, field_value = {}, field_text = ""},
{text = "", field_type = 0, field_len = 0, field_value = {}, field_text = ""},
{text = "", field_type = 0, field_len = 0, field_value = {}, field_text = ""} }
local Menu_value = {}
local Blink = 0
local ModuleNumber = 0
local ModuleType = ""
local Module = {}
local InitialProtocol = 0
function bitand(a, b)
local result = 0
local bitval = 1
while a > 0 and b > 0 do
if a % 2 == 1 and b % 2 == 1 then -- test the rightmost bits
result = result + bitval -- set the current bit
end
bitval = bitval * 2 -- shift left
a = math.floor(a/2) -- shift right
b = math.floor(b/2)
end
return result
end
local function Config_Send(page, line, value)
local i
i = (page*16) + line
multiBuffer( 5, i )
for i = 1 , 6 , 1 do
multiBuffer( 5+i, value[i] )
end
multiBuffer( 4, 1 )
end
local function Config_Release()
--Set the protocol back to what it was
Module.protocol = InitialProtocol
model.setModule(ModuleNumber, Module)
--Stop requesting updates
local i
for i = 3 , 0 , -1 do
multiBuffer( i, 0 )
end
end
local function Config_Page( )
Config_Send(Page, 0, { 0, 0, 0, 0, 0, 0 })
end
local function Config_Draw_Edit( event )
local i
local text
if Menu[Focus].field_type == 0xD0 then
-- Editable Hex value
if Edit == -1 then
-- Init
Edit = 0
Edit_pos = 1
Blink = 0
for i = 1, Menu[Focus].field_len, 1 do
Menu_value[i] = Menu[Focus].field_value[i]
end
end
if Edit == 0 then
-- Not editing value
if event == EVT_VIRTUAL_ENTER then
if Edit_pos > Menu[Focus].field_len then
-- Save or Cancel
Edit = -1
if Edit_pos == Menu[Focus].field_len + 1 then
-- Save
Config_Send(Page, Focus, Menu_value)
end
return
else
-- Switch to edit mode
Edit = 1
end
elseif event == EVT_VIRTUAL_PREV and Edit_pos > 1 then
-- Move cursor
Edit_pos = Edit_pos - 1
elseif event == EVT_VIRTUAL_NEXT and Edit_pos < Menu[Focus].field_len + 2 then
-- Move cursor
Edit_pos = Edit_pos + 1
end
else
-- Editing value
if event == EVT_VIRTUAL_ENTER then
-- End edit
Edit = 0
elseif event == EVT_VIRTUAL_PREV then
-- Change value
Menu_value[Edit_pos] = Menu_value[Edit_pos] - 1
elseif event == EVT_VIRTUAL_NEXT then
-- Change value
Menu_value[Edit_pos] = Menu_value[Edit_pos] + 1
end
--Blink
Blink = Blink + 1
if Blink > 30 then
Blink = 0
end
end
--Display
if LCD_W == 480 then
lcd.drawRectangle(160-1, 100-1, 160+2, 55+2, TEXT_COLOR)
lcd.drawFilledRectangle(160, 100, 160, 55, TEXT_BGCOLOR)
else
lcd.clear()
end
for i = 1, Menu[Focus].field_len, 1 do
if i==Edit_pos and (Edit ~= 1 or Blink > 15) then
attrib = INVERS
else
attrib = 0
end
if LCD_W == 480 then
lcd.drawText(170+12*2*(i-1), 110, string.format('%02X', Menu_value[i]), attrib)
else
lcd.drawText(17+6*2*(i-1), 10, string.format('%02X', Menu_value[i]), attrib + SMLSIZE)
end
end
if Edit_pos == Menu[Focus].field_len + 1 then
attrib = INVERS
else
attrib = 0
end
if LCD_W == 480 then
lcd.drawText(170, 130, "Save", attrib)
else
lcd.drawText(17, 30, "Save", attrib + SMLSIZE)
end
if Edit_pos == Menu[Focus].field_len + 2 then
attrib = INVERS
else
attrib = 0
end
if LCD_W == 480 then
lcd.drawText(260, 130, "Cancel", attrib)
else
lcd.drawText(77, 30, "Cancel", attrib + SMLSIZE)
end
elseif Menu[Focus].field_type == 0x90 then
-- Action text
if Edit == -1 then
-- Init
Edit = 0
Edit_pos = 2
end
if event == EVT_VIRTUAL_ENTER then
-- Exit
Edit = -1
if Edit_pos == 1 then
-- Yes
Config_Send(Page, Focus, { 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA } )
end
return
elseif event == EVT_VIRTUAL_PREV and Edit_pos > 1 then
-- Switch to Yes
Edit_pos = Edit_pos - 1
elseif event == EVT_VIRTUAL_NEXT and Edit_pos < 2 then
-- Switch to No
Edit_pos = Edit_pos + 1
end
-- Display
if LCD_W == 480 then
lcd.drawRectangle(160-1, 100-1, 160+2, 55+2, TEXT_COLOR)
lcd.drawFilledRectangle(160, 100, 160, 55, TEXT_BGCOLOR)
else
lcd.clear()
end
if LCD_W == 480 then
lcd.drawText(170, 110, Menu[Focus].field_text .. "?")
else
lcd.drawText(17, 10, Menu[Focus].field_text .. "?", SMLSIZE)
end
if Edit_pos == 1 then
attrib = INVERS
else
attrib = 0
end
if LCD_W == 480 then
lcd.drawText(170, 130, "Yes", attrib)
else
lcd.drawText(17, 30, "Yes", attrib + SMLSIZE)
end
if Edit_pos == 2 then
attrib = INVERS
else
attrib = 0
end
if LCD_W == 480 then
lcd.drawText(260, 130, "No", attrib)
else
lcd.drawText(77, 30, "No", attrib)
end
end
end
local function Config_Next_Prev( event )
-- Next Prev on main menu
local line
if event == EVT_VIRTUAL_PREV then
for line = Focus - 1, 1, -1 do
if Menu[line].field_type >= 0x80 and Menu[line].field_type ~= 0xA0 and Menu[line].field_type ~= 0xC0 then
Focus = line
break
end
end
elseif event == EVT_VIRTUAL_NEXT then
for line = Focus + 1, 7, 1 do
if Menu[line].field_type >= 0x80 and Menu[line].field_type ~= 0xA0 and Menu[line].field_type ~= 0xC0 then
Focus = line
break
end
end
end
end
local function Config_Draw_Menu()
-- Main menu
local i
local value
local line
local length
local text
lcd.clear()
if LCD_W == 480 then
--Draw title
lcd.drawFilledRectangle(0, 0, LCD_W, 30, TITLE_BGCOLOR)
lcd.drawText(1, 5, "Multi Config " .. Version, MENU_TITLE_COLOR)
if multiBuffer(13) == 0x00 then
lcd.drawText(10,50,"No Config telemetry...", BLINK)
end
else
--Draw on LCD_W=128
lcd.drawText(1, 0, "Multi Config " .. Version, SMLSIZE)
if multiBuffer(13) == 0x00 then
lcd.drawText(2,17,"No Config telemetry...",SMLSIZE)
end
end
if multiBuffer(13) ~= 0x00 then
if LCD_W == 480 then
--Draw firmware version and channels order
local ch_order = multiBuffer(17)
local channel_names = {}
channel_names[bitand(ch_order,3)+1] = "A"
ch_order = math.floor(ch_order/4)
channel_names[bitand(ch_order,3)+1] = "E"
ch_order = math.floor(ch_order/4)
channel_names[bitand(ch_order,3)+1] = "T"
ch_order = math.floor(ch_order/4)
channel_names[bitand(ch_order,3)+1] = "R"
lcd.drawText(150, 5, ModuleType.." v" .. multiBuffer(13) .. "." .. multiBuffer(14) .. "." .. multiBuffer(15) .. "." .. multiBuffer(16) .. " " .. channel_names[1] .. channel_names[2] .. channel_names[3] .. channel_names[4], MENU_TITLE_COLOR)
else
lcd.drawText(76, 0, "/Fw" .. multiBuffer(13) .. "." .. multiBuffer(14) .. "." .. multiBuffer(15) .. "." .. multiBuffer(16),SMLSIZE) -- .. " " .. channel_names[1] .. channel_names[2] .. channel_names[3] .. channel_names[4])
end
--Draw Menu
for line = 1, 7, 1 do
--Clear line info
Menu[line].text = ""
Menu[line].field_type = 0
Menu[line].field_len = 0
for i = 1, 7, 1 do
Menu[line].field_value[i] = 0
end
Menu[line].field_text = ""
length = 0
--Read line from buffer
for i = 0, 20-1, 1 do
value=multiBuffer( line*20+13+i )
if value == 0 then
break -- end of line
end
if value > 0x80 and Menu[line].field_type == 0 then
-- Read field type
Menu[line].field_type = bitand(value, 0xF0)
Menu[line].field_len = bitand(value, 0x0F)
length = Menu[line].field_len
if Menu[line].field_type ~= 0xA0 and Menu[line].field_type ~= 0xC0 and Focus == -1 then
-- First actionnable field if nothing was selected
Focus = line;
end
else
if Menu[line].field_type == 0 then
-- Text
Menu[line].text = Menu[line].text .. string.char(value)
else
-- Menu specific fields
length = length - 1
if Menu[line].field_type == 0x80 or Menu[line].field_type == 0x90 then
Menu[line].field_text = Menu[line].field_text .. string.char(value)
else
Menu[line].field_value[Menu[line].field_len-length] = value
end
if length == 0 then
-- End of fields
break
end
end
end
end
-- Display menu text
if Menu[line].text ~= "" then
if Menu[line].field_type == 0xA0 or Menu[line].field_type == 0xB0 or Menu[line].field_type == 0xC0 or Menu[line].field_type == 0xD0 then
Menu[line].text = Menu[line].text .. ":"
end
if LCD_W == 480 then
lcd.drawText(10,32+20*line,Menu[line].text )
else
lcd.drawText(2,1+8*line,Menu[line].text,SMLSIZE)
end
end
-- Display specific fields
if line == Focus then
attrib = INVERS
else
attrib = 0
end
if Menu[line].field_type == 0x80 or Menu[line].field_type == 0x90 then
-- Text
if LCD_W == 480 then
lcd.drawText(10+9*#Menu[line].text, 32+20*line, Menu[line].field_text, attrib)
else
lcd.drawText(2+5*#Menu[line].text, 1+8*line, Menu[line].field_text, SMLSIZE + attrib)
end
elseif Menu[line].field_type == 0xA0 or Menu[line].field_type == 0xB0 then
-- Decimal value
value = 0
for i = 1, Menu[line].field_len, 1 do
value = value*256 + value
end
if LCD_W == 480 then
lcd.drawText(10+9*#Menu[line].text, 32+20*line, value, attrib)
else
lcd.drawText(2+5*#Menu[line].text, 1+8*line, value, SMLSIZE + attrib)
end
elseif Menu[line].field_type == 0xC0 or Menu[line].field_type == 0xD0 then
-- Hex value
text=""
for i = 1, Menu[line].field_len, 1 do
text = text .. string.format('%02X ', Menu[line].field_value[i])
end
if LCD_W == 480 then
lcd.drawText(10+9*#Menu[line].text, 32+20*line, text, attrib)
else
lcd.drawText(2+5*#Menu[line].text, 1+8*line, text, SMLSIZE + attrib)
end
end
end
end
end
-- Init
local function Config_Init()
--Find Multi module
Module_int = model.getModule(0)
Module_ext = model.getModule(1)
if Module_int["Type"] ~= 6 and Module_ext["Type"] ~= 6 then
error("No Multi module detected...")
return 2
end
if Module_int["Type"] == 6 and Module_ext["Type"] == 6 then
error("Two Multi modules detected, turn on only the one to be configured.")
return 2
end
if Module_int["Type"] == 6 then
ModuleNumber = 0
ModuleType = "Internal"
else
ModuleNumber = 1
ModuleType = "External"
end
--Get Module settings and set it to config protocol
Module = model.getModule(ModuleNumber)
InitialProtocol = Module.protocol
Module.protocol = 86
model.setModule(ModuleNumber, Module)
--pause while waiting for the module to switch to config
for i = 0, 10, 1 do end
--Set protocol to talk to
multiBuffer( 0, string.byte('C') )
--test if value has been written
if multiBuffer( 0 ) ~= string.byte('C') then
error("Not enough memory!")
return 2
end
--Request init of the buffer
multiBuffer( 4, 0xFF )
multiBuffer(13, 0x00 )
--Continue buffer init
multiBuffer( 1, string.byte('o') )
multiBuffer( 2, string.byte('n') )
multiBuffer( 3, string.byte('f') )
-- Test set
-- multiBuffer( 12, 0 )
-- multiBuffer( 13, 1 )
-- multiBuffer( 14, 3 )
-- multiBuffer( 15, 2 )
-- multiBuffer( 16, 62 )
-- multiBuffer( 17, 0 + 1*4 + 2*16 + 3*64)
-- multiBuffer( 33, string.byte('G') )
-- multiBuffer( 34, string.byte('l') )
-- multiBuffer( 35, string.byte('o') )
-- multiBuffer( 36, string.byte('b') )
-- multiBuffer( 37, string.byte('a') )
-- multiBuffer( 38, string.byte('l') )
-- multiBuffer( 39, string.byte(' ') )
-- multiBuffer( 40, string.byte('I') )
-- multiBuffer( 41, string.byte('D') )
-- multiBuffer( 42, 0xD0 + 4 )
-- multiBuffer( 43, 0x12 )
-- multiBuffer( 44, 0x34 )
-- multiBuffer( 45, 0x56 )
-- multiBuffer( 46, 0x78 )
-- multiBuffer( 47, 0x9A )
-- multiBuffer( 48, 0xBC )
-- multiBuffer( 53, 0x90 + 9 )
-- multiBuffer( 54, string.byte('R') )
-- multiBuffer( 55, string.byte('e') )
-- multiBuffer( 56, string.byte('s') )
-- multiBuffer( 57, string.byte('e') )
-- multiBuffer( 58, string.byte('t') )
-- multiBuffer( 59, string.byte(' ') )
-- multiBuffer( 60, string.byte('G') )
-- multiBuffer( 61, string.byte('I') )
-- multiBuffer( 62, string.byte('D') )
-- multiBuffer( 63, 0x00 )
end
-- Main
local function Config_Run(event)
if event == nil then
error("Cannot be run as a model script!")
return 2
elseif event == EVT_VIRTUAL_EXIT then
Config_Release()
return 2
else
Config_Draw_Menu()
if ( event == EVT_VIRTUAL_PREV_PAGE or event == EVT_VIRTUAL_NEXT_PAGE ) and Edit < 1 then
-- Not editing, ok to change page
if event == EVT_VIRTUAL_PREV_PAGE then
killEvents(event)
if Page > 0 then
--Page = Page - 1
--Config_Page()
end
else
--Page = Page + 1
--Config_Page()
end
end
if Focus > 0 then
-- At least one line has an action
if Edit >= 0 then
-- Currently editing
Config_Draw_Edit( event )
elseif event == EVT_VIRTUAL_ENTER then
-- Switch to edit
Config_Draw_Edit( 0 )
elseif event == EVT_VIRTUAL_PREV or event == EVT_VIRTUAL_NEXT then
-- Main menu selection
Config_Next_Prev( event )
end
end
return 0
end
end
return { init=Config_Init, run=Config_Run }

221
Lua_scripts/MultiLOLI.lua Normal file
View File

@@ -0,0 +1,221 @@
local toolName = "TNS|Multi LOLI RX config|TNE"
---- #########################################################################
---- # #
---- # Copyright (C) OpenTX #
-----# #
---- # License GPLv2: http://www.gnu.org/licenses/gpl-2.0.html #
---- # #
---- # This program is free software; you can redistribute it and/or modify #
---- # it under the terms of the GNU General Public License version 2 as #
---- # published by the Free Software Foundation. #
---- # #
---- # This program is distributed in the hope that it will be useful #
---- # but WITHOUT ANY WARRANTY; without even the implied warranty of #
---- # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
---- # GNU General Public License for more details. #
---- # #
---- #########################################################################
local loli_nok = false
local channels={ { 768, "PWM", 100, 102, "PPM", 50, -768, "Servo", 0, -2048, "Switch", -100 }, -- CH1
{ 768, "PWM", 100, -768, "Servo", 0, -2048, "Switch", -100 }, -- CH2
{ -768, "Servo", 0, -2048, "Switch", -100 }, -- CH3
{ -768, "Servo", 0, -2048, "Switch", -100 }, -- CH4
{ 102, "SBUS", 50, -768, "Servo", 0, -2048, "Switch", -100 }, -- CH5
{ -768, "Servo", 0, -2048, "Switch", -100 }, -- CH6
{ 768, "PWM", 100, -768, "Servo", 0, -2048, "Switch", -100 }, -- CH7
{ -768, "Servo", 0, -2048, "Switch", -100 } } -- CH8
local sel = 1
local edit = false
local blink = 0
local BLINK_SPEED = 15
local function drawScreenTitle(title)
if LCD_W == 480 then
lcd.drawFilledRectangle(0, 0, LCD_W, 30, TITLE_BGCOLOR)
lcd.drawText(1, 5, title, MENU_TITLE_COLOR)
else
lcd.drawScreenTitle(title, 0, 0)
end
end
local function LOLI_Draw_LCD(event)
local line = 0
lcd.clear()
--Display settings
local lcd_opt = 0
if LCD_W == 480 then
drawScreenTitle("Multi - LOLI RX configuration tool")
x_pos = 152
x_inc = 90
y_pos = 40
y_inc = 20
else
x_pos = 5
x_inc = 30
y_pos = 1
y_inc = 8
lcd_opt = SMLSIZE
end
--Multi Module detection
if loli_nok then
if LCD_W == 480 then
lcd.drawText(10,50,"The LOLI protocol is not selected...", lcd_opt)
else
--Draw on LCD_W=128
lcd.drawText(2,17,"LOLI protocol not selected...",SMLSIZE)
end
return
end
--Display current config
if LCD_W == 480 then
line = line + 1
lcd.drawText(x_pos, y_pos+y_inc*line -2, "Channel", lcd_opt)
lcd.drawText(x_pos+x_inc, y_pos+y_inc*line -2, "Function", lcd_opt)
lcd.drawRectangle(x_pos-4, y_pos+y_inc*line -4 , 2*x_inc +2, 188)
lcd.drawLine(x_pos-4, y_pos+y_inc*line +18, x_pos-4 +2*x_inc +1, y_pos+y_inc*line +18, SOLID, 0)
lcd.drawLine(x_pos+x_inc -5, y_pos+y_inc*line -4, x_pos+x_inc -5, y_pos+y_inc*line -5 +188, SOLID, 0)
line = line + 1
end
local out
for i = 1, 8 do
out = getValue("ch"..(i+8))
lcd.drawText(x_pos, y_pos+y_inc*line, "CH"..i, lcd_opt)
for j = 1, #channels[i], 3 do
if out > channels[i][j] then
if sel == i then
invert = INVERS
if edit == true then
blink = blink + 1
if blink > BLINK_SPEED then
invert = 0
if blink > BLINK_SPEED * 2 then
blink = 0
end
end
end
else
invert = 0
end
lcd.drawText(x_pos+x_inc, y_pos+y_inc*line, channels[i][j+1], lcd_opt + invert)
break
end
end
line = line + 1
end
end
local function LOLI_Change_Value(dir)
local pos = 0
local out
--look for the current position
out = getValue("ch"..(sel+8))
for j = 1, #channels[sel], 3 do
if out > channels[sel][j] then
pos = j
break
end
end
--decrement or increment
if dir < 0 and pos > 1 then
pos = pos - 3
elseif dir > 0 and pos + 3 < #channels[sel] then
pos = pos + 3
else
return
end
--delete all mixers for the selected channel
local num_mix = model.getMixesCount(sel-1 +8)
for i = 1, num_mix do
model.deleteMix(sel-1 +8, 0);
end
--create new mixer
local source_max = getFieldInfo("cyc1")
local val = { name = channels[sel][pos+1],
source = source_max.id - 1, -- MAX=100 on TX16S
weight = channels[sel][pos+2],
offset = 0,
switch = 0,
multiplex = 0,
curveType = 0,
curveValue = 0,
flightModes = 0,
carryTrim = false,
mixWarn = 0,
delayUp = 0,
delayDown = 0,
speedUp = 0,
speedDown = 0 }
model.insertMix(sel-1 +8, 0, val)
end
local function LOLI_Menu(event)
if event == EVT_VIRTUAL_NEXT then
if edit == false then
-- not changing a value
if sel < 8 then
sel = sel + 1
end
else
-- need to inc the value
LOLI_Change_Value(1)
end
elseif event == EVT_VIRTUAL_PREV then
if edit == false then
-- not changing a value
if sel > 1 then
sel = sel - 1
end
else
-- need to dec the value
LOLI_Change_Value(-1)
end
elseif event == EVT_VIRTUAL_ENTER then
if edit == false then
edit = true
blink = BLINK_SPEED
else
edit = false
end
end
end
-- Init
local function LOLI_Init()
local module_conf = model.getModule(0)
if module_conf["Type"] ~= 6 or module_conf["protocol"] ~= 82 then
module_conf = model.getModule(1)
if module_conf["Type"] ~= 6 or module_conf["protocol"] ~= 82 then
loli_nok = true
end
end
end
-- Main
local function LOLI_Run(event)
if event == nil then
error("Cannot be run as a model script!")
return 2
elseif event == EVT_VIRTUAL_EXIT then
return 2
else
LOLI_Menu(event)
LOLI_Draw_LCD(event)
return 0
end
end
return { init=LOLI_Init, run=LOLI_Run }

67
Lua_scripts/README.md Normal file
View File

@@ -0,0 +1,67 @@
# Multiprotocol TX Module OpenTX LUA scripts
<img align="right" width=300 src="../docs/images/multi.png" />
If you like this project and want to support further development please consider making a [donation](../docs/Donations.md).
<table cellspacing=0>
<tr>
<td align=center width=200><a href="https://www.paypal.com/cgi-bin/webscr?cmd=_donations&business=VF2K9T23DRY56&lc=US&item_name=DIY%20Multiprotocol&currency_code=EUR&amount=5&bn=PP%2dDonationsBF%3abtn_donate_SM%2egif%3aNonHosted"><img src="../docs/images/donate_button.png" border="0" name="submit" title="PayPal - Donate €5" alt="Donate €5"/></a><br><b>€5</b></td>
<td align=center width=200><a href="https://www.paypal.com/cgi-bin/webscr?cmd=_donations&business=VF2K9T23DRY56&lc=US&item_name=DIY%20Multiprotocol&currency_code=EUR&amount=10&bn=PP%2dDonationsBF%3abtn_donate_SM%2egif%3aNonHosted"><img src="../docs/images/donate_button.png" border="0" name="submit" title="PayPal - Donate €10" alt="Donate €10"/></a><br><b>€10</b></td>
<td align=center width=200><a href="https://www.paypal.com/cgi-bin/webscr?cmd=_donations&business=VF2K9T23DRY56&lc=US&item_name=DIY%20Multiprotocol&currency_code=EUR&amount=15&bn=PP%2dDonationsBF%3abtn_donate_SM%2egif%3aNonHosted"><img src="../docs/images/donate_button.png" border="0" name="submit" title="PayPal - Donate €15" alt="Donate €10"/></a><br><b>€15</b></td>
<td align=center width=200><a href="https://www.paypal.com/cgi-bin/webscr?cmd=_donations&business=VF2K9T23DRY56&lc=US&item_name=DIY%20Multiprotocol&currency_code=EUR&amount=25&bn=PP%2dDonationsBF%3abtn_donate_SM%2egif%3aNonHosted"><img src="../docs/images/donate_button.png" border="0" name="submit" title="PayPal - Donate €25" alt="Donate €25"/></a><br><b>€25</b></td>
<td align=center width=200><a href="https://www.paypal.com/cgi-bin/webscr?cmd=_donations&business=VF2K9T23DRY56&lc=US&item_name=DIY%20Multiprotocol&currency_code=EUR&bn=PP%2dDonationsBF%3abtn_donate_SM%2egif%3aNonHosted"><img src="../docs/images/donate_button.png" border="0" name="submit" title="PayPal - Donate" alt="Donate"/></a><br><b>Other</b></td>
</tr>
</table>
## MultiConfig
Enables to modify on a Multi module the Global ID, Cyrf ID or format the EEPROM.
Notes:
- Supported from Multi v1.3.2.85 or above and OpenTX 2.3.12 or above
- The Multi module to be configured must be active, if there is a second Multi module in the radio it must be off
- Located on the radio SD card under \SCRIPTS\TOOLS
[![MultiCconfig](https://img.youtube.com/vi/lGyCV2kpqHU/0.jpg)](https://www.youtube.com/watch?v=lGyCV2kpqHU)
## MultiChannelsUpdater
Automatically name the channels based on the loaded Multi protocol and sub protocol including the module channel order convention.
Need OpenTX 2.3.9 or above. Located on the radio SD card under \SCRIPTS\TOOLS. This script needs MultiChan.txt to be present in the same folder.
[![MultiChannelsUpdater](https://img.youtube.com/vi/L58ayXuewyA/0.jpg)](https://www.youtube.com/watch?v=L58ayXuewyA)
## MultiLOLI
Script to set the channels function (switch, servo, pwm, ppm, sbus) on a [LOLI RX](https://github.com/pascallanger/DIY-Multiprotocol-TX-Module/blob/master/Protocols_Details.md#loli---82)
[![MultiLOLIconfig](https://img.youtube.com/vi/e698pQxfv-A/0.jpg)](https://www.youtube.com/watch?v=e698pQxfv-A)
## Graupner HoTT
Enable text configuration of the HoTT RX and sensors: Vario, GPS, ESC, GAM and EAM.
Need OpenTX 2.3.9 or above. Located on the radio SD card under \SCRIPTS\TOOLS.
Notes:
- Menu/MDL/Model is used to cycle through the detected sensors.
- It's normal to lose the telemetry feed while using the text mode configuration. Telemetry will resume properly if the script is exited by doing a short press on the exit button.
[![Text mode video](https://img.youtube.com/vi/81wd8NlF3Qw/0.jpg)](https://www.youtube.com/watch?v=81wd8NlF3Qw)
## DSM Forward Programming
This is a work in progress. It's only available for color screens (Horus, TX16S, T16, T18...).
If some text appears as Unknown_xxx, please report xxx and what the exact text display should be.
Need OpenTX 2.3.10 nightly or above. Located on the radio SD card under \SCRIPTS\TOOLS.
[![DSM Forward Programming](https://img.youtube.com/vi/sjIaDw5j9nE/0.jpg)](https://www.youtube.com/watch?v=sjIaDw5j9nE)
## DSM PID Flight log gain parameters for Blade micros
Lua telemetry script from [feathering on RCGroups](https://www.rcgroups.com/forums/showpost.php?p=46033341&postcount=20728) to facilitate setting the Gain Parameters on the Blade 150S FBL. It doesn't use Forward Programming but instead it just reads telemetry data from the Multi-module and displays it on a telemetry display.
It is very similar to the Telemetry Based Text Generator functionality on Spektrum transmitters where one doesn't need to rely on the angle of the swashplate to determine selection/value.

127
Lua_scripts/pidDsm.lua Normal file
View File

@@ -0,0 +1,127 @@
--
-- This telemetry script displays the Flight Log Gain
-- Parameters streamed from the Blade 150S Spektrum AR6335A
-- Flybarless Controller.
-- The script facilitates the setting of the FBL's
-- Gain Parameters including PID for both
-- cyclic and tail. It is similar to the Telemetry Based
-- Text Generator available on Spektrum transmitters.
-- Supporting similar Blade micros such as the Fusion 180
-- would possibly require minor modifications to this script.
-- This script reads telemetry data from the Spektrum
-- receiver and thus functionality relies on data being
-- captured by the OpenTX transmitter. A DSM
-- telemetry-ready module is required. Please see the
-- MULTI-Module project at https://www.multi-module.org/.
-- The only supported display is the Taranis'. It may work
-- with higher res screens.
--
-- Sensor names
local PSensor = "FdeA"
local ISensor = "FdeB"
local DSensor = "FdeL"
local RSensor = "FdeR"
local ActiveParamSensor = "Hold"
local tags = {"P", "I", "D"}
local function getPage(iParam)
-- get page from 0-based index
-- {0,1,2,3}: cyclic (1), {4,5,6,7}: tail (2)
local res = (math.floor(iParam/4)==0) and 1 or 2
return res
end
function round(v)
-- round float
local factor = 100
return math.floor(v * factor + 0.5) / factor
end
local function readValue(sensor)
-- read from sensor, round and return
local v = getValue(sensor)
v = round(v)
return v
end
local function readActiveParamValue(sensor)
-- read and return a validated active parameter value
local v = getValue(sensor)
if (v<1 or v>8) then
return nil
end
return v
end
local function readParameters()
-- read and return parameters
local p = readValue(PSensor)
local i = readValue(ISensor)
local d = readValue(DSensor)
local r = readValue(RSensor)
local a = readActiveParamValue(ActiveParamSensor)
return {p,i,d,r,a}
end
local function drawParameters()
-- draw labels and params on screen
local params = readParameters()
local activeParam = params[5]
-- if active gain does not validate then assume
-- Gain Adjustment Mode is disabled
if not activeParam then
lcd.clear()
lcd.drawText(20,30,"Please enter Gain Adjustment Mode")
return
end
local activePage = getPage(activeParam-1)
for iParam=0,7 do
-- highlight selected parameter
local attr = (activeParam==iParam+1) and 2 or 0
-- circular index (per page)
local perPageIndx = iParam % 4 + 1
-- check if displaying cyclic params.
local isCyclicPage = (getPage(iParam)==1)
-- set y draw coord
local y = perPageIndx*10+2
-- labels
local x = isCyclicPage and 6 or 120
-- labels are P,I,D for both pages except for last param
local val = iParam==3 and "Response" or
(iParam==7 and "Filtering" or tags[perPageIndx])
lcd.drawText (x, y, val, attr)
-- gains
-- set all params for non-active page to '--' rather than 'last value'
val = (getPage(iParam)==activePage) and params[perPageIndx] or '--'
x = isCyclicPage and 70 or 180
lcd.drawText (x, y, val, attr)
end
end
local function run_func(event)
-- TODO: calling clear() on every function call redrawing all labels is not ideal
lcd.clear()
lcd.drawText (8, 2, "Cyclic (0...200)")
lcd.drawText (114, 2, "Tail (0...200)")
drawParameters()
end
local function init_func() end
local function bg_func() end
return { run=run_func, background=bg_func, init=init_func }

View File

@@ -27,13 +27,16 @@ void A7105_WriteData(uint8_t len, uint8_t channel)
for (i = 0; i < len; i++)
SPI_Write(packet[i]);
A7105_CSN_on;
if(protocol!=PROTO_FLYSKY)
if(protocol!=PROTO_WFLY2)
{
A7105_Strobe(A7105_STANDBY); //Force standby mode, ie cancel any TX or RX...
A7105_SetTxRxMode(TX_EN); //Switch to PA
if(!(protocol==PROTO_FLYSKY || (protocol==PROTO_KYOSHO && sub_protocol==KYOSHO_HYPE)))
{
A7105_Strobe(A7105_STANDBY); //Force standby mode, ie cancel any TX or RX...
A7105_SetTxRxMode(TX_EN); //Switch to PA
}
A7105_WriteReg(A7105_0F_PLL_I, channel);
A7105_Strobe(A7105_TX);
}
A7105_WriteReg(A7105_0F_PLL_I, channel);
A7105_Strobe(A7105_TX);
}
void A7105_ReadData(uint8_t len)
@@ -107,7 +110,7 @@ void A7105_WriteID(uint32_t ida)
{
A7105_CSN_off;
SPI_Write(A7105_06_ID_DATA); //ex id=0x5475c52a ;txid3txid2txid1txid0
SPI_Write((ida>>24)&0xff); //53
SPI_Write((ida>>24)&0xff); //54
SPI_Write((ida>>16)&0xff); //75
SPI_Write((ida>>8)&0xff); //c5
SPI_Write((ida>>0)&0xff); //2a
@@ -192,9 +195,9 @@ void A7105_AdjustLOBaseFreq(uint8_t cmd)
offset=(int16_t)FORCE_FLYSKY_TUNING;
#endif
break;
case PROTO_FLYZONE:
#ifdef FORCE_FLYZONE_TUNING
offset=(int16_t)FORCE_FLYZONE_TUNING;
case PROTO_HEIGHT:
#ifdef FORCE_HEIGHT_TUNING
offset=(int16_t)FORCE_HEIGHT_TUNING;
#endif
break;
case PROTO_PELIKAN:
@@ -202,6 +205,21 @@ void A7105_AdjustLOBaseFreq(uint8_t cmd)
offset=(int16_t)FORCE_PELIKAN_TUNING;
#endif
break;
case PROTO_KYOSHO:
#ifdef FORCE_KYOSHO_TUNING
offset=(int16_t)FORCE_KYOSHO_TUNING;
#endif
break;
case PROTO_JOYSWAY:
#ifdef FORCE_JOYSWAY_TUNING
offset=(int16_t)FORCE_JOYSWAY_TUNING;
#endif
break;
case PROTO_WFLY2:
#ifdef FORCE_WFLY2_TUNING
offset=(int16_t)FORCE_WFLY2_TUNING;
#endif
break;
case PROTO_AFHDS2A:
case PROTO_AFHDS2A_RX:
#ifdef FORCE_AFHDS2A_TUNING
@@ -211,7 +229,7 @@ void A7105_AdjustLOBaseFreq(uint8_t cmd)
}
}
if(offset==1024) // Use channel 15 as an input
offset=convert_channel_16b_nolimit(CH15,-300,300);
offset=convert_channel_16b_nolimit(CH15,-300,300,false);
if(old_offset==offset) // offset is the same as before...
return;
@@ -282,8 +300,8 @@ const uint8_t PROGMEM FLYSKY_A7105_regs[] = {
0x01, 0x0f // 30 - 31
};
#endif
#ifdef FLYZONE_A7105_INO
const uint8_t PROGMEM FLYZONE_A7105_regs[] = {
#ifdef HEIGHT_A7105_INO
const uint8_t PROGMEM HEIGHT_A7105_regs[] = {
0xff, 0x42, 0x00, 0x07, 0x00, 0xff, 0xff ,0x00, 0x00, 0x00, 0x00, 0x01, 0x21, 0x05, 0x01, 0x50, // 00 - 0f
0x9e, 0x4b, 0x00, 0x02, 0x16, 0x2b, 0x12, 0x00, 0x62, 0x80, 0x80, 0x00, 0x0a, 0x32, 0xc3, 0x1f, // 10 - 1f
0x12, 0x00, 0x00, 0xff, 0x00, 0x00, 0x3a, 0x00, 0x3f, 0x47, 0x80, 0x03, 0x01, 0x45, 0x18, 0x00, // 20 - 2f
@@ -306,6 +324,36 @@ const uint8_t PROGMEM PELIKAN_A7105_regs[] = {
0x01, 0x0f // 30 - 31
};
#endif
#ifdef KYOSHO_A7105_INO
const uint8_t PROGMEM KYOSHO_A7105_regs[] = {
0xff, 0x42, 0xff, 0x25, 0x00, 0xff, 0xff ,0x00, 0x00, 0x00, 0x00, 0x01, 0x21, 0x05, 0x00, 0x50, // 00 - 0f
0x9e, 0x4b, 0x00, 0x02, 0x16, 0x2b, 0x12, 0x40, 0x62, 0x80, 0x80, 0x00, 0x0a, 0x32, 0x03, 0x1f, // 10 - 1f
0x1e, 0x00, 0x00, 0xff, 0x00, 0x00, 0x23, 0x70, 0x1F, 0x47, 0x80, 0x57, 0x01, 0x45, 0x19, 0x00, // 20 - 2f
0x01, 0x0f // 30 - 31
};
const uint8_t PROGMEM KYOSHO_HYPE_A7105_regs[] = {
0xff, 0x42, 0x00, 0x10, 0xC0, 0xff, 0xff ,0x00, 0x00, 0x00, 0x00, 0x01, 0x09, 0x05, 0x01, 0x04, // 00 - 0f
0x9e, 0x4b, 0x00, 0x02, 0x16, 0x2b, 0x12, 0x00, 0x62, 0x80, 0x80, 0x00, 0x0a, 0x96, 0xc2, 0x1f, // 10 - 1f
0x12, 0x00, 0x00, 0xff, 0x00, 0x00, 0x3a, 0x00, 0x17, 0x47, 0x80, 0x03, 0x01, 0x45, 0x18, 0x00, // 20 - 2f
0x01, 0x0f // 30 - 31
};
#endif
#ifdef WFLY2_A7105_INO //A7106 values
const uint8_t PROGMEM WFLY2_A7105_regs[] = {
0xff, 0x62, 0xff, 0x1F, 0x40, 0xff, 0xff ,0x00, 0x00, 0x00, 0x00, 0x33, 0x33, 0x05, 0x00, 0x64, // 00 - 0f Changes: 0B:19->33, 0C:01,33
0x9e, 0x4b, 0x00, 0x02, 0x16, 0x2b, 0x12, 0x40, 0x62, 0x80, 0x80, 0x00, 0x0a, 0x32, 0x03, 0x0f, // 10 - 1f 1C:4A->0A
0x12, 0x00, 0x00, 0xff, 0x00, 0x00, 0x23, 0x70, 0x15, 0x47, 0x80, 0x03, 0x01, 0x45, 0x18, 0x00, // 20 - 2f 2B:77->03, 2E:19->18
0x01, 0x0f // 30 - 31
};
#endif
#ifdef JOYSWAY_A7105_INO
const uint8_t PROGMEM JOYSWAY_A7105_regs[] = {
0xff, 0x62, 0xff, 0x0F, 0x00, 0xff, 0xff ,0x00, 0x00, 0x05, 0x00, 0x01, 0x00, 0xF5, 0x00, 0x15, // 00 - 0f
0x9E, 0x4B, 0x00, 0x03, 0x56, 0x2B, 0x12, 0x4A, 0x02, 0x80, 0x80, 0x00, 0x0E, 0x91, 0x03, 0x0F, // 10 - 1f
0x16, 0x2A, 0x00, 0xff, 0xff, 0xff, 0x3A, 0x06, 0x1F, 0x47, 0x80, 0x01, 0x05, 0x45, 0x18, 0x00, // 20 - 2f
0x01, 0x0f // 30 - 31
};
#endif
#define ID_NORMAL 0x55201041
#define ID_PLUS 0xAA201041
@@ -314,10 +362,24 @@ void A7105_Init(void)
uint8_t *A7105_Regs=0;
uint8_t vco_calibration0, vco_calibration1;
#ifdef FLYZONE_A7105_INO
if(protocol==PROTO_FLYZONE)
#ifdef JOYSWAY_A7105_INO
if(protocol==PROTO_JOYSWAY)
{
A7105_Regs=(uint8_t*)FLYZONE_A7105_regs;
A7105_Regs=(uint8_t*)JOYSWAY_A7105_regs;
}
else
#endif
#ifdef WFLY2_A7105_INO
if(protocol==PROTO_WFLY2)
{
A7105_Regs=(uint8_t*)WFLY2_A7105_regs;
}
else
#endif
#ifdef HEIGHT_A7105_INO
if(protocol==PROTO_HEIGHT)
{
A7105_Regs=(uint8_t*)HEIGHT_A7105_regs;
A7105_WriteID(0x25A53C45);
}
else
@@ -348,13 +410,20 @@ void A7105_Init(void)
#ifdef FLYSKY_A7105_INO
if(protocol==PROTO_FLYSKY)
A7105_Regs=(uint8_t*)FLYSKY_A7105_regs;
else
#endif
#if defined(AFHDS2A_A7105_INO) || defined(AFHDS2A_RX_A7105_INO)
if(protocol==PROTO_AFHDS2A || protocol==PROTO_AFHDS2A_RX)
A7105_Regs=(uint8_t*)AFHDS2A_A7105_regs;
#endif
#ifdef KYOSHO_A7105_INO
if(protocol==PROTO_KYOSHO)
{
#if defined(AFHDS2A_A7105_INO) || defined(AFHDS2A_RX_A7105_INO)
A7105_Regs=(uint8_t*)AFHDS2A_A7105_regs;
#endif
if(sub_protocol==KYOSHO_FHSS)
A7105_Regs=(uint8_t*)KYOSHO_A7105_regs;
else
A7105_Regs=(uint8_t*)KYOSHO_HYPE_A7105_regs;
}
#endif
}
for (uint8_t i = 0; i < 0x32; i++)
@@ -368,59 +437,86 @@ void A7105_Init(void)
if(i==0x20) val=0x1E;
}
#endif
if( val != 0xFF)
#ifdef HEIGHT_A7105_INO
if(protocol==PROTO_HEIGHT && sub_protocol==HEIGHT_8CH)
if(i==0x03) val=0x0A;
#endif
if( val != 0xff)
A7105_WriteReg(i, val);
}
A7105_Strobe(A7105_STANDBY);
//IF Filter Bank Calibration
A7105_WriteReg(A7105_02_CALC,1);
while(A7105_ReadReg(A7105_02_CALC)); // Wait for calibration to end
// A7105_ReadReg(A7105_22_IF_CALIB_I);
// A7105_ReadReg(A7105_24_VCO_CURCAL);
if(protocol!=PROTO_HUBSAN)
{
//VCO Current Calibration
A7105_WriteReg(A7105_24_VCO_CURCAL,0x13); //Recommended calibration from A7105 Datasheet
//VCO Bank Calibration
A7105_WriteReg(A7105_26_VCO_SBCAL_II,0x3b); //Recommended calibration from A7105 Datasheet
if(protocol==PROTO_KYOSHO && sub_protocol==KYOSHO_FHSS)
{//strange calibration...
//IF Filter Bank Calibration
A7105_WriteReg(A7105_02_CALC,0x0F);
while(A7105_ReadReg(A7105_02_CALC)); // Wait for calibration to end
// A7105_ReadReg(A7105_22_IF_CALIB_I);
// A7105_ReadReg(A7105_24_VCO_CURCAL);
// A7105_ReadReg(25_VCO_SBCAL_I);
// A7105_ReadReg(1A_RX_GAIN_II);
// A7105_ReadReg(1B_RX_GAIN_III);
}
//VCO Bank Calibrate channel 0
A7105_WriteReg(A7105_0F_CHANNEL, 0);
A7105_WriteReg(A7105_02_CALC,2);
while(A7105_ReadReg(A7105_02_CALC)); // Wait for calibration to end
vco_calibration0 = A7105_ReadReg(A7105_25_VCO_SBCAL_I);
//VCO Bank Calibrate channel A0
A7105_WriteReg(A7105_0F_CHANNEL, 0xa0);
A7105_WriteReg(A7105_02_CALC, 2);
while(A7105_ReadReg(A7105_02_CALC)); // Wait for calibration to end
vco_calibration1 = A7105_ReadReg(A7105_25_VCO_SBCAL_I);
if(protocol==PROTO_BUGS)
A7105_SetVCOBand(vco_calibration0 & 0x07, vco_calibration1 & 0x07); // Set calibration band value to best match
else
{
//IF Filter Bank Calibration
A7105_WriteReg(A7105_02_CALC,1);
while(A7105_ReadReg(A7105_02_CALC)); // Wait for calibration to end
// A7105_ReadReg(A7105_22_IF_CALIB_I);
// A7105_ReadReg(A7105_24_VCO_CURCAL);
if(protocol!=PROTO_HUBSAN)
{
switch(protocol)
{
case PROTO_FLYSKY:
vco_calibration1=0x08;
break;
case PROTO_FLYZONE:
vco_calibration1=0x02;
break;
case PROTO_PELIKAN:
vco_calibration1=0x0C;
break;
default:
vco_calibration1=0x0A;
break;
}
A7105_WriteReg(A7105_25_VCO_SBCAL_I,vco_calibration1); //Reset VCO Band calibration
//VCO Current Calibration
A7105_WriteReg(A7105_24_VCO_CURCAL,0x13); //Recommended calibration from A7105 Datasheet
//VCO Bank Calibration
A7105_WriteReg(A7105_26_VCO_SBCAL_II,0x3b); //Recommended calibration from A7105 Datasheet
}
//VCO Bank Calibrate channel 0
A7105_WriteReg(A7105_0F_CHANNEL, 0);
A7105_WriteReg(A7105_02_CALC,2);
while(A7105_ReadReg(A7105_02_CALC)); // Wait for calibration to end
vco_calibration0 = A7105_ReadReg(A7105_25_VCO_SBCAL_I);
//VCO Bank Calibrate channel A0
A7105_WriteReg(A7105_0F_CHANNEL, 0xa0);
A7105_WriteReg(A7105_02_CALC, 2);
while(A7105_ReadReg(A7105_02_CALC)); // Wait for calibration to end
vco_calibration1 = A7105_ReadReg(A7105_25_VCO_SBCAL_I);
if(protocol==PROTO_BUGS || protocol==PROTO_WFLY2)
A7105_SetVCOBand(vco_calibration0 & 0x07, vco_calibration1 & 0x07); // Set calibration band value to best match
else
if(protocol!=PROTO_HUBSAN)
{
switch(protocol)
{
case PROTO_FLYSKY:
vco_calibration1=0x08;
break;
case PROTO_HEIGHT:
vco_calibration1=0x02;
break;
case PROTO_PELIKAN:
if(sub_protocol == PELIKAN_SCX24)
{
vco_calibration1=0x0A;
break;
}
case PROTO_KYOSHO: //sub_protocol Hype
vco_calibration1=0x0C;
break;
case PROTO_JOYSWAY:
vco_calibration1=0x09;
break;
default:
vco_calibration1=0x0A;
break;
}
A7105_WriteReg(A7105_25_VCO_SBCAL_I,vco_calibration1); //Reset VCO Band calibration
}
}
A7105_SetTxRxMode(TX_EN);
A7105_SetPower();

View File

@@ -24,10 +24,11 @@
enum {
AFHDS2A_RX_BIND1,
AFHDS2A_RX_BIND2,
AFHDS2A_RX_BIND3,
AFHDS2A_RX_DATA
};
static void __attribute__((unused)) AFHDS2A_Rx_build_telemetry_packet()
static void __attribute__((unused)) AFHDS2A_RX_build_telemetry_packet()
{
uint32_t bits = 0;
uint8_t bitsavailable = 0;
@@ -39,7 +40,7 @@ static void __attribute__((unused)) AFHDS2A_Rx_build_telemetry_packet()
packet_in[idx++] = 14; // number of channels in packet
// pack channels
for (uint8_t i = 0; i < 14; i++) {
uint32_t val = packet[9+i*2] | (packet[10+i*2] << 8);
uint32_t val = packet[9+i*2] | (((packet[10+i*2])&0x0F) << 8);
if (val < 860)
val = 860;
// convert ppm (860-2140) to Multi (0-2047)
@@ -55,13 +56,13 @@ static void __attribute__((unused)) AFHDS2A_Rx_build_telemetry_packet()
}
}
static uint8_t __attribute__((unused)) AFHDS2A_Rx_data_ready()
static uint8_t __attribute__((unused)) AFHDS2A_RX_data_ready()
{
// check if FECF+CRCF Ok
return !(A7105_ReadReg(A7105_00_MODE) & (1 << 5 | 1 << 6 | 1 << 0));
}
uint16_t initAFHDS2A_Rx()
void AFHDS2A_RX_init()
{
uint8_t i;
A7105_Init();
@@ -83,15 +84,12 @@ uint16_t initAFHDS2A_Rx()
hopping_frequency[i] = eeprom_read_byte((EE_ADDR)temp++);
phase = AFHDS2A_RX_DATA;
}
return 1000;
}
#define AFHDS2A_RX_WAIT_WRITE 0x80
uint16_t AFHDS2A_Rx_callback()
uint16_t AFHDS2A_RX_callback()
{
static uint32_t pps_timer = 0;
static uint16_t pps_counter = 0;
static int8_t read_retry;
int16_t temp;
uint8_t i;
@@ -106,22 +104,33 @@ uint16_t AFHDS2A_Rx_callback()
switch(phase) {
case AFHDS2A_RX_BIND1:
if (AFHDS2A_Rx_data_ready()) {
if(IS_BIND_DONE)
{
AFHDS2A_RX_init(); // Abort bind
break;
}
debugln("bind p=%d", phase+1);
if (AFHDS2A_RX_data_ready()) {
A7105_ReadData(AFHDS2A_RX_TXPACKET_SIZE);
if ((packet[0] == 0xbb && packet[9] == 0x01) || (packet[0] == 0xbc && packet[9] <= 0x02)) {
memcpy(rx_id, &packet[1], 4); // TX id actually
memcpy(hopping_frequency, &packet[11], AFHDS2A_RX_NUMFREQ);
phase = AFHDS2A_RX_BIND2;
debugln("phase bind2");
}
}
A7105_WriteReg(A7105_0F_PLL_I, (packet_count++ & 1) ? 0x0D : 0x8C); // bind channels
A7105_SetTxRxMode(RX_EN);
A7105_Strobe(A7105_RX);
return 10000;
case AFHDS2A_RX_BIND2:
if(IS_BIND_DONE)
{
AFHDS2A_RX_init(); // Abort bind
break;
}
// got 2nd bind packet from tx ?
if (AFHDS2A_Rx_data_ready()) {
if (AFHDS2A_RX_data_ready()) {
A7105_ReadData(AFHDS2A_RX_TXPACKET_SIZE);
if ((packet[0] == 0xBC && packet[9] == 0x02 && packet[10] == 0x00) &&
(memcmp(rx_id, &packet[1], 4) == 0) &&
@@ -132,42 +141,58 @@ uint16_t AFHDS2A_Rx_callback()
eeprom_write_byte((EE_ADDR)temp++, rx_id[i]);
for (i = 0; i < AFHDS2A_RX_NUMFREQ; i++)
eeprom_write_byte((EE_ADDR)temp++, hopping_frequency[i]);
BIND_DONE;
phase = AFHDS2A_RX_DATA;
return 3850;
phase = AFHDS2A_RX_BIND3;
debugln("phase bind3");
packet_count = 0;
}
}
case AFHDS2A_RX_BIND3:
debugln("bind p=%d", phase+1);
// transmit response packet
packet[0] = 0xBC;
memcpy(&packet[1], rx_id, 4);
memcpy(&packet[5], rx_tx_addr, 4);
packet[9] = 0x01;
//packet[9] = 0x01;
packet[10] = 0x00;
memset(&packet[11], 0xFF, 26);
A7105_SetTxRxMode(TX_EN);
rx_disable_lna = !IS_POWER_FLAG_on;
A7105_WriteData(AFHDS2A_RX_RXPACKET_SIZE, packet_count++ & 1 ? 0x0D : 0x8C);
if(phase == AFHDS2A_RX_BIND3 && packet_count > 20)
{
debugln("done");
BIND_DONE;
AFHDS2A_RX_init(); // Restart protocol
break;
}
phase |= AFHDS2A_RX_WAIT_WRITE;
return 1700;
case AFHDS2A_RX_BIND2 | AFHDS2A_RX_WAIT_WRITE:
//Wait for TX completion
pps_timer = micros();
while (micros() - pps_timer < 700) // Wait max 700µs, using serial+telemetry exit in about 120µs
while ((uint32_t)(micros() - pps_timer) < 700) // Wait max 700µs, using serial+telemetry exit in about 120µs
if (!(A7105_ReadReg(A7105_00_MODE) & 0x01))
break;
A7105_Strobe(A7105_RX);
case AFHDS2A_RX_BIND3 | AFHDS2A_RX_WAIT_WRITE:
phase &= ~AFHDS2A_RX_WAIT_WRITE;
return 10000;
case AFHDS2A_RX_DATA:
if (AFHDS2A_Rx_data_ready()) {
if (AFHDS2A_RX_data_ready()) {
A7105_ReadData(AFHDS2A_RX_TXPACKET_SIZE);
if (memcmp(&packet[1], rx_id, 4) == 0 && memcmp(&packet[5], rx_tx_addr, 4) == 0) {
if (packet[0] == 0x58 && packet[37] == 0x00 && telemetry_link == 0) { // standard packet, send channels to TX
if (packet[0] == 0x58 && packet[37] == 0x00 && (telemetry_link&0x7F) == 0) { // standard packet, send channels to TX
int rssi = min(A7105_ReadReg(A7105_1D_RSSI_THOLD),160);
RX_RSSI = map16b(rssi, 160, 8, 0, 128);
AFHDS2A_Rx_build_telemetry_packet();
AFHDS2A_RX_build_telemetry_packet();
telemetry_link = 1;
#ifdef SEND_CPPM
if(sub_protocol>0)
telemetry_link |= 0x80; // Disable telemetry output
#endif
}
rx_data_started = true;
read_retry = 10; // hop to next channel

View File

@@ -20,6 +20,10 @@
#define AFHDS2A_RXPACKET_SIZE 37
#define AFHDS2A_NUMFREQ 16
#if not defined TELEMETRY
uint8_t RX_LQI=0;
#endif
enum{
AFHDS2A_PACKET_STICKS,
AFHDS2A_PACKET_SETTINGS,
@@ -65,7 +69,6 @@ static void AFHDS2A_calc_channels()
}
}
#if defined(AFHDS2A_FW_TELEMETRY) || defined(AFHDS2A_HUB_TELEMETRY)
// telemetry sensors ID
enum{
AFHDS2A_SENSOR_RX_VOLTAGE = 0x00,
@@ -76,10 +79,9 @@ enum{
AFHDS2A_SENSOR_A3_VOLTAGE = 0x03,
};
#if defined(AFHDS2A_FW_TELEMETRY) || defined(AFHDS2A_HUB_TELEMETRY)
static void AFHDS2A_update_telemetry()
{
if(packet[0]==0xAA && packet[9]==0xFD)
return; // ignore packets which contain the RX configuration: FD FF 32 00 01 00 FF FF FF 05 DC 05 DE FA FF FF FF FF FF FF FF FF FF FF FF FF FF FF
// Read TX RSSI
int16_t temp=256-(A7105_ReadReg(A7105_1D_RSSI_THOLD)*8)/5; // value from A7105 is between 8 for maximum signal strength to 160 or less
if(temp<0) temp=0;
@@ -183,37 +185,64 @@ static void AFHDS2A_build_packet(uint8_t type)
{
case AFHDS2A_PACKET_STICKS:
packet[0] = 0x58;
for(uint8_t ch=0; ch<14; ch++)
//16 channels + RX_LQI on channel 17
for(uint8_t ch=0; ch<num_ch; ch++)
{
uint16_t channelMicros = convert_channel_ppm(CH_AETR[ch]);
packet[9 + ch*2] = channelMicros&0xFF;
packet[10 + ch*2] = (channelMicros>>8)&0xFF;
if(ch == 16 // CH17=RX_LQI
#ifdef AFHDS2A_LQI_CH
|| ch == (AFHDS2A_LQI_CH-1) // override channel with LQI
#endif
)
val = 2000 - 10*RX_LQI;
else
val = convert_channel_ppm(CH_AETR[ch]);
if(ch<14)
{
packet[9 + ch*2] = val;
packet[10 + ch*2] = (val>>8)&0x0F;
}
else
{
packet[10 + (ch-14)*6] |= (val)<<4;
packet[12 + (ch-14)*6] |= (val)&0xF0;
packet[14 + (ch-14)*6] |= (val>>4)&0xF0;
}
}
#ifdef AFHDS2A_LQI_CH
// override channel with LQI
val = 2000 - 10*RX_LQI;
packet[9+((AFHDS2A_LQI_CH-1)*2)] = val & 0xff;
packet[10+((AFHDS2A_LQI_CH-1)*2)] = (val >> 8) & 0xff;
#endif
break;
case AFHDS2A_PACKET_FAILSAFE:
packet[0] = 0x56;
for(uint8_t ch=0; ch<14; ch++)
for(uint8_t ch=0; ch<num_ch; ch++)
{
#ifdef FAILSAFE_ENABLE
uint16_t failsafeMicros = Failsafe_data[CH_AETR[ch]];
if( failsafeMicros!=FAILSAFE_CHANNEL_HOLD && failsafeMicros!=FAILSAFE_CHANNEL_NOPULSES)
if(ch<16)
val = Failsafe_data[CH_AETR[ch]];
else
val = FAILSAFE_CHANNEL_NOPULSES;
if(val!=FAILSAFE_CHANNEL_HOLD && val!=FAILSAFE_CHANNEL_NOPULSES)
{ // Failsafe values
failsafeMicros = (((failsafeMicros<<2)+failsafeMicros)>>3)+860;
packet[9 + ch*2] = failsafeMicros & 0xff;
packet[10+ ch*2] = ( failsafeMicros >> 8) & 0xff;
val = (((val<<2)+val)>>3)+860;
if(ch<14)
{
packet[9 + ch*2] = val;
packet[10 + ch*2] = (val>>8)&0x0F;
}
else
{
packet[10 + (ch-14)*6] &= 0x0F;
packet[10 + (ch-14)*6] |= (val)<<4;
packet[12 + (ch-14)*6] &= 0x0F;
packet[12 + (ch-14)*6] |= (val)&0xF0;
packet[14 + (ch-14)*6] &= 0x0F;
packet[14 + (ch-14)*6] |= (val>>4)&0xF0;
}
}
else
#endif
{ // no values
packet[9 + ch*2] = 0xff;
packet[10+ ch*2] = 0xff;
}
if(ch<14)
{ // no values
packet[9 + ch*2] = 0xff;
packet[10+ ch*2] = 0xff;
}
}
break;
case AFHDS2A_PACKET_SETTINGS:
@@ -224,17 +253,14 @@ static void AFHDS2A_build_packet(uint8_t type)
if(val<50 || val>400) val=50; // default is 50Hz
packet[11]= val;
packet[12]= val >> 8;
if(sub_protocol == PPM_IBUS || sub_protocol == PPM_SBUS)
packet[13] = 0x01; // PPM output enabled
else
packet[13] = 0x00;
packet[13] = sub_protocol & 0x01; // 1 -> PPM output enabled
packet[14]= 0x00;
for(uint8_t i=15; i<37; i++)
packet[i] = 0xff;
packet[18] = 0x05; // ?
packet[19] = 0xdc; // ?
packet[20] = 0x05; // ?
if(sub_protocol == PWM_SBUS || sub_protocol == PPM_SBUS)
if(sub_protocol&2)
packet[21] = 0xdd; // SBUS output enabled
else
packet[21] = 0xde; // IBUS
@@ -244,11 +270,18 @@ static void AFHDS2A_build_packet(uint8_t type)
}
#define AFHDS2A_WAIT_WRITE 0x80
uint16_t ReadAFHDS2A()
#ifdef STM32_BOARD
#define AFHDS2A_WRITE_TIME 1550
#else
#define AFHDS2A_WRITE_TIME 1700
#endif
uint16_t AFHDS2A_callback()
{
static uint8_t packet_type;
static uint16_t packet_counter;
uint8_t data_rx;
uint8_t data_rx=0;
uint16_t start;
#ifndef FORCE_AFHDS2A_TUNING
A7105_AdjustLOBaseFreq(1);
@@ -260,12 +293,12 @@ uint16_t ReadAFHDS2A()
case AFHDS2A_BIND3:
AFHDS2A_build_bind_packet();
A7105_WriteData(AFHDS2A_TXPACKET_SIZE, packet_count%2 ? 0x0d : 0x8c);
if(!(A7105_ReadReg(A7105_00_MODE) & (1<<5 | 1<<6)))
{ // FECF+CRCF Ok
if(!(A7105_ReadReg(A7105_00_MODE) & (1<<5))) // removed FECF check due to issues with fs-x6b -> & (1<<5 | 1<<6)
{ // CRCF Ok
A7105_ReadData(AFHDS2A_RXPACKET_SIZE);
if(packet[0] == 0xbc && packet[9] == 0x01)
{
uint8_t addr;
uint16_t addr;
if(RX_num<16)
addr=AFHDS2A_EEPROM_OFFSET+RX_num*4;
else
@@ -277,23 +310,23 @@ uint16_t ReadAFHDS2A()
}
phase = AFHDS2A_BIND4;
packet_count++;
return 3850;
break;
}
}
packet_count++;
if(IS_BIND_DONE)
{ // exit bind if asked to do so from the GUI
phase = AFHDS2A_BIND4;
return 3850;
break;
}
phase |= AFHDS2A_WAIT_WRITE;
return 1700;
return AFHDS2A_WRITE_TIME;
case AFHDS2A_BIND1|AFHDS2A_WAIT_WRITE:
case AFHDS2A_BIND2|AFHDS2A_WAIT_WRITE:
case AFHDS2A_BIND3|AFHDS2A_WAIT_WRITE:
//Wait for TX completion
start=micros();
while ((uint16_t)micros()-start < 700) // Wait max 700µs, using serial+telemetry exit in about 120µs
while ((uint16_t)((uint16_t)micros()-start) < 700) // Wait max 700µs, using serial+telemetry exit in about 120µs
if(!(A7105_ReadReg(A7105_00_MODE) & 0x01))
break;
A7105_SetPower();
@@ -303,7 +336,7 @@ uint16_t ReadAFHDS2A()
phase++;
if(phase > AFHDS2A_BIND3)
phase = AFHDS2A_BIND1;
return 2150;
return 3850-AFHDS2A_WRITE_TIME;
case AFHDS2A_BIND4:
AFHDS2A_build_bind_packet();
A7105_WriteData(AFHDS2A_TXPACKET_SIZE, packet_count%2 ? 0x0d : 0x8c);
@@ -315,7 +348,7 @@ uint16_t ReadAFHDS2A()
phase = AFHDS2A_DATA_INIT;
BIND_DONE;
}
return 3850;
break;
case AFHDS2A_DATA_INIT:
packet_counter=0;
packet_type = AFHDS2A_PACKET_STICKS;
@@ -325,10 +358,7 @@ uint16_t ReadAFHDS2A()
telemetry_set_input_sync(3850);
#endif
AFHDS2A_build_packet(packet_type);
if((A7105_ReadReg(A7105_00_MODE) & 0x01)) // Check if something has been received...
data_rx=0;
else
data_rx=1; // Yes
data_rx=A7105_ReadReg(A7105_00_MODE); // Check if something has been received...
A7105_WriteData(AFHDS2A_TXPACKET_SIZE, hopping_frequency[hopping_frequency_no++]);
if(hopping_frequency_no >= AFHDS2A_NUMFREQ)
hopping_frequency_no = 0;
@@ -344,32 +374,27 @@ uint16_t ReadAFHDS2A()
}
else
#endif
packet_type = AFHDS2A_PACKET_STICKS; // todo : check for settings changes
packet_type = AFHDS2A_PACKET_STICKS; // todo : check for settings changes
}
if(!(A7105_ReadReg(A7105_00_MODE) & (1<<5 | 1<<6)) && data_rx==1)
{ // RX+FECF+CRCF Ok
if(!(A7105_ReadReg(A7105_00_MODE) & (1<<5)) && !(data_rx & 1)) // removed FECF check due to issues with fs-x6b -> & (1<<5 | 1<<6)
{ // RX+CRCF Ok
A7105_ReadData(AFHDS2A_RXPACKET_SIZE);
if(packet[0] == 0xAA && packet[9] == 0xFC)
packet_type=AFHDS2A_PACKET_SETTINGS; // RX is asking for settings
packet_type=AFHDS2A_PACKET_SETTINGS; // RX is asking for settings
else
if(packet[0] == 0xAA || packet[0] == 0xAC)
{
if((packet[0] == 0xAA && packet[9]!=0xFD) || packet[0] == 0xAC)
{// Normal telemetry packet, ignore packets which contain the RX configuration: AA FD FF 32 00 01 00 FF FF FF 05 DC 05 DE FA FF FF FF FF FF FF FF FF FF FF FF FF FF FF
if(!memcmp(&packet[1], rx_tx_addr, 4))
{ // TX address validated
#ifdef AFHDS2A_LQI_CH
if(packet[0]==0xAA && packet[9]!=0xFD)
{// Normal telemetry packet
for(uint8_t sensor=0; sensor<7; sensor++)
{//read LQI value for RX output
uint8_t index = 9+(4*sensor);
if(packet[index]==AFHDS2A_SENSOR_RX_ERR_RATE && packet[index+2]<=100)
{
RX_LQI=packet[index+2];
break;
}
}
for(uint8_t sensor=0; sensor<7; sensor++)
{//read LQI value for RX output
uint8_t index = 9+(4*sensor);
if(packet[index]==AFHDS2A_SENSOR_RX_ERR_RATE && packet[index+2]<=100)
{
RX_LQI=packet[index+2];
break;
}
#endif
}
#if defined(AFHDS2A_FW_TELEMETRY) || defined(AFHDS2A_HUB_TELEMETRY)
AFHDS2A_update_telemetry();
#endif
@@ -378,23 +403,23 @@ uint16_t ReadAFHDS2A()
}
packet_counter++;
phase |= AFHDS2A_WAIT_WRITE;
return 1700;
return AFHDS2A_WRITE_TIME;
case AFHDS2A_DATA|AFHDS2A_WAIT_WRITE:
//Wait for TX completion
start=micros();
while ((uint16_t)micros()-start < 700) // Wait max 700µs, using serial+telemetry exit in about 120µs
while ((uint16_t)((uint16_t)micros()-start) < 700) // Wait max 700µs, using serial+telemetry exit in about 120µs
if(!(A7105_ReadReg(A7105_00_MODE) & 0x01))
break;
A7105_SetPower();
A7105_SetTxRxMode(RX_EN);
A7105_Strobe(A7105_RX);
phase &= ~AFHDS2A_WAIT_WRITE;
return 2150;
return 3850-AFHDS2A_WRITE_TIME;
}
return 3850; // never reached, please the compiler
return 3850;
}
uint16_t initAFHDS2A()
void AFHDS2A_init()
{
A7105_Init();
@@ -407,7 +432,7 @@ uint16_t initAFHDS2A()
{
phase = AFHDS2A_DATA_INIT;
//Read RX ID from EEPROM based on RX_num, RX_num must be uniq for each RX
uint8_t addr;
uint16_t addr;
if(RX_num<16)
addr=AFHDS2A_EEPROM_OFFSET+RX_num*4;
else
@@ -416,6 +441,9 @@ uint16_t initAFHDS2A()
rx_id[i]=eeprom_read_byte((EE_ADDR)(addr+i));
}
hopping_frequency_no = 0;
return 50000;
if(sub_protocol&0x04)
num_ch=17;
else
num_ch=14;
}
#endif

View File

@@ -33,19 +33,14 @@ enum {
ASSAN_DATA5
};
void ASSAN_init()
void ASSAN_RF_init()
{
NRF24L01_Initialize();
//Specifics to ASSAN
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x02); // 4 bytes rx/tx address
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, (uint8_t *)"\x80\x80\x80\xB8", ASSAN_ADDRESS_LENGTH); // Bind address
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, (uint8_t *)"\x80\x80\x80\xB8", ASSAN_ADDRESS_LENGTH); // Bind address
NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, (uint8_t *)"\x80\x80\x80\xB8", ASSAN_ADDRESS_LENGTH); // Bind address
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowldgement on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, ASSAN_PACKET_SIZE);
NRF24L01_SetPower();
}
void ASSAN_send_packet()
@@ -169,17 +164,16 @@ static void __attribute__((unused)) ASSAN_initialize_txid()
hopping_frequency[1]=freq2;
}
uint16_t initASSAN()
void ASSAN_init()
{
ASSAN_initialize_txid();
ASSAN_init();
ASSAN_RF_init();
hopping_frequency_no = 0;
if(IS_BIND_IN_PROGRESS)
phase=ASSAN_BIND0;
else
phase=ASSAN_DATA0;
return 1000;
}
#endif

View File

@@ -115,7 +115,7 @@ void delayMilliseconds(unsigned long ms)
uint16_t lms = ms ;
while (lms > 0) {
if (((uint16_t)micros() - start) >= 1000) {
if ((uint16_t)((uint16_t)micros() - start) >= 1000) {
lms--;
start += 1000;
}

View File

@@ -16,7 +16,7 @@
#if defined(BUGSMINI_NRF24L01_INO)
#include "iface_nrf24l01.h"
#include "iface_xn297.h"
#define BUGSMINI_INITIAL_WAIT 500
#define BUGSMINI_PACKET_INTERVAL 6840
@@ -57,22 +57,10 @@ enum {
#define BUGSMINI_FLAG_ANGLE 0x02 // angle/acro mode (set is angle mode)
#define BUGSMINI_FLAG_ALTHOLD 0x04 // angle/altitude hold mode (set is altitude mode)
static void __attribute__((unused)) BUGSMINI_init()
static void __attribute__((unused)) BUGSMINI_RF_init()
{
NRF24L01_Initialize();
NRF24L01_SetTxRxMode(TX_EN);
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowldgement on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, BUGSMINI_RX_PAYLOAD_SIZE); // bytes of data payload for rx pipe 1
NRF24L01_WriteReg(NRF24L01_06_RF_SETUP, 0x07);
NRF24L01_SetBitrate(NRF24L01_BR_1M);
NRF24L01_SetPower();
NRF24L01_Activate(0x73); // Activate feature register
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 0x00); // Disable dynamic payload length on all pipes
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, 0x00); // Set feature bits on
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_1M);
//XN297_HoppingCalib(BUGSMINI_NUM_RF_CHANNELS*2);
}
static void __attribute__((unused)) BUGSMINI_check_arming()
@@ -95,7 +83,7 @@ static void __attribute__((unused)) BUGSMINI_check_arming()
}
}
static void __attribute__((unused)) BUGSMINI_send_packet(uint8_t bind)
static void __attribute__((unused)) BUGSMINI_send_packet()
{
BUGSMINI_check_arming(); // sets globals arm_flags and armed
@@ -107,7 +95,7 @@ static void __attribute__((unused)) BUGSMINI_send_packet(uint8_t bind)
packet[1] = BUGSMINI_txid[0];
packet[2] = BUGSMINI_txid[1];
packet[3] = BUGSMINI_txid[2];
if(bind)
if(IS_BIND_IN_PROGRESS)
{
packet[4] = 0x00;
packet[5] = 0x7d;
@@ -159,15 +147,14 @@ static void __attribute__((unused)) BUGSMINI_send_packet(uint8_t bind)
hopping_frequency_no++;
if(hopping_frequency_no >= BUGSMINI_NUM_RF_CHANNELS)
hopping_frequency_no = 0;
NRF24L01_WriteReg(NRF24L01_05_RF_CH, bind ? hopping_frequency[hopping_frequency_no+BUGSMINI_NUM_RF_CHANNELS] : hopping_frequency[hopping_frequency_no]);
XN297_Hopping(IS_BIND_IN_PROGRESS ? hopping_frequency[hopping_frequency_no+BUGSMINI_NUM_RF_CHANNELS] : hopping_frequency[hopping_frequency_no]);
}
// Power on, TX mode, 2byte CRC
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP));
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
// Send
XN297_SetPower();
XN297_SetTxRxMode(TXRX_OFF);
XN297_SetTxRxMode(TX_EN);
XN297_WritePayload(packet, BUGSMINI_TX_PAYLOAD_SIZE);
NRF24L01_SetPower();
}
// compute final address for the rxid received during bind
@@ -231,37 +218,37 @@ static void __attribute__((unused)) BUGSMINI_make_address()
// Something wrong happened if we arrive here....
}
#if defined(BUGS_HUB_TELEMETRY)
static void __attribute__((unused)) BUGSMINI_update_telemetry()
{
#if defined(BUGS_HUB_TELEMETRY)
uint8_t checksum = 0x6d;
for(uint8_t i=1; i<12; i++)
checksum += packet[i];
if(packet[0] == checksum)
checksum += packet_in[i];
if(packet_in[0] == checksum)
{
RX_RSSI = packet[3];
RX_RSSI = packet_in[3];
if(sub_protocol==BUGS3H)
{
if(packet[11] & 0x40)
if(packet_in[11] & 0x40)
v_lipo1 = 0x40; // Warning
else if(packet[11] & 0x80)
else if(packet_in[11] & 0x80)
v_lipo1 = 0x20; // Critical
else
v_lipo1 = 0x80; // Ok
}
else
{
if(packet[11] & 0x80)
if(packet_in[11] & 0x80)
v_lipo1 = 0x80; // Ok
else if(packet[11] & 0x40)
else if(packet_in[11] & 0x40)
v_lipo1 = 0x40; // Warning
else
v_lipo1 = 0x20; // Critical
}
telemetry_link=1;
}
#endif
}
#endif
uint16_t BUGSMINI_callback()
{
@@ -269,58 +256,52 @@ uint16_t BUGSMINI_callback()
switch(phase)
{
case BUGSMINI_BIND1:
if( NRF24L01_ReadReg(NRF24L01_07_STATUS) & _BV(NRF24L01_07_RX_DR))
if( XN297_IsRX() )
{ // RX fifo data ready
XN297_ReadPayload(packet, BUGSMINI_RX_PAYLOAD_SIZE);
XN297_ReadPayload(packet, BUGSMINI_RX_PAYLOAD_SIZE); // Not checking the CRC??
base_adr=BUGSMINI_EEPROM_OFFSET+(RX_num&0x0F)*2;
eeprom_write_byte((EE_ADDR)(base_adr+0),packet[1]); // Save rxid in EEPROM
eeprom_write_byte((EE_ADDR)(base_adr+1),packet[2]); // Save rxid in EEPROM
NRF24L01_SetTxRxMode(TXRX_OFF);
NRF24L01_SetTxRxMode(TX_EN);
eeprom_write_byte((EE_ADDR)(base_adr+0),packet[1]); // Save rxid in EEPROM
eeprom_write_byte((EE_ADDR)(base_adr+1),packet[2]); // Save rxid in EEPROM
BUGSMINI_make_address();
XN297_SetTXAddr(rx_tx_addr, 5);
XN297_SetRXAddr(rx_tx_addr, 5);
XN297_SetRXAddr(rx_tx_addr, BUGSMINI_RX_PAYLOAD_SIZE);
phase = BUGSMINI_DATA1;
BIND_DONE;
return BUGSMINI_PACKET_INTERVAL;
break;
}
NRF24L01_SetTxRxMode(TXRX_OFF);
NRF24L01_SetTxRxMode(TX_EN);
BUGSMINI_send_packet(1);
BUGSMINI_send_packet();
phase = BUGSMINI_BIND2;
return BUGSMINI_WRITE_WAIT;
case BUGSMINI_BIND2:
// switch to RX mode
NRF24L01_SetTxRxMode(TXRX_OFF);
NRF24L01_SetTxRxMode(RX_EN);
NRF24L01_FlushRx();
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO)
| _BV(NRF24L01_00_PWR_UP) | _BV(NRF24L01_00_PRIM_RX));
XN297_SetTxRxMode(TXRX_OFF);
XN297_SetTxRxMode(RX_EN);
phase = BUGSMINI_BIND1;
return BUGSMINI_PACKET_INTERVAL - BUGSMINI_WRITE_WAIT;
case BUGSMINI_DATA1:
#ifdef MULTI_SYNC
telemetry_set_input_sync(BUGSMINI_PACKET_INTERVAL);
#endif
if( NRF24L01_ReadReg(NRF24L01_07_STATUS) & _BV(NRF24L01_07_RX_DR))
{ // RX fifo data ready => read only 12 bytes to not overwrite channel change flag
XN297_ReadPayload(packet, 12);
BUGSMINI_update_telemetry();
}
NRF24L01_SetTxRxMode(TXRX_OFF);
NRF24L01_SetTxRxMode(TX_EN);
BUGSMINI_send_packet(0);
#if defined(BUGS_HUB_TELEMETRY)
if( XN297_IsRX() )
{
XN297_ReadPayload(packet_in, BUGSMINI_RX_PAYLOAD_SIZE); // Not checking the CRC??
BUGSMINI_update_telemetry();
}
#endif
BUGSMINI_send_packet();
#if not defined(BUGS_HUB_TELEMETRY)
break;
#else
phase = BUGSMINI_DATA2;
return BUGSMINI_WRITE_WAIT;
case BUGSMINI_DATA2:
// switch to RX mode
NRF24L01_SetTxRxMode(TXRX_OFF);
NRF24L01_FlushRx();
NRF24L01_SetTxRxMode(RX_EN);
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO)
| _BV(NRF24L01_00_PWR_UP) | _BV(NRF24L01_00_PRIM_RX));
XN297_SetTxRxMode(TXRX_OFF);
XN297_SetTxRxMode(RX_EN);
phase = BUGSMINI_DATA1;
return BUGSMINI_PACKET_INTERVAL - BUGSMINI_WRITE_WAIT;
#endif
}
return BUGSMINI_PACKET_INTERVAL;
}
@@ -357,28 +338,27 @@ static void __attribute__((unused)) BUGSMINI_initialize_txid()
BUGSMINI_txhash = pgm_read_byte_near( &BUGSMINI_tx_hash[rx_tx_addr[3]%BUGSMINI_NUM_TX_RF_MAPS] );
}
uint16_t initBUGSMINI()
void BUGSMINI_init()
{
BUGSMINI_initialize_txid();
BUGSMINI_RF_init();
memset(packet, (uint8_t)0, BUGSMINI_TX_PAYLOAD_SIZE);
BUGSMINI_init();
if(IS_BIND_IN_PROGRESS)
{
XN297_SetTXAddr((const uint8_t*)"mjxRC", 5);
XN297_SetRXAddr((const uint8_t*)"mjxRC", 5);
XN297_SetRXAddr((const uint8_t*)"mjxRC", BUGSMINI_RX_PAYLOAD_SIZE);
phase = BUGSMINI_BIND1;
}
else
{
BUGSMINI_make_address();
XN297_SetTXAddr(rx_tx_addr, 5);
XN297_SetRXAddr(rx_tx_addr, 5);
XN297_SetRXAddr(rx_tx_addr, BUGSMINI_RX_PAYLOAD_SIZE);
phase = BUGSMINI_DATA1;
}
armed = 0;
arm_flags = BUGSMINI_FLAG_DISARM; // initial value from captures
arm_channel_previous = BUGSMINI_CH_SW_ARM;
return BUGSMINI_INITIAL_WAIT;
}
#endif

View File

@@ -15,7 +15,7 @@ Multiprotocol is distributed in the hope that it will be useful,
#if defined(BAYANG_RX_NRF24L01_INO)
#include "iface_nrf24l01.h"
#include "iface_xn297.h"
#define BAYANG_RX_PACKET_SIZE 15
#define BAYANG_RX_RF_NUM_CHANNELS 4
@@ -27,28 +27,15 @@ enum {
BAYANG_RX_DATA
};
static void __attribute__((unused)) Bayang_Rx_init_nrf24l01()
static void __attribute__((unused)) Bayang_Rx_RF_init()
{
const uint8_t bind_address[BAYANG_RX_ADDRESS_LENGTH] = { 0,0,0,0,0 };
NRF24L01_Initialize();
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_1M);
XN297_SetTXAddr(bind_address, BAYANG_RX_ADDRESS_LENGTH);
XN297_SetRXAddr(bind_address, BAYANG_RX_ADDRESS_LENGTH);
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowldgement on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, BAYANG_RX_PACKET_SIZE + 2); // 2 extra bytes for xn297 crc
NRF24L01_WriteReg(NRF24L01_05_RF_CH, BAYANG_RX_RF_BIND_CHANNEL);
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps
NRF24L01_SetPower();
NRF24L01_Activate(0x73); // Activate feature register
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 0x00); // Disable dynamic payload length on all pipes
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, 0x01);
NRF24L01_Activate(0x73);
NRF24L01_SetTxRxMode(TXRX_OFF);
NRF24L01_FlushRx();
NRF24L01_SetTxRxMode(RX_EN);
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP) | _BV(NRF24L01_00_PRIM_RX));
XN297_SetRXAddr(bind_address, BAYANG_RX_PACKET_SIZE);
XN297_RFChannel(BAYANG_RX_RF_BIND_CHANNEL);
XN297_SetTxRxMode(TXRX_OFF);
XN297_SetTxRxMode(RX_EN);
}
static uint8_t __attribute__((unused)) Bayang_Rx_check_validity() {
@@ -98,10 +85,10 @@ static void __attribute__((unused)) Bayang_Rx_build_telemetry_packet()
}
}
uint16_t initBayang_Rx()
void BAYANG_RX_init()
{
uint8_t i;
Bayang_Rx_init_nrf24l01();
Bayang_Rx_RF_init();
hopping_frequency_no = 0;
rx_data_started = false;
rx_data_received = false;
@@ -115,91 +102,101 @@ uint16_t initBayang_Rx()
rx_tx_addr[i] = eeprom_read_byte((EE_ADDR)temp++);
for (i = 0; i < BAYANG_RX_RF_NUM_CHANNELS; i++)
hopping_frequency[i] = eeprom_read_byte((EE_ADDR)temp++);
//XN297_HoppingCalib(BAYANG_RX_RF_NUM_CHANNELS);
XN297_SetTXAddr(rx_tx_addr, BAYANG_RX_ADDRESS_LENGTH);
XN297_SetRXAddr(rx_tx_addr, BAYANG_RX_ADDRESS_LENGTH);
XN297_SetRXAddr(rx_tx_addr, BAYANG_RX_PACKET_SIZE);
phase = BAYANG_RX_DATA;
}
return 1000;
}
uint16_t Bayang_Rx_callback()
uint16_t BAYANG_RX_callback()
{
uint8_t i;
static int8_t read_retry;
static uint16_t pps_counter;
static uint32_t pps_timer = 0;
switch (phase) {
case BAYANG_RX_BIND:
if (NRF24L01_ReadReg(NRF24L01_07_STATUS) & _BV(NRF24L01_07_RX_DR)) {
// data received from TX
if (XN297_ReadPayload(packet, BAYANG_RX_PACKET_SIZE) && ( packet[0] == 0xA4 || packet[0] == 0xA2 ) && Bayang_Rx_check_validity()) {
// store tx info into eeprom
uint16_t temp = BAYANG_RX_EEPROM_OFFSET;
for (i = 0; i < 5; i++) {
rx_tx_addr[i] = packet[i + 1];
eeprom_write_byte((EE_ADDR)temp++, rx_tx_addr[i]);
}
for (i = 0; i < 4; i++) {
hopping_frequency[i] = packet[i + 6];
eeprom_write_byte((EE_ADDR)temp++, hopping_frequency[i]);
}
XN297_SetTXAddr(rx_tx_addr, BAYANG_RX_ADDRESS_LENGTH);
XN297_SetRXAddr(rx_tx_addr, BAYANG_RX_ADDRESS_LENGTH);
BIND_DONE;
phase = BAYANG_RX_DATA;
}
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
}
break;
case BAYANG_RX_DATA:
if (NRF24L01_ReadReg(NRF24L01_07_STATUS) & _BV(NRF24L01_07_RX_DR)) {
if (XN297_ReadPayload(packet, BAYANG_RX_PACKET_SIZE) && packet[0] == 0xA5 && Bayang_Rx_check_validity()) {
if (telemetry_link == 0) {
Bayang_Rx_build_telemetry_packet();
telemetry_link = 1;
}
rx_data_started = true;
rx_data_received = true;
read_retry = 8;
pps_counter++;
}
}
// packets per second
if (millis() - pps_timer >= 1000) {
pps_timer = millis();
debugln("%d pps", pps_counter);
RX_LQI = pps_counter >> 1;
pps_counter = 0;
}
// frequency hopping
if (read_retry++ >= 8) {
hopping_frequency_no++;
if (hopping_frequency_no >= BAYANG_RX_RF_NUM_CHANNELS)
hopping_frequency_no = 0;
NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency[hopping_frequency_no]);
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
if (rx_data_started)
switch (phase)
{
case BAYANG_RX_BIND:
if(IS_BIND_DONE)
{
if(rx_data_received)
{ // In sync
rx_data_received = false;
read_retry = 5;
return 1500;
BAYANG_RX_init(); // Abort bind
break;
}
if ( XN297_IsRX() )
{
debugln("RX");
// data received from TX
if (XN297_ReadPayload(packet, BAYANG_RX_PACKET_SIZE) && ( packet[0] == 0xA4 || packet[0] == 0xA2 ) && Bayang_Rx_check_validity())
{
// store tx info into eeprom
uint16_t temp = BAYANG_RX_EEPROM_OFFSET;
for (i = 0; i < 5; i++) {
rx_tx_addr[i] = packet[i + 1];
eeprom_write_byte((EE_ADDR)temp++, rx_tx_addr[i]);
}
for (i = 0; i < 4; i++) {
hopping_frequency[i] = packet[i + 6];
eeprom_write_byte((EE_ADDR)temp++, hopping_frequency[i]);
}
//XN297_HoppingCalib(BAYANG_RX_RF_NUM_CHANNELS);
XN297_SetTXAddr(rx_tx_addr, BAYANG_RX_ADDRESS_LENGTH);
XN297_SetRXAddr(rx_tx_addr, BAYANG_RX_PACKET_SIZE);
BIND_DONE;
phase = BAYANG_RX_DATA;
}
XN297_SetTxRxMode(RX_EN);
}
break;
case BAYANG_RX_DATA:
if ( XN297_IsRX() ) {
if (XN297_ReadPayload(packet, BAYANG_RX_PACKET_SIZE) && packet[0] == 0xA5 && Bayang_Rx_check_validity()) {
if ((telemetry_link & 0x7F) == 0) {
Bayang_Rx_build_telemetry_packet();
telemetry_link = 1;
#ifdef SEND_CPPM
if(sub_protocol>0)
telemetry_link |= 0x80; // Disable telemetry output
#endif
}
rx_data_started = true;
rx_data_received = true;
read_retry = 8;
pps_counter++;
}
}
// packets per second
if (millis() - pps_timer >= 1000) {
pps_timer = millis();
debugln("%d pps", pps_counter);
RX_LQI = pps_counter >> 1;
pps_counter = 0;
}
// frequency hopping
if (read_retry++ >= 8) {
hopping_frequency_no++;
if (hopping_frequency_no >= BAYANG_RX_RF_NUM_CHANNELS)
hopping_frequency_no = 0;
XN297_Hopping(hopping_frequency_no);
XN297_SetTxRxMode(RX_EN);
if (rx_data_started)
{
if(rx_data_received)
{ // In sync
rx_data_received = false;
read_retry = 5;
return 1500;
}
else
{ // packet lost
read_retry = 0;
if(RX_LQI==0) // communication lost
rx_data_started=false;
}
}
else
{ // packet lost
read_retry = 0;
if(RX_LQI==0) // communication lost
rx_data_started=false;
}
read_retry = -16; // retry longer until first packet is caught
}
else
read_retry = -16; // retry longer until first packet is caught
}
return 250;
return 250;
}
return 1000;
}

View File

@@ -17,7 +17,7 @@ Multiprotocol is distributed in the hope that it will be useful,
#if defined(BAYANG_NRF24L01_INO)
#include "iface_nrf24l01.h"
#include "iface_xn297.h"
#define BAYANG_BIND_COUNT 1000
#define BAYANG_PACKET_PERIOD 2000
@@ -97,6 +97,8 @@ static void __attribute__((unused)) BAYANG_send_packet()
}
else
{
XN297_Hopping(hopping_frequency_no++);
hopping_frequency_no%=BAYANG_RF_NUM_CHANNELS;
uint16_t val;
uint8_t dyntrim = 1;
switch (sub_protocol)
@@ -143,19 +145,19 @@ static void __attribute__((unused)) BAYANG_send_packet()
if(CH13_SW)
packet[3] |= BAYANG_FLAG_EMG_STOP;
//Aileron
val = convert_channel_10b(AILERON);
val = convert_channel_10b(AILERON, false);
packet[4] = (val>>8) + (dyntrim ? ((val>>2) & 0xFC) : 0x7C);
packet[5] = val & 0xFF;
//Elevator
val = convert_channel_10b(ELEVATOR);
val = convert_channel_10b(ELEVATOR, false);
packet[6] = (val>>8) + (dyntrim ? ((val>>2) & 0xFC) : 0x7C);
packet[7] = val & 0xFF;
//Throttle
val = convert_channel_10b(THROTTLE);
val = convert_channel_10b(THROTTLE, false);
packet[8] = (val>>8) + 0x7C;
packet[9] = val & 0xFF;
//Rudder
val = convert_channel_10b(RUDDER);
val = convert_channel_10b(RUDDER, false);
packet[10] = (val>>8) + (dyntrim ? ((val>>2) & 0xFC) : 0x7C);
packet[11] = val & 0xFF;
}
@@ -192,84 +194,61 @@ static void __attribute__((unused)) BAYANG_send_packet()
for (uint8_t i=0; i < BAYANG_PACKET_SIZE-1; i++)
packet[14] += packet[i];
NRF24L01_WriteReg(NRF24L01_05_RF_CH, IS_BIND_IN_PROGRESS ? rf_ch_num:hopping_frequency[hopping_frequency_no++]);
hopping_frequency_no%=BAYANG_RF_NUM_CHANNELS;
// Power on, TX mode, 2byte CRC
// Why CRC0? xn297 does not interpret it - either 16-bit CRC or nothing
NRF24L01_FlushTx();
NRF24L01_SetTxRxMode(TX_EN);
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP));
// Send
XN297_SetPower();
XN297_SetTxRxMode(TX_EN);
XN297_WritePayload(packet, BAYANG_PACKET_SIZE);
NRF24L01_SetPower(); // Set tx_power
}
#ifdef BAYANG_HUB_TELEMETRY
static void __attribute__((unused)) BAYANG_check_rx(void)
{
if (NRF24L01_ReadReg(NRF24L01_07_STATUS) & _BV(NRF24L01_07_RX_DR))
if( XN297_IsRX() )
{ // data received from model
XN297_ReadPayload(packet, BAYANG_PACKET_SIZE);
NRF24L01_WriteReg(NRF24L01_07_STATUS, 255);
NRF24L01_FlushRx();
XN297_ReadPayload(packet, BAYANG_PACKET_SIZE); // Strange can't test the CRC since it seems to be disabled on telemetry packets...
uint8_t check = packet[0];
for (uint8_t i=1; i < BAYANG_PACKET_SIZE-1; i++)
check += packet[i];
// decode data , check sum is ok as well, since there is no crc
if (packet[0] == 0x85 && packet[14] == check)
if (packet[0] == 0x85 && packet[14] == check && telemetry_link == 0)
{
// uncompensated battery volts*100/2
v_lipo1 = (packet[3]<<7) + (packet[4]>>2);
v_lipo1 = (packet[3]<<7) + (packet[4]>>1);
// compensated battery volts*100/2
v_lipo2 = (packet[5]<<7) + (packet[6]>>2);
v_lipo2 = (packet[5]<<7) + (packet[6]>>1);
// reception in packets / sec
RX_LQI = packet[7];
RX_RSSI = RX_LQI;
//Flags
//uint8_t flags = packet[3] >> 3;
// battery low: flags & 1
telemetry_link=1;
#if defined HUB_TELEMETRY
// Multiplexed P, I, D values in packet[8] and packet[9].
// The two most significant bits specify which term is sent.
// Remaining 14 bits represent the value: 0 .. 16383
frsky_send_user_frame(0x24+(packet[8]>>6), packet[9], packet[8] & 0x3F ); //0x24 = ACCEL_X_ID, so ACCEL_X_ID=P, ACCEL_Y_ID=I, ACCEL_Z_ID=D
#endif
telemetry_counter++;
if(telemetry_lost==0)
telemetry_link=1;
if(telemetry_lost)
telemetry_link=0; // Don't send anything yet
}
}
NRF24L01_SetTxRxMode(TXRX_OFF);
XN297_SetTxRxMode(TXRX_OFF);
}
#endif
static void __attribute__((unused)) BAYANG_init()
static void __attribute__((unused)) BAYANG_RF_init()
{
NRF24L01_Initialize();
NRF24L01_SetTxRxMode(TX_EN);
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_1M);
XN297_SetTXAddr((uint8_t *)"\x00\x00\x00\x00\x00", BAYANG_ADDRESS_LENGTH);
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowldgement on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, BAYANG_PACKET_SIZE);
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0x00); // No retransmits
NRF24L01_SetPower();
NRF24L01_Activate(0x73); // Activate feature register
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 0x00); // Disable dynamic payload length on all pipes
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, 0x01);
NRF24L01_Activate(0x73);
//XN297_HoppingCalib(BAYANG_RF_NUM_CHANNELS);
switch (sub_protocol)
{
case X16_AH:
case IRDRONE:
rf_ch_num = BAYANG_RF_BIND_CHANNEL_X16_AH;
break;
default:
rf_ch_num = BAYANG_RF_BIND_CHANNEL;
break;
}
//Set bind channel
uint8_t ch = BAYANG_RF_BIND_CHANNEL;
if(sub_protocol == X16_AH || sub_protocol == IRDRONE)
ch = BAYANG_RF_BIND_CHANNEL_X16_AH;
XN297_RFChannel(ch);
}
enum {
@@ -294,7 +273,7 @@ uint16_t BAYANG_callback()
{
XN297_SetTXAddr(rx_tx_addr, BAYANG_ADDRESS_LENGTH);
#ifdef BAYANG_HUB_TELEMETRY
XN297_SetRXAddr(rx_tx_addr, BAYANG_ADDRESS_LENGTH);
XN297_SetRXAddr(rx_tx_addr, BAYANG_PACKET_SIZE);
#endif
BIND_DONE;
phase++; //WRITE
@@ -329,9 +308,9 @@ uint16_t BAYANG_callback()
// switch radio to rx as soon as packet is sent
start=(uint16_t)micros();
while ((uint16_t)((uint16_t)micros()-(uint16_t)start) < 1000) // Wait max 1ms
if((NRF24L01_ReadReg(NRF24L01_07_STATUS) & _BV(NRF24L01_07_TX_DS)))
if(XN297_IsPacketSent())
break;
NRF24L01_WriteReg(NRF24L01_00_CONFIG, 0x03);
XN297_SetTxRxMode(RX_EN);
phase++; // READ
return BAYANG_PACKET_TELEM_PERIOD - BAYANG_CHECK_DELAY - BAYANG_READ_DELAY;
case BAYANG_READ:
@@ -356,15 +335,14 @@ static void __attribute__((unused)) BAYANG_initialize_txid()
hopping_frequency_no=0;
}
uint16_t initBAYANG(void)
void BAYANG_init(void)
{
BIND_IN_PROGRESS; // autobind protocol
phase=BAYANG_BIND;
bind_counter = BAYANG_BIND_COUNT;
BAYANG_initialize_txid();
BAYANG_init();
BAYANG_RF_init();
packet_count=0;
return BAYANG_INITIAL_WAIT+BAYANG_PACKET_PERIOD;
}
#endif
#endif

View File

@@ -48,6 +48,7 @@ Bit(s) Bitmask Option Comment
11 0x400 MULTI_STATUS Indicates if MULTI_STATUS is defined
12 0x800 MULTI_TELEMETRY Indicates if MULTI_TELEMETRY is defined
13 0x1000 DEBUG_SERIAL Indicates if DEBUG_SERIAL is defined
14-16 0xE000 Module sub-type Reads as a three-bit value indicating a number from 0-7 which maps to a module sub-type (right-shift 13 bits to read)
The 8-byte version number is the version number zero-padded to a fixed width of two-bytes per segment and no separator.
E.g. 1.2.3.45 becomes 01020345.
@@ -60,9 +61,15 @@ OpenTX 2 10
Module types are mapped to the following decimal / binary values:
Module Type Decimal Value Binary Valsue
AVR 0 00
STM32 1 01
OrangeRX 2 10
AVR (Atmega328p) 0 00
STM32 (F103) 1 01
OrangeRX (Xmega) 2 10
Module sub-type is currently used for STM32F103 only and is mapped as follows:
Module Type Sub Type Decimal Value Binary Value
STM32 (F103) STM32F103CB 0 000
STM32 (F103) STM32F103C8 1 001
STM32 (F103) T18 5in1 2 010
Channel orders are mapped to the following decimal / binary values:
Channel Order Decimal Value Binary Value
@@ -109,6 +116,17 @@ RTEA 23 10111
bool firmwareFlag_DEBUG_SERIAL = true;
#endif
// STM32 Module sub-type flags
#if defined (MCU_STM32F103CB)
bool firmwareFlag_MCU_STM32F103CB = true;
#endif
#if defined (MCU_STM32F103C8)
bool firmwareFlag_MCU_STM32F103C8 = true;
#endif
#if defined (MULTI_5IN1_INTERNAL)
bool firmwareFlag_MULTI_5IN1_INTERNAL = true;
#endif
// Channel order flags
#if defined (AETR)
bool firmwareFlag_ChannelOrder_AETR = true;

View File

@@ -315,7 +315,7 @@ static void __attribute__((unused)) BUGS_increment_counts()
// FIFO config is one less than desired value
#define BUGS_FIFO_SIZE_RX 15
#define BUGS_FIFO_SIZE_TX 21
uint16_t ReadBUGS(void)
uint16_t BUGS_callback(void)
{
uint8_t mode, base_adr;
uint16_t rxid;
@@ -340,7 +340,7 @@ uint16_t ReadBUGS(void)
case BUGS_BIND_2:
//Wait for TX completion
start=micros();
while ((uint16_t)micros()-start < 500) // Wait max 500µs, using serial+telemetry exit in about 60µs
while ((uint16_t)((uint16_t)micros()-start) < 500) // Wait max 500µs, using serial+telemetry exit in about 60µs
if(!(A7105_ReadReg(A7105_00_MODE) & 0x01))
break;
A7105_SetTxRxMode(RX_EN);
@@ -399,7 +399,7 @@ uint16_t ReadBUGS(void)
case BUGS_DATA_2:
//Wait for TX completion
start=micros();
while ((uint16_t)micros()-start < 500) // Wait max 500µs, using serial+telemetry exit in about 60µs
while ((uint16_t)((uint16_t)micros()-start) < 500) // Wait max 500µs, using serial+telemetry exit in about 60µs
if(!(A7105_ReadReg(A7105_00_MODE) & 0x01))
break;
A7105_SetTxRxMode(RX_EN);
@@ -437,7 +437,7 @@ uint16_t ReadBUGS(void)
return packet_period;
}
uint16_t initBUGS(void)
void BUGS_init(void)
{
uint16_t rxid=0;
uint8_t base_adr=BUGS_EEPROM_OFFSET+(RX_num&0x0F)*2;
@@ -459,8 +459,6 @@ uint16_t initBUGS(void)
armed = 0;
arm_flags = BUGS_FLAG_DISARM; // initial value from captures
arm_channel_previous = BUGS_CH_SW_ARM;
return 10000;
}
#endif

View File

@@ -190,7 +190,9 @@ static void __attribute__((unused)) CABELL_send_packet(uint8_t bindMode)
}
TxPacket.option = (bindMode) ? (option & (~CABELL_OPTION_MASK_CHANNEL_REDUCTION)) : option; //remove channel reduction if in bind mode
}
TxPacket.reserved = 0;
rf_ch_num = CABELL_getNextChannel (hopping_frequency,CABELL_RADIO_CHANNELS, rf_ch_num);
TxPacket.reserved = rf_ch_num & 0x3F;
TxPacket.modelNum = RX_num;
uint16_t checkSum = TxPacket.modelNum + TxPacket.option + TxPacket.RxMode + TxPacket.reserved; // Start Calculate checksum
@@ -244,7 +246,6 @@ static void __attribute__((unused)) CABELL_send_packet(uint8_t bindMode)
TxPacket.checkSum_LSB = checkSum & 0x00FF;
// Set channel for next transmission
rf_ch_num = CABELL_getNextChannel (hopping_frequency,CABELL_RADIO_CHANNELS, rf_ch_num);
NRF24L01_WriteReg(NRF24L01_05_RF_CH,rf_ch_num);
//NRF24L01_FlushTx(); //just in case things got hung up
@@ -255,7 +256,7 @@ static void __attribute__((unused)) CABELL_send_packet(uint8_t bindMode)
*p |= (packet_count++)<<7; // This causes the 8th bit of the first byte to toggle with each xmit so consecutive payloads are not identical.
// This is a work around for a reported bug in clone NRF24L01 chips that mis-took this case for a re-transmit of the same packet.
CABELL_SetPower();
NRF24L01_SetPower();
NRF24L01_WritePayload((uint8_t*)&TxPacket, packetSize);
#if defined CABELL_HUB_TELEMETRY
@@ -279,39 +280,44 @@ static void __attribute__((unused)) CABELL_send_packet(uint8_t bindMode)
static void __attribute__((unused)) CABELL_getChannelSequence (uint8_t outArray[], uint8_t numChannels, uint64_t permutation)
{
/* This procedure initializes an array with the sequence progression of channels.
* This is not the actual channels itself, but the sequence base to be used within bands of
* This is not the actual channels itself, but the sequence base to be used within bands of
* channels.
*
*
* There are numChannels! permutations for arranging the channels
* one of these permutations will be calculated based on the permutation input
* permutation should be between 1 and numChannels! but the routine will constrain it
* if these bounds are exceeded. Typically the radio's unique TX ID should be used.
*
*
* The maximum numChannels is 20. Anything larger than this will cause the uint64_t
* variables to overflow, yielding unknown results (possibly infinite loop?). Therefor
* this routine constrains the value.
*/
*/
uint8_t i; //iterator counts numChannels
uint64_t indexOfNextSequenceValue;
uint64_t numChannelsFactorial=1;
uint32_t indexOfNextSequenceValue;
uint32_t numChannelsFactorial=1;
uint32_t perm32 ;
uint8_t sequenceValue;
numChannels = constrain(numChannels,1,20);
numChannels = constrain(numChannels,1,9);
for (i = 1; i <= numChannels;i++)
{
numChannelsFactorial *= i; // Calculate n!
outArray[i-1] = i-1; // Initialize array with the sequence
numChannelsFactorial *= i; // Calculate n!
outArray[i-1] = i-1; // Initialize array with the sequence
}
permutation = (permutation % numChannelsFactorial) + 1; // permutation must be between 1 and n! or this algorithm will infinite loop
perm32 = permutation >> 8 ; // Shift 40 bit input to 32 bit
perm32 = (perm32 % numChannelsFactorial); // permutation must be between 1 and n! or this algorithm will infinite loop
perm32 <<= 8 ; // Shift back 8 bits
perm32 += permutation & 0x00FF ; // Tack on least 8 bits
perm32 = (perm32 % numChannelsFactorial) + 1; // permutation must be between 1 and n! or this algorithm will infinite loop
//Rearrange the array elements based on the permutation selected
for (i=0, permutation--; i<numChannels; i++ )
for (i=0, perm32--; i<numChannels; i++ )
{
numChannelsFactorial /= ((uint64_t)numChannels)-i;
indexOfNextSequenceValue = i+(permutation/numChannelsFactorial);
permutation %= numChannelsFactorial;
numChannelsFactorial /= numChannels-i;
indexOfNextSequenceValue = i+(perm32/numChannelsFactorial);
perm32 %= numChannelsFactorial;
//Copy the value in the selected array position
sequenceValue = outArray[indexOfNextSequenceValue];
@@ -356,48 +362,18 @@ static void __attribute__((unused)) CABELL_setAddress()
}
//-----------------------------------------------------------------------------------------
static void __attribute__((unused)) CABELL_init()
static void __attribute__((unused)) CABELL_RF_init()
{
NRF24L01_Initialize();
CABELL_SetPower();
NRF24L01_SetBitrate(NRF24L01_BR_250K); // slower data rate gives better range/reliability
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowledgment on all data pipes
NRF24L01_SetTxRxMode(TX_EN); //Power up and 16 bit CRC
CABELL_setAddress();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01);
NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, 0x20); // 32 byte packet length
NRF24L01_WriteReg(NRF24L01_12_RX_PW_P1, 0x20); // 32 byte packet length
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x03);
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0x5F); // no retransmits
NRF24L01_Activate(0x73); // Activate feature register
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 0x3F); // Enable dynamic payload length on all pipes
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, 0x04); // Enable dynamic Payload Length
NRF24L01_Activate(0x73);
prev_power = NRF_POWER_0;
}
//-----------------------------------------------------------------------------------------
static void CABELL_SetPower() // This over-ride the standard Set Power to allow an flag in option to indicate max power setting
// Note that on many modules max power may actually be worse than the normal high power setting
// test and only use max if it helps the range
{
if(IS_BIND_DONE && !IS_RANGE_FLAG_on && ((option & CABELL_OPTION_MASK_MAX_POWER_OVERRIDE) != 0))
{ // If we are not in range or bind mode and power setting override is in effect, then set max power, else standard power logic
if(prev_power != NRF_POWER_3) // prev_power is global variable for NRF24L01; NRF_POWER_3 is max power
{
uint8_t rf_setup = NRF24L01_ReadReg(NRF24L01_06_RF_SETUP);
rf_setup = (rf_setup & 0xF9) | (NRF_POWER_3 << 1);
NRF24L01_WriteReg(NRF24L01_06_RF_SETUP, rf_setup);
prev_power=NRF_POWER_3;
}
}
else
NRF24L01_SetPower();
NRF24L01_SetTxRxMode(TX_EN); // Clear data ready, data sent, retransmit and enable CRC 16bits, ready for TX
}
//-----------------------------------------------------------------------------------------
@@ -414,7 +390,7 @@ uint16_t CABELL_callback()
else if (bind_counter == 0)
{
BIND_DONE;
CABELL_init(); // non-bind address
CABELL_RF_init(); // non-bind address
}
else
{
@@ -425,17 +401,15 @@ uint16_t CABELL_callback()
}
//-----------------------------------------------------------------------------------------
uint16_t initCABELL(void)
void CABELL_init(void)
{
if (IS_BIND_DONE)
bind_counter = 0;
else
bind_counter = CABELL_BIND_COUNT;
CABELL_init();
CABELL_RF_init();
packet_period = CABELL_PACKET_PERIOD;
return packet_period;
}
#endif

View File

@@ -163,4 +163,128 @@ void CC2500_SetPower()
prev_power=power;
}
}
void __attribute__((unused)) CC2500_SetFreqOffset()
{
if(prev_option != option)
{
prev_option = option;
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
}
}
void __attribute__((unused)) CC2500_250K_Init()
{
CC2500_Strobe(CC2500_SIDLE);
// Address Config = No address check
// Base Frequency = 2400
// CRC Autoflush = false
// CRC Enable = false
// Channel Spacing = 333.251953
// Data Format = Normal mode
// Data Rate = 249.939
// Deviation = 126.953125
// Device Address = 0
// Manchester Enable = false
// Modulated = true
// Modulation Format = GFSK
// Packet Length Mode = Variable packet length mode. Packet length configured by the first byte after sync word
// RX Filter BW = 203.125000
// Sync Word Qualifier Mode = No preamble/sync
// TX Power = 0
// Whitening = false
// Fast Frequency Hopping - no PLL auto calibration
/* //Previous config
CC2500_WriteReg(CC2500_08_PKTCTRL0, 0x01); // Packet Automation Control
CC2500_WriteReg(CC2500_0B_FSCTRL1, 0x0A); // Frequency Synthesizer Control
CC2500_WriteReg(CC2500_0C_FSCTRL0, option); // Frequency offset hack
CC2500_WriteReg(CC2500_0D_FREQ2, 0x5C); // Frequency Control Word, High Byte
CC2500_WriteReg(CC2500_0E_FREQ1, 0x4E); // Frequency Control Word, Middle Byte
CC2500_WriteReg(CC2500_0F_FREQ0, 0xC3); // Frequency Control Word, Low Byte
CC2500_WriteReg(CC2500_10_MDMCFG4, 0x8D); // Modem Configuration
CC2500_WriteReg(CC2500_11_MDMCFG3, 0x3B); // Modem Configuration
CC2500_WriteReg(CC2500_12_MDMCFG2, 0x10); // Modem Configuration
CC2500_WriteReg(CC2500_13_MDMCFG1, 0x23); // Modem Configuration
CC2500_WriteReg(CC2500_14_MDMCFG0, 0xA4); // Modem Configuration
CC2500_WriteReg(CC2500_15_DEVIATN, 0x62); // Modem Deviation Setting
CC2500_WriteReg(CC2500_18_MCSM0, 0x08); // Main Radio Control State Machine Configuration
CC2500_WriteReg(CC2500_19_FOCCFG, 0x1D); // Frequency Offset Compensation Configuration
CC2500_WriteReg(CC2500_1A_BSCFG, 0x1C); // Bit Synchronization Configuration
CC2500_WriteReg(CC2500_1B_AGCCTRL2, 0xC7); // AGC Control
CC2500_WriteReg(CC2500_1C_AGCCTRL1, 0x00); // AGC Control
CC2500_WriteReg(CC2500_1D_AGCCTRL0, 0xB0); // AGC Control
CC2500_WriteReg(CC2500_21_FREND1, 0xB6); // Front End RX Configuration
CC2500_WriteReg(CC2500_23_FSCAL3, 0xEA); // Frequency Synthesizer Calibration
CC2500_WriteReg(CC2500_25_FSCAL1, 0x00); // Frequency Synthesizer Calibration
CC2500_WriteReg(CC2500_26_FSCAL0, 0x11); // Frequency Synthesizer Calibration
*/
CC2500_WriteReg(CC2500_07_PKTCTRL1, 0x05); // Packet Automation Control, address check true auto append RSSI & LQI
CC2500_WriteReg(CC2500_08_PKTCTRL0, 0x00); // Packet Automation Control, fixed packet len
CC2500_WriteReg(CC2500_0B_FSCTRL1, 0x0A); // Frequency Synthesizer Control (IF Frequency)
CC2500_WriteReg(CC2500_0C_FSCTRL0, 0x00); // Frequency Synthesizer Control
CC2500_WriteReg(CC2500_0D_FREQ2, 0x5C); // Frequency Control Word, High Byte
CC2500_WriteReg(CC2500_0E_FREQ1, 0x4E); // Frequency Control Word, Middle Byte
CC2500_WriteReg(CC2500_0F_FREQ0, 0xC5); // Frequency Control Word, Low Byte
CC2500_WriteReg(CC2500_10_MDMCFG4, 0x3D); // Modem Configuration Set to 406kHz BW filter
CC2500_WriteReg(CC2500_11_MDMCFG3, 0x3B); // Modem Configuration
CC2500_WriteReg(CC2500_12_MDMCFG2, 0x10); // Modem Configuration, GFSK, no preambule and no sync word -> TX by default
CC2500_WriteReg(CC2500_13_MDMCFG1, 0x03); // Modem Configuration, 2 bytes of preamble
CC2500_WriteReg(CC2500_14_MDMCFG0, 0xA4); // Modem Configuration
CC2500_WriteReg(CC2500_15_DEVIATN, 0x62); // Modem Deviation Setting
CC2500_WriteReg(CC2500_18_MCSM0, 0x08); // Main Radio Control State Machine Configuration
CC2500_WriteReg(CC2500_19_FOCCFG, 0x1D); // Frequency Offset Compensation Configuration
CC2500_WriteReg(CC2500_1A_BSCFG, 0x1C); // Bit Synchronization Configuration
CC2500_WriteReg(CC2500_1B_AGCCTRL2, 0xC7); // AGC Control
CC2500_WriteReg(CC2500_1C_AGCCTRL1, 0x00); // AGC Control
CC2500_WriteReg(CC2500_1D_AGCCTRL0, 0xB0); // AGC Control
CC2500_WriteReg(CC2500_21_FREND1, 0xB6); // Front End RX Configuration
CC2500_WriteReg(CC2500_23_FSCAL3, 0xEA); // Frequency Synthesizer Calibration
CC2500_WriteReg(CC2500_25_FSCAL1, 0x00); // Frequency Synthesizer Calibration
CC2500_WriteReg(CC2500_26_FSCAL0, 0x11); // Frequency Synthesizer Calibration
//Prep RX
// Set first 3 bytes of rx addr in [0]->SYNC1, [1]->SYNC0 and [2]->ADDR
// CC2500_WriteReg(CC2500_04_SYNC1, [0]); // Sync word, high byte
// CC2500_WriteReg(CC2500_05_SYNC0, [1]); // Sync word, low byte
// CC2500_WriteReg(CC2500_09_ADDR, [2]); // Set addr
//RX
// CC2500_WriteReg(CC2500_12_MDMCFG2, 0x12); // Modem Configuration, GFSK, 16/16 Sync Word TX&RX
//TX
// CC2500_WriteReg(CC2500_12_MDMCFG2, 0x10); // Modem Configuration, GFSK, no preambule and no sync word
// need to set packet length before sending/receiving
// CC2500_WriteReg(CC2500_06_PKTLEN, cc2500_packet_len); // Packet len, fix packet len
CC2500_SetTxRxMode(TX_EN);
CC2500_SetPower();
}
void __attribute__((unused)) CC2500_250K_HoppingCalib(uint8_t num_freq)
{
for (uint8_t i = 0; i < num_freq; i++)
{
CC2500_Strobe(CC2500_SIDLE);
// spacing is 333.25 kHz, must multiply channel by 3
CC2500_WriteReg(CC2500_0A_CHANNR, hopping_frequency[i]*3);
// calibrate
CC2500_Strobe(CC2500_SCAL);
delayMicroseconds(900);
calData[i]=CC2500_ReadReg(CC2500_25_FSCAL1);
}
}
void __attribute__((unused)) CC2500_250K_Hopping(uint8_t index)
{
// spacing is 333.25 kHz, must multiply channel by 3
CC2500_WriteReg(CC2500_0A_CHANNR, hopping_frequency[index] * 3);
// set PLL calibration
CC2500_WriteReg(CC2500_25_FSCAL1, calData[index]);
}
void __attribute__((unused)) CC2500_250K_RFChannel(uint8_t number)
{
CC2500_Strobe(CC2500_SIDLE);
// spacing is 333.25 kHz, must multiply channel by 3
CC2500_WriteReg(CC2500_0A_CHANNR, number*3);
// calibrate
CC2500_Strobe(CC2500_SCAL);
delayMicroseconds(900);
}
#endif

View File

@@ -644,37 +644,24 @@ static uint8_t crtp_log_setup_state_machine()
return state_machine_completed;
}
static int cflie_init()
static void CFLIE_RF_init()
{
NRF24L01_Initialize();
// CRC, radio on
NRF24L01_SetTxRxMode(TX_EN);
NRF24L01_WriteReg(NRF24L01_00_CONFIG, _BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP));
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x01); // Auto Acknowledgement for data pipe 0
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, TX_ADDR_SIZE-2); // 5-byte RX/TX address
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0x13); // 3 retransmits, 500us delay
NRF24L01_WriteReg(NRF24L01_05_RF_CH, rf_ch_num); // Defined in initialize_rx_tx_addr
NRF24L01_SetBitrate(data_rate); // Defined in initialize_rx_tx_addr
NRF24L01_SetPower();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, rx_tx_addr, TX_ADDR_SIZE);
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, rx_tx_addr, TX_ADDR_SIZE);
// this sequence necessary for module from stock tx
NRF24L01_ReadReg(NRF24L01_1D_FEATURE);
NRF24L01_Activate(0x73); // Activate feature register
NRF24L01_ReadReg(NRF24L01_1D_FEATURE);
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 0x01); // Enable Dynamic Payload Length on pipe 0
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, 0x06); // Enable Dynamic Payload Length, enable Payload with ACK
// 50ms delay in callback
return 50000;
NRF24L01_SetTxRxMode(TX_EN); // Clear data ready, data sent, retransmit and enable CRC 16bits, ready for TX
}
// TODO: Fix telemetry
@@ -749,7 +736,7 @@ static int cflie_init()
// }
// }
static uint16_t cflie_callback()
static uint16_t CFLIE_callback()
{
switch (phase) {
case CFLIE_INIT_SEARCH:
@@ -799,7 +786,7 @@ static uint16_t cflie_callback()
}
// Generate address to use from TX id and manufacturer id (STM32 unique id)
static uint8_t initialize_rx_tx_addr()
static uint8_t CFLIE_initialize_rx_tx_addr()
{
rx_tx_addr[0] =
rx_tx_addr[1] =
@@ -844,19 +831,15 @@ static uint8_t initialize_rx_tx_addr()
return CFLIE_INIT_SEARCH;
}
uint16_t initCFlie(void)
void CFLIE_init(void)
{
BIND_IN_PROGRESS; // autobind protocol
phase = initialize_rx_tx_addr();
phase = CFLIE_initialize_rx_tx_addr();
crtp_log_setup_state = CFLIE_CRTP_LOG_SETUP_STATE_INIT;
packet_count=0;
int delay = cflie_init();
// debugln("CFlie init!");
return delay;
CFLIE_RF_init();
}
#endif

View File

@@ -16,7 +16,7 @@
#if defined(CG023_NRF24L01_INO)
#include "iface_nrf24l01.h"
#include "iface_xn297.h"
#define CG023_PACKET_PERIOD 8200 // Timeout for callback in uSec
#define CG023_INITIAL_WAIT 500
@@ -49,7 +49,7 @@ enum YD829_FLAGS {
YD829_FLAG_STILL = 0x80,
};
static void __attribute__((unused)) CG023_send_packet(uint8_t bind)
static void __attribute__((unused)) CG023_send_packet()
{
// throttle : 0x00 - 0xFF
throttle=convert_channel_8b(THROTTLE);
@@ -62,10 +62,16 @@ static void __attribute__((unused)) CG023_send_packet(uint8_t bind)
// aileron : 0x43 - 0x7F - 0xBB
aileron = convert_channel_16b_limit(AILERON, 0x43, 0xBB);
if (bind)
if (IS_BIND_IN_PROGRESS)
{
packet[0]= 0xaa;
XN297_RFChannel(CG023_RF_BIND_CHANNEL);
}
else
{
packet[0]= 0x55;
XN297_RFChannel(hopping_frequency_no);
}
// transmitter id
packet[1] = rx_tx_addr[0];
packet[2] = rx_tx_addr[1];
@@ -85,7 +91,7 @@ static void __attribute__((unused)) CG023_send_packet(uint8_t bind)
if(sub_protocol==CG023)
{
// rate
packet[13] = CG023_FLAG_RATE_HIGH
packet[13] = CG023_FLAG_RATE_HIGH
| GET_FLAG(CH5_SW,CG023_FLAG_FLIP)
| GET_FLAG(CH6_SW,CG023_FLAG_LED_OFF)
| GET_FLAG(CH7_SW,CG023_FLAG_STILL)
@@ -95,7 +101,7 @@ static void __attribute__((unused)) CG023_send_packet(uint8_t bind)
else
{// YD829
// rate
packet[13] = YD829_FLAG_RATE_HIGH
packet[13] = YD829_FLAG_RATE_HIGH
| GET_FLAG(CH5_SW,YD829_FLAG_FLIP)
| GET_FLAG(CH7_SW,YD829_FLAG_STILL)
| GET_FLAG(CH8_SW,YD829_FLAG_VIDEO)
@@ -103,79 +109,52 @@ static void __attribute__((unused)) CG023_send_packet(uint8_t bind)
}
packet[14] = 0;
// Power on, TX mode, 2byte CRC
// Why CRC0? xn297 does not interpret it - either 16-bit CRC or nothing
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP));
if (bind)
NRF24L01_WriteReg(NRF24L01_05_RF_CH, CG023_RF_BIND_CHANNEL);
else
NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency_no);
// clear packet status bits and TX FIFO
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
// Send
XN297_SetTxRxMode(TX_EN);
XN297_SetPower();
XN297_WritePayload(packet, CG023_PACKET_SIZE);
NRF24L01_SetPower(); // Set tx_power
}
static void __attribute__((unused)) CG023_init()
static void __attribute__((unused)) CG023_RF_init()
{
NRF24L01_Initialize();
NRF24L01_SetTxRxMode(TX_EN);
XN297_SetTXAddr((uint8_t *)"\x26\xA8\x67\x35\xCC", 5);
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_1M);
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowldgement on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0x00); // no retransmits
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps
NRF24L01_SetPower();
XN297_SetTXAddr((uint8_t *)"\x26\xA8\x67\x35\xCC", 5);
}
uint16_t CG023_callback()
{
if(IS_BIND_DONE)
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
CG023_send_packet(0);
}
else
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
if(bind_counter)
{
bind_counter--;
if (bind_counter == 0)
BIND_DONE;
else
{
CG023_send_packet(1);
bind_counter--;
}
}
CG023_send_packet();
return packet_period;
}
static void __attribute__((unused)) CG023_initialize_txid()
{
rx_tx_addr[0]= 0x80 | (rx_tx_addr[0] % 0x40);
if( rx_tx_addr[0] == 0xAA) // avoid using same freq for bind and data channel
if( rx_tx_addr[0] == 0xAA) // avoid using same freq for bind and data channel
rx_tx_addr[0] ++;
hopping_frequency_no = rx_tx_addr[0] - 0x7D; // rf channel for data packets
}
uint16_t initCG023(void)
void CG023_init(void)
{
BIND_IN_PROGRESS; // autobind protocol
bind_counter = CG023_BIND_COUNT;
CG023_initialize_txid();
CG023_init();
CG023_RF_init();
if(sub_protocol==CG023)
packet_period=CG023_PACKET_PERIOD;
else // YD829
packet_period=YD829_PACKET_PERIOD;
return CG023_INITIAL_WAIT+YD829_PACKET_PERIOD;
}
#endif

View File

@@ -17,19 +17,19 @@
#if defined(CX10_NRF24L01_INO)
#include "iface_nrf24l01.h"
#include "iface_xn297.h"
#define CX10_BIND_COUNT 4360 // 6 seconds
#define CX10_BIND_COUNT 4360 // 6 seconds
#define CX10_PACKET_SIZE 15
#define CX10A_PACKET_SIZE 19 // CX10 blue board packets have 19-byte payload
#define CX10A_PACKET_SIZE 19 // CX10 blue board packets have 19-byte payload
#define Q2X2_PACKET_SIZE 21
#define CX10_PACKET_PERIOD 1316 // Timeout for callback in uSec
#define CX10_PACKET_PERIOD 1316 // Timeout for callback in uSec
#define CX10A_PACKET_PERIOD 6000
#define CX10_INITIAL_WAIT 500
// flags
#define CX10_FLAG_FLIP 0x10 // goes to rudder channel
#define CX10_FLAG_FLIP 0x10 // goes to rudder channel
#define CX10_FLAG_MODE_MASK 0x03
#define CX10_FLAG_HEADLESS 0x04
// flags2
@@ -46,12 +46,12 @@ enum {
CX10_DATA
};
static void __attribute__((unused)) CX10_Write_Packet(uint8_t bind)
static void __attribute__((unused)) CX10_Write_Packet()
{
uint8_t offset = 0;
if(sub_protocol == CX10_BLUE)
offset = 4;
packet[0] = bind ? 0xAA : 0x55;
packet[0] = IS_BIND_IN_PROGRESS ? 0xAA : 0x55;
packet[1] = rx_tx_addr[0];
packet[2] = rx_tx_addr[1];
packet[3] = rx_tx_addr[2];
@@ -62,57 +62,57 @@ static void __attribute__((unused)) CX10_Write_Packet(uint8_t bind)
uint16_t throttle=convert_channel_16b_limit(THROTTLE,1000,2000);
uint16_t rudder= convert_channel_16b_limit(RUDDER ,2000,1000);
// Channel 5 - flip flag
packet[12+offset] = GET_FLAG(CH5_SW,CX10_FLAG_FLIP); // flip flag applied on rudder
packet[12+offset] = GET_FLAG(CH5_SW,CX10_FLAG_FLIP); // flip flag applied on rudder
// Channel 6 - rate mode is 2 lsb of packet 13
if(CH6_SW) // rate 3 / headless on CX-10A
if(CH6_SW) // rate 3 / headless on CX-10A
flags = 0x02;
else
if(Channel_data[CH6] < CHANNEL_MIN_COMMAND)
flags = 0x00; // rate 1
flags = 0x00; // rate 1
else
flags = 0x01; // rate 2
uint8_t flags2=0; // packet 14
flags = 0x01; // rate 2
uint8_t flags2=0; // packet 14
uint8_t video_state=packet[14] & 0x21;
switch(sub_protocol)
{
case CX10_BLUE:
flags |= GET_FLAG(!CH7_SW, 0x10) // Channel 7 - picture
|GET_FLAG( CH8_SW, 0x08); // Channel 8 - video
flags |= GET_FLAG(!CH7_SW, 0x10) // Channel 7 - picture
|GET_FLAG( CH8_SW, 0x08); // Channel 8 - video
break;
case F_Q282:
case F_Q242:
case F_Q222:
memcpy(&packet[15], "\x10\x10\xaa\xaa\x00\x00", 6);
//FLIP|LED|PICTURE|VIDEO|HEADLESS|RTH|XCAL|YCAL
flags2 = GET_FLAG(CH5_SW, 0x80) // Channel 5 - FLIP
|GET_FLAG(!CH6_SW, 0x40) // Channel 6 - LED
|GET_FLAG(CH9_SW, 0x08) // Channel 9 - HEADLESS
|GET_FLAG(CH11_SW, 0x04) // Channel 11 - XCAL
|GET_FLAG(CH12_SW, 0x02); // Channel 12 - YCAL or Start/Stop motors on JXD 509
flags2 = GET_FLAG(CH5_SW, 0x80) // Channel 5 - FLIP
|GET_FLAG(!CH6_SW, 0x40) // Channel 6 - LED
|GET_FLAG(CH9_SW, 0x08) // Channel 9 - HEADLESS
|GET_FLAG(CH11_SW, 0x04) // Channel 11 - XCAL
|GET_FLAG(CH12_SW, 0x02); // Channel 12 - YCAL or Start/Stop motors on JXD 509
if(sub_protocol==F_Q242)
{
flags=2;
flags2|= GET_FLAG(CH7_SW,0x01) // Channel 7 - picture
|GET_FLAG(CH8_SW,0x10); // Channel 8 - video
flags2|= GET_FLAG(CH7_SW,0x01) // Channel 7 - picture
|GET_FLAG(CH8_SW,0x10); // Channel 8 - video
packet[17]=0x00;
packet[18]=0x00;
}
else
{ // F_Q282 & F_Q222
flags=3; // expert
if(CH8_SW) // Channel 8 - F_Q282 video / F_Q222 Module 1
flags=3; // expert
if(CH8_SW) // Channel 8 - F_Q282 video / F_Q222 Module 1
{
if (!(video_state & 0x20)) video_state ^= 0x21;
}
else
if (video_state & 0x20) video_state &= 0x01;
flags2 |= video_state
|GET_FLAG(CH7_SW,0x10); // Channel 7 - F_Q282 picture / F_Q222 Module 2
|GET_FLAG(CH7_SW,0x10); // Channel 7 - F_Q282 picture / F_Q222 Module 2
}
if(CH10_SW) flags |=0x80; // Channel 10 - RTH
if(CH10_SW) flags |=0x80; // Channel 10 - RTH
break;
case DM007:
aileron = 3000 - aileron;
@@ -128,16 +128,16 @@ static void __attribute__((unused)) CX10_Write_Packet(uint8_t bind)
if(CH8_SW) packet[12] &= ~CX10_FLAG_FLIP;
case JC3015_1:
//FLIP|MODE|PICTURE|VIDEO
flags2= GET_FLAG(CH7_SW,_BV(3)) // Channel 7
|GET_FLAG(CH8_SW,_BV(4)); // Channel 8
flags2= GET_FLAG(CH7_SW,_BV(3)) // Channel 7
|GET_FLAG(CH8_SW,_BV(4)); // Channel 8
break;
case MK33041:
elevator = 3000 - elevator;
//FLIP|MODE|PICTURE|VIDEO|HEADLESS|RTH
flags|=GET_FLAG(CH7_SW,_BV(7)) // Channel 7 - picture
|GET_FLAG(CH10_SW,_BV(2)); // Channel 10 - rth
flags2=GET_FLAG(CH8_SW,_BV(0)) // Channel 8 - video
|GET_FLAG(CH9_SW,_BV(5)); // Channel 9 - headless
flags|=GET_FLAG(CH7_SW,_BV(7)) // Channel 7 - picture
|GET_FLAG(CH10_SW,_BV(2)); // Channel 10 - rth
flags2=GET_FLAG(CH8_SW,_BV(0)) // Channel 8 - video
|GET_FLAG(CH9_SW,_BV(5)); // Channel 9 - headless
break;
}
packet[5+offset] = lowByte(aileron);
@@ -151,39 +151,23 @@ static void __attribute__((unused)) CX10_Write_Packet(uint8_t bind)
packet[13+offset]=flags;
packet[14+offset]=flags2;
// Power on, TX mode, 2byte CRC
// Why CRC0? xn297 does not interpret it - either 16-bit CRC or nothing
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP));
if (bind)
NRF24L01_WriteReg(NRF24L01_05_RF_CH, CX10_RF_BIND_CHANNEL);
else
// Send
if(IS_BIND_DONE)
{
NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency[hopping_frequency_no++]);
XN297_Hopping(hopping_frequency_no++);
hopping_frequency_no %= CX10_NUM_RF_CHANNELS;
}
// clear packet status bits and TX FIFO
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
XN297_SetPower();
XN297_SetTxRxMode(TX_EN);
XN297_WritePayload(packet, packet_length);
NRF24L01_SetPower();
}
static void __attribute__((unused)) CX10_init()
static void __attribute__((unused)) CX10_RF_init()
{
NRF24L01_Initialize();
NRF24L01_SetTxRxMode(TX_EN);
XN297_SetTXAddr((uint8_t *)"\xcc\xcc\xcc\xcc\xcc",5);
XN297_SetRXAddr((uint8_t *)"\xcc\xcc\xcc\xcc\xcc",5);
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowledgment on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, packet_length); // rx pipe 0 (used only for blue board)
NRF24L01_WriteReg(NRF24L01_05_RF_CH, CX10_RF_BIND_CHANNEL);
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps
NRF24L01_SetPower();
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_1M);
XN297_SetTXAddr((uint8_t *)"\xcc\xcc\xcc\xcc\xcc", 5);
XN297_SetRXAddr((uint8_t *)"\xcc\xcc\xcc\xcc\xcc", packet_length);
XN297_RFChannel(CX10_RF_BIND_CHANNEL);
}
uint16_t CX10_callback()
@@ -197,42 +181,39 @@ uint16_t CX10_callback()
}
else
{
CX10_Write_Packet(1);
CX10_Write_Packet();
bind_counter--;
}
break;
case CX10_BIND2:
if( NRF24L01_ReadReg(NRF24L01_07_STATUS) & _BV(NRF24L01_07_RX_DR))
// switch to TX mode
if( XN297_IsRX() )
{ // RX fifo data ready
XN297_ReadPayload(packet, packet_length);
NRF24L01_SetTxRxMode(TXRX_OFF);
NRF24L01_SetTxRxMode(TX_EN);
if(packet[9] == 1)
debugln("RX");
if(XN297_ReadPayload(packet, packet_length) && packet[9] == 1)
{
BIND_DONE;
XN297_SetTxRxMode(TXRX_OFF);
phase = CX10_DATA;
break;
}
}
else
{
// switch to TX mode
NRF24L01_SetTxRxMode(TXRX_OFF);
NRF24L01_FlushTx();
NRF24L01_SetTxRxMode(TX_EN);
CX10_Write_Packet(1);
delayMicroseconds(400);
// switch to RX mode
NRF24L01_SetTxRxMode(TXRX_OFF);
NRF24L01_FlushRx();
NRF24L01_SetTxRxMode(RX_EN);
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP) | _BV(NRF24L01_00_PRIM_RX));
XN297_SetTxRxMode(TXRX_OFF);
CX10_Write_Packet();
// wait for packet to be sent
while( !XN297_IsPacketSent()); //delayMicroseconds(400);
}
// switch to RX mode
XN297_SetTxRxMode(TXRX_OFF);
XN297_SetTxRxMode(RX_EN);
break;
case CX10_DATA:
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
CX10_Write_Packet(0);
CX10_Write_Packet();
break;
}
return packet_period;
@@ -260,9 +241,13 @@ static void __attribute__((unused)) CX10_initialize_txid()
}
}
uint16_t initCX10(void)
void CX10_init(void)
{
BIND_IN_PROGRESS; // autobind protocol
if(protocol == PROTO_Q2X2)
sub_protocol|=0x08; // Increase the number of sub_protocols for CX-10
if(sub_protocol==CX10_BLUE)
{
packet_length = CX10A_PACKET_SIZE;
@@ -285,8 +270,7 @@ uint16_t initCX10(void)
bind_counter = CX10_BIND_COUNT;
}
CX10_initialize_txid();
CX10_init();
return CX10_INITIAL_WAIT+packet_period;
CX10_RF_init();
}
#endif

View File

@@ -79,13 +79,24 @@ uint8_t CYRF_Reset()
void CYRF_GetMfgData(uint8_t data[])
{
#ifndef FORCE_CYRF_ID
/* Fuses power on */
CYRF_WriteRegister(CYRF_25_MFG_ID, 0xFF);
if(eeprom_read_byte((EE_ADDR)EEPROM_CID_INIT_OFFSET)==0xf0)
{//read Cyrf ID from EEPROM
for(uint8_t i=0;i<6;i++)
data[i] = eeprom_read_byte((EE_ADDR)EEPROM_CID_OFFSET+i);
}
else
{//read Cyrf ID and store it EEPROM
/* Fuses power on */
CYRF_WriteRegister(CYRF_25_MFG_ID, 0xFF);
CYRF_ReadRegisterMulti(CYRF_25_MFG_ID, data, 6);
CYRF_ReadRegisterMulti(CYRF_25_MFG_ID, data, 6);
for(uint8_t i=0;i<6;i++)
eeprom_write_byte((EE_ADDR)EEPROM_CID_OFFSET+i, data[i]);
eeprom_write_byte((EE_ADDR)EEPROM_CID_INIT_OFFSET, 0xf0);
/* Fuses power off */
CYRF_WriteRegister(CYRF_25_MFG_ID, 0x00);
/* Fuses power off */
CYRF_WriteRegister(CYRF_25_MFG_ID, 0x00);
}
#else
memcpy(data,FORCE_CYRF_ID,6);
#endif
@@ -98,14 +109,14 @@ void CYRF_SetTxRxMode(uint8_t mode)
{
if(mode==TXRX_OFF)
{
if(protocol!=PROTO_WFLY)
if( protocol!=PROTO_WFLY && protocol!=PROTO_MLINK )
CYRF_WriteRegister(CYRF_0F_XACT_CFG, 0x24); // 4=IDLE, 8=TX, C=RX
CYRF_WriteRegister(CYRF_0E_GPIO_CTRL,0x00); // XOUT=0 PACTL=0
}
else
{
//Set the post tx/rx state
if(protocol!=PROTO_WFLY)
if( protocol!=PROTO_WFLY && protocol!=PROTO_MLINK )
CYRF_WriteRegister(CYRF_0F_XACT_CFG, mode == TX_EN ? 0x28 : 0x2C); // 4=IDLE, 8=TX, C=RX
if(mode == TX_EN)
#ifdef ORANGE_TX_BLUE
@@ -168,10 +179,10 @@ void CYRF_SetPower(uint8_t val)
/*
*
*/
void CYRF_ConfigCRCSeed(uint16_t crc)
void CYRF_ConfigCRCSeed(uint16_t crc_seed)
{
CYRF_WriteRegister(CYRF_15_CRC_SEED_LSB,crc & 0xff);
CYRF_WriteRegister(CYRF_16_CRC_SEED_MSB,crc >> 8);
CYRF_WriteRegister(CYRF_15_CRC_SEED_LSB,crc_seed & 0xff);
CYRF_WriteRegister(CYRF_16_CRC_SEED_MSB,crc_seed >> 8);
}
/*
* these are the recommended sop codes from Cyrpress
@@ -258,7 +269,7 @@ void CYRF_FindBestChannels(uint8_t *channels, uint8_t len, uint8_t minspace, uin
delayMilliseconds(1);
for(i = 0; i < NUM_FREQ; i++)
{
CYRF_ConfigRFChannel(i);
CYRF_ConfigRFChannel(protocol==PROTO_LOSI?i|1:i);
delayMicroseconds(270); //slow channel require 270usec for synthesizer to settle
if( !(CYRF_ReadRegister(CYRF_05_RX_CTRL) & 0x80)) {
CYRF_WriteRegister(CYRF_05_RX_CTRL, 0x80); //Prepare to receive
@@ -321,4 +332,69 @@ static void __attribute__((unused)) CYRF_PROGMEM_ConfigSOPCode(const uint8_t *da
code[i]=pgm_read_byte_near(&data[i]);
CYRF_ConfigSOPCode(code);
}
//CYRF GFSK 1Mb functions
const uint8_t PROGMEM CYRF_GFSK1M_init_vals[][2] = {
{CYRF_02_TX_CTRL, 0x00}, // transmit err & complete interrupts disabled
{CYRF_05_RX_CTRL, 0x00}, // receive err & complete interrupts disabled
{CYRF_28_CLK_EN, 0x02}, // Force Receive Clock Enable, MUST be set
{CYRF_32_AUTO_CAL_TIME, 0x3c}, // must be set to 3C
{CYRF_35_AUTOCAL_OFFSET, 0x14}, // must be set to 14
{CYRF_06_RX_CFG, 0x48}, // LNA manual control, Rx Fast Turn Mode Enable
{CYRF_1B_TX_OFFSET_LSB, 0x00}, // Tx frequency offset LSB
{CYRF_1C_TX_OFFSET_MSB, 0x00}, // Tx frequency offset MSB
{CYRF_0F_XACT_CFG, 0x24}, // Force End State, transaction end state = idle
{CYRF_03_TX_CFG, 0x00}, // GFSK mode
{CYRF_12_DATA64_THOLD, 0x0a}, // 64 Chip Data PN Code Correlator Threshold = 10
{CYRF_0F_XACT_CFG, 0x04}, // Transaction End State = idle
{CYRF_39_ANALOG_CTRL, 0x01}, // synth setting time for all channels is the same as for slow channels
{CYRF_0F_XACT_CFG, 0x24}, //Force IDLE
{CYRF_29_RX_ABORT, 0x00}, //Clear RX abort
{CYRF_12_DATA64_THOLD, 0x0a}, //set pn correlation threshold
{CYRF_10_FRAMING_CFG, 0x4a}, //set sop len and threshold
{CYRF_29_RX_ABORT, 0x0f}, //Clear RX abort?
{CYRF_03_TX_CFG, 0x00}, // GFSK mode
{CYRF_10_FRAMING_CFG, 0x4a}, // 0b11000000 //set sop len and threshold
{CYRF_1F_TX_OVERRIDE, 0x04}, //disable tx CRC
{CYRF_1E_RX_OVERRIDE, 0x14}, //disable rx crc
{CYRF_14_EOP_CTRL, 0x00}, //set EOP sync == 0
};
static void __attribute__((unused)) CYRF_GFSK1M_Init(uint8_t payload_length, uint8_t preamble_len)
{
for(uint8_t i = 0; i < sizeof(CYRF_GFSK1M_init_vals) / 2; i++)
CYRF_WriteRegister(pgm_read_byte_near(&CYRF_GFSK1M_init_vals[i][0]), pgm_read_byte_near(&CYRF_GFSK1M_init_vals[i][1]));
CYRF_WriteRegister(CYRF_01_TX_LENGTH, payload_length);
CYRF_WritePreamble(0xAAAA00 | preamble_len);
CYRF_SetPower(0x00);
CYRF_SetTxRxMode(TX_EN);
}
static void __attribute__((unused)) CYRF_GFSK1M_SendPayload(uint8_t *buffer, uint8_t len)
{
uint8_t send=len>16 ? 16 : len;
CYRF_WriteRegister(CYRF_02_TX_CTRL, 0x40);
CYRF_WriteRegisterMulti(CYRF_20_TX_BUFFER, buffer, send); // Fill the buffer with 16 bytes max
CYRF_WriteRegister(CYRF_02_TX_CTRL, 0x80); // Start send
buffer += send;
len -= send;
while(len>8)
{
while((CYRF_ReadRegister(CYRF_04_TX_IRQ_STATUS)&0x10) == 0); // Wait that half of the buffer is empty
CYRF_WriteRegisterMulti(CYRF_20_TX_BUFFER, buffer, 8); // Add 8 bytes to the buffer
buffer+=8;
len-=8;
}
if(len)
{
while((CYRF_ReadRegister(CYRF_04_TX_IRQ_STATUS)&0x10) == 0); // Wait that half of the buffer is empty
CYRF_WriteRegisterMulti(CYRF_20_TX_BUFFER, buffer, len); // Add the remaining bytes to the buffer
}
}
#define CYRF_GFSK1M_SetPower() CYRF_SetPower(0x00)
#endif

View File

@@ -32,9 +32,15 @@ uint16_t convert_channel_ppm(uint8_t num)
}
// Channel value 100% is converted to 10bit values 0<->1023
uint16_t convert_channel_10b(uint8_t num)
uint16_t convert_channel_10b(uint8_t num, bool failsafe)
{
uint16_t val=Channel_data[num];
uint16_t val;
#ifdef FAILSAFE_ENABLE
if(failsafe)
val=Failsafe_data[num]; // 0<->2047
else
#endif
val=Channel_data[num];
val=((val<<2)+val)>>3;
if(val<=128) return 0;
if(val>=1152) return 1023;
@@ -91,9 +97,15 @@ int16_t convert_channel_16b_limit(uint8_t num,int16_t min,int16_t max)
}
// Channel value -125%<->125% is scaled to 16bit value with no limit
int16_t convert_channel_16b_nolimit(uint8_t num, int16_t min, int16_t max)
int16_t convert_channel_16b_nolimit(uint8_t num, int16_t min, int16_t max, bool failsafe)
{
int32_t val=Channel_data[num]; // 0<->2047
int32_t val;
#ifdef FAILSAFE_ENABLE
if(failsafe)
val=Failsafe_data[num]; // 0<->2047
else
#endif
val=Channel_data[num]; // 0<->2047
val=(val-CHANNEL_MIN_100)*(max-min)/(CHANNEL_MAX_100-CHANNEL_MIN_100)+min;
return (uint16_t)val;
}
@@ -151,14 +163,14 @@ static uint16_t __attribute__((unused)) FrSkyX_scaleForPXX( uint8_t i, uint8_t
}
#ifdef FAILSAFE_ENABLE
static uint16_t __attribute__((unused)) FrSkyX_scaleForPXX_FS( uint8_t i )
static uint16_t __attribute__((unused)) FrSkyX_scaleForPXX_FS( uint8_t i, uint8_t num_chan=8)
{ //mapped 1,2046(125%) range to 64,1984(PXX values);
uint16_t chan_val=((Failsafe_data[i]*15)>>4)+64;
if(Failsafe_data[i]==FAILSAFE_CHANNEL_NOPULSES)
chan_val=FAILSAFE_CHANNEL_NOPULSES;
else if(Failsafe_data[i]==FAILSAFE_CHANNEL_HOLD)
chan_val=FAILSAFE_CHANNEL_HOLD;
if(i>7) chan_val|=2048; // upper channels offset
if(i>=num_chan) chan_val|=2048; // upper channels offset
return chan_val;
}
#endif

View File

@@ -61,7 +61,6 @@ static void __attribute__((unused)) CORONA_rf_init()
CC2500_WriteReg(CC2500_15_DEVIATN, 0x50);
}
prev_option = option;
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
//not sure what they are doing to the PATABLE since basically only the first byte is used and it's only 8 bytes long. So I think they end up filling the PATABLE fully with 0xFF
@@ -72,7 +71,7 @@ static void __attribute__((unused)) CORONA_rf_init()
}
// Generate id and hopping freq
static void __attribute__((unused)) CORONA_init()
static void __attribute__((unused)) CORONA_TXID_init()
{
#ifdef CORONA_FORCE_ID
// Example of ID and channels taken from dumps
@@ -256,17 +255,13 @@ static uint16_t __attribute__((unused)) CORONA_build_packet()
return packet_period;
}
uint16_t ReadCORONA()
uint16_t CORONA_callback()
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(22000);
#endif
// Tune frequency if it has been changed
if ( prev_option != option )
{
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
prev_option = option ;
}
CC2500_SetFreqOffset();
if(IS_BIND_IN_PROGRESS)
{
@@ -281,7 +276,7 @@ uint16_t ReadCORONA()
return packet_period;
}
uint16_t initCORONA()
void CORONA_init()
{
switch(sub_protocol)
{
@@ -298,9 +293,8 @@ uint16_t initCORONA()
state=400; // Used by V2 to send RF channels + ID for 2.65s at startup
hopping_frequency_no=0;
fdv3_id_send = 0;
CORONA_init();
CORONA_TXID_init();
CORONA_rf_init();
return 10000;
}
#endif

View File

@@ -16,7 +16,7 @@
#if defined(DM002_NRF24L01_INO)
#include "iface_nrf24l01.h"
#include "iface_xn297.h"
#define DM002_PACKET_PERIOD 6100 // Timeout for callback in uSec
#define DM002_INITIAL_WAIT 500
@@ -24,7 +24,6 @@
#define DM002_RF_BIND_CHANNEL 0x27
#define DM002_BIND_COUNT 655 // 4 seconds
enum DM002_FLAGS {
// flags going to packet[9]
DM002_FLAG_FLIP = 0x01,
@@ -37,10 +36,10 @@ enum DM002_FLAGS {
DM002_FLAG_CAMERA2 = 0x80,
};
static void __attribute__((unused)) DM002_send_packet(uint8_t bind)
static void __attribute__((unused)) DM002_send_packet()
{
memcpy(packet+5,(uint8_t *)"\x00\x7F\x7F\x7F\x00\x00\x00",7);
if(bind)
if(IS_BIND_IN_PROGRESS)
{
packet[0] = 0xAA;
packet[1] = rx_tx_addr[0];
@@ -75,63 +74,40 @@ static void __attribute__((unused)) DM002_send_packet(uint8_t bind)
packet_count&=0x0F;
packet[10] = packet_count;
packet_count++;
XN297_Hopping(hopping_frequency_no);
}
//CRC
for(uint8_t i=0;i<DM002_PACKET_SIZE-1;i++)
packet[11]+=packet[i];
// Power on, TX mode, 2byte CRC
// Why CRC0? xn297 does not interpret it - either 16-bit CRC or nothing
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP));
if (bind)
NRF24L01_WriteReg(NRF24L01_05_RF_CH, DM002_RF_BIND_CHANNEL);
else
NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency[hopping_frequency_no]);
// clear packet status bits and TX FIFO
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
//Send
XN297_SetPower();
XN297_SetTxRxMode(TX_EN);
XN297_WritePayload(packet, DM002_PACKET_SIZE);
NRF24L01_SetPower(); // Set tx_power
}
static void __attribute__((unused)) DM002_init()
static void __attribute__((unused)) DM002_RF_init()
{
NRF24L01_Initialize();
NRF24L01_SetTxRxMode(TX_EN);
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_1M);
XN297_SetTXAddr((uint8_t *)"\x26\xA8\x67\x35\xCC", 5);
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowldgement on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps
NRF24L01_SetPower();
XN297_RFChannel(DM002_RF_BIND_CHANNEL);
}
uint16_t DM002_callback()
{
if(IS_BIND_DONE)
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(DM002_PACKET_PERIOD);
#endif
DM002_send_packet(0);
}
else
#ifdef MULTI_SYNC
telemetry_set_input_sync(DM002_PACKET_PERIOD);
#endif
if (bind_counter)
{
bind_counter--;
if (bind_counter == 0)
{
BIND_DONE;
XN297_SetTXAddr(rx_tx_addr, 5);
}
else
{
DM002_send_packet(1);
bind_counter--;
}
}
DM002_send_packet();
return DM002_PACKET_PERIOD;
}
@@ -155,13 +131,12 @@ static void __attribute__((unused)) DM002_initialize_txid()
}
}
uint16_t initDM002(void)
void DM002_init(void)
{
BIND_IN_PROGRESS; // autobind protocol
bind_counter = DM002_BIND_COUNT;
DM002_initialize_txid();
DM002_init();
return DM002_INITIAL_WAIT;
DM002_RF_init();
}
#endif

View File

@@ -117,7 +117,9 @@ static void __attribute__((unused)) DSM_cyrf_configdata()
static uint8_t __attribute__((unused)) DSM_get_pn_row(uint8_t channel, bool dsmx)
{
return (dsmx ? (channel - 2) % 5 : channel % 5);
if(protocol == PROTO_DSM && sub_protocol == DSMR)
return (channel + 2) % 5;
return (dsmx ? (channel - 2) % 5 : channel % 5);
}
static void __attribute__((unused)) DSM_set_sop_data_crc(bool ch2, bool dsmx)
@@ -127,10 +129,14 @@ static void __attribute__((unused)) DSM_set_sop_data_crc(bool ch2, bool dsmx)
if(ch2)
CYRF_ConfigCRCSeed(seed); //CH2
else
CYRF_ConfigCRCSeed(~seed); //CH1
CYRF_ConfigCRCSeed(~seed); //CH1, DSMR only use CH1
uint8_t pn_row = DSM_get_pn_row(hopping_frequency[hopping_frequency_no], dsmx);
uint8_t code[16];
#if 0
debug_time();
debug(" crc:%04X,row:%d,col:%d,rf:%02X",(~seed)&0xffff,pn_row,sop_col,hopping_frequency[hopping_frequency_no]);
#endif
DSM_read_code(code,pn_row,sop_col,8); // pn_row between 0 and 4, sop_col between 1 and 7
CYRF_ConfigSOPCode(code);
DSM_read_code(code,pn_row,7 - sop_col,8); // 7-sop_col between 0 and 6

View File

@@ -4,7 +4,7 @@
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
@@ -31,7 +31,7 @@ enum {
DSM_RX_DATA_CH2,
};
static void __attribute__((unused)) DSM_Rx_init()
static void __attribute__((unused)) DSM_RX_RF_init()
{
DSM_cyrf_config();
rx_disable_lna = IS_POWER_FLAG_on;
@@ -63,7 +63,7 @@ uint16_t convert_channel_DSM_nolimit(int32_t val)
return (uint16_t)val;
}
static uint8_t __attribute__((unused)) DSM_Rx_check_packet()
static uint8_t __attribute__((unused)) DSM_RX_check_packet()
{
uint8_t rx_status=CYRF_ReadRegister(CYRF_07_RX_IRQ_STATUS);
if((rx_status & 0x03) == 0x02) // RXC=1, RXE=0 then 2nd check is required (debouncing)
@@ -99,7 +99,7 @@ static uint8_t __attribute__((unused)) DSM_Rx_check_packet()
return rx_status; // Return error code
}
static void __attribute__((unused)) DSM_Rx_build_telemetry_packet()
static void __attribute__((unused)) DSM_RX_build_telemetry_packet()
{
uint8_t nbr_bits = 11;
if((DSM_rx_type&0xF0) == 0x00)
@@ -155,9 +155,13 @@ static void __attribute__((unused)) DSM_Rx_build_telemetry_packet()
packet_in[idx++] = bits & 0xff;
// Send telemetry
telemetry_link = 1;
#ifdef SEND_CPPM
if(sub_protocol>0)
telemetry_link |= 0x80; // Disable telemetry output
#endif
}
static bool __attribute__((unused)) DSM_Rx_bind_check_validity()
static bool __attribute__((unused)) DSM_RX_bind_check_validity()
{
uint16_t sum = 384 - 0x10;//
for(uint8_t i = 0; i < 8; i++)
@@ -173,7 +177,7 @@ static bool __attribute__((unused)) DSM_Rx_bind_check_validity()
return true;
}
static void __attribute__((unused)) DSM_Rx_build_bind_packet()
static void __attribute__((unused)) DSM_RX_build_bind_packet()
{
uint16_t sum = 384 - 0x10;//
packet[0] = 0xff ^ cyrfmfg_id[0]; // ID
@@ -205,12 +209,10 @@ static void __attribute__((unused)) DSM_abort_channel_rx(uint8_t ch)
CYRF_WriteRegister(CYRF_05_RX_CTRL, 0x83); // Prepare to receive
}
uint16_t DSM_Rx_callback()
uint16_t DSM_RX_callback()
{
uint8_t rx_status;
static uint8_t read_retry=0;
static uint16_t pps_counter;
static uint32_t pps_timer = 0;
switch (phase)
{
@@ -234,7 +236,7 @@ uint16_t DSM_Rx_callback()
if(len==16)
{
CYRF_ReadDataPacketLen(packet_in, 16);
if(DSM_Rx_bind_check_validity())
if(DSM_RX_bind_check_validity())
{
// store tx info into eeprom
uint16_t temp = DSM_RX_EEPROM_OFFSET;
@@ -259,6 +261,7 @@ uint16_t DSM_Rx_callback()
&0x80 => false=DSM2, true=DSMX
&0xF0 => false=1024, true=2048 */
DSM_rx_type=packet_in[12];
debugln(", num_ch=%d, type=%02X",num_ch, DSM_rx_type);
switch(DSM_rx_type)
{
case 0x01:
@@ -276,12 +279,11 @@ uint16_t DSM_Rx_callback()
break;
}
eeprom_write_byte((EE_ADDR)temp, DSM_rx_type);
debugln(", num_ch=%d, type=%02X",num_ch, DSM_rx_type);
CYRF_WriteRegister(CYRF_29_RX_ABORT, 0x20); // Abort RX operation
CYRF_SetTxRxMode(TX_EN); // Force end state TX
CYRF_ConfigDataCode((const uint8_t *)"\x98\x88\x1B\xE4\x30\x79\x03\x84", 16);
CYRF_WriteRegister(CYRF_29_RX_ABORT, 0x00); // Clear abort RX
DSM_Rx_build_bind_packet();
DSM_RX_build_bind_packet();
bind_counter=500;
phase++; // DSM_RX_BIND2;
return 1000;
@@ -303,11 +305,11 @@ uint16_t DSM_Rx_callback()
if(read_retry==0)
{
packet_count=0;
hopping_frequency_no++; // Change channel
hopping_frequency_no++; // Change channel
hopping_frequency_no %= 0x50;
hopping_frequency_no |= 0x01; // Odd channels only
hopping_frequency_no |= 0x01; // Odd channels only
CYRF_ConfigRFChannel(hopping_frequency_no);
DSM_abort_channel_rx(0); // Abort RX operation and receive
DSM_abort_channel_rx(0); // Abort RX operation and receive
}
}
return 1000;
@@ -348,7 +350,7 @@ uint16_t DSM_Rx_callback()
break;
case DSM2_RX_SCAN: // Scan for DSM2 frequencies
//Received something ?
rx_status = DSM_Rx_check_packet();
rx_status = DSM_RX_check_packet();
if(rx_status == 0x02)
{ // data received with no errors
debugln("CH%d:Found %d",rf_ch_num+1,hopping_frequency[rf_ch_num]);
@@ -403,13 +405,13 @@ uint16_t DSM_Rx_callback()
pps_counter = 0;
}
//Received something ?
rx_status = DSM_Rx_check_packet();
rx_status = DSM_RX_check_packet();
if(rx_status == 0x02)
{ // data received with no errors
#ifdef DSM_DEBUG_RF
debugln("CH1:RX");
#endif
DSM_Rx_build_telemetry_packet();
DSM_RX_build_telemetry_packet();
rx_data_started = true;
pps_counter++;
DSM_abort_channel_rx(2); // Abort RX operation, set sop&data&seed&rf using CH2, DSM2/X and receive
@@ -454,13 +456,13 @@ uint16_t DSM_Rx_callback()
}
return 500;
case DSM_RX_DATA_CH2:
rx_status = DSM_Rx_check_packet();
rx_status = DSM_RX_check_packet();
if(rx_status == 0x02)
{ // data received with no errors
#ifdef DSM_DEBUG_RF
debugln("CH2:RX");
#endif
DSM_Rx_build_telemetry_packet();
DSM_RX_build_telemetry_packet();
pps_counter++;
}
#ifdef DSM_DEBUG_RF
@@ -478,9 +480,9 @@ uint16_t DSM_Rx_callback()
return 10000;
}
uint16_t initDSM_Rx()
void DSM_RX_init()
{
DSM_Rx_init();
DSM_RX_RF_init();
hopping_frequency_no = 0;
if (IS_BIND_IN_PROGRESS)
@@ -501,7 +503,6 @@ uint16_t initDSM_Rx()
debugln(", type=%02X", DSM_rx_type);
phase = DSM_RX_DATA_PREP;
}
return 15000;
}
#endif

View File

@@ -17,6 +17,8 @@
#include "iface_cyrf6936.h"
//#define DSM_DEBUG_FWD_PGM
//#define DSM_GR300
#define DSM_BIND_CHANNEL 0x0d //13 This can be any odd channel
@@ -84,21 +86,24 @@ static void __attribute__((unused)) DSM_build_bind_packet()
if(sub_protocol==DSM_AUTO)
packet[11] = 12;
else
packet[11] = num_ch;
packet[11] = num_ch; // DX5 DSMR sends 0x48...
if (sub_protocol==DSM2_22)
packet[12]=num_ch<8?0x01:0x02; // DSM2/1024 1 or 2 packets depending on the number of channels
else if(sub_protocol==DSM2_11)
packet[12]=0x12; // DSM2/2048 2 packets
else if(sub_protocol==DSMX_22)
if (sub_protocol==DSMR)
packet[12] = 0xa2;
else if (sub_protocol==DSM2_1F)
packet[12] = num_ch<8?0x01:0x02; // DSM2/1024 1 or 2 packets depending on the number of channels
else if(sub_protocol==DSM2_2F)
packet[12] = 0x12; // DSM2/2048 2 packets
else if(sub_protocol==DSMX_1F)
#if defined DSM_TELEMETRY
packet[12] = 0xb2; // DSMX/2048 2 packets
#else
packet[12] = num_ch<8? 0xa2 : 0xb2; // DSMX/2048 1 or 2 packets depending on the number of channels
#endif
else // DSMX_11 && DSM_AUTO
packet[12]=0xb2; // DSMX/2048 2 packets
else // DSMX_2F && DSM_AUTO
packet[12] = 0xb2; // DSMX/2048 2 packets
packet[13] = 0x00; //???
for(i = 8; i < 14; i++)
sum += packet[i];
@@ -124,6 +129,9 @@ static void __attribute__((unused)) DSM_update_channels()
if(num_ch<3 || num_ch>12)
num_ch=6; // Default to 6 channels if invalid choice...
if(sub_protocol==DSMR && num_ch>7)
num_ch=7; // Max 7 channels in DSMR
// Create channel map based on number of channels and refresh rate
uint8_t idx=num_ch-3;
if((option & 0x40) && num_ch>7 && num_ch<12)
@@ -139,18 +147,32 @@ static void __attribute__((unused)) DSM_build_data_packet(uint8_t upper)
if(prev_option!=option)
DSM_update_channels();
if (sub_protocol==DSMX_11 || sub_protocol==DSMX_22 )
if (sub_protocol==DSMX_2F || sub_protocol==DSMX_1F)
{//DSMX
packet[0] = cyrfmfg_id[2];
packet[1] = cyrfmfg_id[3];
}
else
{//DSM2
{//DSM2 && DSMR
packet[0] = (0xff ^ cyrfmfg_id[2]);
packet[1] = (0xff ^ cyrfmfg_id[3]);
if(sub_protocol==DSM2_22)
bits=10; // Only DSM2_22 is using a resolution of 1024
if(sub_protocol==DSM2_1F)
bits=10; // Only DSM2_1F is using a resolution of 1024
}
if(sub_protocol == DSMR)
{
for (uint8_t i = 0; i < 7; i++)
{
uint16_t value = 0x0000;
if(i < num_ch)
value=Channel_data[i]<<1;
packet[i*2+2] = (value >> 8) & 0xff;
packet[i*2+3] = (value >> 0) & 0xff;
}
return;
}
#ifdef DSM_THROTTLE_KILL_CH
uint16_t kill_ch=Channel_data[DSM_THROTTLE_KILL_CH-1];
#endif
@@ -176,19 +198,36 @@ static void __attribute__((unused)) DSM_build_data_packet(uint8_t upper)
else
#endif
#ifdef DSM_MAX_THROW
value=Channel_data[CH_TAER[idx]]; // -100%..+100% => 1024..1976us and -125%..+125% => 904..2096us based on Redcon 6 channel DSM2 RX
value=Channel_data[CH_TAER[idx]]; // -100%..+100% => 1024..1976us and -125%..+125% => 904..2096us based on Redcon 6 channel DSM2 RX
#else
if(option & 0x80)
value=Channel_data[CH_TAER[idx]]; // -100%..+100% => 1024..1976us and -125%..+125% => 904..2096us based on Redcon 6 channel DSM2 RX
value=Channel_data[CH_TAER[idx]]; // -100%..+100% => 1024..1976us and -125%..+125% => 904..2096us based on Redcon 6 channel DSM2 RX
else
value=convert_channel_16b_nolimit(CH_TAER[idx],0x156,0x6AA); // -100%..+100% => 1100..1900us and -125%..+125% => 1000..2000us based on a DX8 G2 dump
value=convert_channel_16b_nolimit(CH_TAER[idx],0x156,0x6AA,false); // -100%..+100% => 1100..1900us and -125%..+125% => 1000..2000us based on a DX8 G2 dump
#endif
if(bits==10) value>>=1;
value |= (upper && i==0 ? 0x8000 : 0) | (idx << bits);
}
packet[i*2+2] = (value >> 8) & 0xff;
packet[i*2+3] = (value >> 0) & 0xff;
packet[i*2+2] = value >> 8;
packet[i*2+3] = value;
}
#ifdef DSM_FWD_PGM
if(upper==0 && DSM_SerialRX && (DSM_SerialRX_val[0]&0xF8)==0x70 )
{ // Send forward programming data if available
for(uint8_t i=0; i<(DSM_SerialRX_val[0]&0x07);i++)
{
packet[i*2+4]=0x70+i;
packet[i*2+5]=DSM_SerialRX_val[i+1];
}
DSM_SerialRX=false;
#ifdef DSM_DEBUG_FWD_PGM
debug("FWD=");
for(uint8_t i=4; i<16;i++)
debug(" %02X",packet[i]);
debugln("");
#endif
}
#endif
}
static uint8_t __attribute__((unused)) DSM_Check_RX_packet()
@@ -208,7 +247,7 @@ static uint8_t __attribute__((unused)) DSM_Check_RX_packet()
return result;
}
uint16_t ReadDsm()
uint16_t DSM_callback()
{
#define DSM_CH1_CH2_DELAY 4010 // Time between write of channel 1 and channel 2
#ifdef STM32_BOARD
@@ -299,25 +338,32 @@ uint16_t ReadDsm()
DSM_cyrf_configdata();
CYRF_SetTxRxMode(TX_EN);
hopping_frequency_no = 0;
phase = DSM_CH1_WRITE_A; // in fact phase++
DSM_set_sop_data_crc(phase==DSM_CH1_CHECK_A||phase==DSM_CH1_CHECK_B, sub_protocol==DSMX_11||sub_protocol==DSMX_22);
phase = DSM_CH1_WRITE_A; // in fact phase++
if(sub_protocol == DSMR)
DSM_set_sop_data_crc(false, true);
else
DSM_set_sop_data_crc(true, sub_protocol==DSMX_2F||sub_protocol==DSMX_1F); //prep CH1
return 10000;
case DSM_CH1_WRITE_A:
#ifdef MULTI_SYNC
telemetry_set_input_sync(11000); // Always request 11ms spacing even if we don't use half of it in 22ms mode
telemetry_set_input_sync(11000); // Always request 11ms spacing even if we don't use half of it in 22ms mode
#endif
if(sub_protocol == DSMR)
CYRF_SetPower(0x08); //Keep transmit power in sync
else
CYRF_SetPower(0x28); //Keep transmit power in sync
case DSM_CH1_WRITE_B:
DSM_build_data_packet(phase == DSM_CH1_WRITE_B); // build lower or upper channels
case DSM_CH2_WRITE_A:
case DSM_CH2_WRITE_B:
DSM_build_data_packet(phase == DSM_CH1_WRITE_B||phase == DSM_CH2_WRITE_B); // build lower or upper channels
CYRF_ReadRegister(CYRF_04_TX_IRQ_STATUS); // clear IRQ flags
CYRF_ReadRegister(CYRF_04_TX_IRQ_STATUS); // clear IRQ flags
CYRF_WriteDataPacket(packet);
#if 0
for(uint8_t i=0;i<16;i++)
debug(" %02X", packet[i]);
debugln("");
#endif
phase++; // change from WRITE to CHECK mode
phase++; // change from WRITE to CHECK mode
return DSM_WRITE_DELAY;
case DSM_CH1_CHECK_A:
case DSM_CH1_CHECK_B:
@@ -328,7 +374,7 @@ uint16_t ReadDsm()
if((CYRF_ReadRegister(CYRF_02_TX_CTRL) & 0x80) == 0x00)
break;
if(phase==DSM_CH1_CHECK_A || phase==DSM_CH1_CHECK_B)
if((phase==DSM_CH1_CHECK_A || phase==DSM_CH1_CHECK_B) && sub_protocol!=DSMR)
{
#if defined DSM_TELEMETRY
// reset cyrf6936 if freezed after switching from TX to RX
@@ -340,16 +386,19 @@ uint16_t ReadDsm()
CYRF_SetTxRxMode(TX_EN);
}
#endif
DSM_set_sop_data_crc(phase==DSM_CH1_CHECK_A||phase==DSM_CH1_CHECK_B, sub_protocol==DSMX_11 || sub_protocol==DSMX_22);
phase++; // change from CH1_CHECK to CH2_WRITE
DSM_set_sop_data_crc(true, sub_protocol==DSMX_2F||sub_protocol==DSMX_1F); // prep CH2
phase++; // change from CH1_CHECK to CH2_WRITE
return DSM_CH1_CH2_DELAY - DSM_WRITE_DELAY;
}
if (phase == DSM_CH2_CHECK_A)
CYRF_SetPower(0x28); //Keep transmit power in sync
#if defined DSM_TELEMETRY
phase++; // change from CH2_CHECK to CH2_READ
CYRF_SetTxRxMode(RX_EN); //Receive mode
CYRF_WriteRegister(CYRF_05_RX_CTRL, 0x87); //0x80??? //Prepare to receive
if(sub_protocol==DSMR)
{
phase = DSM_CH2_READ_B;
return 11000 - DSM_WRITE_DELAY - DSM_READ_DELAY;
}
#ifdef DSM_GR300
if(num_ch==3)
return timing - DSM_CH1_CH2_DELAY - DSM_WRITE_DELAY - DSM_READ_DELAY;
@@ -368,11 +417,20 @@ uint16_t ReadDsm()
if(len>TELEMETRY_BUFFER_SIZE-2)
len=TELEMETRY_BUFFER_SIZE-2;
CYRF_ReadDataPacketLen(packet_in+1, len);
#ifdef DSM_DEBUG_FWD_PGM
//debug(" %02X", packet_in[1]);
if(packet_in[1]==9)
{
for(uint8_t i=0;i<len;i++)
debug(" %02X", packet_in[i+1]);
debugln("");
}
#endif
packet_in[0]=CYRF_ReadRegister(CYRF_13_RSSI)&0x1F;// store RSSI of the received telemetry signal
telemetry_link=1;
}
CYRF_WriteRegister(CYRF_29_RX_ABORT, 0x20); // Abort RX operation
if (phase == DSM_CH2_READ_A && (sub_protocol==DSM2_22 || sub_protocol==DSMX_22) && num_ch < 8) // 22ms mode
if (phase == DSM_CH2_READ_A && (sub_protocol==DSM2_1F || sub_protocol==DSMX_1F) && num_ch < 8) // 22ms mode
{
CYRF_SetTxRxMode(RX_EN); // Force end state read
CYRF_WriteRegister(CYRF_29_RX_ABORT, 0x00); // Clear abort RX operation
@@ -390,14 +448,14 @@ uint16_t ReadDsm()
phase = DSM_CH1_WRITE_A; //Transmit lower
CYRF_SetTxRxMode(TX_EN); //TX mode
CYRF_WriteRegister(CYRF_29_RX_ABORT, 0x00); //Clear abort RX operation
DSM_set_sop_data_crc(phase==DSM_CH1_CHECK_A||phase==DSM_CH1_CHECK_B, sub_protocol==DSMX_11||sub_protocol==DSMX_22);
DSM_set_sop_data_crc(false, sub_protocol==DSMX_2F||sub_protocol==DSMX_1F||sub_protocol==DSMR);
return DSM_READ_DELAY;
#else
// No telemetry
DSM_set_sop_data_crc(phase==DSM_CH1_CHECK_A||phase==DSM_CH1_CHECK_B, sub_protocol==DSMX_11||sub_protocol==DSMX_22);
DSM_set_sop_data_crc(phase==DSM_CH1_CHECK_A||phase==DSM_CH1_CHECK_B, sub_protocol==DSMX_2F||sub_protocol==DSMX_1F);
if (phase == DSM_CH2_CHECK_A)
{
if(num_ch > 7 || sub_protocol==DSM2_11 || sub_protocol==DSMX_11)
if(num_ch > 7 || sub_protocol==DSM2_2F || sub_protocol==DSMX_2F)
phase = DSM_CH1_WRITE_B; //11ms mode or upper to transmit change from CH2_CHECK_A to CH1_WRITE_A
else
{ //Normal mode 22ms
@@ -421,25 +479,65 @@ uint16_t ReadDsm()
return 0;
}
uint16_t initDsm()
const uint8_t PROGMEM DSMR_ID_FREQ[][4 + 23] = {
{ 0x71, 0x74, 0x1c, 0xe4, 0x11, 0x2f, 0x17, 0x3d, 0x23, 0x3b, 0x0f, 0x21, 0x25, 0x49, 0x1d, 0x13, 0x4d, 0x1f, 0x41, 0x4b, 0x47, 0x05, 0x27, 0x15, 0x19, 0x3f, 0x07 },
{ 0xfe, 0xfe, 0xfe, 0xfe, 0x45, 0x31, 0x33, 0x4b, 0x11, 0x29, 0x49, 0x3f, 0x09, 0x13, 0x47, 0x21, 0x1d, 0x43, 0x1f, 0x05, 0x41, 0x19, 0x1b, 0x2d, 0x15, 0x4d, 0x0f },
{ 0xfe, 0xff, 0xff, 0xff, 0x2a, 0x06, 0x22, 0x28, 0x16, 0x24, 0x38, 0x0e, 0x32, 0x2e, 0x14, 0x3a, 0x04, 0x44, 0x0c, 0x42, 0x1c, 0x4a, 0x10, 0x36, 0x3c, 0x48, 0x26 },
{ 0xff, 0xfe, 0xff, 0xff, 0x28, 0x34, 0x48, 0x46, 0x3a, 0x12, 0x18, 0x32, 0x14, 0x42, 0x16, 0x40, 0x22, 0x44, 0x1c, 0x0a, 0x36, 0x20, 0x10, 0x0c, 0x3c, 0x26, 0x2e },
{ 0xff, 0xff, 0xfe, 0xff, 0x3c, 0x16, 0x04, 0x48, 0x1e, 0x4a, 0x10, 0x18, 0x22, 0x28, 0x38, 0x40, 0x20, 0x06, 0x3e, 0x42, 0x30, 0x1a, 0x2c, 0x1c, 0x46, 0x14, 0x34 },
{ 0xff, 0xff, 0xff, 0xfe, 0x4d, 0x39, 0x1b, 0x13, 0x45, 0x2f, 0x0d, 0x3d, 0x0b, 0x11, 0x47, 0x2d, 0x19, 0x1d, 0x23, 0x35, 0x33, 0x3b, 0x21, 0x31, 0x17, 0x0f, 0x43 },
{ 0xff, 0xff, 0xff, 0xff, 0x14, 0x28, 0x2e, 0x32, 0x3e, 0x10, 0x38, 0x0e, 0x12, 0x06, 0x2c, 0x26, 0x30, 0x4c, 0x34, 0x16, 0x04, 0x3a, 0x42, 0x48, 0x36, 0x46, 0x1a },
{ 0x00, 0xff, 0xff, 0xff, 0x3e, 0x30, 0x42, 0x24, 0x06, 0x0e, 0x14, 0x1c, 0x08, 0x10, 0x20, 0x22, 0x04, 0x32, 0x0c, 0x44, 0x3c, 0x46, 0x4a, 0x26, 0x4c, 0x48, 0x1e },
{ 0xff, 0x00, 0xff, 0xff, 0x38, 0x0e, 0x22, 0x2a, 0x44, 0x3a, 0x4a, 0x3e, 0x16, 0x20, 0x36, 0x24, 0x46, 0x18, 0x1e, 0x12, 0x1c, 0x30, 0x2c, 0x14, 0x06, 0x0c, 0x40 },
{ 0x00, 0x00, 0xff, 0xff, 0x06, 0x4c, 0x26, 0x08, 0x46, 0x3e, 0x30, 0x12, 0x38, 0x1c, 0x04, 0x4a, 0x2c, 0x1a, 0x20, 0x3a, 0x18, 0x36, 0x28, 0x2e, 0x22, 0x40, 0x10 },
{ 0xff, 0xff, 0x00, 0xff, 0x12, 0x06, 0x3c, 0x2a, 0x22, 0x38, 0x48, 0x4c, 0x32, 0x44, 0x26, 0x16, 0x0c, 0x28, 0x2c, 0x36, 0x1c, 0x1a, 0x42, 0x10, 0x08, 0x4a, 0x34 },
{ 0x00, 0xff, 0x00, 0xff, 0x04, 0x4c, 0x4a, 0x28, 0x2a, 0x24, 0x14, 0x1e, 0x40, 0x48, 0x44, 0x2c, 0x2e, 0x1a, 0x12, 0x46, 0x3a, 0x0e, 0x18, 0x1c, 0x20, 0x10, 0x42 },
{ 0xff, 0x00, 0x00, 0xff, 0x06, 0x10, 0x14, 0x16, 0x48, 0x18, 0x44, 0x2c, 0x0a, 0x26, 0x24, 0x42, 0x36, 0x30, 0x38, 0x3e, 0x0c, 0x3c, 0x34, 0x46, 0x2a, 0x32, 0x0e },
{ 0x00, 0x00, 0x00, 0xff, 0x2c, 0x0a, 0x46, 0x28, 0x38, 0x24, 0x14, 0x06, 0x04, 0x10, 0x18, 0x30, 0x12, 0x20, 0x3a, 0x1a, 0x32, 0x3c, 0x3e, 0x4a, 0x1e, 0x44, 0x36 },
{ 0x00, 0x00, 0x00, 0x00, 0x45, 0x23, 0x07, 0x37, 0x4b, 0x13, 0x3d, 0x31, 0x19, 0x2b, 0x2f, 0x2d, 0x1f, 0x4d, 0x3f, 0x1b, 0x43, 0x27, 0x3b, 0x11, 0x05, 0x0d, 0x17 },
{ 0xff, 0xff, 0xff, 0x00, 0x0b, 0x4b, 0x1d, 0x39, 0x09, 0x0f, 0x49, 0x25, 0x07, 0x35, 0x3b, 0x05, 0x33, 0x17, 0x2d, 0x11, 0x2b, 0x29, 0x1f, 0x45, 0x1b, 0x41, 0x47 },
{ 0x00, 0xff, 0xff, 0x00, 0x41, 0x35, 0x11, 0x25, 0x29, 0x27, 0x33, 0x47, 0x4d, 0x31, 0x05, 0x37, 0x15, 0x1f, 0x23, 0x07, 0x1b, 0x0f, 0x3b, 0x49, 0x19, 0x3f, 0x0b },
{ 0xff, 0x00, 0xff, 0x00, 0x25, 0x47, 0x05, 0x0b, 0x45, 0x1f, 0x2b, 0x27, 0x2d, 0x09, 0x07, 0x43, 0x49, 0x29, 0x4d, 0x39, 0x33, 0x41, 0x17, 0x0f, 0x15, 0x19, 0x3b },
{ 0x00, 0x00, 0xff, 0x00, 0x3b, 0x05, 0x21, 0x0d, 0x1b, 0x43, 0x17, 0x2d, 0x1d, 0x25, 0x4b, 0x35, 0x4d, 0x3f, 0x07, 0x09, 0x37, 0x41, 0x15, 0x1f, 0x0f, 0x27, 0x29 },
{ 0xff, 0xff, 0x00, 0x00, 0x2b, 0x35, 0x1b, 0x1d, 0x0f, 0x47, 0x09, 0x0d, 0x45, 0x41, 0x21, 0x11, 0x2f, 0x43, 0x27, 0x33, 0x4b, 0x37, 0x13, 0x19, 0x4d, 0x23, 0x17 },
{ 0x00, 0xff, 0x00, 0x00, 0x1b, 0x1d, 0x33, 0x13, 0x2b, 0x27, 0x09, 0x41, 0x25, 0x17, 0x19, 0x2d, 0x4b, 0x37, 0x45, 0x11, 0x21, 0x0d, 0x3d, 0x4d, 0x07, 0x39, 0x43 },
{ 0xff, 0x00, 0x00, 0x00, 0x37, 0x27, 0x43, 0x4b, 0x39, 0x13, 0x07, 0x0d, 0x25, 0x17, 0x29, 0x1b, 0x1d, 0x45, 0x19, 0x2d, 0x0b, 0x3d, 0x15, 0x47, 0x1f, 0x21, 0x4d } };
void DSM_init()
{
CYRF_GetMfgData(cyrfmfg_id);
//Model match
cyrfmfg_id[3]^=RX_num;
if(sub_protocol == DSMR)
{
uint8_t row = rx_tx_addr[3]%22;
for(uint8_t i=0; i< 4; i++)
cyrfmfg_id[i] = pgm_read_byte_near(&DSMR_ID_FREQ[row][i]);
for(uint8_t i=0; i< 23; i++)
hopping_frequency[i] = pgm_read_byte_near(&DSMR_ID_FREQ[row][i+4]);
}
else
{
CYRF_GetMfgData(cyrfmfg_id);
//Model match
cyrfmfg_id[3]^=RX_num;
}
//Calc sop_col
sop_col = (cyrfmfg_id[0] + cyrfmfg_id[1] + cyrfmfg_id[2] + 2) & 0x07;
//Fix for OrangeRX using wrong DSM_pncodes by preventing access to "Col 8"
if(sop_col==0)
if(sop_col==0 && sub_protocol != DSMR)
{
cyrfmfg_id[rx_tx_addr[0]%3]^=0x01; //Change a bit so sop_col will be different from 0
sop_col = (cyrfmfg_id[0] + cyrfmfg_id[1] + cyrfmfg_id[2] + 2) & 0x07;
}
//Calc CRC seed
seed = (cyrfmfg_id[0] << 8) + cyrfmfg_id[1];
//Hopping frequencies
if (sub_protocol == DSMX_11 || sub_protocol == DSMX_22)
if (sub_protocol == DSMX_2F || sub_protocol == DSMX_1F)
DSM_calc_dsmx_channel();
else
else if(sub_protocol != DSMR)
{
uint8_t tmpch[10];
CYRF_FindBestChannels(tmpch, 10, 5, 3, 75);
@@ -454,6 +552,7 @@ uint16_t initDsm()
}
hopping_frequency[1] = tmpch[idx];
}
//
DSM_cyrf_config();
CYRF_SetTxRxMode(TX_EN);
@@ -468,7 +567,6 @@ uint16_t initDsm()
}
else
phase = DSM_CHANSEL;//
return 10000;
}
#endif

View File

@@ -146,7 +146,7 @@ static void __attribute__((unused)) DEVO_build_data_pkt()
uint8_t sign = 0x0b;
for (uint8_t i = 0; i < 4; i++)
{
int16_t value=convert_channel_16b_nolimit(CH_EATR[ch_idx * 4 + i],-1600,1600);//range -1600..+1600
int16_t value=convert_channel_16b_nolimit(CH_EATR[ch_idx * 4 + i],-1600,1600,false);//range -1600..+1600
if(value < 0)
{
value = -value;
@@ -163,29 +163,148 @@ static void __attribute__((unused)) DEVO_build_data_pkt()
}
#if defined DEVO_HUB_TELEMETRY
static void __attribute__((unused)) DEVO_parse_telemetry_packet()
static uint32_t __attribute__((unused)) DEVO_text_to_int(uint8_t *ptr, uint8_t len)
{
uint32_t value = 0;
for(uint8_t i = 0; i < len; i++)
value = value * 10 + (ptr[i] - '0');
return value;
}
static void __attribute__((unused)) DEVO_float_to_ints(uint8_t *ptr, uint16_t *value, uint16_t *decimal)
{
bool seen_decimal = false;
*value = 0;
*decimal = 0;
for(uint8_t i = 0; i < 7; i++)
{
if(ptr[i] == '.')
{
seen_decimal = true;
continue;
}
if(ptr[i] < '0' || ptr[i] > '9')
{
if(*value != 0 || seen_decimal)
return;
}
else
{
if(seen_decimal)
*decimal = *decimal * 10 + (ptr[i] - '0');
else
*value = *value * 10 + (ptr[i] - '0');
}
}
}
static void __attribute__((unused)) DEVO_parse_telemetry_packet()
{ // Telemetry packets every 2.4ms
DEVO_scramble_pkt(); //This will unscramble the packet
debugln("RX");
if ((((uint32_t)packet[15] << 16) | ((uint32_t)packet[14] << 8) | packet[13]) != (MProtocol_id & 0x00ffffff))
return; // ID does not match
//RSSI
TX_RSSI = CYRF_ReadRegister(CYRF_13_RSSI) & 0x1F;
TX_RSSI = (TX_RSSI << 1) + TX_RSSI;
RX_RSSI = TX_RSSI;
telemetry_link = 1;
//TODO: FW telemetry https://github.com/DeviationTX/deviation/blob/5efb6a28bea697af9a61b5a0ed2528cc8d203f90/src/protocol/devo_cyrf6936.c#L232
debug("P[0]=%02X",packet[0]);
if (packet[0] == 0x30) // Volt packet
if((telemetry_link & 3) != 0)
{
v_lipo1 = packet[1] << 1;
v_lipo2 = packet[3] << 1;
debugln("S%d",telemetry_link);
return; // Previous telemetry not sent yet...
}
//Debug telem RX
//for(uint8_t i=0;i<12;i++)
// debug("%02X ",packet[i]);
//debugln("");
#if defined HUB_TELEMETRY
//Telemetry https://github.com/DeviationTX/deviation/blob/5efb6a28bea697af9a61b5a0ed2528cc8d203f90/src/protocol/devo_cyrf6936.c#L232
uint16_t val, dec;
switch(packet[0])
{
case 0x30: // Volt and RPM packet
//RSSI and voltage
TX_RSSI = CYRF_ReadRegister(CYRF_13_RSSI) & 0x1F;
TX_RSSI = (TX_RSSI << 1) + TX_RSSI;
RX_RSSI = TX_RSSI;
telemetry_link |= 1;
v_lipo1 = packet[1] << 1;
v_lipo2 = packet[3] << 1;
//packet[5] = 127; // 12.7V
if(packet[5] != 0)
{
val = (packet[5]*11)/21; // OpenTX strange transformation??
dec = val;
val /= 10;
dec -= val*10;
frsky_send_user_frame(0x3A, val, 0x00); // volt3
frsky_send_user_frame(0x3B, dec, 0x00); // volt3
}
val = packet[7] * 120; // change to RPM
frsky_send_user_frame(0x03, val, val>>8); // RPM
break;
case 0x31: // Temperature packet
//memcpy(&packet[1],"\x29\x2A\x2B\x00\x00\x00\x00\x00\x00\x00\x00\x00",12); // 21°, 22°, 23°
for(uint8_t i=0; i<2;i++)
if(packet[i+1]!=0xff)
{
val = packet[i+1];
val -= 20;
frsky_send_user_frame(0x02 + i*3, val, val>>8); // temp 1 & 2
}
break;
// GPS Data
case 0x32: // Longitude
//memcpy(&packet[1],"\x30\x33\x30\x32\x30\x2e\x38\x32\x37\x30\x45\xfb",12); // 030°20.8270E
val = DEVO_text_to_int(&packet[1], 3)*100 + DEVO_text_to_int(&packet[4], 2); // dddmm
frsky_send_user_frame(0x12 , val, val>>8);
val = DEVO_text_to_int(&packet[7], 4); // .mmmm
frsky_send_user_frame(0x12+8, val, val>>8);
frsky_send_user_frame(0x1A+8, packet[11], 0x00); // 'E'/'W'
break;
case 0x33: // Latitude
//memcpy(&packet[1],"\x35\x39\x35\x34\x2e\x37\x37\x37\x36\x4e\x07\x00",12); // 59°54.776N
val = DEVO_text_to_int(&packet[1], 2)*100 + DEVO_text_to_int(&packet[3], 2); // ddmm
frsky_send_user_frame(0x13 , val, val>>8);
val = DEVO_text_to_int(&packet[6], 4); // .mmmm
frsky_send_user_frame(0x13+8, val, val>>8);
frsky_send_user_frame(0x1B+8, packet[10], 0x00); // 'N'/'S'
break;
case 0x34: // Altitude
//memcpy(&packet[1],"\x31\x32\x2e\x38\x00\x00\x00\x4d\x4d\x4e\x45\xfb",12); // 12.8 MMNE
DEVO_float_to_ints(&packet[1], &val, &dec);
frsky_send_user_frame(0x10, val, val>>8);
frsky_send_user_frame(0x21, dec, dec>>8);
break;
case 0x35: // Speed
//memcpy(&packet[1],"\x00\x00\x00\x00\x00\x00\x30\x2e\x30\x30\x00\x00",12); // 0.0
DEVO_float_to_ints(&packet[1], &val, &dec);
frsky_send_user_frame(0x11 , val, val>>8);
frsky_send_user_frame(0x11+8, dec, dec>>8);
break;
case 0x36: // Time
//memcpy(&packet[1],"\x31\x38\x32\x35\x35\x32\x31\x35\x31\x30\x31\x32",12); // "182552151012" = 2012-10-15 18:25:52 (UTC)
if(packet[1]!=0)
{
frsky_send_user_frame(0x15, DEVO_text_to_int(&packet[9], 2), DEVO_text_to_int(&packet[7], 2)); // month, day
val = 2000 + DEVO_text_to_int(&packet[11], 2); // year
frsky_send_user_frame(0x16, val, val>>8);
frsky_send_user_frame(0x17, DEVO_text_to_int(&packet[1], 2), DEVO_text_to_int(&packet[3], 2)); // hour, min
frsky_send_user_frame(0x18, DEVO_text_to_int(&packet[5], 2), 0x00); // second
}
break;
}
#else
if(packet[0] == 0x30)
{
TX_RSSI = CYRF_ReadRegister(CYRF_13_RSSI) & 0x1F;
TX_RSSI = (TX_RSSI << 1) + TX_RSSI;
RX_RSSI = TX_RSSI;
telemetry_link |= 1;
v_lipo1 = packet[1] << 1;
v_lipo2 = packet[3] << 1;
}
#endif
}
#endif
@@ -294,7 +413,7 @@ static void __attribute__((unused)) DEVO_BuildPacket()
packet_count = 0;
}
uint16_t devo_callback()
uint16_t DEVO_callback()
{
static uint8_t txState=0;
@@ -404,8 +523,23 @@ uint16_t devo_callback()
#endif
}
uint16_t DevoInit()
void DEVO_init()
{
#ifdef ENABLE_PPM
if(mode_select) //PPM mode
{
if(IS_BIND_BUTTON_FLAG_on)
{
eeprom_write_byte((EE_ADDR)(MODELMODE_EEPROM_OFFSET+RX_num),0x00); // reset to autobind mode for the current model
option=0;
}
else
{
option=eeprom_read_byte((EE_ADDR)(MODELMODE_EEPROM_OFFSET+RX_num)); // load previous mode: autobind or fixed id
if(option!=1) option=0; // if not fixed id mode then it should be autobind
}
}
#endif //ENABLE_PPM
switch(sub_protocol)
{
case 1:
@@ -453,7 +587,6 @@ uint16_t DevoInit()
bind_counter = 0;
DEVO_cyrf_set_bound_sop_code();
}
return 2400;
}
#endif

View File

@@ -0,0 +1,151 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(E010R5_CYRF6936_INO)
#include "iface_rf2500.h"
#define E010R5_FORCE_ID
#define E010R5_PAYLOAD_SIZE 14
static void __attribute__((unused)) E010R5_build_data_packet()
{
packet[ 0] = 0x0D; // Packet length
packet[ 1] = convert_channel_8b(THROTTLE);
packet[ 2] = convert_channel_s8b(RUDDER);
packet[ 3] = convert_channel_s8b(ELEVATOR);
packet[ 4] = convert_channel_s8b(AILERON);
packet[ 5] = 0x20; // Trim Rudder
packet[ 6] = 0x20; // Trim Elevator
packet[ 7] = 0x20; // Trim Aileron
packet[ 8] = 0x01 // Flags: high=0x01, low=0x00
| GET_FLAG(CH5_SW, 0x04) // flip=0x04
| GET_FLAG(CH6_SW, 0x08) // led=0x08
| GET_FLAG(CH8_SW, 0x10) // headless=0x10
| GET_FLAG(CH9_SW, 0x20); // one key return=0x20
packet[ 9] = IS_BIND_IN_PROGRESS ? 0x80 : 0x00 // Flags: bind=0x80
| GET_FLAG(CH7_SW, 0x20) // calib=0x20
| GET_FLAG(CH10_SW, 0x01); // strange effect=0x01=long press on right button
packet[10] = rx_tx_addr[0];
packet[11] = rx_tx_addr[1];
packet[12] = rx_tx_addr[2];
packet[13] = 0x9D; // Check
for(uint8_t i=0;i<13;i++)
packet[13] += packet[i];
RF2500_BuildPayload(packet);
}
uint16_t E010R5_callback()
{
//Bind
if(bind_counter)
if(--bind_counter==0)
BIND_DONE;
//Send packet
RF2500_SendPayload();
//Timing and hopping
packet_count++;
switch(packet_count)
{
case 1:
case 2:
case 4:
case 5:
return 1183;
default:
hopping_frequency_no++;
hopping_frequency_no &= 3;
if(IS_BIND_IN_PROGRESS)
rf_ch_num = 0x30 + (hopping_frequency_no<<3);
else
rf_ch_num = hopping_frequency[hopping_frequency_no];
RF2500_RFChannel(rf_ch_num);
RF2500_SetPower();
packet_count = 0;
case 3:
E010R5_build_data_packet();
return 3400;
}
return 0;
}
void E010R5_init()
{
BIND_IN_PROGRESS; // Autobind protocol
bind_counter = 2600;
//RF2500 emu init
RF2500_Init(E010R5_PAYLOAD_SIZE, false); // 14 bytes, not scrambled
RF2500_SetTXAddr((uint8_t*)"\x0E\x54\x96\xEE"); // Same address for bind and normal packets
rx_tx_addr[0]=0x00;
hopping_frequency[0]=0x35; //53
#ifdef E010R5_FORCE_ID
switch(rx_tx_addr[3]%5)
{
case 0:
//TX1
//hopping_frequency[0]=0x35; //53
hopping_frequency[1]=0x30; //48
rx_tx_addr[1]=0x45;
rx_tx_addr[2]=0x46;
break;
case 1:
//TX2
//hopping_frequency[0]=0x35; //53
hopping_frequency[1]=0x3C; //60
rx_tx_addr[1]=0x1B;
rx_tx_addr[2]=0x9E;
break;
case 2:
//TX4
hopping_frequency[0]=0x30; //48
hopping_frequency[1]=0x38; //56
rx_tx_addr[1]=0x2E;
rx_tx_addr[2]=0xAE;
break;
case 3:
//TX5
//hopping_frequency[0]=0x35; //53
hopping_frequency[1]=0x41; //65
rx_tx_addr[0]=0x0D;
rx_tx_addr[1]=0xB9;
rx_tx_addr[2]=0xFC;
break;
default:
//TX3
hopping_frequency[0]=0x30; //48
hopping_frequency[1]=0x38; //56
rx_tx_addr[1]=0x17;
rx_tx_addr[2]=0x0D;
break;
}
#endif
// This is the same as the E010 v1...
hopping_frequency[2]=hopping_frequency[0]+0x10;
hopping_frequency[3]=hopping_frequency[1]+0x10;
E010R5_build_data_packet();
RF2500_RFChannel(hopping_frequency[0]);
hopping_frequency_no=0;
packet_count=0;
}
#endif

View File

@@ -0,0 +1,157 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(E016HV2_CC2500_INO)
#include "iface_cc2500.h"
//#define FORCE_E016HV2_ORIGINAL_ID
#define E016HV2_INITIAL_WAIT 500
#define E016HV2_PACKET_PERIOD 10000
#define E016HV2_RF_BIND_CHANNEL 5
#define E016HV2_PAYLOAD_SIZE 11
#define E016HV2_BIND_COUNT 300 //3sec
static void __attribute__((unused)) E016HV2_send_packet()
{
//payload length (after this byte)
packet[0 ] = 0x0A;
//bind indicator
if(IS_BIND_IN_PROGRESS)
{
packet[1 ] = 0x02;
if(bind_counter)
bind_counter--;
else
{
BIND_DONE;
CC2500_250K_RFChannel(rf_ch_num); // Set main channel
}
}
else
packet[1 ] = 0x20;
//ID
packet[2 ] = rx_tx_addr[2];
packet[3 ] = rx_tx_addr[3];
//channels TREA
uint8_t channel;
if(IS_BIND_IN_PROGRESS)
channel=0x64; // Throttle must be centered during bind
else
channel=convert_channel_8b_limit_deadband(THROTTLE,0x00,0x64,0xC8, 20);
packet[4 ] = channel;
channel=convert_channel_16b_limit(RUDDER,0x00,0xC8);
packet[5 ] = channel;
channel=convert_channel_16b_limit(ELEVATOR,0x00,0xC8);
packet[6 ] = channel;
channel=convert_channel_16b_limit(AILERON,0x00,0xC8);
packet[7 ] = channel;
//flags
if(CH8_SW && !phase) //toggle calib flag
flags ^= 0x40;
phase=CH8_SW;
packet[8 ] = GET_FLAG(CH7_SW, 0x01) // 0x01=Flip
| GET_FLAG(CH9_SW, 0x02) // 0x02=Headless
| GET_FLAG(CH10_SW, 0x04) // 0x04=One Key Return
| flags; // 0x40=Calib
packet[9 ] = 0x02; // Speed control 0x00:low, 0x01:medium, 0x02:high
packet[10] = GET_FLAG(CH5_SW, 0x01) // 0x01=TakeOff/Land (momentary switch)
| GET_FLAG(CH6_SW, 0x04); // 0x04=Emergeny Stop (momentary switch)
CC2500_SetPower(); // Set tx_power
CC2500_SetFreqOffset(); // Set frequency offset
//Build real packet and send it
static uint8_t pid=0;
crc=0;
// stop TX/RX
CC2500_Strobe(CC2500_SIDLE);
// flush tx FIFO
CC2500_Strobe(CC2500_SFTX);
// packet length
CC2500_WriteReg(CC2500_3F_TXFIFO, 6 + 4 + 1 + 11 + 2); // preamble + address + packet_control + payload + crc
// preamble+address
CC2500_WriteRegisterMulti(CC2500_3F_TXFIFO, (uint8_t*)"\xAA\xAA\xAA\xAA\xAA\xAA\xE7\xE7\xE7\xE7", 10);
// packet control
CC2500_WriteReg(CC2500_3F_TXFIFO, 0x50+(pid<<2));
pid++;
// payload
//debug("P:")
for (uint8_t i = 0; i < E016HV2_PAYLOAD_SIZE; ++i)
{
uint8_t byte = (bit_reverse(packet[i])<<1) | (packet[i+1]&0x01);
//debug(" %02X",byte)
CC2500_WriteReg(CC2500_3F_TXFIFO,byte);
crc16_update(byte, 8);
}
// crc
CC2500_WriteReg(CC2500_3F_TXFIFO,crc >> 8);
CC2500_WriteReg(CC2500_3F_TXFIFO,crc);
//debugln(" %04X",crc)
// transmit
CC2500_Strobe(CC2500_STX);
}
uint16_t E016HV2_callback()
{
E016HV2_send_packet();
return E016HV2_PACKET_PERIOD;
}
void E016HV2_init()
{
//Config CC2500
CC2500_250K_Init();
CC2500_250K_RFChannel(E016HV2_RF_BIND_CHANNEL); // Set bind channel
#ifdef FORCE_E016HV2_ORIGINAL_ID
rx_tx_addr[2]=0x27;
rx_tx_addr[3]=0x1B;
//rf_ch_num = 44;
#endif
//General ID
//3F1B -> 68,2C1B -> 49,2B1B -> 48,2A1B -> 47,291B -> 46,281B -> 45,271B -> 44,261B -> 43,251B -> 42
//241B -> no bind,231B -> no bind,221B -> 71,211B -> 70,201B -> 69,1F1B -> 68,1E1B -> 67,1D1B -> 66,1C1B -> 65,1B1B -> 64,1A1B -> 63,191B -> 62,181B -> 61,171B -> 60,161B -> 59
//0C1B -> 49,051B -> 42,041B -> no bind,031B -> no bind,021B -> 71,011B -> 70,001B -> no bind
if(rx_tx_addr[2]<3) rx_tx_addr[2]+=3; // rx_tx_addr[2]=0 is invalid
if(rx_tx_addr[3]==0) rx_tx_addr[3]+=64; // rx_tx_addr[3]=0 is invalid
rf_ch_num = (rx_tx_addr[2] + rx_tx_addr[3]) % 32 + 42;
if(rf_ch_num>71) // channels 72 and 73 are invalid
{
rx_tx_addr[2]-=2;
rf_ch_num-=2;
}
phase=CH8_SW;
flags=0;
bind_counter = E016HV2_BIND_COUNT;
BIND_IN_PROGRESS; // Autobind protocol
}
#endif

View File

@@ -0,0 +1,154 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// compatible with E016H
#if defined(E016H_NRF24L01_INO)
#include "iface_xn297.h"
//Protocols constants
#define E016H_BIND_COUNT 500
#define E016H_ADDRESS_LENGTH 5
#define E016H_PACKET_PERIOD 4080
#define E016H_PACKET_SIZE 10
#define E016H_BIND_CHANNEL 80
#define E016H_NUM_CHANNELS 4
//Channels
#define E016H_STOP_SW CH5_SW
#define E016H_FLIP_SW CH6_SW
#define E016H_HEADLESS_SW CH8_SW
#define E016H_RTH_SW CH9_SW
// E016H flags packet[1]
#define E016H_FLAG_CALIBRATE 0x80
#define E016H_FLAG_STOP 0x20
#define E016H_FLAG_FLIP 0x04
// E016H flags packet[3]
#define E016H_FLAG_HEADLESS 0x10
#define E016H_FLAG_RTH 0x04
// E016H flags packet[7]
#define E016H_FLAG_TAKEOFF 0x80
#define E016H_FLAG_HIGHRATE 0x08
static void __attribute__((unused)) E016H_send_packet()
{
uint8_t can_flip = 0, calibrate = 1;
if(IS_BIND_IN_PROGRESS)
{
memcpy(packet, &rx_tx_addr[1], 4);
memcpy(&packet[4], hopping_frequency, 4);
packet[8] = 0x23;
}
else
{
// trim commands
packet[0] = 0;
// aileron
uint16_t val = convert_channel_16b_limit(AILERON, 0, 0x3ff);
can_flip |= (val < 0x100) || (val > 0x300);
packet[1] = val >> 8;
packet[2] = val & 0xff;
if(val < 0x300) calibrate = 0;
// elevator
val = convert_channel_16b_limit(ELEVATOR, 0x3ff, 0);
can_flip |= (val < 0x100) || (val > 0x300);
packet[3] = val >> 8;
packet[4] = val & 0xff;
if(val < 0x300) calibrate = 0;
// throttle
val = convert_channel_16b_limit(THROTTLE, 0, 0x3ff);
packet[5] = val >> 8;
packet[6] = val & 0xff;
if(val > 0x100) calibrate = 0;
// rudder
val = convert_channel_16b_limit(RUDDER, 0, 0x3ff);
packet[7] = val >> 8;
packet[8] = val & 0xff;
if(val > 0x100) calibrate = 0;
// flags
packet[1] |= GET_FLAG(E016H_STOP_SW, E016H_FLAG_STOP)
| (can_flip ? GET_FLAG(E016H_FLIP_SW, E016H_FLAG_FLIP) : 0)
| (calibrate ? E016H_FLAG_CALIBRATE : 0);
packet[3] |= GET_FLAG(E016H_HEADLESS_SW, E016H_FLAG_HEADLESS)
| GET_FLAG(E016H_RTH_SW, E016H_FLAG_RTH);
packet[7] |= E016H_FLAG_HIGHRATE;
// frequency hopping
XN297_Hopping(hopping_frequency_no++ & 0x03);
}
// checksum
packet[9] = packet[0];
for (uint8_t i=1; i < E016H_PACKET_SIZE-1; i++)
packet[9] += packet[i];
// Send
XN297_SetPower();
XN297_SetTxRxMode(TX_EN);
XN297_WritePayload(packet, E016H_PACKET_SIZE);
}
static void __attribute__((unused)) E016H_RF_init()
{
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_1M);
XN297_SetTXAddr((uint8_t *)"\x5a\x53\x46\x30\x31", 5); // bind address
//XN297_HoppingCalib(E016H_NUM_CHANNELS);
XN297_RFChannel(E016H_BIND_CHANNEL);
}
uint16_t E016H_callback()
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
if(bind_counter)
{
bind_counter--;
if (bind_counter == 0)
{
XN297_SetTXAddr(rx_tx_addr, E016H_ADDRESS_LENGTH);
BIND_DONE;
}
}
E016H_send_packet();
return E016H_PACKET_PERIOD;
}
static void __attribute__((unused)) E016H_initialize_txid()
{
// tx id
rx_tx_addr[0] = 0xa5;
rx_tx_addr[1] = 0x00;
// rf channels
uint32_t lfsr=random(0xfefefefe);
for(uint8_t i=0; i<E016H_NUM_CHANNELS; i++)
{
hopping_frequency[i] = (lfsr & 0xFF) % 80;
lfsr>>=8;
}
}
void E016H_init()
{
BIND_IN_PROGRESS;
E016H_initialize_txid();
E016H_RF_init();
bind_counter = E016H_BIND_COUNT;
hopping_frequency_no = 0;
}
#endif

View File

@@ -33,11 +33,6 @@
#define E015_PACKET_SIZE 10
#define E015_BIND_PACKET_SIZE 9
#define E016H_PACKET_PERIOD 4080
#define E016H_PACKET_SIZE 10
#define E016H_BIND_CHANNEL 80
#define E016H_NUM_CHANNELS 4
//Channels
#define E01X_ARM_SW CH5_SW
#define E016H_STOP_SW CH5_SW
@@ -64,17 +59,6 @@
#define E015_FLAG_EXPERT 0x02
#define E015_FLAG_INTERMEDIATE 0x01
// E016H flags packet[1]
#define E016H_FLAG_CALIBRATE 0x80
#define E016H_FLAG_STOP 0x20
#define E016H_FLAG_FLIP 0x04
// E016H flags packet[3]
#define E016H_FLAG_HEADLESS 0x10
#define E016H_FLAG_RTH 0x04
// E016H flags packet[7]
#define E016H_FLAG_TAKEOFF 0x80
#define E016H_FLAG_HIGHRATE 0x08
static void __attribute__((unused)) E015_check_arming()
{
uint8_t arm_channel = E01X_ARM_SW;
@@ -95,14 +79,13 @@ static void __attribute__((unused)) E015_check_arming()
}
}
static void __attribute__((unused)) E01X_send_packet(uint8_t bind)
static void __attribute__((unused)) E01X_send_packet()
{
uint8_t can_flip = 0, calibrate = 1;
if(sub_protocol==E012)
{
packet_length=E012_PACKET_SIZE;
packet[0] = rx_tx_addr[1];
if(bind)
if(IS_BIND_IN_PROGRESS)
{
packet[1] = 0xaa;
memcpy(&packet[2], hopping_frequency, E012_NUM_RF_CHANNELS);
@@ -132,9 +115,9 @@ static void __attribute__((unused)) E01X_send_packet(uint8_t bind)
packet[13] = 0x56;
packet[14] = rx_tx_addr[2];
}
else if(sub_protocol==E015)
else
{ // E015
if(bind)
if(IS_BIND_IN_PROGRESS)
{
packet[0] = 0x18;
packet[1] = 0x04;
@@ -170,72 +153,14 @@ static void __attribute__((unused)) E01X_send_packet(uint8_t bind)
packet_length=E015_PACKET_SIZE;
}
}
else
{ // E016H
packet_length=E016H_PACKET_SIZE;
if(bind)
{
rf_ch_num=E016H_BIND_CHANNEL;
memcpy(packet, &rx_tx_addr[1], 4);
memcpy(&packet[4], hopping_frequency, 4);
packet[8] = 0x23;
}
else
{
// trim commands
packet[0] = 0;
// aileron
uint16_t val = convert_channel_16b_limit(AILERON, 0, 0x3ff);
can_flip |= (val < 0x100) || (val > 0x300);
packet[1] = val >> 8;
packet[2] = val & 0xff;
if(val < 0x300) calibrate = 0;
// elevator
val = convert_channel_16b_limit(ELEVATOR, 0x3ff, 0);
can_flip |= (val < 0x100) || (val > 0x300);
packet[3] = val >> 8;
packet[4] = val & 0xff;
if(val < 0x300) calibrate = 0;
// throttle
val = convert_channel_16b_limit(THROTTLE, 0, 0x3ff);
packet[5] = val >> 8;
packet[6] = val & 0xff;
if(val > 0x100) calibrate = 0;
// rudder
val = convert_channel_16b_limit(RUDDER, 0, 0x3ff);
packet[7] = val >> 8;
packet[8] = val & 0xff;
if(val > 0x100) calibrate = 0;
// flags
packet[1] |= GET_FLAG(E016H_STOP_SW, E016H_FLAG_STOP)
| (can_flip ? GET_FLAG(E01X_FLIP_SW, E016H_FLAG_FLIP) : 0)
| (calibrate ? E016H_FLAG_CALIBRATE : 0);
packet[3] |= GET_FLAG(E01X_HEADLESS_SW, E016H_FLAG_HEADLESS)
| GET_FLAG(E01X_RTH_SW, E016H_FLAG_RTH);
packet[7] |= E016H_FLAG_HIGHRATE;
// frequency hopping
rf_ch_num=hopping_frequency[hopping_frequency_no++ & 0x03];
}
// checksum
packet[9] = packet[0];
for (uint8_t i=1; i < E016H_PACKET_SIZE-1; i++)
packet[9] += packet[i];
}
// Power on, TX mode, CRC enabled
if(sub_protocol==E016H)
XN297_Configure( _BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP));
else //E012 & E015
HS6200_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP));
HS6200_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP));
NRF24L01_WriteReg(NRF24L01_05_RF_CH, rf_ch_num);
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
if(sub_protocol==E016H)
XN297_WritePayload(packet, packet_length);
else
HS6200_WritePayload(packet, packet_length);
HS6200_WritePayload(packet, packet_length);
// Check and adjust transmission power. We do this after
// transmission to not bother with timeout after power
@@ -244,55 +169,31 @@ static void __attribute__((unused)) E01X_send_packet(uint8_t bind)
NRF24L01_SetPower();
}
static void __attribute__((unused)) E01X_init()
static void __attribute__((unused)) E01X_RF_init()
{
NRF24L01_Initialize();
NRF24L01_SetTxRxMode(TX_EN);
if(sub_protocol==E012)
HS6200_SetTXAddr((uint8_t *)"\x55\x42\x9C\x8F\xC9", E01X_ADDRESS_LENGTH);
else if(sub_protocol==E015)
else //E015
HS6200_SetTXAddr((uint8_t *)"\x62\x54\x79\x38\x53", E01X_ADDRESS_LENGTH);
else //E016H
XN297_SetTXAddr((uint8_t *)"\x5a\x53\x46\x30\x31", 5); // bind address
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowldgement on all data pipes
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x03);
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0x00); // no retransmits
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1 Mbps
NRF24L01_SetPower();
NRF24L01_Activate(0x73); // Activate feature register
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 0x00); // Disable dynamic payload length on all pipes
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, 0x01); // Set feature bits on
NRF24L01_Activate(0x73);
}
uint16_t E01X_callback()
{
if(IS_BIND_IN_PROGRESS)
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
if(bind_counter)
{
bind_counter--;
if (bind_counter == 0)
{
if(sub_protocol==E016H)
XN297_SetTXAddr(rx_tx_addr, E01X_ADDRESS_LENGTH);
else
HS6200_SetTXAddr(rx_tx_addr, E01X_ADDRESS_LENGTH);
HS6200_SetTXAddr(rx_tx_addr, E01X_ADDRESS_LENGTH);
BIND_DONE;
}
else
{
E01X_send_packet(1);
bind_counter--;
}
}
else
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
E01X_send_packet(0);
}
E01X_send_packet();
return packet_period;
}
@@ -307,22 +208,7 @@ static void __attribute__((unused)) E012_initialize_txid()
}
}
static void __attribute__((unused)) E016H_initialize_txid()
{
// tx id
rx_tx_addr[0] = 0xa5;
rx_tx_addr[1] = 0x00;
// rf channels
uint32_t lfsr=random(0xfefefefe);
for(uint8_t i=0; i<E016H_NUM_CHANNELS; i++)
{
hopping_frequency[i] = (lfsr & 0xFF) % 80;
lfsr>>=8;
}
}
uint16_t initE01X()
void E01X_init()
{
BIND_IN_PROGRESS;
if(sub_protocol==E012)
@@ -330,7 +216,7 @@ uint16_t initE01X()
E012_initialize_txid();
packet_period=E012_PACKET_PERIOD;
}
else if(sub_protocol==E015)
else //E015
{
packet_period=E015_PACKET_PERIOD;
rf_ch_num=E015_RF_CHANNEL;
@@ -338,15 +224,9 @@ uint16_t initE01X()
arm_flags = 0;
arm_channel_previous = E01X_ARM_SW;
}
else
{ // E016H
E016H_initialize_txid();
packet_period=E016H_PACKET_PERIOD;
}
E01X_init();
E01X_RF_init();
bind_counter = E01X_BIND_COUNT;
hopping_frequency_no = 0;
return E01X_INITIAL_WAIT;
}
#endif

View File

@@ -0,0 +1,148 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(E129_CYRF6936_INO)
#include "iface_rf2500.h"
//#define E129_FORCE_ID
#define E129_BIND_CH 0x2D //45
#define E129_PAYLOAD_SIZE 16
static void __attribute__((unused)) E129_build_data_packet()
{
//Build the packet
memset(packet,0,E129_PAYLOAD_SIZE);
packet[ 0] = 0x0F; // Packet length
if(IS_BIND_IN_PROGRESS)
{
packet[ 1] = 0xA4;
packet[ 2] = bit_reverse(rx_tx_addr[2]);
packet[ 3] = bit_reverse(rx_tx_addr[3]);
packet[ 4] = bit_reverse(rx_tx_addr[0]);
packet[ 5] = bit_reverse(rx_tx_addr[1]);
for(uint8_t i=0; i<4; i++)
packet[6+i]=hopping_frequency[i]-2;
}
else
{
packet[ 1] = 0xA6;
packet[ 2] = 0xF7; // High rate 0xF7, low rate 0xF4
//packet[ 3] = 0x00; // Mode: short press=0x20->0x00->0x20->..., long press=0x10->0x30->0x10->...
packet[ 4] = GET_FLAG(CH5_SW, 0x20) // Take off/Land 0x20
| GET_FLAG(CH6_SW, 0x04); // Emergency stop 0x04
uint16_t val = convert_channel_10b(AILERON,false);
uint8_t trim = convert_channel_8b(CH7) & 0xFC;
packet[ 5] = trim | (val >>8); // Trim (0x00..0x1F..0x3E) << 2 | channel >> 8
packet[ 6] = val; // channel (0x000...0x200...0x3FF)
val = convert_channel_10b(ELEVATOR,false);
trim = convert_channel_8b(CH8) & 0xFC;
packet[ 7] = trim | (val >>8); // Trim (0x00..0x1F..0x3E) << 2 | channel >> 8
packet[ 8] = val; // channel (0x000...0x200...0x3FF)
if(packet_count>200)
val = convert_channel_10b(THROTTLE,false);
else
{//Allow bind to complete with throttle not centered
packet_count++;
val=0x200;
}
packet[ 9] = (0x1F<<2) | (val >>8); // Trim (0x00..0x1F..0x3E) << 2 | channel >> 8
packet[10] = val; // channel (0x000...0x200...0x3FF)
val = convert_channel_10b(RUDDER,false);
trim = convert_channel_8b(CH9) & 0xFC;
packet[11] = trim | (val >>8); // Trim (0x00..0x1F..0x3E) << 2 | channel >> 8
packet[12] = val; // channel (0x000...0x200...0x3FF)
}
packet[14] = 0x00; // Check
for(uint8_t i=0;i<14;i++)
packet[14] += packet[i];
RF2500_BuildPayload(packet);
}
uint16_t E129_callback()
{
//Set RF channel
if(phase==0)
RF2500_RFChannel(IS_BIND_IN_PROGRESS ? E129_BIND_CH : hopping_frequency[hopping_frequency_no]);
//Send packet
RF2500_SendPayload();
//Send twice on same channel
if(phase==0)
{
phase++;
return 1260;
}
//Bind
if(bind_counter)
if(--bind_counter==0)
{
BIND_DONE;
RF2500_SetTXAddr(rx_tx_addr); // 4 bytes of address
}
//Build packet
E129_build_data_packet();
//Set power
RF2500_SetPower();
//Hopp
hopping_frequency_no++;
hopping_frequency_no &= 3;
phase=0;
return 5200-1260;
}
void E129_init()
{
BIND_IN_PROGRESS; // Autobind protocol
bind_counter = 384; // ~2sec
//RF2500 emu init
RF2500_Init(E129_PAYLOAD_SIZE, true); // 16 bytes, Scrambled
//Freq hopping
calc_fh_channels(4);
for(uint8_t i=0; i<4; i++)
if(hopping_frequency[i]==E129_BIND_CH)
hopping_frequency[i]++;
#ifdef E129_FORCE_ID
rx_tx_addr[0]=0xC1;
rx_tx_addr[1]=0x22;
rx_tx_addr[2]=0x05;
rx_tx_addr[3]=0xA3;
hopping_frequency[0]=0x3C; //60
hopping_frequency[1]=0x49; //73
hopping_frequency[2]=0x4B; //75
hopping_frequency[3]=0x41; //65
#endif
RF2500_SetTXAddr((uint8_t*)"\xE2\x32\xE0\xC8"); // 4 bytes of bind address
E129_build_data_packet();
hopping_frequency_no=0;
packet_count=0;
phase=0;
}
#endif

View File

@@ -23,7 +23,7 @@
#define ESKY150_BINDING_PACKET_PERIOD 2000
#define ESKY150_SENDING_PACKET_PERIOD 4800
static void __attribute__((unused)) ESKY150_init()
static void __attribute__((unused)) ESKY150_RF_init()
{
//Original TX always sets for channelx 0x22 and 0x4a
// Use channels 2..79
@@ -31,25 +31,16 @@ static void __attribute__((unused)) ESKY150_init()
hopping_frequency[1] = hopping_frequency[0] + 40;
NRF24L01_Initialize();
NRF24L01_WriteReg(NRF24L01_00_CONFIG, (_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO)));
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknoledgement
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x02); // 4-byte RX/TX address
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0); // Disable retransmit
NRF24L01_SetPower();
NRF24L01_SetBitrate(NRF24L01_BR_2M);
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, ESKY150_PAYLOADSIZE); // bytes of data payload for pipe 0
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, rx_tx_addr, ESKY150_TX_ADDRESS_SIZE);
NRF24L01_Activate(0x73);
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 1); // Dynamic payload for data pipe 0
// Enable: Dynamic Payload Length, Payload with ACK , W_TX_PAYLOAD_NOACK
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, _BV(NRF2401_1D_EN_DPL) | _BV(NRF2401_1D_EN_ACK_PAY) | _BV(NRF2401_1D_EN_DYN_ACK));
NRF24L01_Activate(0x73);
NRF24L01_FlushTx();
// Turn radio power on
NRF24L01_SetTxRxMode(TX_EN);
NRF24L01_SetTxRxMode(TX_EN); // Clear data ready, data sent, retransmit and enable CRC 16bits, ready for TX
}
static void __attribute__((unused)) ESKY150_bind_init()
@@ -171,16 +162,15 @@ uint16_t ESKY150_callback()
return ESKY150_SENDING_PACKET_PERIOD;
}
uint16_t initESKY150(void)
void ESKY150_init(void)
{
ESKY150_init();
ESKY150_RF_init();
if(IS_BIND_IN_PROGRESS)
{
bind_counter=3000;
ESKY150_bind_init();
}
hopping_frequency_no=0;
return 10000;
}
#endif

View File

@@ -52,17 +52,17 @@ static void __attribute__((unused)) ESKY150V2_set_freq(void)
hopping_frequency[ESKY150V2_NFREQCHANNELS]=ESKY150V2_BIND_CHANNEL;
//Calib all channels
NRF250K_SetFreqOffset(); // Set frequency offset
NRF250K_HoppingCalib(ESKY150V2_NFREQCHANNELS+1);
CC2500_SetFreqOffset(); // Set frequency offset
CC2500_250K_HoppingCalib(ESKY150V2_NFREQCHANNELS+1);
}
static void __attribute__((unused)) ESKY150V2_send_packet()
{
NRF250K_SetFreqOffset(); // Set frequency offset
NRF250K_Hopping(hopping_frequency_no);
CC2500_SetFreqOffset(); // Set frequency offset
CC2500_250K_Hopping(hopping_frequency_no);
if (++hopping_frequency_no >= ESKY150V2_NFREQCHANNELS)
hopping_frequency_no = 0;
NRF250K_SetPower(); //Set power level
CC2500_SetPower(); //Set power level
packet[0] = 0xFA; // Unknown
packet[1] = 0x41; // Unknown
@@ -79,7 +79,6 @@ static void __attribute__((unused)) ESKY150V2_send_packet()
uint16_t ESKY150V2_callback()
{
if(option==0) option=1; //Trick the RF component auto select system
if(IS_BIND_DONE)
{
#ifdef MULTI_SYNC
@@ -90,7 +89,7 @@ uint16_t ESKY150V2_callback()
else
{
BIND_DONE; //Need full power for bind to work...
NRF250K_SetPower(); //Set power level
CC2500_SetPower(); //Set power level
BIND_IN_PROGRESS;
NRF250K_WritePayload(packet, ESKY150V2_BINDPAYLOADSIZE);
if (--bind_counter == 0)
@@ -105,10 +104,9 @@ uint16_t ESKY150V2_callback()
return ESKY150V2_PACKET_PERIOD;
}
uint16_t initESKY150V2()
void ESKY150V2_init()
{
if(option==0) option=1; // Trick the RF component auto select system
NRF250K_Init();
CC2500_250K_Init();
ESKY150V2_set_freq();
hopping_frequency_no = 0;
@@ -121,7 +119,7 @@ uint16_t initESKY150V2()
if(IS_BIND_IN_PROGRESS)
{
NRF250K_SetTXAddr((uint8_t *)"\x73\x73\x74\x63", ESKY150V2_TXID_SIZE); //Bind address
NRF250K_Hopping(ESKY150V2_NFREQCHANNELS); //Bind channel
CC2500_250K_Hopping(ESKY150V2_NFREQCHANNELS); //Bind channel
memcpy(packet,"\x73\x73\x74\x63", ESKY150V2_TXID_SIZE);
memcpy(&packet[ESKY150V2_TXID_SIZE],rx_tx_addr, ESKY150V2_TXID_SIZE);
packet[8]=0x41; //Unknown
@@ -135,7 +133,6 @@ uint16_t initESKY150V2()
}
else
NRF250K_SetTXAddr(rx_tx_addr, ESKY150V2_TXID_SIZE);
return 50000;
}
#endif

View File

@@ -35,14 +35,10 @@ static void __attribute__((unused)) ESKY_set_data_address()
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, rx_tx_addr, 4);
}
static void __attribute__((unused)) ESKY_init()
static void __attribute__((unused)) ESKY_RF_init()
{
NRF24L01_Initialize();
// 2-bytes CRC, radio off
NRF24L01_WriteReg(NRF24L01_00_CONFIG, _BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO));
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowledgement
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0
if (IS_BIND_IN_PROGRESS)
{
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x01); // 3-byte RX/TX address for bind packets
@@ -51,11 +47,7 @@ static void __attribute__((unused)) ESKY_init()
}
else
ESKY_set_data_address();
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0); // No auto retransmission
NRF24L01_WriteReg(NRF24L01_05_RF_CH, 50); // Channel 50 for bind packets
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps
NRF24L01_SetPower();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, ESKY_PAYLOAD_SIZE); // bytes of data payload for pipe 0
NRF24L01_WriteReg(NRF24L01_12_RX_PW_P1, ESKY_PAYLOAD_SIZE);
NRF24L01_WriteReg(NRF24L01_13_RX_PW_P2, ESKY_PAYLOAD_SIZE);
@@ -65,7 +57,7 @@ static void __attribute__((unused)) ESKY_init()
NRF24L01_WriteReg(NRF24L01_17_FIFO_STATUS, 0x00); // Just in case, no real bits to write here
}
static void __attribute__((unused)) ESKY_init2()
static void __attribute__((unused)) ESKY_TXID_init()
{
NRF24L01_FlushTx();
if(sub_protocol==ESKY_STD)
@@ -187,7 +179,7 @@ uint16_t ESKY_callback()
return ESKY_STD_PACKET_PERIOD;
}
uint16_t initESKY(void)
void ESKY_init(void)
{
bind_counter = ESKY_BIND_COUNT;
rx_tx_addr[2] = rx_tx_addr[3]; // Model match
@@ -200,10 +192,9 @@ uint16_t initESKY(void)
}
#endif
rx_tx_addr[3] = 0xBB;
ESKY_init();
ESKY_init2();
ESKY_RF_init();
ESKY_TXID_init();
packet_count=0;
return 50000;
}
#endif

View File

@@ -52,24 +52,18 @@ static void __attribute__((unused)) ssv_pack_dpl(uint8_t addr[], uint8_t pid, ui
header[0] = (addr[4] >> 7);
// calculate the crc
union
{
uint8_t bytes[2];
uint16_t val;
} crc;
crc.val=0x3c18;
crc=0x3c18;
for (i = 0; i < 7; ++i)
crc.val=crc16_update(crc.val,header[i],8);
crc16_update(header[i],8);
for (i = 0; i < *len; ++i)
crc.val=crc16_update(crc.val,payload[i],8);
crc16_update(payload[i],8);
// encode payload and crc
// xor with this:
for (i = 0; i < *len; ++i)
payload[i] ^= ssv_xor[i];
crc.bytes[1] ^= ssv_xor[i++];
crc.bytes[0] ^= ssv_xor[i++];
crc ^= ssv_xor[i++]<<8;
crc ^= ssv_xor[i++];
// pack the pcf, payload, and crc into packed_payload
packed_payload[0] = pcf >> 1;
@@ -78,20 +72,20 @@ static void __attribute__((unused)) ssv_pack_dpl(uint8_t addr[], uint8_t pid, ui
for (i = 0; i < *len - 1; ++i)
packed_payload[i+2] = (payload[i] << 7) | (payload[i+1] >> 1);
packed_payload[i+2] = (payload[i] << 7) | (crc.val >> 9);
packed_payload[i+2] = (payload[i] << 7) | (crc >> 9);
++i;
packed_payload[i+2] = (crc.val >> 1 & 0x80 ) | (crc.val >> 1 & 0x7F);
packed_payload[i+2] = (crc >> 1 & 0x80 ) | (crc >> 1 & 0x7F);
++i;
packed_payload[i+2] = (crc.val << 7);
packed_payload[i+2] = (crc << 7);
*len += 4;
}
static void __attribute__((unused)) FQ777_send_packet(uint8_t bind)
static void __attribute__((unused)) FQ777_send_packet()
{
uint8_t packet_len = FQ777_PACKET_SIZE;
uint8_t packet_ori[8];
if (bind)
if (IS_BIND_IN_PROGRESS)
{
// 4,5,6 = address fields
// last field is checksum of address fields
@@ -144,7 +138,7 @@ static void __attribute__((unused)) FQ777_send_packet(uint8_t bind)
packet_count++;
}
ssv_pack_dpl( (0 == bind) ? rx_tx_addr : FQ777_bind_addr, hopping_frequency_no, &packet_len, packet_ori, packet);
ssv_pack_dpl( IS_BIND_IN_PROGRESS ? FQ777_bind_addr : rx_tx_addr, hopping_frequency_no, &packet_len, packet_ori, packet);
NRF24L01_WriteReg(NRF24L01_00_CONFIG,_BV(NRF24L01_00_PWR_UP));
NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency[hopping_frequency_no++]);
@@ -156,30 +150,21 @@ static void __attribute__((unused)) FQ777_send_packet(uint8_t bind)
NRF24L01_WritePayload(packet, packet_len);
}
static void __attribute__((unused)) FQ777_init()
static void __attribute__((unused)) FQ777_RF_init()
{
NRF24L01_Initialize();
NRF24L01_SetTxRxMode(TX_EN);
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, FQ777_bind_addr, 5);
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowledgement on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x00);
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x03);
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0x00); // no retransmits
NRF24L01_SetBitrate(NRF24L01_BR_250K);
NRF24L01_SetPower();
NRF24L01_Activate(0x73); // Activate feature register
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 0x00); // Disable dynamic payload length on all pipes
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, 0x01);
NRF24L01_Activate(0x73);
}
uint16_t FQ777_callback()
{
if(bind_counter!=0)
#ifdef MULTI_SYNC
telemetry_set_input_sync(FQ777_PACKET_PERIOD);
#endif
if(bind_counter)
{
FQ777_send_packet(1);
bind_counter--;
if (bind_counter == 0)
{
@@ -187,17 +172,11 @@ uint16_t FQ777_callback()
BIND_DONE;
}
}
else
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(FQ777_PACKET_PERIOD);
#endif
FQ777_send_packet(0);
}
FQ777_send_packet();
return FQ777_PACKET_PERIOD;
}
uint16_t initFQ777(void)
void FQ777_init(void)
{
BIND_IN_PROGRESS; // autobind protocol
bind_counter = FQ777_BIND_COUNT;
@@ -210,8 +189,7 @@ uint16_t initFQ777(void)
rx_tx_addr[2] = 0x00;
rx_tx_addr[3] = 0xe7;
rx_tx_addr[4] = 0x67;
FQ777_init();
return FQ777_INITIAL_WAIT;
FQ777_RF_init();
}
#endif

View File

@@ -16,7 +16,7 @@ Multiprotocol is distributed in the hope that it will be useful,
#if defined(FX816_NRF24L01_INO)
#include "iface_nrf24l01.h"
#include "iface_xn297.h"
#define FX816_INITIAL_WAIT 500
#define FX816_PACKET_PERIOD 10000
@@ -27,7 +27,14 @@ Multiprotocol is distributed in the hope that it will be useful,
static void __attribute__((unused)) FX816_send_packet()
{
packet[0] = IS_BIND_IN_PROGRESS?0x55:0xAA;
if(IS_BIND_IN_PROGRESS)
packet[0] = 0x55;
else
{
XN297_Hopping(hopping_frequency_no++);
hopping_frequency_no%=FX816_RF_NUM_CHANNELS;
packet[0] = 0xAA;
}
packet[1] = rx_tx_addr[0];
packet[2] = rx_tx_addr[1];
uint8_t val=convert_channel_8b(AILERON);
@@ -44,37 +51,18 @@ static void __attribute__((unused)) FX816_send_packet()
val+=packet[i];
packet[5]=val;
NRF24L01_WriteReg(NRF24L01_05_RF_CH, IS_BIND_IN_PROGRESS ? FX816_RF_BIND_CHANNEL:hopping_frequency[hopping_frequency_no++]);
hopping_frequency_no%=FX816_RF_NUM_CHANNELS;
// clear packet status bits and TX FIFO
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
// Send
XN297_SetPower();
XN297_SetTxRxMode(TX_EN);
XN297_WritePayload(packet, FX816_PAYLOAD_SIZE);
// Power on, TX mode, 2byte CRC
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP));
NRF24L01_SetPower(); // Set tx_power
}
static void __attribute__((unused)) FX816_init()
static void __attribute__((unused)) FX816_RF_init()
{
NRF24L01_Initialize();
NRF24L01_SetTxRxMode(TX_EN);
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_1M);
XN297_SetTXAddr((uint8_t *)"\xcc\xcc\xcc\xcc\xcc", 5);
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowldgement on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0x00); // No retransmits
NRF24L01_SetPower();
NRF24L01_Activate(0x73); // Activate feature register
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 0x00); // Disable dynamic payload length on all pipes
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, 0x01);
NRF24L01_Activate(0x73);
//XN297_HoppingCalib(FX816_RF_NUM_CHANNELS);
XN297_RFChannel(FX816_RF_BIND_CHANNEL);
}
static void __attribute__((unused)) FX816_initialize_txid()
@@ -93,21 +81,20 @@ uint16_t FX816_callback()
#ifdef MULTI_SYNC
telemetry_set_input_sync(FX816_PACKET_PERIOD);
#endif
if(IS_BIND_IN_PROGRESS)
if(bind_counter)
if(--bind_counter==0)
BIND_DONE;
FX816_send_packet();
return FX816_PACKET_PERIOD;
}
uint16_t initFX816()
void FX816_init()
{
BIND_IN_PROGRESS; // autobind protocol
FX816_initialize_txid();
FX816_init();
FX816_RF_init();
hopping_frequency_no = 0;
bind_counter=FX816_BIND_COUNT;
return FX816_INITIAL_WAIT;
}
#endif

View File

@@ -88,34 +88,25 @@ static void __attribute__((unused)) FY326_send_packet(uint8_t bind)
NRF24L01_SetPower(); // Set tx_power
}
static void __attribute__((unused)) FY326_init()
static void __attribute__((unused)) FY326_RF_init()
{
NRF24L01_Initialize();
NRF24L01_SetTxRxMode(TX_EN);
if(sub_protocol==FY319)
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x03); // Five-byte rx/tx address
else
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x01); // Three-byte rx/tx address
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, (uint8_t *)"\x15\x59\x23\xc6\x29", 5);
NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, (uint8_t *)"\x15\x59\x23\xc6\x29", 5);
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowledgement on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, FY326_PACKET_SIZE);
NRF24L01_WriteReg(NRF24L01_05_RF_CH, FY326_RF_BIND_CHANNEL);
NRF24L01_SetBitrate(NRF24L01_BR_250K);
NRF24L01_SetPower();
NRF24L01_Activate(0x73);
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 0x3f);
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, 0x07);
NRF24L01_Activate(0x73);
//Switch to RX
NRF24L01_SetTxRxMode(TXRX_OFF);
NRF24L01_FlushRx();
NRF24L01_SetTxRxMode(RX_EN);
}
@@ -209,20 +200,19 @@ static void __attribute__((unused)) FY326_initialize_txid()
hopping_frequency[i]=rx_tx_addr[0] & ~0x80;
}
uint16_t initFY326(void)
void FY326_init(void)
{
BIND_IN_PROGRESS; // autobind protocol
rxid = 0xAA;
bind_counter = FY326_BIND_COUNT;
FY326_initialize_txid();
FY326_init();
FY326_RF_init();
if(sub_protocol==FY319)
{
phase=FY319_BIND1;
}
else
phase=FY326_BIND1;
return FY326_INITIAL_WAIT;
}
#endif

View File

@@ -0,0 +1,108 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(FAKE_NRF24L01_INO)
#include "iface_nrf250k.h"
static void __attribute__((unused)) FAKE_send_packet()
{
for(uint8_t i=0;i<5;i++)
packet[i]=i;
NRF24L01_WriteReg(NRF24L01_07_STATUS, (_BV(NRF24L01_07_RX_DR) | _BV(NRF24L01_07_TX_DS) | _BV(NRF24L01_07_MAX_RT)));
NRF24L01_FlushTx();
NRF24L01_WritePayload(packet, 5);
}
static void __attribute__((unused)) FAKE_init()
{
// BIND_IN_PROGRESS;
//CC2500
option=1;
XN297L_Init();
CC2500_WriteReg(CC2500_07_PKTCTRL1, 0x01); // Packet Automation Control
CC2500_WriteReg(CC2500_08_PKTCTRL0, 0x00); // Packet Automation Control
CC2500_WriteReg(CC2500_12_MDMCFG2, 0x12); // Modem Configuration
CC2500_WriteReg(CC2500_13_MDMCFG1, 0x13); // Modem Configuration
CC2500_WriteReg(CC2500_04_SYNC1, 0x11);
CC2500_WriteReg(CC2500_05_SYNC0, 0x33);
CC2500_WriteReg(CC2500_09_ADDR, 0x99);
CC2500_WriteReg(CC2500_06_PKTLEN, 10);
CC2500_SetTxRxMode(RX_EN);
CC2500_Strobe(CC2500_SIDLE);
CC2500_Strobe(CC2500_SRX);
//CC2500_SetTxRxMode(TX_EN);
XN297L_RFChannel(0);
//NRF
/* option=0;
PE1_on; //NRF24L01 antenna RF3 by default
PE2_off; //NRF24L01 antenna RF3 by default
NRF24L01_Initialize();
NRF24L01_WriteReg(NRF24L01_00_CONFIG, 0x7f);
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00);//0x3f); // AA on all pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x3f); // Enable all pipes
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x03); // 5-byte address
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0x36); // retransmit 1ms, 6 times
NRF24L01_SetBitrate(NRF24L01_BR_250K); // 1Mbps
NRF24L01_SetPower();
NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, (uint8_t *)"\x99\x33\x11\xAA\xAA", 5); //Bind address
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, (uint8_t *)"\x99\x33\x11\xAA\xAA", 5); //Bind address
NRF24L01_WriteReg(NRF24L01_05_RF_CH, 0);
NRF24L01_Activate(0x73); // Activate feature register
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 0x3f); // Enable dynamic payload length
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, 0x07); // Enable all features
*/
/*NRF24L01_FlushTx();
NRF24L01_SetTxRxMode(TX_EN);*/
}
uint16_t FAKE_callback()
{
len = CC2500_ReadReg(CC2500_3B_RXBYTES | CC2500_READ_BURST) & 0x7F;
if(len) debug("L=%d, ",len);
if(len && len < sizeof(packet_in))
{
CC2500_ReadData(packet_in, len);
debug("P:");
for(uint8_t i=0;i<len;i++)
debug(" %02X", packet_in[i]);
}
if(len) debugln("");
CC2500_Strobe(CC2500_SFRX);
CC2500_Strobe(CC2500_SIDLE);
CC2500_Strobe(CC2500_SRX);
option=0;
//FAKE_send_packet();
PE1_off; //antenna RF2
PE2_on;
/*packet[0]=0x99;
for(uint8_t i=1;i<5;i++)
packet[i]=i;
CC2500_WriteData(packet, 5);*/
return 10000;
}
uint16_t initFAKE()
{
FAKE_init();
return 5000;
}
#endif

View File

@@ -12,7 +12,7 @@
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// Last sync with hexfet new_protocols/flysky_a7105.c dated 2015-09-28
// Last sync with hexfet new_protocols/FLYSKY_a7105.c dated 2015-09-28
#if defined(FLYSKY_A7105_INO)
@@ -53,7 +53,7 @@ enum {
const uint8_t PROGMEM V912_X17_SEQ[10] = { 0x14, 0x31, 0x40, 0x49, 0x49, // sometime first byte is 0x15 ?
0x49, 0x49, 0x49, 0x49, 0x49, };
static void __attribute__((unused)) flysky_apply_extension_flags()
static void __attribute__((unused)) FLYSKY_apply_extension_flags()
{
switch(sub_protocol)
{
@@ -129,7 +129,7 @@ static void __attribute__((unused)) flysky_apply_extension_flags()
}
}
static void __attribute__((unused)) flysky_build_packet(uint8_t init)
static void __attribute__((unused)) FLYSKY_send_packet()
{
uint8_t i;
//servodata timing range for flysky.
@@ -137,7 +137,7 @@ static void __attribute__((unused)) flysky_build_packet(uint8_t init)
//+100% =~ 0x07ca//=1994us(max)
//Center = 0x5d9//=1497us(center)
//channel order AIL;ELE;THR;RUD;CH5;CH6;CH7;CH8
packet[0] = init ? 0xaa : 0x55;
packet[0] = IS_BIND_IN_PROGRESS ? 0xaa : 0x55;
packet[1] = rx_tx_addr[3];
packet[2] = rx_tx_addr[2];
packet[3] = rx_tx_addr[1];
@@ -150,36 +150,32 @@ static void __attribute__((unused)) flysky_build_packet(uint8_t init)
packet[5 + i*2]=temp&0xFF; //low byte of servo timing(1000-2000us)
packet[6 + i*2]=(temp>>8)&0xFF; //high byte of servo timing(1000-2000us)
}
flysky_apply_extension_flags();
FLYSKY_apply_extension_flags();
A7105_SetPower();
A7105_WriteData(21, IS_BIND_IN_PROGRESS ? 0x01:hopping_frequency[hopping_frequency_no & 0x0F]);
hopping_frequency_no++;
}
uint16_t ReadFlySky()
uint16_t FLYSKY_callback()
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
#ifndef FORCE_FLYSKY_TUNING
A7105_AdjustLOBaseFreq(1);
#endif
if(IS_BIND_IN_PROGRESS)
if(bind_counter)
{
flysky_build_packet(1);
A7105_WriteData(21, 1);
bind_counter--;
if (bind_counter==0)
BIND_DONE;
}
else
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
flysky_build_packet(0);
A7105_WriteData(21, hopping_frequency[hopping_frequency_no & 0x0F]);
A7105_SetPower();
}
hopping_frequency_no++;
FLYSKY_send_packet();
return packet_period;
}
const uint8_t PROGMEM tx_channels[8][4] = {
const uint8_t PROGMEM FLYSKY_tx_channels[8][4] = {
{ 0x12, 0x34, 0x56, 0x78},
{ 0x18, 0x27, 0x36, 0x45},
{ 0x41, 0x82, 0x36, 0x57},
@@ -190,7 +186,7 @@ const uint8_t PROGMEM tx_channels[8][4] = {
{ 0x71, 0x86, 0x43, 0x52}
};
uint16_t initFlySky()
void FLYSKY_init()
{
uint8_t chanrow;
uint8_t chanoffset;
@@ -208,7 +204,7 @@ uint16_t initFlySky()
chanoffset=rx_tx_addr[3]/16;
for(uint8_t i=0;i<16;i++)
{
temp=pgm_read_byte_near(&tx_channels[chanrow>>1][i>>2]);
temp=pgm_read_byte_near(&FLYSKY_tx_channels[chanrow>>1][i>>2]);
if(i&0x02)
temp&=0x0F;
else
@@ -242,6 +238,5 @@ uint16_t initFlySky()
bind_counter = FLYSKY_BIND_COUNT;
else
bind_counter = 0;
return 2400;
}
#endif

View File

@@ -17,8 +17,9 @@
/** FrSky D and X routines **/
/******************************/
#if defined(FRSKYD_CC2500_INO) || defined(FRSKYX_CC2500_INO) || defined(FRSKYX_CC2500_INO) || defined(FRSKYL_CC2500_INO) || defined(FRSKY_RX_CC2500_INO) || defined(FRSKYR9_SX1276_INO)
#if defined(FRSKYD_CC2500_INO) || defined(FRSKYX_CC2500_INO) || defined(FRSKYL_CC2500_INO) || defined(FRSKY_RX_CC2500_INO) || defined(FRSKYR9_SX1276_INO)
uint8_t FrSkyFormat=0;
uint8_t FrSkyX_chanskip;
#endif
#if defined(FRSKYX_CC2500_INO) || defined(FRSKYL_CC2500_INO) || defined(FRSKY_RX_CC2500_INO) || defined(FRSKYR9_SX1276_INO)
@@ -33,7 +34,7 @@ static uint16_t __attribute__((unused)) FrSkyX_CRCTable(uint8_t val)
val /= 16 ;
return word ^ (0x1081 * val) ;
}
uint16_t FrSkyX_crc(uint8_t *data, uint8_t len, uint8_t init=0)
uint16_t FrSkyX_crc(uint8_t *data, uint8_t len, uint16_t init=0)
{
uint16_t crc = init;
for(uint8_t i=0; i < len; i++)
@@ -184,11 +185,18 @@ void Frsky_init_clone(void)
else if(protocol==PROTO_FRSKYX2)
temp=FRSKYX2_CLONE_EEPROM_OFFSET;
FrSkyFormat=eeprom_read_byte((EE_ADDR)temp++);
/* FRSKY_RX_D8 =0,
FRSKY_RX_D16FCC =1,
FRSKY_RX_D16LBT =2,
FRSKY_RX_D16v2FCC =3,
FRSKY_RX_D16v2LBT =4,*/
if(protocol==PROTO_FRSKYX)
FrSkyFormat >>= 1;
else
FrSkyFormat >>= 2;
FrSkyFormat <<= 1; //FCC_16/LBT_16
if(sub_protocol==XCLONE_8)
FrSkyFormat++; //FCC_8/LBT_8
rx_tx_addr[3] = eeprom_read_byte((EE_ADDR)temp++);
rx_tx_addr[2] = eeprom_read_byte((EE_ADDR)temp++);
rx_tx_addr[1] = eeprom_read_byte((EE_ADDR)temp++);
@@ -279,7 +287,7 @@ void Frsky_init_clone(void)
//FRSKYX
/*02_IOCFG0*/ 0x06 ,
/*00_IOCFG2*/ 0x06 ,
/*17_MCSM1*/ 0x0c , //X2->0x0E -> Go/Stay in RX mode
/*17_MCSM1*/ 0x0c , //X2->0x0E -> RX stays in RX and TX stays in TX???
/*18_MCSM0*/ 0x18 ,
/*06_PKTLEN*/ 0x1E ,
/*07_PKTCTRL1*/ 0x04 ,
@@ -367,7 +375,6 @@ void Frsky_init_clone(void)
val=option;
CC2500_WriteReg(reg,val);
}
prev_option = option ; // Save option to monitor FSCTRL0 change
for(uint8_t i=0;i<17;i++)
{
uint8_t reg=pgm_read_byte_near(&FRSKY_common_end_cc2500_conf[i][0]);
@@ -380,21 +387,120 @@ void Frsky_init_clone(void)
}
#endif
#if defined(FRSKYX_CC2500_INO) || defined(FRSKYL_CC2500_INO)
uint8_t FrSkyX_chanskip;
uint8_t FrSkyX_TX_Seq, FrSkyX_TX_IN_Seq;
uint8_t FrSkyX_RX_Seq ;
#if defined(FRSKYX_CC2500_INO) || defined(FRSKYR9_SX1276_INO)
uint8_t FrSkyX_TX_Seq, FrSkyX_TX_IN_Seq;
uint8_t FrSkyX_RX_Seq ;
#ifdef SPORT_SEND
struct t_FrSkyX_TX_Frame
#ifdef SPORT_SEND
struct t_FrSkyX_TX_Frame
{
uint8_t count;
uint8_t payload[8];
} ;
// Store FrskyX telemetry
struct t_FrSkyX_TX_Frame FrSkyX_TX_Frames[4] ;
#endif
static void __attribute__((unused)) FrSkyX_seq_sport(uint8_t start, uint8_t end)
{
uint8_t count;
uint8_t payload[8];
} ;
// Store FrskyX telemetry
struct t_FrSkyX_TX_Frame FrSkyX_TX_Frames[4] ;
for (uint8_t i=start+1;i<=end;i++)
packet[i]=0;
packet[start] = FrSkyX_RX_Seq << 4;
#ifdef SPORT_SEND
if (FrSkyX_TX_IN_Seq!=0xFF)
{//RX has replied at least once
if (FrSkyX_TX_IN_Seq & 0x08)
{//Request init
//debugln("Init");
FrSkyX_TX_Seq = 0 ;
for(uint8_t i=0;i<4;i++)
FrSkyX_TX_Frames[i].count=0; //Discard frames in current output buffer
}
else if (FrSkyX_TX_IN_Seq & 0x04)
{//Retransmit the requested packet
debugln("Retry:%d",FrSkyX_TX_IN_Seq&0x03);
packet[start] |= FrSkyX_TX_IN_Seq&0x03;
packet[start+1] = FrSkyX_TX_Frames[FrSkyX_TX_IN_Seq&0x03].count;
for (uint8_t i=start+2;i<start+2+FrSkyX_TX_Frames[FrSkyX_TX_IN_Seq&0x03].count;i++)
packet[i] = FrSkyX_TX_Frames[FrSkyX_TX_IN_Seq&0x03].payload[i];
}
else if ( FrSkyX_TX_Seq != 0x08 )
{
if(FrSkyX_TX_Seq==FrSkyX_TX_IN_Seq)
{//Send packet from the incoming radio buffer
//debugln("Send:%d",FrSkyX_TX_Seq);
packet[start] |= FrSkyX_TX_Seq;
uint8_t nbr_bytes=0;
for (uint8_t i=start+2;i<=end;i++)
{
if(SportHead==SportTail)
break; //buffer empty
packet[i]=SportData[SportHead];
FrSkyX_TX_Frames[FrSkyX_TX_Seq].payload[i-start+2]=SportData[SportHead];
SportHead=(SportHead+1) & (MAX_SPORT_BUFFER-1);
nbr_bytes++;
}
packet[start+1]=nbr_bytes;
FrSkyX_TX_Frames[FrSkyX_TX_Seq].count=nbr_bytes;
if(nbr_bytes)
{//Check the buffer status
uint8_t used = SportTail;
if ( SportHead > SportTail )
used += MAX_SPORT_BUFFER - SportHead ;
else
used -= SportHead ;
if ( used < (MAX_SPORT_BUFFER>>1) )
{
DATA_BUFFER_LOW_off;
debugln("Ok buf:%d",used);
}
}
FrSkyX_TX_Seq = ( FrSkyX_TX_Seq + 1 ) & 0x03 ; //Next iteration send next packet
}
else
{//Not in sequence somehow, transmit what the receiver wants but why not asking for retransmit...
//debugln("RX_Seq:%d,TX:%d",FrSkyX_TX_IN_Seq,FrSkyX_TX_Seq);
packet[start] |= FrSkyX_TX_IN_Seq;
packet[start+1] = FrSkyX_TX_Frames[FrSkyX_TX_IN_Seq].count;
for (uint8_t i=start+2;i<start+2+FrSkyX_TX_Frames[FrSkyX_TX_IN_Seq].count;i++)
packet[i] = FrSkyX_TX_Frames[FrSkyX_TX_IN_Seq].payload[i-start+2];
}
}
else
packet[start] |= 0x08 ; //FrSkyX_TX_Seq=8 at startup
}
if(packet[start+1])
{//Debug
debug("SP: ");
for(uint8_t i=0;i<packet[start+1];i++)
debug("%02X ",packet[start+2+i]);
debugln("");
}
#else
packet[start] |= FrSkyX_TX_Seq ;//TX=8 at startup
if ( !(FrSkyX_TX_IN_Seq & 0xF8) )
FrSkyX_TX_Seq = ( FrSkyX_TX_Seq + 1 ) & 0x03 ; // Next iteration send next packet
#endif // SPORT_SEND
}
static void __attribute__((unused)) FrSkyX_telem_init(void)
{
FrSkyX_TX_Seq = 0x08 ; // Request init
#ifdef SPORT_SEND
FrSkyX_TX_IN_Seq = 0xFF ; // No sequence received yet
for(uint8_t i=0;i<4;i++)
FrSkyX_TX_Frames[i].count=0;// discard frames in current output buffer
SportHead=SportTail=0; // empty data buffer
#endif
FrSkyX_RX_Seq = 0 ; // Seq 0 to start with
#ifdef TELEMETRY
telemetry_lost=1;
telemetry_link=0; //Stop sending telemetry
#endif
}
#endif
#if defined(FRSKYX_CC2500_INO) || defined(FRSKYL_CC2500_INO)
static void __attribute__((unused)) FrSkyX_set_start(uint8_t ch )
{
CC2500_Strobe(CC2500_SIDLE);
@@ -402,7 +508,7 @@ static void __attribute__((unused)) FrSkyX_set_start(uint8_t ch )
CC2500_WriteReg(CC2500_0A_CHANNR, hopping_frequency[ch]);
}
static void __attribute__((unused)) FrSkyX_init()
static void __attribute__((unused)) FrSkyX_RF_init()
{
if(protocol==PROTO_FRSKYL)
FRSKY_init_cc2500(FRSKYL_cc2500_conf);
@@ -413,7 +519,7 @@ static void __attribute__((unused)) FrSkyX_init()
CC2500_WriteReg(CC2500_08_PKTCTRL0, 0x05); // Enable CRC
if(!(FrSkyFormat&2))
{ // FCC
CC2500_WriteReg(CC2500_17_MCSM1, 0x0E); // Go/Stay in RX mode
CC2500_WriteReg(CC2500_17_MCSM1, 0x0E); //0x0E -> RX stays in RX and TX stays in TX???
CC2500_WriteReg(CC2500_11_MDMCFG3, 0x84); // bitrate 70K->77K
}
}

View File

@@ -17,12 +17,12 @@
#include "iface_cc2500.h"
static void __attribute__((unused)) frsky2way_init(uint8_t bind)
static void __attribute__((unused)) FRSKYD_RF_init()
{
FRSKY_init_cc2500(FRSKYD_cc2500_conf);
CC2500_WriteReg(CC2500_1B_AGCCTRL2, bind ? 0x43 : 0x03);
CC2500_WriteReg(CC2500_09_ADDR, bind ? 0x03 : rx_tx_addr[3]);
CC2500_WriteReg(CC2500_1B_AGCCTRL2, IS_BIND_IN_PROGRESS ? 0x43 : 0x03);
CC2500_WriteReg(CC2500_09_ADDR, IS_BIND_IN_PROGRESS ? 0x03 : rx_tx_addr[3]);
CC2500_WriteReg(CC2500_07_PKTCTRL1, 0x05);
CC2500_Strobe(CC2500_SIDLE); // Go to idle...
//
@@ -32,7 +32,7 @@ static void __attribute__((unused)) frsky2way_init(uint8_t bind)
//#######END INIT########
}
static void __attribute__((unused)) frsky2way_build_bind_packet()
static void __attribute__((unused)) FRSKYD_build_bind_packet()
{
//11 03 01 d7 2d 00 00 1e 3c 5b 78 00 00 00 00 00 00 01
//11 03 01 19 3e 00 02 8e 2f bb 5c 00 00 00 00 00 00 01
@@ -54,10 +54,10 @@ static void __attribute__((unused)) frsky2way_build_bind_packet()
packet[14] = 0x00;
packet[15] = 0x00;
packet[16] = 0x00;
packet[17] = 0x01;
packet[17] = rx_tx_addr[1];
}
static void __attribute__((unused)) frsky2way_data_frame()
static void __attribute__((unused)) FRSKYD_data_frame()
{//pachet[4] is telemetry user frame counter(hub)
//11 d7 2d 22 00 01 c9 c9 ca ca 88 88 ca ca c9 ca 88 88
//11 57 12 00 00 01 f2 f2 f2 f2 06 06 ca ca ca ca 18 18
@@ -71,7 +71,7 @@ static void __attribute__((unused)) frsky2way_data_frame()
packet[4] = 0x00;
#endif
packet[5] = 0x01;
packet[5] = rx_tx_addr[1];
//
packet[10] = 0;
packet[11] = 0;
@@ -94,12 +94,13 @@ static void __attribute__((unused)) frsky2way_data_frame()
}
}
uint16_t initFrSky_2way()
void FRSKYD_init(void)
{
//FrskyD init hop
if (sub_protocol==DCLONE)
Frsky_init_clone();
else
{
for(uint8_t i=0;i<50;i++)
{
uint8_t freq = (i * 0x1e) % 0xeb;
@@ -109,25 +110,26 @@ uint16_t initFrSky_2way()
freq=0;
hopping_frequency[i]=freq;
}
rx_tx_addr[1]=1; // keep compatibility with already bound RXs
}
packet_count=0;
if(IS_BIND_IN_PROGRESS)
{
frsky2way_init(1);
FRSKYD_RF_init();
state = FRSKY_BIND;
}
else
{
state = FRSKY_BIND_DONE;
}
return 10000;
}
uint16_t ReadFrSky_2way()
uint16_t FRSKYD_callback(void)
{
if (state < FRSKY_BIND_DONE)
{
frsky2way_build_bind_packet();
FRSKYD_build_bind_packet();
CC2500_Strobe(CC2500_SIDLE);
CC2500_WriteReg(CC2500_0A_CHANNR, 0x00);
CC2500_WriteReg(CC2500_23_FSCAL3, 0x89);
@@ -141,10 +143,10 @@ uint16_t ReadFrSky_2way()
}
if (state == FRSKY_BIND_DONE)
{
state = FRSKY_DATA2;
frsky2way_init(0);
counter = 0;
BIND_DONE;
FRSKYD_RF_init();
counter = 0;
state = FRSKY_DATA2;
}
else
if (state == FRSKY_DATA5)
@@ -178,7 +180,7 @@ uint16_t ReadFrSky_2way()
if(packet_in[len-1] & 0x80)
{//with valid crc
packet_count=0;
frsky_check_telemetry(packet_in,len); //check if valid telemetry packets and buffer them.
frsky_process_telemetry(packet_in,len); //check if valid telemetry packets and buffer them.
}
#endif
}
@@ -200,14 +202,10 @@ uint16_t ReadFrSky_2way()
}
CC2500_Strobe(CC2500_SIDLE);
CC2500_WriteReg(CC2500_0A_CHANNR, hopping_frequency[counter % 47]);
if ( prev_option != option )
{
CC2500_WriteReg(CC2500_0C_FSCTRL0,option); // Frequency offset hack
prev_option = option ;
}
CC2500_SetFreqOffset();
CC2500_WriteReg(CC2500_23_FSCAL3, 0x89);
CC2500_Strobe(CC2500_SFRX);
frsky2way_data_frame();
FRSKYD_data_frame();
CC2500_WriteData(packet, packet[0]+1);
state++;
}

View File

@@ -137,7 +137,7 @@ static void __attribute__((unused)) FrSkyL_encode_packet(bool type)
}
}
uint16_t ReadFrSkyL()
uint16_t FRSKYL_callback()
{
static uint8_t written=0, send=0;
switch(send)
@@ -200,11 +200,7 @@ uint16_t ReadFrSkyL()
break;
case FRSKY_DATA1:
if ( prev_option != option )
{
CC2500_WriteReg(CC2500_0C_FSCTRL0,option); //Frequency offset hack
prev_option = option ;
}
CC2500_SetFreqOffset();
FrSkyX_set_start(hopping_frequency_no);
FrSkyL_build_packet();
FrSkyL_encode_packet(true);
@@ -216,7 +212,7 @@ uint16_t ReadFrSkyL()
return 1;
}
uint16_t initFrSkyL()
void FRSKYL_init()
{
set_rx_tx_addr(MProtocol_id_master);
rx_tx_addr[1]=0x02; // ID related, hw version?
@@ -231,7 +227,7 @@ uint16_t initFrSkyL()
while(!FrSkyX_chanskip)
FrSkyX_chanskip=random(0xfefefefe)%47;
FrSkyX_init();
FrSkyX_RF_init();
//Prepare frame
memset(FrSkyL_buffer,0x00,FRSKYL_PACKET_LEN-3);
@@ -257,6 +253,5 @@ uint16_t initFrSkyL()
state = FRSKY_DATA1;
FrSkyX_initialize_data(0);
}
return 10000;
}
#endif

View File

@@ -1,39 +1,100 @@
#if defined(FRSKYR9_SX1276_INO)
#include "iface_sx1276.h"
#define FREQ_MAP_SIZE 29
#define DISP_FREQ_TABLE
uint8_t FrSkyR9_step = 1;
uint32_t FrSkyR9_freq_map[FREQ_MAP_SIZE];
#define FLEX_FREQ 29
#define FCC_FREQ 43
#define EU_FREQ 19
enum {
FRSKYR9_FREQ=0,
FRSKYR9_DATA,
FRSKYR9_RX1,
FRSKYR9_RX2,
};
void FrSkyR9_set_frequency()
{
uint8_t data[3];
uint16_t num=0;
hopping_frequency_no += FrSkyX_chanskip;
switch(sub_protocol & 0xFD)
{
case R9_868:
if(IS_BIND_DONE) // if bind is in progress use R9_915 instead
{
hopping_frequency_no %= FLEX_FREQ;
num=hopping_frequency_no;
if(hopping_frequency_no>=FLEX_FREQ-2)
num+=FrSkyX_chanskip-FLEX_FREQ+2; // the last 2 values are FrSkyX_chanskip and FrSkyX_chanskip+1
num <<= 5;
num += 0xD700;
break;
}//else use R9_915
case R9_915:
hopping_frequency_no %= FLEX_FREQ;
num=hopping_frequency_no;
if(hopping_frequency_no>=FLEX_FREQ-2)
num+=FrSkyX_chanskip-FLEX_FREQ+2; // the last 2 values are FrSkyX_chanskip and FrSkyX_chanskip+1
num <<= 5;
num += 0xE4C0;
break;
case R9_FCC:
hopping_frequency_no %= FCC_FREQ;
num=hopping_frequency_no;
num <<= 5;
num += 0xE200;
break;
case R9_EU:
hopping_frequency_no %= EU_FREQ;
num=hopping_frequency_no;
num <<= 4;
num += 0xD7D0;
break;
}
data[0] = num>>8;
data[1] = num&0xFF;
data[2] = 0x00;
#ifdef DISP_FREQ_TABLE
if(phase==0xFF)
debugln("F%d=%02X%02X%02X=%lu", hopping_frequency_no, data[0], data[1], data[2], (uint32_t)((data[0]<<16)+(data[1]<<8)+data[2])*61);
#endif
SX1276_WriteRegisterMulti(SX1276_06_FRFMSB, data, 3);
}
static void __attribute__((unused)) FrSkyR9_build_packet()
{
//Header
packet[0] = 0x3C; // unknown but constant
//ID
packet[1] = rx_tx_addr[3];
packet[2] = rx_tx_addr[2];
packet[0] = rx_tx_addr[1];
packet[1] = rx_tx_addr[2];
packet[2] = rx_tx_addr[3];
//Hopping
packet[3] = hopping_frequency_no; // current channel index
packet[4] = FrSkyR9_step; // step size and last 2 channels start index
packet[4] = FrSkyX_chanskip; // step size and last 2 channels start index
//RX number
packet[5] = RX_num; // receiver number from OpenTX
// Set packet[6]=failsafe, packet[7]=0?? and packet[8..19]=channels data
FrSkyX_channels(6);
//Channels
FrSkyX_channels(6); // Set packet[6]=failsafe, packet[7]=0?? and packet[8..19]=channels data
//Bind
if(IS_BIND_IN_PROGRESS)
packet[6] = 0x41;
{// 915 0x01=CH1-8_TELEM_ON 0x41=CH1-8_TELEM_OFF 0xC1=CH9-16_TELEM_OFF 0x81=CH9-16_TELEM_ON
packet[6] = 0x01; // bind indicator
if(sub_protocol & 1)
packet[6] |= 0x20; // 868
if(binding_idx&0x01)
packet[6] |= 0x40; // telem OFF
if(binding_idx&0x02)
packet[6] |= 0x80; // ch9-16
}
//SPort
packet[20] = 0x08; //FrSkyX_TX_Seq=8 at startup
packet[21] = 0x00; // length?
packet[22] = 0x00; // data1?
packet[23] = 0x00; // data2?
//Sequence and send SPort
FrSkyX_seq_sport(20,23); //20=RX|TXseq, 21=bytes count, 22&23=data
//CRC
uint16_t crc = FrSkyX_crc(packet, 24);
@@ -41,38 +102,92 @@ static void __attribute__((unused)) FrSkyR9_build_packet()
packet[25] = crc >> 8; // high byte
}
uint16_t initFrSkyR9()
static uint8_t __attribute__((unused)) FrSkyR9_CRC8(uint8_t *p, uint8_t l)
{
uint8_t crc = 0xFF;
for (uint8_t i = 0; i < l; i++)
{
crc = crc ^ p[i];
for ( uint8_t j = 0; j < 8; j++ )
if ( crc & 0x80 )
{
crc <<= 1;
crc ^= 0x07;
}
else
crc <<= 1;
}
return crc;
}
static void __attribute__((unused)) FrSkyR9_build_EU_packet()
{
//ID
packet[0] = rx_tx_addr[1];
packet[1] = rx_tx_addr[2];
packet[2] = rx_tx_addr[3];
//Hopping
packet[3] = FrSkyX_chanskip; // step size and last 2 channels start index
//RX number
packet[4] = RX_num; // receiver number from OpenTX
//Channels
//TODO FrSkyX_channels(5,4); // Set packet[5]=failsafe and packet[6..11]=4 channels data
//Bind
if(IS_BIND_IN_PROGRESS)
{
packet[5] = 0x01; // bind indicator
if((sub_protocol & 2) == 0)
packet[5] |= 0x10; // 16CH
// if(sub_protocol & 1)
// packet[5] |= 0x20; // 868
if(binding_idx&0x01)
packet[5] |= 0x40; // telem OFF
if(binding_idx&0x02)
packet[5] |= 0x80; // ch9-16
}
//Sequence and send SPort
packet[12] = (FrSkyX_RX_Seq << 4)|0x08; //TX=8 at startup
//CRC
packet[13] = FrSkyR9_CRC8(packet, 13);
}
void FRSKYR9_init()
{
//Check frequencies
#ifdef DISP_FREQ_TABLE
phase=0xFF;
FrSkyX_chanskip=1;
hopping_frequency_no=0xFF;
for(uint8_t i=0;i<FCC_FREQ;i++)
FrSkyR9_set_frequency();
#endif
//Reset ID
set_rx_tx_addr(MProtocol_id_master);
//FrSkyR9_step
FrSkyR9_step = 1 + (random(0xfefefefe) % 24);
debugln("Step=%d", FrSkyR9_step);
//FrSkyX_chanskip
FrSkyX_chanskip = 1 + (random(0xfefefefe) % 24);
debugln("chanskip=%d", FrSkyX_chanskip);
//Frequency table
uint32_t start_freq=914472960; //915
if(sub_protocol & 0x01)
start_freq=859504640; //868
for(uint8_t i=0;i<FREQ_MAP_SIZE-2;i++)
{
FrSkyR9_freq_map[i]=start_freq;
debugln("F%d=%lu", i, FrSkyR9_freq_map[i]);
start_freq+=0x7A000;
}
// Last two frequencies determined by FrSkyR9_step
FrSkyR9_freq_map[FREQ_MAP_SIZE-2] = FrSkyR9_freq_map[FrSkyR9_step];
debugln("F%d=%lu", FREQ_MAP_SIZE-2, FrSkyR9_freq_map[FREQ_MAP_SIZE-2]);
FrSkyR9_freq_map[FREQ_MAP_SIZE-1] = FrSkyR9_freq_map[FrSkyR9_step+1];
debugln("F%d=%lu", FREQ_MAP_SIZE-1, FrSkyR9_freq_map[FREQ_MAP_SIZE-1]);
hopping_frequency_no = 0;
//Set FrSkyFormat
if((sub_protocol & 0x02) == 0)
FrSkyFormat=0; // 16 channels
FrSkyFormat=0; // 16 channels
else
FrSkyFormat=1; // 8 channels
FrSkyFormat=1; // 8 channels
debugln("%dCH", FrSkyFormat&1 ? 8:16);
//EU packet length
if( (sub_protocol & 0xFD) == R9_EU )
packet_length=14;
else
packet_length=26;
//SX1276 Init
SX1276_SetMode(true, false, SX1276_OPMODE_SLEEP);
SX1276_SetMode(true, false, SX1276_OPMODE_STDBY);
@@ -89,56 +204,116 @@ uint16_t initFrSkyR9()
SX1276_SetPreambleLength(9);
SX1276_SetDetectionThreshold(SX1276_MODEM_DETECTION_THRESHOLD_SF6);
SX1276_SetLna(1, true);
SX1276_SetHopPeriod(0); // 0 = disabled, we hop frequencies manually
SX1276_SetPaDac(true);
SX1276_SetTxRxMode(TX_EN); // Set RF switch to TX
return 20000; // start calling FrSkyR9_callback in 20 milliseconds
SX1276_SetHopPeriod(0); // 0 = disabled, we hop frequencies manually
//RF Power
SX1276_SetPaDac(false); // Disable 20dBm mode
#if MULTI_5IN1_INTERNAL == JP_T18
SX1276_SetPaConfig(true, 7, 0); // Lowest power for the T18: 2dBm
#else
SX1276_SetPaConfig(true, 7, option); // Use PA_HP on PA_BOOST, power=17-(15-option) dBm with option equal or lower to 15
#endif
SX1276_SetOcp(true,27); // Set OCP to max 240mA
SX1276_SetTxRxMode(TX_EN); // Set RF switch to TX
//Enable all IRQ flags
SX1276_WriteReg(SX1276_11_IRQFLAGSMASK,0x00);
FrSkyX_telem_init();
hopping_frequency_no=0;
phase=FRSKYR9_FREQ;
}
uint16_t FrSkyR9_callback()
uint16_t FRSKYR9_callback()
{
//Force standby
SX1276_SetMode(true, false, SX1276_OPMODE_STDBY);
//SX1276_WriteReg(SX1276_11_IRQFLAGSMASK, 0xbf); // use only RxDone interrupt
// uint8_t buffer[2];
// buffer[0] = 0x00;
// buffer[1] = 0x00;
// SX1276_WriteRegisterMulti(SX1276_40_DIOMAPPING1, buffer, 2); // RxDone interrupt mapped to DIO0 (the rest are not used because of the REG_IRQ_FLAGS_MASK)
// SX1276_WriteReg(REG_PAYLOAD_LENGTH, 13);
// SX1276_WriteReg(REG_FIFO_ADDR_PTR, 0x00);
// SX1276_WriteReg(SX1276_01_OPMODE, 0x85); // RXCONTINUOUS
// delay(10); // 10 ms
// SX1276_WriteReg(SX1276_01_OPMODE, 0x81); // STDBY
// SX1276_WriteReg(SX1276_09_PACONFIG, 0xF0);
//Set power
// max power: 15dBm (10.8 + 0.6 * MaxPower [dBm])
// output_power: 2 dBm (17-(15-OutputPower) (if pa_boost_pin == true))
SX1276_SetPaConfig(true, 7, 0);
//Set frequency
hopping_frequency_no = (hopping_frequency_no + FrSkyR9_step) % FREQ_MAP_SIZE;
SX1276_SetFrequency(FrSkyR9_freq_map[hopping_frequency_no]); // set current center frequency
delayMicroseconds(500); //Frequency settle time
//Build packet
FrSkyR9_build_packet();
//Send
SX1276_WritePayloadToFifo(packet, 26);
SX1276_SetMode(true, false, SX1276_OPMODE_TX);
// need to clear RegIrqFlags?
return 20000;
switch (phase)
{
case FRSKYR9_FREQ:
//Force standby
SX1276_SetMode(true, false, SX1276_OPMODE_STDBY);
//Set frequency
FrSkyR9_set_frequency(); // Set current center frequency
//Set power
// max power: 15dBm (10.8 + 0.6 * MaxPower [dBm])
// output_power: 2 dBm ( (if pa_boost_pin == true))
#if MULTI_5IN1_INTERNAL != JP_T18
if(option != prev_option)
{ // Set RF power if it has changed
SX1276_SetPaConfig(true, 7, option); // Use PA_HP on PA_BOOST, power=17-(15-option) dBm with option equal or lower to 15
prev_option = option;
}
#endif
//Build packet
if( packet_length == 26 )
FrSkyR9_build_packet();
else
FrSkyR9_build_EU_packet();
phase++;
return 460; // Frequency settle time
case FRSKYR9_DATA:
//Set RF switch to TX
SX1276_SetTxRxMode(TX_EN);
//Send packet
SX1276_WritePayloadToFifo(packet, packet_length);
SX1276_SetMode(true, false, SX1276_OPMODE_TX);
#if not defined TELEMETRY
phase=FRSKYR9_FREQ;
return 20000-460;
#else
phase++;
return 11140; // Packet send time
case FRSKYR9_RX1:
//Force standby
SX1276_SetMode(true, false, SX1276_OPMODE_STDBY);
//RX packet size is 13
SX1276_WriteReg(SX1276_22_PAYLOAD_LENGTH, 13);
//Reset pointer
SX1276_WriteReg(SX1276_0D_FIFOADDRPTR, 0x00);
//Set RF switch to RX
SX1276_SetTxRxMode(RX_EN);
//Clear all IRQ flags
SX1276_WriteReg(SX1276_12_REGIRQFLAGS,0xFF);
//Switch to RX
SX1276_WriteReg(SX1276_01_OPMODE, 0x85);
phase++;
return 7400;
case FRSKYR9_RX2:
if( (SX1276_ReadReg(SX1276_12_REGIRQFLAGS)&0xF0) == (_BV(SX1276_REGIRQFLAGS_RXDONE) | _BV(SX1276_REGIRQFLAGS_VALIDHEADER)) )
{
if(SX1276_ReadReg(SX1276_13_REGRXNBBYTES)==13)
{
SX1276_ReadRegisterMulti(SX1276_00_FIFO,packet_in,13);
if( packet_in[9]==rx_tx_addr[1] && packet_in[10]==rx_tx_addr[2] && FrSkyX_crc(packet_in, 11, rx_tx_addr[1]+(rx_tx_addr[2]<<8))==(packet_in[11]+(packet_in[12]<<8)) )
{
if(packet_in[0]&0x80)
RX_RSSI=packet_in[0]<<1;
else
v_lipo1=(packet_in[0]<<1)+1;
//TX_LQI=~(SX1276_ReadReg(SX1276_19_PACKETSNR)>>2)+1;
TX_RSSI=SX1276_ReadReg(SX1276_1A_PACKETRSSI)-157;
for(uint8_t i=0;i<9;i++)
packet[4+i]=packet_in[i]; // Adjust buffer to match FrSkyX
frsky_process_telemetry(packet,len); // Process telemetry packet
pps_counter++;
if(TX_LQI==0)
TX_LQI++; // Recover telemetry right away
}
}
}
if (millis() - pps_timer >= 1000)
{//1 packet every 20ms
pps_timer = millis();
debugln("%d pps", pps_counter);
TX_LQI = pps_counter<<1; // Max=100%
pps_counter = 0;
}
if(TX_LQI==0)
FrSkyX_telem_init(); // Reset telemetry
else
telemetry_link=1; // Send telemetry out anyway
phase=FRSKYR9_FREQ;
break;
#endif
}
return 1000;
}
#endif

View File

@@ -113,7 +113,7 @@ static void __attribute__((unused)) FRSKYV_build_data_packet()
packet[14] = FRSKYV_crc8(crc8, packet, 14);
}
uint16_t ReadFRSKYV()
uint16_t FRSKYV_callback(void)
{
if(IS_BIND_DONE)
{ // Normal operation
@@ -122,11 +122,7 @@ uint16_t ReadFRSKYV()
#endif
uint8_t chan = FRSKYV_calc_channel();
CC2500_Strobe(CC2500_SIDLE);
if (option != prev_option)
{
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
prev_option=option;
}
CC2500_SetFreqOffset();
CC2500_WriteReg(CC2500_0A_CHANNR, chan * 5 + 6);
FRSKYV_build_data_packet();
@@ -152,7 +148,7 @@ uint16_t ReadFRSKYV()
return 53460;
}
uint16_t initFRSKYV()
void FRSKYV_init(void)
{
//ID is 15 bits. Using rx_tx_addr[2] and rx_tx_addr[3] since we want to use RX_Num for model match
rx_tx_addr[2]&=0x7F;
@@ -162,7 +158,6 @@ uint16_t initFRSKYV()
seed = 1;
binding_idx=0;
phase = FRSKYV_DATA1;
return 10000;
}
#endif

View File

@@ -19,17 +19,14 @@
static void __attribute__((unused)) FrSkyX_build_bind_packet()
{
uint8_t packet_size = 0x1D;
if(protocol==PROTO_FRSKYX && (FrSkyFormat & 2 ))
packet_size=0x20; // FrSkyX V1 LBT
//Header
packet[0] = packet_size; // Number of bytes in the packet (after this one)
packet[1] = 0x03; // Bind packet
packet[2] = 0x01; // Bind packet
packet[0] = packet_length; // Number of bytes in the packet (after this one)
packet[1] = 0x03; // Bind packet
packet[2] = 0x01; // Bind packet
//ID
packet[3] = rx_tx_addr[3]; // ID
packet[4] = rx_tx_addr[2]; // ID
packet[3] = rx_tx_addr[3]; // ID
packet[4] = rx_tx_addr[2]; // ID
if(protocol==PROTO_FRSKYX)
{
@@ -40,10 +37,10 @@ static void __attribute__((unused)) FrSkyX_build_bind_packet()
packet[8] = hopping_frequency[idx++];
packet[9] = hopping_frequency[idx++];
packet[10] = hopping_frequency[idx++];
packet[11] = rx_tx_addr[1]; // Unknown but constant ID?
packet[11] = rx_tx_addr[1]; // ID
packet[12] = RX_num;
//
memset(&packet[13], 0, packet_size - 14);
memset(&packet[13], 0, packet_length - 14);
if(binding_idx&0x01)
memcpy(&packet[13],(void *)"\x55\xAA\x5A\xA5",4); // Telem off
if(binding_idx&0x02)
@@ -52,30 +49,34 @@ static void __attribute__((unused)) FrSkyX_build_bind_packet()
else
{
//packet 1D 03 01 0E 1C 02 00 00 32 0B 00 00 A8 26 28 01 A1 00 00 00 3E F6 87 C7 00 00 00 00 C9 C9
packet[5] = rx_tx_addr[1]; // Unknown but constant ID?
//Unknown bytes
if(state & 0x01)
memcpy(&packet[7],"\x00\x18\x0A\x00\x00\xE0\x02\x0B\x01\xD3\x08\x00\x00\x4C\xFE\x87\xC7",17);
else
memcpy(&packet[7],"\x27\xAD\x02\x00\x00\x64\xC8\x46\x00\x64\x00\x00\x00\xFB\xF6\x87\xC7",17);
//ID
packet[5] = rx_tx_addr[1]; // ID
packet[6] = RX_num;
//Bind flags
packet[7]=0;
if(binding_idx&0x01)
packet[7] |= 0x40; // Telem off
if(binding_idx&0x02)
packet[7] |= 0x80; // CH9-16
//Unknown bytes
memcpy(&packet[8],"\x32\x0B\x00\x00\xA8\x26\x28\x01\xA1\x00\x00\x00\x3E\xF6\x87\xC7",16);
packet[20]^= 0x0E ^ rx_tx_addr[3]; // Update the ID
packet[21]^= 0x1C ^ rx_tx_addr[2]; // Update the ID
//Replace the ID
packet[20] ^= 0x0E ^ rx_tx_addr[3]; // Update the ID
packet[21] ^= 0x1C ^ rx_tx_addr[2]; // Update the ID
//Xor
for(uint8_t i=3; i<packet_size-1; i++)
for(uint8_t i=3; i<packet_length-1; i++)
packet[i] ^= 0xA7;
}
//CRC
uint16_t lcrc = FrSkyX_crc(&packet[3], packet_size-4);
packet[packet_size-1] = lcrc >> 8;
packet[packet_size] = lcrc;
uint16_t lcrc = FrSkyX_crc(&packet[3], packet_length-4);
packet[packet_length-1] = lcrc >> 8;
packet[packet_length] = lcrc;
/*//Debug
debug("Bind:");
for(uint8_t i=0;i<=packet_size;i++)
for(uint8_t i=0;i<=packet_length;i++)
debug(" %02X",packet[i]);
debugln("");*/
}
@@ -85,11 +86,8 @@ static void __attribute__((unused)) FrSkyX_build_packet()
//0x1D 0xB3 0xFD 0x02 0x56 0x07 0x15 0x00 0x00 0x00 0x04 0x40 0x00 0x04 0x40 0x00 0x04 0x40 0x00 0x04 0x40 0x08 0x00 0x00 0x00 0x00 0x00 0x00 0x96 0x12
// data frames sent every 9ms; failsafe every 9 seconds
//
uint8_t packet_size = 0x1D;
if(protocol==PROTO_FRSKYX && (FrSkyFormat & 2 ))
packet_size=0x20; // FrSkyX V1 LBT
//Header
packet[0] = packet_size; // Number of bytes in the packet (after this one)
packet[0] = packet_length; // Number of bytes in the packet (after this one)
packet[1] = rx_tx_addr[3]; // ID
packet[2] = rx_tx_addr[2]; // ID
packet[3] = rx_tx_addr[1]; // Unknown but constant ID?
@@ -98,101 +96,25 @@ static void __attribute__((unused)) FrSkyX_build_packet()
packet[5] = FrSkyX_chanskip>>2;
packet[6] = RX_num;
//Channels
FrSkyX_channels(7); // Set packet[7]=failsafe, packet[8]=0?? and packet[9..20]=channels data
//sequence and send SPort
for (uint8_t i=22;i<packet_size-1;i++)
packet[i]=0;
packet[21] = FrSkyX_RX_Seq << 4; //TX=8 at startup
#ifdef SPORT_SEND
if (FrSkyX_TX_IN_Seq!=0xFF)
{//RX has replied at least once
if (FrSkyX_TX_IN_Seq & 0x08)
{//Request init
//debugln("Init");
FrSkyX_TX_Seq = 0 ;
for(uint8_t i=0;i<4;i++)
FrSkyX_TX_Frames[i].count=0; //Discard frames in current output buffer
}
else if (FrSkyX_TX_IN_Seq & 0x04)
{//Retransmit the requested packet
debugln("Retry:%d",FrSkyX_TX_IN_Seq&0x03);
packet[21] |= FrSkyX_TX_IN_Seq&0x03;
packet[22] = FrSkyX_TX_Frames[FrSkyX_TX_IN_Seq&0x03].count;
for (uint8_t i=23;i<23+FrSkyX_TX_Frames[FrSkyX_TX_IN_Seq&0x03].count;i++)
packet[i] = FrSkyX_TX_Frames[FrSkyX_TX_IN_Seq&0x03].payload[i];
}
else if ( FrSkyX_TX_Seq != 0x08 )
{
if(FrSkyX_TX_Seq==FrSkyX_TX_IN_Seq)
{//Send packet from the incoming radio buffer
//debugln("Send:%d",FrSkyX_TX_Seq);
packet[21] |= FrSkyX_TX_Seq;
uint8_t nbr_bytes=0;
for (uint8_t i=23;i<packet_size-1;i++)
{
if(SportHead==SportTail)
break; //buffer empty
packet[i]=SportData[SportHead];
FrSkyX_TX_Frames[FrSkyX_TX_Seq].payload[i-23]=SportData[SportHead];
SportHead=(SportHead+1) & (MAX_SPORT_BUFFER-1);
nbr_bytes++;
}
packet[22]=nbr_bytes;
FrSkyX_TX_Frames[FrSkyX_TX_Seq].count=nbr_bytes;
if(nbr_bytes)
{//Check the buffer status
uint8_t used = SportTail;
if ( SportHead > SportTail )
used += MAX_SPORT_BUFFER - SportHead ;
else
used -= SportHead ;
if ( used < (MAX_SPORT_BUFFER>>1) )
{
DATA_BUFFER_LOW_off;
debugln("Ok buf:%d",used);
}
}
FrSkyX_TX_Seq = ( FrSkyX_TX_Seq + 1 ) & 0x03 ; //Next iteration send next packet
}
else
{//Not in sequence somehow, transmit what the receiver wants but why not asking for retransmit...
//debugln("RX_Seq:%d,TX:%d",FrSkyX_TX_IN_Seq,FrSkyX_TX_Seq);
packet[21] |= FrSkyX_TX_IN_Seq;
packet[22] = FrSkyX_TX_Frames[FrSkyX_TX_IN_Seq].count;
for (uint8_t i=23;i<23+FrSkyX_TX_Frames[FrSkyX_TX_IN_Seq].count;i++)
packet[i] = FrSkyX_TX_Frames[FrSkyX_TX_IN_Seq].payload[i-23];
}
}
else
packet[21] |= 0x08 ; //FrSkyX_TX_Seq=8 at startup
}
if(packet[22])
{//Debug
debug("SP: ");
for(uint8_t i=0;i<packet[22];i++)
debug("%02X ",packet[23+i]);
debugln("");
}
#else
packet[21] |= FrSkyX_TX_Seq ;//TX=8 at startup
if ( !(FrSkyX_TX_IN_Seq & 0xF8) )
FrSkyX_TX_Seq = ( FrSkyX_TX_Seq + 1 ) & 0x03 ; // Next iteration send next packet
#endif // SPORT_SEND
//Sequence and send SPort
FrSkyX_seq_sport(21,packet_length-2); //21=RX|TXseq, 22=bytes count, 23..packet_length-2=data
//CRC
uint16_t lcrc = FrSkyX_crc(&packet[3], packet_size-4);
packet[packet_size-1] = lcrc >> 8;
packet[packet_size] = lcrc;
uint16_t lcrc = FrSkyX_crc(&packet[3], packet_length-4);
packet[packet_length-1] = lcrc >> 8;
packet[packet_length] = lcrc;
/*//Debug
debug("Norm:");
for(uint8_t i=0;i<=packet_size;i++)
for(uint8_t i=0;i<=packet_length;i++)
debug(" %02X",packet[i]);
debugln("");*/
}
uint16_t ReadFrSkyX()
uint16_t FRSKYX_callback()
{
switch(state)
{
@@ -208,28 +130,24 @@ uint16_t ReadFrSkyX()
state = FRSKY_BIND_DONE;
else
state++;
return 9000;
break;
case FRSKY_BIND_DONE:
FrSkyX_initialize_data(0);
hopping_frequency_no=0;
BIND_DONE;
state++; //FRSKY_DATA1
state++; //FRSKY_DATA1
break;
case FRSKY_DATA1:
CC2500_Strobe(CC2500_SIDLE);
if ( prev_option != option )
{
CC2500_WriteReg(CC2500_0C_FSCTRL0,option); //Frequency offset hack
prev_option = option ;
}
CC2500_SetFreqOffset();
FrSkyX_set_start(hopping_frequency_no);
FrSkyX_build_packet();
if(FrSkyFormat & 2)
{// LBT
CC2500_Strobe(CC2500_SRX); //Acquire RSSI
CC2500_Strobe(CC2500_SRX); //Acquire RSSI
state++;
return 400; // LBT v2.1
return 400; // LBT
}
case FRSKY_DATA2:
if(FrSkyFormat & 2)
@@ -239,135 +157,130 @@ uint16_t ReadFrSkyX()
rssi += CC2500_ReadReg(CC2500_34_RSSI | CC2500_READ_BURST); // 0.5 db/count, RSSI value read from the RSSI status register is a 2's complement number
rssi>>=2;
#if 0
uint8_t rssi_level=convert_channel_8b(CH16)>>1; //CH16 0..127
if ( rssi > rssi_level && rssi < 128) //test rssi level dynamically
uint8_t rssi_level=convert_channel_8b(CH16)>>1; //CH16 0..127
if ( rssi > rssi_level && rssi < 128) //test rssi level dynamically
#else
if ( rssi > 14 && rssi < 128) // if RSSI above -65dBm (12=-70) => ETSI requirement
if ( rssi > 14 && rssi < 128) //if RSSI above -65dBm (12=-70) => ETSI requirement
#endif
{
LBT_POWER_on; // Reduce to low power before transmitting
LBT_POWER_on; //Reduce to low power before transmitting
debugln("Busy %d %d",hopping_frequency_no,rssi);
}
}
CC2500_Strobe(CC2500_SIDLE);
CC2500_Strobe(CC2500_SFTX);
CC2500_Strobe(CC2500_SFTX); //Flush the TXFIFO
CC2500_SetTxRxMode(TX_EN);
CC2500_SetPower();
hopping_frequency_no = (hopping_frequency_no+FrSkyX_chanskip)%47;
CC2500_WriteData(packet, packet[0]+1);
state=FRSKY_DATA3;
if(FrSkyFormat & 2)
return 4000; // LBT v2.1
return 4000; // LBT
else
return 5200; // FCC v2.1
return 5200; // FCC
case FRSKY_DATA3:
CC2500_Strobe(CC2500_SIDLE);
CC2500_Strobe(CC2500_SFRX); //Flush the RXFIFO
CC2500_SetTxRxMode(RX_EN);
CC2500_Strobe(CC2500_SRX);
state++;
if(FrSkyFormat & 2)
return 4100; // LBT v2.1
return 4200; // LBT
else
return 3300; // FCC v2.1
case FRSKY_DATA4:
return 3400; // FCC
case FRSKY_DATA4:
#ifdef MULTI_SYNC
telemetry_set_input_sync(9000);
#endif
#if defined TELEMETRY
telemetry_link=1; //Send telemetry out anyway
#endif
len = CC2500_ReadReg(CC2500_3B_RXBYTES | CC2500_READ_BURST) & 0x7F;
if (len && (len<=(0x0E + 3))) //Telemetry frame is 17
{
//debug("Telem:");
packet_count=0;
CC2500_ReadData(packet_in, len);
#if defined TELEMETRY
if(protocol==PROTO_FRSKYX || (protocol==PROTO_FRSKYX2 && (packet_in[len-1] & 0x80)) )
{//with valid crc for FRSKYX2
len = CC2500_ReadReg(CC2500_3B_RXBYTES | CC2500_READ_BURST) & 0x7F;
if (len && len <= 17) //Telemetry frame is 17 bytes
{
//debug("Telem:");
CC2500_ReadData(packet_in, len); //Read what has been received so far
if(len<17)
{//not all bytes were received
uint8_t last_len=CC2500_ReadReg(CC2500_3B_RXBYTES | CC2500_READ_BURST) & 0x7F;
if(last_len==17) //All bytes received
{
CC2500_ReadData(packet_in+len, last_len-len); //Finish to read
len=17;
}
}
if(len==17 && (protocol==PROTO_FRSKYX || (protocol==PROTO_FRSKYX2 && (packet_in[len-1] & 0x80))) )
{//Telemetry received with valid crc for FRSKYX2
//Debug
//for(uint8_t i=0;i<len;i++)
// debug(" %02X",packet_in[i]);
frsky_check_telemetry(packet_in,len); //Check and parse telemetry packets
if(frsky_process_telemetry(packet_in,len)) //Check and process telemetry packet
{//good packet received
pps_counter++;
if(TX_LQI==0)
TX_LQI++; //Recover telemetry right away
}
}
#endif
//debugln("");
}
else
{
packet_count++;
//debugln("M %d",packet_count);
// restart sequence on missed packet - might need count or timeout instead of one missed
if(packet_count>100)
{//~1sec
FrSkyX_TX_Seq = 0x08 ; //Request init
FrSkyX_TX_IN_Seq = 0xFF ; //No sequence received yet
#ifdef SPORT_SEND
for(uint8_t i=0;i<4;i++)
FrSkyX_TX_Frames[i].count=0; //Discard frames in current output buffer
#endif
packet_count=0;
#if defined TELEMETRY
telemetry_lost=1;
telemetry_link=0; //Stop sending telemetry
#endif
//debugln("");
}
CC2500_Strobe(CC2500_SFRX); //Flush the RXFIFO
}
if (millis() - pps_timer >= 900)
{//1 packet every 9ms
pps_timer = millis();
debugln("%d pps", pps_counter);
TX_LQI = pps_counter; //Max=100%
pps_counter = 0;
}
if(TX_LQI==0)
FrSkyX_telem_init(); //Reset telemetry
else
telemetry_link=1; //Send telemetry out anyway
#endif
state = FRSKY_DATA1;
return 500; // FCC & LBT v2.1
}
return 1;
return 400; // FCC & LBT
}
return 9000;
}
uint16_t initFrSkyX()
void FRSKYX_init()
{
set_rx_tx_addr(MProtocol_id_master);
FrSkyFormat = sub_protocol;
if (sub_protocol==XCLONE)
if (sub_protocol==XCLONE_16||sub_protocol==XCLONE_8)
Frsky_init_clone();
else if(protocol==PROTO_FRSKYX)
{
Frsky_init_hop();
rx_tx_addr[1]=0x02; // ID related, hw version?
}
else
{
#ifdef FRSKYX2_FORCE_ID
rx_tx_addr[3]=0x0E;
rx_tx_addr[2]=0x1C;
FrSkyX_chanskip=18;
#endif
if(protocol==PROTO_FRSKYX)
Frsky_init_hop();
else
{
#ifdef FRSKYX2_FORCE_ID
rx_tx_addr[3]=0x0E;
rx_tx_addr[2]=0x1C;
FrSkyX_chanskip=18;
#endif
FrSkyX2_init_hop();
}
rx_tx_addr[1]=0x02; // ID related, hw version?
FrSkyX2_init_hop();
}
if(protocol==PROTO_FRSKYX && (FrSkyFormat & 2 ))
packet_length = 0x20; // FrSkyX V1 LBT
else
packet_length = 0x1D;
packet_count=0;
while(!FrSkyX_chanskip)
FrSkyX_chanskip=random(0xfefefefe)%47;
FrSkyX_init();
FrSkyX_RF_init();
if(IS_BIND_IN_PROGRESS)
{
memset(packet, 0, packet_length);
state = FRSKY_BIND;
FrSkyX_initialize_data(1);
}
else
{
state = FRSKY_DATA1;
FrSkyX_initialize_data(0);
}
FrSkyX_TX_Seq = 0x08 ; // Request init
FrSkyX_TX_IN_Seq = 0xFF ; // No sequence received yet
#ifdef SPORT_SEND
for(uint8_t i=0;i<4;i++)
FrSkyX_TX_Frames[i].count=0; // discard frames in current output buffer
SportHead=SportTail=0; // empty data buffer
#endif
FrSkyX_RX_Seq = 0 ; // Seq 0 to start with
binding_idx=0; // CH1-8 and Telem on
return 10000;
}
state = FRSKY_BIND_DONE;
FrSkyX_telem_init();
}
#endif

View File

@@ -40,7 +40,7 @@ enum {
FRSKY_RX_DATA,
};
const PROGMEM uint8_t frsky_rx_common_reg[][2] = {
const PROGMEM uint8_t FRSKY_RX_common_reg[][2] = {
{CC2500_02_IOCFG0, 0x01},
{CC2500_18_MCSM0, 0x18},
{CC2500_07_PKTCTRL1, 0x05},
@@ -68,7 +68,7 @@ const PROGMEM uint8_t frsky_rx_common_reg[][2] = {
{CC2500_09_ADDR, 0x03},
};
const PROGMEM uint8_t frsky_rx_d16fcc_reg[][2] = {
const PROGMEM uint8_t FRSKY_RX_d16fcc_reg[][2] = {
{CC2500_17_MCSM1, 0x0C},
{CC2500_0E_FREQ1, 0x76},
{CC2500_0F_FREQ0, 0x27},
@@ -81,7 +81,7 @@ const PROGMEM uint8_t frsky_rx_d16fcc_reg[][2] = {
{CC2500_15_DEVIATN, 0x51},
};
const PROGMEM uint8_t frsky_rx_d16lbt_reg[][2] = {
const PROGMEM uint8_t FRSKY_RX_d16lbt_reg[][2] = {
{CC2500_17_MCSM1, 0x0E},
{CC2500_0E_FREQ1, 0x80},
{CC2500_0F_FREQ0, 0x00},
@@ -94,7 +94,7 @@ const PROGMEM uint8_t frsky_rx_d16lbt_reg[][2] = {
{CC2500_15_DEVIATN, 0x53},
};
const PROGMEM uint8_t frsky_rx_d8_reg[][2] = {
const PROGMEM uint8_t FRSKY_RX_d8_reg[][2] = {
{CC2500_17_MCSM1, 0x0C},
{CC2500_0E_FREQ1, 0x76},
{CC2500_0F_FREQ0, 0x27},
@@ -107,32 +107,32 @@ const PROGMEM uint8_t frsky_rx_d8_reg[][2] = {
{CC2500_15_DEVIATN, 0x42},
};
static uint8_t frsky_rx_chanskip;
static int8_t frsky_rx_finetune;
static uint8_t frsky_rx_format;
static uint8_t FRSKY_RX_chanskip;
static int8_t FRSKY_RX_finetune;
static uint8_t FRSKY_RX_format;
static void __attribute__((unused)) frsky_rx_strobe_rx()
static void __attribute__((unused)) FRSKY_RX_strobe_rx()
{
CC2500_Strobe(CC2500_SIDLE);
CC2500_Strobe(CC2500_SFRX);
CC2500_Strobe(CC2500_SRX);
}
static void __attribute__((unused)) frsky_rx_initialise_cc2500() {
const uint8_t frsky_rx_length[] = { FRSKY_RX_D8_LENGTH, FRSKY_RX_D16FCC_LENGTH, FRSKY_RX_D16LBT_LENGTH, FRSKY_RX_D16v2_LENGTH, FRSKY_RX_D16v2_LENGTH };
packet_length = frsky_rx_length[frsky_rx_format];
static void __attribute__((unused)) FRSKY_RX_initialise_cc2500() {
const uint8_t FRSKY_RX_length[] = { FRSKY_RX_D8_LENGTH, FRSKY_RX_D16FCC_LENGTH, FRSKY_RX_D16LBT_LENGTH, FRSKY_RX_D16v2_LENGTH, FRSKY_RX_D16v2_LENGTH };
packet_length = FRSKY_RX_length[FRSKY_RX_format];
CC2500_Reset();
CC2500_Strobe(CC2500_SIDLE);
for (uint8_t i = 0; i < sizeof(frsky_rx_common_reg) / 2; i++)
CC2500_WriteReg(pgm_read_byte_near(&frsky_rx_common_reg[i][0]), pgm_read_byte_near(&frsky_rx_common_reg[i][1]));
for (uint8_t i = 0; i < sizeof(FRSKY_RX_common_reg) / 2; i++)
CC2500_WriteReg(pgm_read_byte_near(&FRSKY_RX_common_reg[i][0]), pgm_read_byte_near(&FRSKY_RX_common_reg[i][1]));
switch (frsky_rx_format)
switch (FRSKY_RX_format)
{
case FRSKY_RX_D16v2FCC:
case FRSKY_RX_D16FCC:
for (uint8_t i = 0; i < sizeof(frsky_rx_d16fcc_reg) / 2; i++)
CC2500_WriteReg(pgm_read_byte_near(&frsky_rx_d16fcc_reg[i][0]), pgm_read_byte_near(&frsky_rx_d16fcc_reg[i][1]));
if(frsky_rx_format==FRSKY_RX_D16v2FCC)
for (uint8_t i = 0; i < sizeof(FRSKY_RX_d16fcc_reg) / 2; i++)
CC2500_WriteReg(pgm_read_byte_near(&FRSKY_RX_d16fcc_reg[i][0]), pgm_read_byte_near(&FRSKY_RX_d16fcc_reg[i][1]));
if(FRSKY_RX_format==FRSKY_RX_D16v2FCC)
{
CC2500_WriteReg(CC2500_08_PKTCTRL0, 0x05); // Enable CRC
CC2500_WriteReg(CC2500_17_MCSM1, 0x0E); // Go/Stay in RX mode
@@ -141,36 +141,36 @@ static void __attribute__((unused)) frsky_rx_initialise_cc2500() {
break;
case FRSKY_RX_D16v2LBT:
case FRSKY_RX_D16LBT:
for (uint8_t i = 0; i < sizeof(frsky_rx_d16lbt_reg) / 2; i++)
CC2500_WriteReg(pgm_read_byte_near(&frsky_rx_d16lbt_reg[i][0]), pgm_read_byte_near(&frsky_rx_d16lbt_reg[i][1]));
if(frsky_rx_format==FRSKY_RX_D16v2LBT)
for (uint8_t i = 0; i < sizeof(FRSKY_RX_d16lbt_reg) / 2; i++)
CC2500_WriteReg(pgm_read_byte_near(&FRSKY_RX_d16lbt_reg[i][0]), pgm_read_byte_near(&FRSKY_RX_d16lbt_reg[i][1]));
if(FRSKY_RX_format==FRSKY_RX_D16v2LBT)
CC2500_WriteReg(CC2500_08_PKTCTRL0, 0x05); // Enable CRC
break;
case FRSKY_RX_D8:
for (uint8_t i = 0; i < sizeof(frsky_rx_d8_reg) / 2; i++)
CC2500_WriteReg(pgm_read_byte_near(&frsky_rx_d8_reg[i][0]), pgm_read_byte_near(&frsky_rx_d8_reg[i][1]));
for (uint8_t i = 0; i < sizeof(FRSKY_RX_d8_reg) / 2; i++)
CC2500_WriteReg(pgm_read_byte_near(&FRSKY_RX_d8_reg[i][0]), pgm_read_byte_near(&FRSKY_RX_d8_reg[i][1]));
CC2500_WriteReg(CC2500_23_FSCAL3, 0x89);
break;
}
CC2500_WriteReg(CC2500_0A_CHANNR, 0); // bind channel
rx_disable_lna = IS_POWER_FLAG_on;
CC2500_SetTxRxMode(rx_disable_lna ? TXRX_OFF : RX_EN); // lna disable / enable
frsky_rx_strobe_rx();
FRSKY_RX_strobe_rx();
delayMicroseconds(1000); // wait for RX to activate
}
static void __attribute__((unused)) frsky_rx_set_channel(uint8_t channel)
static void __attribute__((unused)) FRSKY_RX_set_channel(uint8_t channel)
{
CC2500_WriteReg(CC2500_0A_CHANNR, hopping_frequency[channel]);
if(frsky_rx_format == FRSKY_RX_D8)
if(FRSKY_RX_format == FRSKY_RX_D8)
CC2500_WriteReg(CC2500_23_FSCAL3, 0x89);
CC2500_WriteReg(CC2500_25_FSCAL1, calData[channel]);
frsky_rx_strobe_rx();
FRSKY_RX_strobe_rx();
}
static void __attribute__((unused)) frsky_rx_calibrate()
static void __attribute__((unused)) FRSKY_RX_calibrate()
{
frsky_rx_strobe_rx();
FRSKY_RX_strobe_rx();
for (unsigned c = 0; c < 47; c++)
{
CC2500_Strobe(CC2500_SIDLE);
@@ -193,7 +193,7 @@ static uint8_t __attribute__((unused)) frskyx_rx_check_crc_id(bool bind,bool ini
uint8_t offset=bind?3:1;
// Check D8 checksum
if (frsky_rx_format == FRSKY_RX_D8)
if (FRSKY_RX_format == FRSKY_RX_D8)
{
if((packet[packet_length+1] & 0x80) != 0x80) // Check CRC_OK flag in status byte 2
return false; // Bad CRC
@@ -201,15 +201,16 @@ static uint8_t __attribute__((unused)) frskyx_rx_check_crc_id(bool bind,bool ini
{//Save TXID
rx_tx_addr[3] = packet[3];
rx_tx_addr[2] = packet[4];
rx_tx_addr[1] = packet[17];
}
else
if(rx_tx_addr[3] != packet[offset] || rx_tx_addr[2] != packet[offset+1])
if(rx_tx_addr[3] != packet[offset] || rx_tx_addr[2] != packet[offset+1] || rx_tx_addr[1] != packet[bind?17:5])
return false; // Bad address
return true; // Full match
}
// Check D16v2 checksum
if (frsky_rx_format == FRSKY_RX_D16v2LBT || frsky_rx_format == FRSKY_RX_D16v2FCC)
if (FRSKY_RX_format == FRSKY_RX_D16v2LBT || FRSKY_RX_format == FRSKY_RX_D16v2FCC)
if((packet[packet_length+1] & 0x80) != 0x80) // Check CRC_OK flag in status byte 2
return false;
//debugln("HW Checksum ok");
@@ -221,12 +222,12 @@ static uint8_t __attribute__((unused)) frskyx_rx_check_crc_id(bool bind,bool ini
return false; // Bad CRC
//debugln("Checksum ok");
if (bind && (frsky_rx_format == FRSKY_RX_D16v2LBT || frsky_rx_format == FRSKY_RX_D16v2FCC))
if (bind && (FRSKY_RX_format == FRSKY_RX_D16v2LBT || FRSKY_RX_format == FRSKY_RX_D16v2FCC))
for(uint8_t i=3; i<packet_length-2; i++) //unXOR bind packet
packet[i] ^= 0xA7;
uint8_t offset2=0;
if (bind && (frsky_rx_format == FRSKY_RX_D16LBT || frsky_rx_format == FRSKY_RX_D16FCC))
if (bind && (FRSKY_RX_format == FRSKY_RX_D16LBT || FRSKY_RX_format == FRSKY_RX_D16FCC))
offset2=6;
if(init)
{//Save TXID
@@ -247,7 +248,7 @@ static uint8_t __attribute__((unused)) frskyx_rx_check_crc_id(bool bind,bool ini
return true; // Full match
}
static void __attribute__((unused)) frsky_rx_build_telemetry_packet()
static void __attribute__((unused)) FRSKY_RX_build_telemetry_packet()
{
uint16_t raw_channel[8];
uint32_t bits = 0;
@@ -255,7 +256,7 @@ static void __attribute__((unused)) frsky_rx_build_telemetry_packet()
uint8_t idx = 0;
uint8_t i;
if (frsky_rx_format == FRSKY_RX_D8)
if (FRSKY_RX_format == FRSKY_RX_D8)
{// decode D8 channels
raw_channel[0] = ((packet[10] & 0x0F) << 8 | packet[6]);
raw_channel[1] = ((packet[10] & 0xF0) << 4 | packet[7]);
@@ -298,7 +299,7 @@ static void __attribute__((unused)) frsky_rx_build_telemetry_packet()
packet_in[idx++] = RX_LQI;
packet_in[idx++] = RX_RSSI;
packet_in[idx++] = 0; // start channel
packet_in[idx++] = frsky_rx_format == FRSKY_RX_D8 ? 8 : 16; // number of channels in packet
packet_in[idx++] = FRSKY_RX_format == FRSKY_RX_D8 ? 8 : 16; // number of channels in packet
// pack channels
for (i = 0; i < packet_in[3]; i++) {
@@ -312,29 +313,29 @@ static void __attribute__((unused)) frsky_rx_build_telemetry_packet()
}
}
static void __attribute__((unused)) frsky_rx_data()
static void __attribute__((unused)) FRSKY_RX_data()
{
uint16_t temp = FRSKY_RX_EEPROM_OFFSET;
frsky_rx_format = eeprom_read_byte((EE_ADDR)temp++) % FRSKY_RX_FORMATS;
FRSKY_RX_format = eeprom_read_byte((EE_ADDR)temp++) % FRSKY_RX_FORMATS;
rx_tx_addr[3] = eeprom_read_byte((EE_ADDR)temp++);
rx_tx_addr[2] = eeprom_read_byte((EE_ADDR)temp++);
rx_tx_addr[1] = eeprom_read_byte((EE_ADDR)temp++);
rx_tx_addr[0] = RX_num;
frsky_rx_finetune = eeprom_read_byte((EE_ADDR)temp++);
debug("format=%d, ", frsky_rx_format);
FRSKY_RX_finetune = eeprom_read_byte((EE_ADDR)temp++);
debug("format=%d, ", FRSKY_RX_format);
debug("addr[3]=%02X, ", rx_tx_addr[3]);
debug("addr[2]=%02X, ", rx_tx_addr[2]);
debug("addr[1]=%02X, ", rx_tx_addr[1]);
debug("rx_num=%02X, ", rx_tx_addr[0]);
debugln("tune=%d", (int8_t)frsky_rx_finetune);
if(frsky_rx_format != FRSKY_RX_D16v2LBT && frsky_rx_format != FRSKY_RX_D16v2FCC)
debugln("tune=%d", (int8_t)FRSKY_RX_finetune);
if(FRSKY_RX_format != FRSKY_RX_D16v2LBT && FRSKY_RX_format != FRSKY_RX_D16v2FCC)
{//D8 & D16v1
for (uint8_t ch = 0; ch < 47; ch++)
hopping_frequency[ch] = eeprom_read_byte((EE_ADDR)temp++);
}
else
{
FrSkyFormat=frsky_rx_format == FRSKY_RX_D16v2FCC?0:2;
FrSkyFormat=FRSKY_RX_format == FRSKY_RX_D16v2FCC?0:2;
FrSkyX2_init_hop();
}
debug("ch:");
@@ -342,52 +343,74 @@ static void __attribute__((unused)) frsky_rx_data()
debug(" %02X", hopping_frequency[ch]);
debugln("");
frsky_rx_initialise_cc2500();
frsky_rx_calibrate();
FRSKY_RX_initialise_cc2500();
FRSKY_RX_calibrate();
CC2500_WriteReg(CC2500_18_MCSM0, 0x08); // FS_AUTOCAL = manual
CC2500_WriteReg(CC2500_09_ADDR, rx_tx_addr[3]); // set address
CC2500_WriteReg(CC2500_07_PKTCTRL1, 0x05); // check address
if (option == 0)
CC2500_WriteReg(CC2500_0C_FSCTRL0, frsky_rx_finetune);
CC2500_WriteReg(CC2500_0C_FSCTRL0, FRSKY_RX_finetune);
else
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
frsky_rx_set_channel(hopping_frequency_no);
FRSKY_RX_set_channel(hopping_frequency_no);
phase = FRSKY_RX_DATA;
}
uint16_t initFrSky_Rx()
void FRSKY_RX_init()
{
state = 0;
frsky_rx_chanskip = 1;
hopping_frequency_no = 0;
rx_data_started = false;
frsky_rx_finetune = 0;
telemetry_link = 0;
packet_count = 0;
if (IS_BIND_IN_PROGRESS)
if(sub_protocol == FRSKY_ERASE)
{
frsky_rx_format = FRSKY_RX_D8;
frsky_rx_initialise_cc2500();
phase = FRSKY_RX_TUNE_START;
debugln("FRSKY_RX_TUNE_START");
if(IS_BIND_IN_PROGRESS)
{// Clear all cloned addresses
uint16_t addr[]={ FRSKYD_CLONE_EEPROM_OFFSET+1, FRSKYX_CLONE_EEPROM_OFFSET+1, FRSKYX2_CLONE_EEPROM_OFFSET+1 };
for(uint8_t i=0; i<3;i++)
for(uint8_t j=0; j<3;j++)
eeprom_write_byte((EE_ADDR)(addr[i]+j), 0xFF);
packet_count = 100;
}
}
else
frsky_rx_data();
return 1000;
{
FRSKY_RX_chanskip = 1;
hopping_frequency_no = 0;
rx_data_started = false;
FRSKY_RX_finetune = 0;
telemetry_link = 0;
packet_count = 0;
if (IS_BIND_IN_PROGRESS)
{
FRSKY_RX_format = FRSKY_RX_D8;
FRSKY_RX_initialise_cc2500();
phase = FRSKY_RX_TUNE_START;
debugln("FRSKY_RX_TUNE_START");
}
else
FRSKY_RX_data();
}
}
uint16_t FrSky_Rx_callback()
uint16_t FRSKY_RX_callback()
{
static uint32_t pps_timer=0;
static uint8_t pps_counter=0;
static int8_t read_retry = 0;
static int8_t tune_low, tune_high;
uint8_t len, ch;
if(sub_protocol == FRSKY_ERASE)
{
if(packet_count)
packet_count--;
else
BIND_DONE;
return 10000; // Nothing to do...
}
if(IS_BIND_DONE && phase != FRSKY_RX_DATA)
FRSKY_RX_init(); // Abort bind
if ((prev_option != option) && (phase >= FRSKY_RX_DATA))
{
if (option == 0)
CC2500_WriteReg(CC2500_0C_FSCTRL0, frsky_rx_finetune);
CC2500_WriteReg(CC2500_0C_FSCTRL0, FRSKY_RX_finetune);
else
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
prev_option = option;
@@ -408,19 +431,20 @@ uint16_t FrSky_Rx_callback()
CC2500_ReadData(packet, len);
if(frskyx_rx_check_crc_id(true,true))
{
frsky_rx_finetune = -127;
CC2500_WriteReg(CC2500_0C_FSCTRL0, frsky_rx_finetune);
FRSKY_RX_finetune = -127;
CC2500_WriteReg(CC2500_0C_FSCTRL0, FRSKY_RX_finetune);
phase = FRSKY_RX_TUNE_LOW;
debugln("FRSKY_RX_TUNE_LOW");
frsky_rx_strobe_rx();
FRSKY_RX_strobe_rx();
state = 0;
return 1000;
}
}
frsky_rx_format = (frsky_rx_format + 1) % FRSKY_RX_FORMATS; // switch to next format (D8, D16FCC, D16LBT, D16v2FCC, D16v2LBT)
frsky_rx_initialise_cc2500();
frsky_rx_finetune += 10;
CC2500_WriteReg(CC2500_0C_FSCTRL0, frsky_rx_finetune);
frsky_rx_strobe_rx();
FRSKY_RX_format = (FRSKY_RX_format + 1) % FRSKY_RX_FORMATS; // switch to next format (D8, D16FCC, D16LBT, D16v2FCC, D16v2LBT)
FRSKY_RX_initialise_cc2500();
FRSKY_RX_finetune += 10;
CC2500_WriteReg(CC2500_0C_FSCTRL0, FRSKY_RX_finetune);
FRSKY_RX_strobe_rx();
return 18000;
case FRSKY_RX_TUNE_LOW:
@@ -428,18 +452,18 @@ uint16_t FrSky_Rx_callback()
{
CC2500_ReadData(packet, len);
if(frskyx_rx_check_crc_id(true,false)) {
tune_low = frsky_rx_finetune;
frsky_rx_finetune = 127;
CC2500_WriteReg(CC2500_0C_FSCTRL0, frsky_rx_finetune);
tune_low = FRSKY_RX_finetune;
FRSKY_RX_finetune = 127;
CC2500_WriteReg(CC2500_0C_FSCTRL0, FRSKY_RX_finetune);
phase = FRSKY_RX_TUNE_HIGH;
debugln("FRSKY_RX_TUNE_HIGH");
frsky_rx_strobe_rx();
FRSKY_RX_strobe_rx();
return 1000;
}
}
frsky_rx_finetune += 1;
CC2500_WriteReg(CC2500_0C_FSCTRL0, frsky_rx_finetune);
frsky_rx_strobe_rx();
FRSKY_RX_finetune += 1;
CC2500_WriteReg(CC2500_0C_FSCTRL0, FRSKY_RX_finetune);
FRSKY_RX_strobe_rx();
return 18000;
case FRSKY_RX_TUNE_HIGH:
@@ -447,9 +471,9 @@ uint16_t FrSky_Rx_callback()
{
CC2500_ReadData(packet, len);
if(frskyx_rx_check_crc_id(true,false)) {
tune_high = frsky_rx_finetune;
frsky_rx_finetune = (tune_low + tune_high) / 2;
CC2500_WriteReg(CC2500_0C_FSCTRL0, (int8_t)frsky_rx_finetune);
tune_high = FRSKY_RX_finetune;
FRSKY_RX_finetune = (tune_low + tune_high) / 2;
CC2500_WriteReg(CC2500_0C_FSCTRL0, (int8_t)FRSKY_RX_finetune);
if(tune_low < tune_high)
{
phase = FRSKY_RX_BIND;
@@ -460,13 +484,13 @@ uint16_t FrSky_Rx_callback()
phase = FRSKY_RX_TUNE_START;
debugln("FRSKY_RX_TUNE_START");
}
frsky_rx_strobe_rx();
FRSKY_RX_strobe_rx();
return 1000;
}
}
frsky_rx_finetune -= 1;
CC2500_WriteReg(CC2500_0C_FSCTRL0, frsky_rx_finetune);
frsky_rx_strobe_rx();
FRSKY_RX_finetune -= 1;
CC2500_WriteReg(CC2500_0C_FSCTRL0, FRSKY_RX_finetune);
FRSKY_RX_strobe_rx();
return 18000;
case FRSKY_RX_BIND:
@@ -474,7 +498,7 @@ uint16_t FrSky_Rx_callback()
{
CC2500_ReadData(packet, len);
if(frskyx_rx_check_crc_id(true,false)) {
if(frsky_rx_format != FRSKY_RX_D16v2LBT && frsky_rx_format != FRSKY_RX_D16v2FCC)
if(FRSKY_RX_format != FRSKY_RX_D16v2LBT && FRSKY_RX_format != FRSKY_RX_D16v2FCC)
{// D8 & D16v1
if(packet[5] <= 0x2D)
{
@@ -484,7 +508,7 @@ uint16_t FrSky_Rx_callback()
}
}
else
state=0x3FF; //No hop table for D16v2
state = 0x3FF; //No hop table for D16v2
if (state == 0x3FF)
{
debugln("Bind complete");
@@ -493,27 +517,27 @@ uint16_t FrSky_Rx_callback()
uint16_t temp = FRSKY_RX_EEPROM_OFFSET;
if(sub_protocol==FRSKY_CLONE)
{
if(frsky_rx_format==FRSKY_RX_D8)
if(FRSKY_RX_format==FRSKY_RX_D8)
temp=FRSKYD_CLONE_EEPROM_OFFSET;
else if(frsky_rx_format == FRSKY_RX_D16FCC || frsky_rx_format == FRSKY_RX_D16LBT)
else if(FRSKY_RX_format == FRSKY_RX_D16FCC || FRSKY_RX_format == FRSKY_RX_D16LBT)
temp=FRSKYX_CLONE_EEPROM_OFFSET;
else
temp=FRSKYX2_CLONE_EEPROM_OFFSET;
}
eeprom_write_byte((EE_ADDR)temp++, frsky_rx_format);
eeprom_write_byte((EE_ADDR)temp++, FRSKY_RX_format);
eeprom_write_byte((EE_ADDR)temp++, rx_tx_addr[3]);
eeprom_write_byte((EE_ADDR)temp++, rx_tx_addr[2]);
eeprom_write_byte((EE_ADDR)temp++, rx_tx_addr[1]);
if(sub_protocol==FRSKY_RX)
eeprom_write_byte((EE_ADDR)temp++, frsky_rx_finetune);
if(frsky_rx_format != FRSKY_RX_D16v2FCC && frsky_rx_format != FRSKY_RX_D16v2LBT)
if(sub_protocol == FRSKY_RX || sub_protocol == FRSKY_CPPM) // FRSKY_RX, FRSKY_CPPM
eeprom_write_byte((EE_ADDR)temp++, FRSKY_RX_finetune);
if(FRSKY_RX_format != FRSKY_RX_D16v2FCC && FRSKY_RX_format != FRSKY_RX_D16v2LBT)
for (ch = 0; ch < 47; ch++)
eeprom_write_byte((EE_ADDR)temp++, hopping_frequency[ch]);
frsky_rx_data();
FRSKY_RX_data();
debugln("FRSKY_RX_DATA");
}
}
frsky_rx_strobe_rx();
FRSKY_RX_strobe_rx();
}
return 1000;
@@ -530,31 +554,35 @@ uint16_t FrSky_Rx_callback()
RX_RSSI += 128;
bool chanskip_valid=true;
// hop to next channel
if (frsky_rx_format != FRSKY_RX_D8)
if (FRSKY_RX_format != FRSKY_RX_D8)
{//D16v1 & D16v2
if(rx_data_started)
{
if(frsky_rx_chanskip != (((packet[4] & 0xC0) >> 6) | ((packet[5] & 0x3F) << 2)))
if(FRSKY_RX_chanskip != (((packet[4] & 0xC0) >> 6) | ((packet[5] & 0x3F) << 2)))
{
chanskip_valid=false; // chanskip value has changed which surely indicates a bad frame
packet_count++;
if(packet_count>5) // the TX must have changed chanskip...
frsky_rx_chanskip = ((packet[4] & 0xC0) >> 6) | ((packet[5] & 0x3F) << 2); // chanskip init
FRSKY_RX_chanskip = ((packet[4] & 0xC0) >> 6) | ((packet[5] & 0x3F) << 2); // chanskip init
}
else
packet_count=0;
}
else
frsky_rx_chanskip = ((packet[4] & 0xC0) >> 6) | ((packet[5] & 0x3F) << 2); // chanskip init
FRSKY_RX_chanskip = ((packet[4] & 0xC0) >> 6) | ((packet[5] & 0x3F) << 2); // chanskip init
}
hopping_frequency_no = (hopping_frequency_no + frsky_rx_chanskip) % 47;
frsky_rx_set_channel(hopping_frequency_no);
hopping_frequency_no = (hopping_frequency_no + FRSKY_RX_chanskip) % 47;
FRSKY_RX_set_channel(hopping_frequency_no);
if(chanskip_valid)
{
if (telemetry_link == 0)
if ((telemetry_link & 0x7F) == 0)
{ // send channels to TX
frsky_rx_build_telemetry_packet();
FRSKY_RX_build_telemetry_packet();
telemetry_link = 1;
#ifdef SEND_CPPM
if(sub_protocol == FRSKY_CPPM)
telemetry_link |= 0x80; // Disable telemetry output
#endif
}
pps_counter++;
}
@@ -578,8 +606,8 @@ uint16_t FrSky_Rx_callback()
// skip channel if no packet received in time
if (read_retry++ >= 9) {
hopping_frequency_no = (hopping_frequency_no + frsky_rx_chanskip) % 47;
frsky_rx_set_channel(hopping_frequency_no);
hopping_frequency_no = (hopping_frequency_no + FRSKY_RX_chanskip) % 47;
FRSKY_RX_set_channel(hopping_frequency_no);
if(rx_data_started)
read_retry = 0;
else

View File

@@ -14,10 +14,12 @@
*/
// Last sync with main deviation/sfhss_cc2500.c dated 2016-03-23
#if defined(SFHSS_CC2500_INO)
#if defined(FUTABA_CC2500_INO)
#include "iface_cc2500.h"
//#define SFHSS_DEBUG_TIMING
#define SFHSS_COARSE 0
#define SFHSS_PACKET_LEN 13
@@ -79,7 +81,6 @@ static void __attribute__((unused)) SFHSS_rf_init()
for (uint8_t i = 0; i < 39; ++i)
CC2500_WriteReg(i, pgm_read_byte_near(&SFHSS_init_values[i]));
prev_option = option;
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
CC2500_SetTxRxMode(TX_EN);
@@ -125,7 +126,7 @@ static void __attribute__((unused)) SFHSS_calc_next_chan()
// Channel values are 12-bit values between 1020 and 2020, 1520 is the middle.
// Futaba @140% is 2070...1520...970
// Values grow down and to the right.
static void __attribute__((unused)) SFHSS_build_data_packet()
static void __attribute__((unused)) SFHSS_send_packet()
{
uint16_t ch[4];
// command.bit0 is the packet number indicator: =0 -> SFHSS_DATA1, =1 -> SFHSS_DATA2
@@ -165,16 +166,14 @@ static void __attribute__((unused)) SFHSS_build_data_packet()
// 3584-4095 -> looks to be used for the throttle channel with values ranging from 880µs to 1520µs
for(uint8_t i=0;i<4;i++)
{
ch[i]=Failsafe_data[CH_AETR[ch_offset+i]];
if(ch[i]==FAILSAFE_CHANNEL_HOLD)
uint16_t val=Failsafe_data[CH_AETR[ch_offset+i]];
if(val==FAILSAFE_CHANNEL_HOLD)
ch[i]=1024;
else if(ch[i]==FAILSAFE_CHANNEL_NOPULSES)
else if(val==FAILSAFE_CHANNEL_NOPULSES)
ch[i]=0;
else
{ //Use channel value
ch[i]=(ch[i]>>1)+2560;
//if(IS_DISABLE_CH_MAP_off && ch_offset+i==CH3 && ch[i]<3072) // Throttle
// ch[i]+=1024;
ch[i] = convert_channel_16b_nolimit(CH_AETR[ch_offset+i],3571,2571,true); //3472,2672: not enough throw
}
}
}
@@ -182,7 +181,7 @@ static void __attribute__((unused)) SFHSS_build_data_packet()
#endif
{ //Normal data
for(uint8_t i=0;i<4;i++)
ch[i] = convert_channel_16b_nolimit(CH_AETR[ch_offset+i],2020,1020);
ch[i] = convert_channel_16b_nolimit(CH_AETR[ch_offset+i],2020,1020,false);
}
@@ -203,15 +202,17 @@ static void __attribute__((unused)) SFHSS_build_data_packet()
packet[10] = (ch[2] << 7) | ((ch[3] >> 5) & 0x7F );
packet[11] = (ch[3] << 3) | ((fhss_code >> 2) & 0x07 );
packet[12] = (fhss_code << 6) | command;
}
static void __attribute__((unused)) SFHSS_send_packet()
{
CC2500_WriteData(packet, SFHSS_PACKET_LEN);
}
uint16_t ReadSFHSS()
uint16_t SFHSS_callback()
{
#ifdef SFHSS_DEBUG_TIMING
static uint16_t prev_adjust_timing=1024;
uint16_t adjust_timing = (Channel_data[CH15]>>3) - (1024>>3); // +-102 @ 100%
#endif
switch(phase)
{
case SFHSS_START:
@@ -238,16 +239,27 @@ uint16_t ReadSFHSS()
#ifdef MULTI_SYNC
telemetry_set_input_sync(6800);
#endif
SFHSS_build_data_packet();
SFHSS_send_packet();
phase = SFHSS_DATA2;
#ifdef SFHSS_DEBUG_TIMING
return SFHSS_DATA2_TIMING - adjust_timing;
#else
return SFHSS_DATA2_TIMING; // original 1650
#endif
case SFHSS_DATA2:
SFHSS_build_data_packet();
SFHSS_send_packet();
SFHSS_calc_next_chan();
phase = SFHSS_TUNE;
return (SFHSS_PACKET_PERIOD -2000 -SFHSS_DATA2_TIMING); // original 2000
#ifdef SFHSS_DEBUG_TIMING
if(prev_adjust_timing != adjust_timing)
{
debugln("A:%d",(uint16_t)(SFHSS_DATA2_TIMING - adjust_timing));
prev_adjust_timing = adjust_timing;
}
return SFHSS_PACKET_PERIOD -2000 -(SFHSS_DATA2_TIMING - adjust_timing);
#else
return SFHSS_PACKET_PERIOD -2000 -SFHSS_DATA2_TIMING; // original 2000
#endif
case SFHSS_TUNE:
phase = SFHSS_DATA1;
SFHSS_tune_freq();
@@ -288,7 +300,7 @@ static void __attribute__((unused)) SFHSS_get_tx_id()
rx_tx_addr[1] = fixed_id >> 0;
}
uint16_t initSFHSS()
void SFHSS_init()
{
BIND_DONE; // Not a TX bind protocol
SFHSS_get_tx_id();
@@ -297,7 +309,6 @@ uint16_t initSFHSS()
SFHSS_rf_init();
phase = SFHSS_START;
return 10000;
}
#endif

View File

@@ -14,9 +14,9 @@ Multiprotocol is distributed in the hope that it will be useful,
*/
// Compatible with GD005 C-17 and GD006 DA62 planes.
#if defined(GD00X_NRF24L01_INO)
#if defined(GD00X_CCNRF_INO)
#include "iface_nrf250k.h"
#include "iface_xn297.h"
//#define FORCE_GD00X_ORIGINAL_ID
@@ -113,7 +113,7 @@ static void __attribute__((unused)) GD00X_send_packet()
if(IS_BIND_DONE)
{
XN297L_Hopping(hopping_frequency_no);
XN297_Hopping(hopping_frequency_no);
if(sub_protocol==GD_V1)
{
hopping_frequency_no++;
@@ -121,21 +121,22 @@ static void __attribute__((unused)) GD00X_send_packet()
}
}
XN297L_WritePayload(packet, packet_length);
XN297L_SetPower(); // Set tx_power
XN297L_SetFreqOffset(); // Set frequency offset
// Send
XN297_SetFreqOffset();
XN297_SetPower();
XN297_SetTxRxMode(TX_EN);
XN297_WritePayload(packet, packet_length);
}
static void __attribute__((unused)) GD00X_init()
static void __attribute__((unused)) GD00X_RF_init()
{
XN297L_Init();
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_250K);
if(sub_protocol==GD_V1)
XN297L_SetTXAddr((uint8_t*)"\xcc\xcc\xcc\xcc\xcc", 5);
XN297_SetTXAddr((uint8_t*)"\xcc\xcc\xcc\xcc\xcc", 5);
else
XN297L_SetTXAddr((uint8_t*)"GDKNx", 5);
XN297L_HoppingCalib(sub_protocol==GD_V1?GD00X_RF_NUM_CHANNELS:GD00X_V2_RF_NUM_CHANNELS); // Calibrate all channels
XN297L_RFChannel(sub_protocol==GD_V1?GD00X_RF_BIND_CHANNEL:GD00X_V2_RF_BIND_CHANNEL); // Set bind channel
XN297_SetTXAddr((uint8_t*)"GDKNx", 5);
XN297_HoppingCalib(sub_protocol==GD_V1?GD00X_RF_NUM_CHANNELS:GD00X_V2_RF_NUM_CHANNELS); // Calibrate all channels
XN297_RFChannel(sub_protocol==GD_V1?GD00X_RF_BIND_CHANNEL:GD00X_V2_RF_BIND_CHANNEL); // Set bind channel
}
static void __attribute__((unused)) GD00X_initialize_txid()
@@ -204,28 +205,27 @@ static void __attribute__((unused)) GD00X_initialize_txid()
uint16_t GD00X_callback()
{
if(IS_BIND_IN_PROGRESS)
if(--bind_counter==0)
BIND_DONE;
GD00X_send_packet();
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
if(bind_counter)
if(--bind_counter==0)
BIND_DONE;
GD00X_send_packet();
return packet_period;
}
uint16_t initGD00X()
void GD00X_init()
{
BIND_IN_PROGRESS; // autobind protocol
GD00X_initialize_txid();
GD00X_init();
GD00X_RF_init();
hopping_frequency_no = 0;
bind_counter=GD00X_BIND_COUNT;
packet_period=sub_protocol==GD_V1?GD00X_PACKET_PERIOD:GD00X_V2_BIND_PACKET_PERIOD;
packet_length=sub_protocol==GD_V1?GD00X_PAYLOAD_SIZE:GD00X_V2_PAYLOAD_SIZE;
packet_count=0;
len=0;
return GD00X_INITIAL_WAIT;
}
#endif

View File

@@ -19,7 +19,7 @@ Multiprotocol is distributed in the hope that it will be useful,
#if defined(GW008_NRF24L01_INO)
#include "iface_nrf24l01.h"
#include "iface_xn297.h"
#define GW008_INITIAL_WAIT 500
#define GW008_PACKET_PERIOD 2400
@@ -32,10 +32,10 @@ enum {
GW008_DATA
};
static void __attribute__((unused)) GW008_send_packet(uint8_t bind)
static void __attribute__((unused)) GW008_send_packet()
{
packet[0] = rx_tx_addr[0];
if(bind)
if(IS_BIND_IN_PROGRESS)
{
packet[1] = 0x55;
packet[2] = hopping_frequency[0];
@@ -47,6 +47,9 @@ static void __attribute__((unused)) GW008_send_packet(uint8_t bind)
}
else
{
XN297_Hopping((hopping_frequency_no++)/2);
hopping_frequency_no %= 8;
packet[1] = 0x01 | GET_FLAG(CH5_SW, 0x40); // flip
packet[2] = convert_channel_16b_limit(AILERON , 200, 0); // aileron
packet[3] = convert_channel_16b_limit(ELEVATOR, 0, 200); // elevator
@@ -63,38 +66,21 @@ static void __attribute__((unused)) GW008_send_packet(uint8_t bind)
}
packet[14] = rx_tx_addr[1];
// Power on, TX mode, CRC enabled
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP));
NRF24L01_WriteReg(NRF24L01_05_RF_CH, bind ? GW008_RF_BIND_CHANNEL : hopping_frequency[(hopping_frequency_no++)/2]);
hopping_frequency_no %= 8;
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
// Send
XN297_SetPower();
XN297_SetTxRxMode(TX_EN);
XN297_WriteEnhancedPayload(packet, GW008_PAYLOAD_SIZE, 0);
NRF24L01_SetPower(); // Set tx_power
}
static void __attribute__((unused)) GW008_init()
static void __attribute__((unused)) GW008_RF_init()
{
NRF24L01_Initialize();
NRF24L01_SetTxRxMode(TX_EN);
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_1M);
XN297_SetTXAddr((uint8_t*)"\xcc\xcc\xcc\xcc\xcc", 5);
XN297_SetRXAddr((uint8_t*)"\xcc\xcc\xcc\xcc\xcc", 5);
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowldgement on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01);
NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, GW008_PAYLOAD_SIZE+2); // payload + 2 bytes for pcf
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x03);
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0x00); // no retransmits
NRF24L01_SetBitrate(NRF24L01_BR_1M);
NRF24L01_SetPower();
NRF24L01_Activate(0x73); // Activate feature register
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 0x00); // Disable dynamic payload length on all pipes
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, 0x01); // Set feature bits on
NRF24L01_Activate(0x73);
XN297_SetRXAddr((uint8_t*)"\xcc\xcc\xcc\xcc\xcc", GW008_PAYLOAD_SIZE);
//XN297_HoppingCalib(8);
XN297_RFChannel(GW008_RF_BIND_CHANNEL);
}
static void __attribute__((unused)) GW008_initialize_txid()
@@ -109,53 +95,48 @@ uint16_t GW008_callback()
switch(phase)
{
case GW008_BIND1:
if((NRF24L01_ReadReg(NRF24L01_07_STATUS) & _BV(NRF24L01_07_RX_DR)) && // RX fifo data ready
if(XN297_IsRX() && // RX fifo data ready
XN297_ReadEnhancedPayload(packet, GW008_PAYLOAD_SIZE) == GW008_PAYLOAD_SIZE && // check payload size
packet[0] == rx_tx_addr[0] && packet[14] == rx_tx_addr[1]) // check tx id
{
NRF24L01_SetTxRxMode(TXRX_OFF);
NRF24L01_SetTxRxMode(TX_EN);
XN297_SetTxRxMode(TXRX_OFF);
XN297_SetTxRxMode(TX_EN);
rx_tx_addr[2] = packet[13];
BIND_DONE;
phase = GW008_DATA;
}
else
{
NRF24L01_SetTxRxMode(TXRX_OFF);
NRF24L01_SetTxRxMode(TX_EN);
GW008_send_packet(1);
XN297_SetTxRxMode(TXRX_OFF);
XN297_SetTxRxMode(TX_EN);
GW008_send_packet();
phase = GW008_BIND2;
return 850; // minimum value 750 for STM32
}
break;
case GW008_BIND2:
// switch to RX mode
NRF24L01_SetTxRxMode(TXRX_OFF);
NRF24L01_FlushRx();
NRF24L01_SetTxRxMode(RX_EN);
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO)
| _BV(NRF24L01_00_PWR_UP) | _BV(NRF24L01_00_PRIM_RX));
XN297_SetTxRxMode(TXRX_OFF);
XN297_SetTxRxMode(RX_EN);
phase = GW008_BIND1;
return 5000;
break;
case GW008_DATA:
#ifdef MULTI_SYNC
telemetry_set_input_sync(GW008_PACKET_PERIOD);
#endif
GW008_send_packet(0);
GW008_send_packet();
break;
}
return GW008_PACKET_PERIOD;
}
uint16_t initGW008()
void GW008_init()
{
BIND_IN_PROGRESS; // autobind protocol
GW008_initialize_txid();
phase = GW008_BIND1;
GW008_init();
GW008_RF_init();
hopping_frequency_no = 0;
return GW008_INITIAL_WAIT;
}
#endif

View File

@@ -19,7 +19,7 @@
#if defined(H8_3D_NRF24L01_INO)
#include "iface_nrf24l01.h"
#include "iface_xn297.h"
#define H8_3D_PACKET_PERIOD 1800
#define H20H_PACKET_PERIOD 9340
@@ -50,7 +50,7 @@ enum H8_3D_FLAGS_2 {
H8_3D_FLAG_CAM_UP = 0x04,
};
static void __attribute__((unused)) H8_3D_send_packet(uint8_t bind)
static void __attribute__((unused)) H8_3D_send_packet()
{
if(sub_protocol==H20H)
packet[0] = 0x14;
@@ -63,7 +63,7 @@ static void __attribute__((unused)) H8_3D_send_packet(uint8_t bind)
packet[4] = rx_tx_addr[3];
packet[8] = rx_tx_addr[0]+rx_tx_addr[1]+rx_tx_addr[2]+rx_tx_addr[3]; // txid checksum
memset(&packet[9], 0, 10);
if (bind)
if (IS_BIND_IN_PROGRESS)
{
packet[5] = 0x00;
packet[6] = 0x00;
@@ -122,18 +122,16 @@ static void __attribute__((unused)) H8_3D_send_packet(uint8_t bind)
sum += packet[i];
packet[19] = sum; // data checksum
// Power on, TX mode, 2byte CRC
// Why CRC0? xn297 does not interpret it - either 16-bit CRC or nothing
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP));
// RF channel
if(sub_protocol!=H20H)
{ // H8_3D, H20MINI, H30MINI
NRF24L01_WriteReg(NRF24L01_05_RF_CH, bind ? hopping_frequency[0] : hopping_frequency[hopping_frequency_no++]);
XN297_RFChannel(IS_BIND_IN_PROGRESS ? hopping_frequency[0] : hopping_frequency[hopping_frequency_no++]);
hopping_frequency_no %= H8_3D_RF_NUM_CHANNELS;
}
else
{ //H20H
NRF24L01_WriteReg(NRF24L01_05_RF_CH, bind ? H20H_BIND_RF : hopping_frequency[packet_count>>3]);
if(!bind)
{ // H20H
XN297_RFChannel(IS_BIND_IN_PROGRESS ? H20H_BIND_RF : hopping_frequency[packet_count>>3]);
if(IS_BIND_DONE)
{
packet_count++;
if(packet_count>15)
@@ -147,55 +145,39 @@ static void __attribute__((unused)) H8_3D_send_packet(uint8_t bind)
}
}
// clear packet status bits and TX FIFO
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
// Send
XN297_SetPower();
XN297_SetTxRxMode(TX_EN);
XN297_WritePayload(packet, H8_3D_PACKET_SIZE);
NRF24L01_SetPower(); // Set tx_power
}
static void __attribute__((unused)) H8_3D_init()
static void __attribute__((unused)) H8_3D_RF_init()
{
NRF24L01_Initialize();
NRF24L01_SetTxRxMode(TX_EN);
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_1M);
if(sub_protocol==H20H)
XN297_SetTXAddr((uint8_t *)"\xEE\xDD\xCC\xBB\x11", 5);
else // H8_3D, H20MINI, H30MINI
XN297_SetTXAddr((uint8_t *)"\xC4\x57\x09\x65\x21", 5);
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowldgement on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0x00); // no retransmits
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps
NRF24L01_SetPower();
}
uint16_t H8_3D_callback()
{
if(IS_BIND_DONE)
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
H8_3D_send_packet(0);
}
else
if(bind_counter)
{
bind_counter--;
if (bind_counter == 0)
{
BIND_DONE;
packet_count=0;
}
else
{
H8_3D_send_packet(1);
bind_counter--;
}
}
#ifdef MULTI_SYNC
else
telemetry_set_input_sync(packet_period);
#endif
H8_3D_send_packet();
return packet_period;
}
@@ -238,12 +220,12 @@ static void __attribute__((unused)) H8_3D_initialize_txid()
}
}
uint16_t initH8_3D(void)
void H8_3D_init(void)
{
BIND_IN_PROGRESS; // autobind protocol
bind_counter = H8_3D_BIND_COUNT;
H8_3D_initialize_txid();
H8_3D_init();
H8_3D_RF_init();
switch(sub_protocol)
{
case H8_3D:
@@ -257,7 +239,6 @@ uint16_t initH8_3D(void)
packet_period=H20MINI_PACKET_PERIOD;
break;
}
return H8_3D_INITIAL_WAIT;
}
#endif

View File

@@ -86,7 +86,6 @@ static void __attribute__((unused)) HOTT_rf_init()
for (uint8_t i = 0; i < 39; ++i)
CC2500_WriteReg(i, pgm_read_byte_near(&HOTT_init_values[i]));
prev_option = option;
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
CC2500_SetTxRxMode(TX_EN);
@@ -138,7 +137,7 @@ const uint8_t PROGMEM HOTT_hop[][HOTT_NUM_RF_CHANNELS]=
};
const uint16_t PROGMEM HOTT_hop_val[] = { 0xC06B, 0xC34A, 0xDB24, 0x8E09, 0x272E, 0x217F, 0x155B, 0xEDE8, 0x1D31, 0x0986, 0x56F7, 0x6454, 0xC42D, 0x01D2, 0xC253, 0x1180 };
static void __attribute__((unused)) HOTT_init()
static void __attribute__((unused)) HOTT_TXID_init()
{
packet[0] = pgm_read_word_near( &HOTT_hop_val[num_ch] );
packet[1] = pgm_read_word_near( &HOTT_hop_val[num_ch] )>>8;
@@ -159,7 +158,7 @@ static void __attribute__((unused)) HOTT_init()
else
{
memcpy(&packet[40],rx_tx_addr,5);
uint8_t addr=HOTT_EEPROM_OFFSET+RX_num*5;
uint16_t addr=HOTT_EEPROM_OFFSET+RX_num*5;
debug("RXID: ");
for(uint8_t i=0;i<5;i++)
{
@@ -172,10 +171,11 @@ static void __attribute__((unused)) HOTT_init()
static void __attribute__((unused)) HOTT_prep_data_packet()
{
static uint8_t upper=0;
packet[2] = hopping_frequency_no;
packet[3] = 0x00; // used for failsafe but may also be used for additional channels
packet[3] = upper; // used for failsafe and upper channels (only supporting 16 channels)
#ifdef FAILSAFE_ENABLE
static uint8_t failsafe_count=0;
if(IS_FAILSAFE_VALUES_on && IS_BIND_DONE)
@@ -195,13 +195,16 @@ static void __attribute__((unused)) HOTT_prep_data_packet()
uint16_t val;
for(uint8_t i=4;i<28;i+=2)
{
val=Channel_data[(i-4)>>1];
uint8_t ch=(i-4)>>1;
if(upper && ch >= 8)
ch+=4; // when upper swap CH9..CH12 by CH13..16
val=Channel_data[ch];
val=(((val<<2)+val)>>2)+860*2; // value range 860<->2140 *2 <-> -125%<->+125%
#ifdef FAILSAFE_ENABLE
if(failsafe_count==1)
{ // first failsafe packet
packet[3]=0x40;
uint16_t fs=Failsafe_data[(i-4)>>1];
packet[3] |= 0x40;
uint16_t fs=Failsafe_data[ch];
if( fs == FAILSAFE_CHANNEL_HOLD || fs == FAILSAFE_CHANNEL_NOPULSES)
val|=0x8000; // channel hold flag
else
@@ -212,7 +215,7 @@ static void __attribute__((unused)) HOTT_prep_data_packet()
}
else if(failsafe_count==2)
{ // second failsafe packet=timing?
packet[3]=0x50;
packet[3] |= 0x50;
if(i==4)
val=2;
else
@@ -222,6 +225,10 @@ static void __attribute__((unused)) HOTT_prep_data_packet()
packet[i] = val;
packet[i+1] = val>>8;
}
upper ^= 0x01; // toggle between CH9..CH12 and CH13..16
packet[28] = 0x80; // no sensor
packet[29] = 0x02; // 0x02 when bind starts then when RX replies cycle in sequence 0x1A/22/2A/0A/12, 0x02 during normal packets, 0x01->text config menu, 0x0A->no more RX telemetry
#ifdef HOTT_FW_TELEMETRY
if(IS_BIND_DONE)
{
@@ -239,25 +246,23 @@ static void __attribute__((unused)) HOTT_prep_data_packet()
}
else
packet[28] = HoTT_SerialRX_val | 0x0F; // no button pressed
packet[29] = 0x01; // 0x01->Text config menu
}
else
packet[28] = 0x0F; // RX, no button pressed
if(sub_protocol == HOTT_SYNC)
packet[29] = ((HOTT_sensor_seq+1)<<3) | 1; // Telemetry packet sequence
else
packet[29] = 0x01; // 0x01->Text config menu
}
else
{
packet[28] = 0x89+HOTT_sensor_cur; // 0x89/8A/8B/8C/8D/8E during normal packets
if(sub_protocol == HOTT_SYNC)
packet[29] = ((HOTT_sensor_seq+1)<<3) | 2; // Telemetry packet sequence
else
packet[29] = 0x02;
//debugln("28=%02X,29=%02X",packet[28],packet[29]);
}
//debugln("28=%02X,29=%02X",packet[28],packet[29]);
}
else
#endif
{
packet[28] = 0x80; // no sensor
packet[29] = 0x02; // unknown 0x02 when bind starts then when RX replies cycle in sequence 0x1A/22/2A/0A/12, 0x02 during normal packets, 0x01->text config menu, 0x0A->no more RX telemetry
}
CC2500_WriteReg(CC2500_06_PKTLEN, HOTT_TX_PACKET_LEN);
CC2500_WriteRegisterMulti(CC2500_3F_TXFIFO, packet, HOTT_TX_PACKET_LEN);
@@ -272,12 +277,8 @@ static void __attribute__((unused)) HOTT_prep_data_packet()
rf_ch_num=hopping_frequency[hopping_frequency_no];
}
uint16_t ReadHOTT()
uint16_t HOTT_callback()
{
#ifdef HOTT_FW_TELEMETRY
static uint8_t pps_counter=0;
#endif
switch(phase)
{
case HOTT_START:
@@ -349,7 +350,7 @@ uint16_t ReadHOTT()
CC2500_Strobe(CC2500_SFRX);
//RX
if(packet[29] & 0xF8)
{// binary telemetry
{// Sync telemetry
CC2500_WriteReg(CC2500_04_SYNC1, 0x2C);
CC2500_WriteReg(CC2500_05_SYNC0, 0x6E);
}
@@ -378,11 +379,11 @@ uint16_t ReadHOTT()
for(uint8_t i=0;i<HOTT_RX_PACKET_LEN;i++)
debug(" %02X", packet_in[i]);
debugln("");
uint8_t addr=HOTT_EEPROM_OFFSET+RX_num*5;
uint16_t addr=HOTT_EEPROM_OFFSET+RX_num*5;
for(uint8_t i=0; i<5; i++)
eeprom_write_byte((EE_ADDR)(addr+i),packet_in[5+i]);
BIND_DONE;
HOTT_init();
HOTT_TXID_init();
}
#ifdef HOTT_FW_TELEMETRY
else
@@ -412,8 +413,10 @@ uint16_t ReadHOTT()
packet_in[0]= packet_in[HOTT_RX_PACKET_LEN];
packet_in[1]= TX_LQI;
bool send_telem=true;
if(packet[29]==1)
HOTT_sensor_seq++; // Increment RX sequence counter
if(packet[29] & 1)
{ //Text mode
HOTT_sensor_seq %= 19; // 19 pages in Text mode
HOTT_sensor_pages = 0;
HOTT_sensor_valid = false;
packet_in[10] = 0x80; // Marking telem Text mode
@@ -423,7 +426,6 @@ uint16_t ReadHOTT()
}
else
{ //Binary sensor
HOTT_sensor_seq++; // Increment RX sequence counter
HOTT_sensor_seq %= 5; // 5 pages in binary mode per sensor
if(state==0 && HOTT_sensor_ok[0]==false && HOTT_sensor_ok[1]==false && HOTT_sensor_ok[2]==false && HOTT_sensor_ok[3]==false && HOTT_sensor_ok[4]==false && HOTT_sensor_ok[5]==false)
HOTT_sensor_seq=0; // No sensors always ask page 0
@@ -508,10 +510,10 @@ uint16_t ReadHOTT()
return 0;
}
uint16_t initHOTT()
void HOTT_init()
{
num_ch=random(0xfefefefe)%16;
HOTT_init();
HOTT_TXID_init();
HOTT_rf_init();
#ifdef HOTT_FW_TELEMETRY
HoTT_SerialRX_val=0;
@@ -526,7 +528,6 @@ uint16_t initHOTT()
state=HOTT_SENSOR_SEARCH_PERIOD;
#endif
phase = HOTT_START;
return 10000;
}
#endif

View File

@@ -14,16 +14,16 @@
*/
// Compatible with FZ-410 TX
#if defined(FLYZONE_A7105_INO)
#if defined(HEIGHT_A7105_INO)
#include "iface_a7105.h"
//#define FLYZONE_FORCEID
//#define HEIGHT_FORCEID
#define FLYZONE_BIND_COUNT 220 // 5 sec
#define FLYZONE_BIND_CH 0x18 // TX, RX for bind end is 0x17
#define HEIGHT_BIND_COUNT 220 // 5 sec
#define HEIGHT_BIND_CH 0x18 // TX, RX for bind end is 0x17
static void __attribute__((unused)) flyzone_build_packet()
static void __attribute__((unused)) HEIGHT_build_packet()
{
packet[0] = 0xA5;
packet[1] = rx_tx_addr[2];
@@ -33,11 +33,17 @@ static void __attribute__((unused)) flyzone_build_packet()
packet[5] = convert_channel_8b(THROTTLE); //00..FF
packet[6] = convert_channel_8b(RUDDER); //00..80..FF
packet[7] = convert_channel_8b(CH5); //00..80..FF
if(sub_protocol == HEIGHT_8CH)
{
packet[8] = convert_channel_8b(CH6); //00..80..FF
packet[9] = convert_channel_8b(CH7); //00..80..FF
packet[10] = convert_channel_8b(CH8); //00..80..FF
}
}
uint16_t ReadFlyzone()
uint16_t HEIGHT_callback()
{
#ifndef FORCE_FLYZONE_TUNING
#ifndef FORCE_HEIGHT_TUNING
A7105_AdjustLOBaseFreq(1);
#endif
if(IS_BIND_IN_PROGRESS)
@@ -45,7 +51,7 @@ uint16_t ReadFlyzone()
packet[0] = 0x1B;
packet[1] = rx_tx_addr[2];
packet[2] = rx_tx_addr[3];
A7105_WriteData(3, FLYZONE_BIND_CH);
A7105_WriteData(3, HEIGHT_BIND_CH);
if (bind_counter--==0)
BIND_DONE;
return 22700;
@@ -58,8 +64,8 @@ uint16_t ReadFlyzone()
#ifdef MULTI_SYNC
telemetry_set_input_sync(20*1500);
#endif
flyzone_build_packet();
A7105_WriteData(8, hopping_frequency[0]);
HEIGHT_build_packet();
A7105_WriteData(sub_protocol?11:8, hopping_frequency[0]);
A7105_SetPower();
}
else
@@ -72,14 +78,14 @@ uint16_t ReadFlyzone()
return 1500;
}
uint16_t initFlyzone()
void HEIGHT_init()
{
A7105_Init();
hopping_frequency[0]=((random(0xfefefefe) & 0x0F)+2)<<2;
hopping_frequency[1]=hopping_frequency[0]+0x50;
#ifdef FLYZONE_FORCEID
#ifdef HEIGHT_FORCEID
rx_tx_addr[2]=0x35;
rx_tx_addr[3]=0xD0;
hopping_frequency[0]=0x18;
@@ -87,8 +93,7 @@ uint16_t initFlyzone()
#endif
phase=255;
bind_counter = FLYZONE_BIND_COUNT;
return 2400;
bind_counter = HEIGHT_BIND_COUNT;
}
#endif
// Normal packet is 8 bytes: 0xA5 0xAF 0x59 0x84 0x7A 0x00 0x80 0xFF

View File

@@ -24,44 +24,7 @@
//
uint8_t bind_buf_arry[4][10];
// HiSky protocol uses TX id as an address for nRF24L01, and uses frequency hopping sequence
// which does not depend on this id and is passed explicitly in binding sequence. So we are free
// to generate this sequence as we wish. It should be in the range [02..77]
static void __attribute__((unused)) calc_fh_channels()
{
uint8_t idx = 0;
uint32_t rnd = MProtocol_id;
while (idx < HISKY_FREQUENCE_NUM)
{
uint8_t i;
uint8_t count_2_26 = 0, count_27_50 = 0, count_51_74 = 0;
rnd = rnd * 0x0019660D + 0x3C6EF35F; // Randomization
// Use least-significant byte. 73 is prime, so channels 76..77 are unused
uint8_t next_ch = ((rnd >> 8) % 73) + 2;
// Keep the distance 2 between the channels - either odd or even
if (((next_ch ^ (uint8_t)rx_tx_addr[3]) & 0x01 )== 0)
continue;
// Check that it's not duplicated and spread uniformly
for (i = 0; i < idx; i++) {
if(hopping_frequency[i] == next_ch)
break;
if(hopping_frequency[i] <= 26)
count_2_26++;
else if (hopping_frequency[i] <= 50)
count_27_50++;
else
count_51_74++;
}
if (i != idx)
continue;
if ( (next_ch <= 26 && count_2_26 < 8) || (next_ch >= 27 && next_ch <= 50 && count_27_50 < 8) || (next_ch >= 51 && count_51_74 < 8) )
hopping_frequency[idx++] = next_ch;//find hopping frequency
}
}
static void __attribute__((unused)) build_binding_packet(void)
static void __attribute__((unused)) HISKY_build_binding_packet(void)
{
uint8_t i;
uint16_t sum=0;
@@ -95,28 +58,21 @@ static void __attribute__((unused)) build_binding_packet(void)
}
}
static void __attribute__((unused)) hisky_init()
static void __attribute__((unused)) HISKY_RF_init()
{
NRF24L01_Initialize();
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowledgement
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable p0 rx
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x03); // 5-byte RX/TX address (byte -2)
NRF24L01_WriteReg(NRF24L01_05_RF_CH, 81); // binding packet must be set in channel 81
NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, rx_tx_addr, 5);
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, rx_tx_addr, 5);
NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, 10); // payload size = 10
if(sub_protocol==HK310)
NRF24L01_SetBitrate(NRF24L01_BR_250K); // 250Kbps
else
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps
NRF24L01_SetPower(); // Set power
NRF24L01_SetTxRxMode(TX_EN); // TX mode, 2-bytes CRC, radio on
NRF24L01_SetBitrate(NRF24L01_BR_250K); // 250Kbps
}
// HiSky channel sequence: AILE ELEV THRO RUDD GEAR PITCH, channel data value is from 0 to 1000
// Channel 7 - Gyro mode, 0 - 6 axis, 3 - 3 axis
static void __attribute__((unused)) build_ch_data()
static void __attribute__((unused)) HISKY_build_ch_data()
{
uint16_t temp;
uint8_t i,j;
@@ -133,7 +89,7 @@ static void __attribute__((unused)) build_ch_data()
}
}
uint16_t hisky_cb()
uint16_t HISKY_callback()
{
phase++;
if(sub_protocol==HK310)
@@ -223,7 +179,7 @@ uint16_t hisky_cb()
#ifdef MULTI_SYNC
telemetry_set_input_sync(9000);
#endif
build_ch_data();
HISKY_build_ch_data();
break;
case 8:
break;
@@ -236,7 +192,7 @@ uint16_t hisky_cb()
return 1000; // send 1 binding packet and 1 data packet per 9ms
}
static void __attribute__((unused)) initialize_tx_id()
static void __attribute__((unused)) HISKY_initialize_tx_id()
{
//Generate frequency hopping table
if(sub_protocol==HK310)
@@ -248,14 +204,17 @@ static void __attribute__((unused)) initialize_tx_id()
hopping_frequency[i]=hopping_frequency_no++; // Sequential order hop channels...
}
else
calc_fh_channels();
calc_fh_channels(HISKY_FREQUENCE_NUM);
// HiSky air protocol uses TX id as an address for nRF24L01, and uses frequency hopping sequence
// which does not depend on this id and is passed explicitly in binding sequence. So we are free
// to generate this sequence as we wish. It should be in the range [02..77]
}
uint16_t initHiSky()
void HISKY_init()
{
initialize_tx_id();
build_binding_packet();
hisky_init();
HISKY_initialize_tx_id();
HISKY_build_binding_packet();
HISKY_RF_init();
phase = 0;
hopping_frequency_no = 0;
binding_idx = 0;
@@ -264,7 +223,6 @@ uint16_t initHiSky()
bind_counter = HISKY_BIND_COUNT;
else
bind_counter = 0;
return 1000;
}
#endif

View File

@@ -54,9 +54,9 @@ static void __attribute__((unused)) HITEC_CC2500_init()
for (uint8_t i = 0; i < 39; ++i)
CC2500_WriteReg(i, pgm_read_byte_near(&HITEC_init_values[i]));
prev_option = option;
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
prev_option = option;
CC2500_SetTxRxMode(TX_EN);
CC2500_SetPower();
}
@@ -165,7 +165,7 @@ static void __attribute__((unused)) HITEC_build_packet()
packet[0] = 0x1A; // 26 bytes to follow
for(uint8_t i=0;i<9;i++)
{
uint16_t ch = convert_channel_16b_nolimit(i,0x1B87,0x3905);
uint16_t ch = convert_channel_16b_nolimit(i,0x1B87,0x3905,false);
packet[4+2*i] = ch >> 8;
packet[5+2*i] = ch & 0xFF;
}
@@ -220,7 +220,7 @@ static void __attribute__((unused)) HITEC_send_packet()
packet[23] >>= 1; // packet sequence
}
uint16_t ReadHITEC()
uint16_t HITEC_callback()
{
switch(phase)
{
@@ -390,7 +390,7 @@ uint16_t ReadHITEC()
return 0;
}
uint16_t initHITEC()
void HITEC_init()
{
HITEC_RF_channels();
#ifdef HITEC_FORCE_ID // ID and channels taken from dump
@@ -400,7 +400,6 @@ uint16_t initHITEC()
memcpy((void *)hopping_frequency,(void *)"\x00\x3A\x4A\x32\x0C\x58\x2A\x10\x26\x20\x08\x60\x68\x70\x78\x80\x88\x56\x5E\x66\x6E",HITEC_NUM_FREQUENCE);
#endif
phase = HITEC_START;
return 10000;
}
/* Full telemetry

View File

@@ -15,7 +15,7 @@
#if defined(HONTAI_NRF24L01_INO)
#include "iface_nrf24l01.h"
#include "iface_xn297.h" // mix of nrf and xn297 at 1Mb...
#define HONTAI_BIND_COUNT 80
#define HONTAI_PACKET_PERIOD 13500
@@ -34,40 +34,21 @@ enum{
HONTAI_FLAG_CALIBRATE = 0x20,
};
// proudly swiped from http://www.drdobbs.com/implementing-the-ccitt-cyclical-redundan/199904926
#define HONTAI_POLY 0x8408
static void __attribute__((unused)) crc16(uint8_t *data_p, uint8_t length)
static void __attribute__((unused)) HONTAI_send_packet()
{
uint16_t crc = 0xffff;
length -= 2;
do
{
for (uint8_t i = 0, data = (uint8_t)*data_p++;
i < 8;
i++, data >>= 1)
{
if ((crc & 0x01) ^ (data & 0x01))
crc = (crc >> 1) ^ HONTAI_POLY;
else
crc >>= 1;
}
} while (--length);
crc = ~crc;
*data_p++ = crc & 0xff;
*data_p = crc >> 8;
}
static void __attribute__((unused)) HONTAI_send_packet(uint8_t bind)
{
if (bind)
if (IS_BIND_IN_PROGRESS)
{
memcpy(packet, rx_tx_addr, 5);
memset(&packet[5], 0, 3);
packet_length = HONTAI_BIND_PACKET_SIZE;
}
else
{
/*if(sub_protocol == JJRCX1)
NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency[hopping_frequency_no++]);
else*/
XN297_Hopping(hopping_frequency_no++);
hopping_frequency_no %= 3;
memset(packet,0,HONTAI_PACKET_SIZE);
packet[3] = convert_channel_16b_limit(THROTTLE, 0, 127) << 1; // Throttle
packet[4] = convert_channel_16b_limit(AILERON, 63, 0); // Aileron
@@ -125,60 +106,56 @@ static void __attribute__((unused)) HONTAI_send_packet(uint8_t bind)
packet[6] |= GET_FLAG(CH9_SW, 0x40); // Headless
break;
}
packet_length = HONTAI_PACKET_SIZE;
}
crc16(packet, bind ? HONTAI_BIND_PACKET_SIZE:HONTAI_PACKET_SIZE);
// CRC 16 bits reflected in and out
crc=0xFFFF;
for(uint8_t i=0; i< packet_length-2; i++)
crc16_update(bit_reverse(packet[i]),8);
crc ^= 0xFFFF;
packet[packet_length-2]=bit_reverse(crc>>8);
packet[packet_length-1]=bit_reverse(crc);
// Power on, TX mode, 2byte CRC
if(sub_protocol == JJRCX1)
/*if(sub_protocol == JJRCX1)
{
NRF24L01_SetPower();
NRF24L01_SetTxRxMode(TX_EN);
else
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP));
NRF24L01_WriteReg(NRF24L01_05_RF_CH, bind ? HONTAI_RF_BIND_CHANNEL : hopping_frequency[hopping_frequency_no++]);
hopping_frequency_no %= 3;
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
}
else*/
{
XN297_SetPower();
XN297_SetTxRxMode(TX_EN);
}
if(sub_protocol == JJRCX1)
NRF24L01_WritePayload(packet, bind ? HONTAI_BIND_PACKET_SIZE:HONTAI_PACKET_SIZE);
NRF24L01_WritePayload(packet, packet_length);
else
XN297_WritePayload(packet, bind ? HONTAI_BIND_PACKET_SIZE:HONTAI_PACKET_SIZE);
NRF24L01_SetPower();
XN297_WritePayload(packet, packet_length);
}
static void __attribute__((unused)) HONTAI_init()
static void __attribute__((unused)) HONTAI_RF_init()
{
NRF24L01_Initialize();
NRF24L01_SetTxRxMode(TX_EN);
if(sub_protocol == JJRCX1)
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, (uint8_t*)"\xd2\xb5\x99\xb3\x4a", 5);
else
XN297_SetTXAddr((const uint8_t*)"\xd2\xb5\x99\xb3\x4a", 5);
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowldgement on all data pipes
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps
NRF24L01_SetPower();
NRF24L01_Activate(0x73); // Activate feature register
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_1M); // this will select the nrf and initialize it, therefore both sub protocols can use common instructions
if(sub_protocol == JJRCX1)
{
//NRF24L01_Initialize();
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, (uint8_t*)"\xd2\xb5\x99\xb3\x4a", 5);
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0xff); // JJRC uses dynamic payload length
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 0x3f); // match other stock settings even though AA disabled...
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, 0x07);
//NRF24L01_WriteReg(NRF24L01_05_RF_CH, HONTAI_RF_BIND_CHANNEL);
}
else
{
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0x00); // no retransmits
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 0x00); // Disable dynamic payload length on all pipes
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, 0x00);
XN297_SetTXAddr((const uint8_t*)"\xd2\xb5\x99\xb3\x4a", 5);
//XN297_HoppingCalib(3);
}
NRF24L01_Activate(0x73); // Deactivate feature register
XN297_RFChannel(HONTAI_RF_BIND_CHANNEL);
}
const uint8_t PROGMEM HONTAI_hopping_frequency_nonels[][3] = {
@@ -202,9 +179,9 @@ static void __attribute__((unused)) HONTAI_init2()
data_tx_addr[3] = pgm_read_byte_near( &HONTAI_addr_vals[3][(rx_tx_addr[4] >> 4) & 0x0f]);
data_tx_addr[4] = 0x24;
if(sub_protocol == JJRCX1)
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, data_tx_addr, sizeof(data_tx_addr));
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, data_tx_addr, 5);
else
XN297_SetTXAddr(data_tx_addr, sizeof(data_tx_addr));
XN297_SetTXAddr(data_tx_addr, 5);
//Hopping frequency table
for(uint8_t i=0;i<3;i++)
@@ -231,9 +208,11 @@ static void __attribute__((unused)) HONTAI_initialize_txid()
uint16_t HONTAI_callback()
{
if(bind_counter!=0)
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
if(bind_counter)
{
HONTAI_send_packet(1);
bind_counter--;
if (bind_counter == 0)
{
@@ -241,24 +220,16 @@ uint16_t HONTAI_callback()
BIND_DONE;
}
}
else
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
HONTAI_send_packet(0);
}
HONTAI_send_packet();
return packet_period;
}
uint16_t initHONTAI()
void HONTAI_init()
{
BIND_IN_PROGRESS; // autobind protocol
bind_counter = HONTAI_BIND_COUNT;
HONTAI_initialize_txid();
HONTAI_init();
HONTAI_RF_init();
packet_period = sub_protocol == FQ777_951 ? FQ777_951_PACKET_PERIOD : HONTAI_PACKET_PERIOD;
return HONTAI_INITIAL_WAIT;
}
#endif

View File

@@ -285,7 +285,7 @@ static uint8_t __attribute__((unused)) hubsan_check_integrity()
}
#endif
uint16_t ReadHubsan()
uint16_t HUBSAN_callback()
{
#ifdef HUBSAN_HUB_TELEMETRY
static uint8_t rfMode=0;
@@ -446,7 +446,7 @@ uint16_t ReadHubsan()
return 0;
}
uint16_t initHubsan()
void HUBSAN_init()
{
const uint8_t allowed_ch[] = {0x14, 0x1e, 0x28, 0x32, 0x3c, 0x46, 0x50, 0x5a, 0x64, 0x6e, 0x78, 0x82};
A7105_Init();
@@ -467,7 +467,6 @@ uint16_t initHubsan()
}
packet_count=0;
bind_phase=0;
return 10000;
}
#endif

View File

@@ -0,0 +1,122 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// This module makes it possible to bind to and control the IKEA "Ansluta" line
// of remote-controlled lights.
// To bind, first switch the receiver into binding mode, then the TX.
// Once bound, the TX can send one of three commands:
// lights off, lights dimmed 50% and lights on.
// Those are mapped to throttle ranges 0..0x55, 0x56..0xAA, 0xAB..0xFF.
#if defined(IKEAANSLUTA_CC2500_INO)
#include "iface_cc2500.h"
#define IKEAANSLUTA_BIND_COUNT 30 // ~ 2sec autobind/65ms per loop = 30 binding packets
// Commands
#define IKEAANSLUTA_LIGHT_OFF 0x01
#define IKEAANSLUTA_LIGHT_DIM 0x02 // 50% dimmed light
#define IKEAANSLUTA_LIGHT_ON 0x03
#define IKEAANSLUTA_PAIR 0xFF
void IKEAANSLUTA_send_command(uint8_t command){
CC2500_Strobe(CC2500_SIDLE);
packet[4] = option;
packet[5] = command;
CC2500_WriteData(packet, 8);
}
uint16_t IKEAANSLUTA_callback(void)
{
if (bind_counter) {
IKEAANSLUTA_send_command(IKEAANSLUTA_PAIR);
if(--bind_counter == 0) {
BIND_DONE;
CC2500_SetPower();
}
}
else {
uint8_t throttle = convert_channel_8b(THROTTLE);
uint8_t cmd = throttle <= 0x55 ? IKEAANSLUTA_LIGHT_OFF :
throttle <= 0xAA ? IKEAANSLUTA_LIGHT_DIM :
IKEAANSLUTA_LIGHT_ON;
IKEAANSLUTA_send_command(cmd);
}
return 65535; // 65ms loop cycle is more than enough here (we could make it even longer if not for uint16_t)
}
// Register initialization values as a continuous memory block (to save on flash memory)
const PROGMEM uint8_t IKEAANSLUTA_init_values[] = {
0xFF, // CC2500_06_PKTLEN
0x04, // CC2500_07_PKTCTRL1
0x05, // CC2500_08_PKTCTRL0
0x00, // CC2500_09_ADDR (unused, default)
0x10, // CC2500_0A_CHANNR
0x09, // CC2500_0B_FSCTRL1
0x00, // CC2500_0C_FSCTRL0
0x5D, // CC2500_0D_FREQ2
0x93, // CC2500_0E_FREQ1
0xB1, // CC2500_0F_FREQ0
0x2D, // CC2500_10_MDMCFG4
0x3B, // CC2500_11_MDMCFG3
0x73, // CC2500_12_MDMCFG2
0xA2, // CC2500_13_MDMCFG1
0xF8, // CC2500_14_MDMCFG0
0x01, // CC2500_15_DEVIATN
0x07, // CC2500_16_MCSM2
0x30, // CC2500_17_MCSM1
0x18, // CC2500_18_MCSM0
0x1D, // CC2500_19_FOCCFG
0x1C, // CC2500_1A_BSCFG
0xC7, // CC2500_1B_AGCCTRL2
0x00, // CC2500_1C_AGCCTRL1
0xB2, // CC2500_1D_AGCCTRL0
0x87, // CC2500_1E_WOREVT1 (unused, default)
0x6b, // CC2500_1F_WOREVT0 (unused, default)
0xf8, // CC2500_20_WORCTRL (unused, default)
0xB6, // CC2500_21_FREND1
0x10, // CC2500_22_FREND0
0xEA, // CC2500_23_FSCAL3
0x0A, // CC2500_24_FSCAL2
0x00, // CC2500_25_FSCAL1
0x11, // CC2500_26_FSCAL0
0x41, // CC2500_27_RCCTRL1
0x00, // CC2500_28_RCCTRL0
};
void IKEAANSLUTA_init(void)
{
if (IS_BIND_DONE) bind_counter = 0;
else bind_counter = IKEAANSLUTA_BIND_COUNT;
// All packets we send are the same
packet[0] = 0x06;
packet[1] = 0x55;
packet[2] = 0x01;
// Bytes 3&4 are the transmitter address (to which the RX binds)
// Byte 5 is the command.
packet[3] = rx_tx_addr[3]; // <pseudorandom tx-fixed value> + <rx_num>
// packet[4] = option;
// packet[5] = 0x00; // Command goes here
packet[6] = 0xAA;
packet[7] = 0xFF;
// Configure & initialize CC2500
for (uint8_t i = 0; i <= CC2500_28_RCCTRL0-CC2500_06_PKTLEN; ++i)
CC2500_WriteReg(CC2500_06_PKTLEN+i, pgm_read_byte_near(&IKEAANSLUTA_init_values[i]));
CC2500_SetTxRxMode(TX_EN);
CC2500_SetPower();
}
#endif

View File

@@ -59,7 +59,7 @@ static void __attribute__((unused)) j6pro_build_data_packet()
packet[0] = 0xaa; //FIXME what is this?
for (i = 0; i < 12; i++)
{
value = convert_channel_10b(CH_AETR[i]);
value = convert_channel_10b(CH_AETR[i], false);
packet[i+1] = value & 0xff;
upperbits |= (value >> 8) << (i * 2);
}
@@ -111,8 +111,8 @@ static void __attribute__((unused)) cyrf_datainit()
{
/* Use when already bound */
uint8_t sop_idx = (0xff & (cyrfmfg_id[0] + cyrfmfg_id[1] + cyrfmfg_id[2] + cyrfmfg_id[3] - cyrfmfg_id[5])) % 19;
uint16_t crc = (0xff & (cyrfmfg_id[1] - cyrfmfg_id[4] + cyrfmfg_id[5])) |
((0xff & (cyrfmfg_id[2] + cyrfmfg_id[3] - cyrfmfg_id[4] + cyrfmfg_id[5])) << 8);
crc = (0xff & (cyrfmfg_id[1] - cyrfmfg_id[4] + cyrfmfg_id[5])) |
((0xff & (cyrfmfg_id[2] + cyrfmfg_id[3] - cyrfmfg_id[4] + cyrfmfg_id[5])) << 8);
//CYRF_WriteRegister(CYRF_0F_XACT_CFG, 0x24);
CYRF_PROGMEM_ConfigSOPCode(DEVO_j6pro_sopcodes[sop_idx]);
CYRF_ConfigCRCSeed(crc);
@@ -126,7 +126,7 @@ static void __attribute__((unused)) j6pro_set_radio_channels()
hopping_frequency[3] = hopping_frequency[0];
}
uint16_t ReadJ6Pro()
uint16_t J6PRO_callback()
{
uint16_t start;
@@ -226,7 +226,7 @@ uint16_t ReadJ6Pro()
return 0;
}
uint16_t initJ6Pro()
void J6PRO_init()
{
j6pro_cyrf_init();
@@ -234,7 +234,6 @@ uint16_t initJ6Pro()
phase = J6PRO_BIND;
else
phase = J6PRO_CHANSEL;
return 2400;
}
#endif

View File

@@ -16,7 +16,7 @@
#if defined(JJRC345_NRF24L01_INO)
#include "iface_nrf24l01.h"
#include "iface_xn297.h"
//#define JJRC345_FORCE_ID
@@ -24,6 +24,7 @@
#define JJRC345_INITIAL_WAIT 500
#define JJRC345_PACKET_SIZE 16
#define JJRC345_RF_BIND_CHANNEL 5
#define SKYTMBLR_RF_BIND_CHANNEL 40
#define JJRC345_BIND_COUNT 500
#define JJRC345_NUM_CHANNELS 4
@@ -32,6 +33,12 @@ enum JJRC345_FLAGS {
// flags going to packet[8]
JJRC345_FLAG_HEADLESS = 0x40,
JJRC345_FLAG_RTH = 0x80,
// flags going to packet[9]
SKYTMBLR_FLAG_UNK1 = 0x40,
SKYTMBLR_FLAG_UNK2 = 0x80,
// flags going to packet[10]
SKYTMBLR_FLAG_LED = 0x40,
SKYTMBLR_FLAG_UNK3 = 0x80,
};
static uint8_t __attribute__((unused)) JJRC345_convert_channel(uint8_t num)
@@ -55,7 +62,7 @@ static void __attribute__((unused)) JJRC345_send_packet()
packet[2] = 0x00;
if (IS_BIND_IN_PROGRESS)
{ //00 05 00 0A 46 4A 41 47 00 00 40 46 A5 4A F1 18
packet[1] = JJRC345_RF_BIND_CHANNEL;
packet[1] = (sub_protocol == JJRC345 ? JJRC345_RF_BIND_CHANNEL:SKYTMBLR_RF_BIND_CHANNEL);
packet[4] = hopping_frequency[0];
packet[5] = hopping_frequency[1];
packet[6] = hopping_frequency[2];
@@ -64,7 +71,7 @@ static void __attribute__((unused)) JJRC345_send_packet()
}
else
{ //00 41 00 0A 00 80 80 80 00 00 40 46 00 49 F1 18
NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency[hopping_frequency_no]);
XN297_Hopping(hopping_frequency_no);
hopping_frequency_no++;
hopping_frequency_no %= JJRC345_NUM_CHANNELS;
packet[1] = hopping_frequency[hopping_frequency_no]; // next packet will be sent on this channel
@@ -92,10 +99,14 @@ static void __attribute__((unused)) JJRC345_send_packet()
packet[3] = 0x00; // Checksum upper bits
packet[8] = 0x00 // Rudder trim, 00 when not used, 01..1F when trimmed left, 20..3F
| GET_FLAG(CH6_SW,JJRC345_FLAG_HEADLESS) // Headless mode: 00 normal, 40 headless
| GET_FLAG(CH7_SW,JJRC345_FLAG_RTH); // RTH: 80 active
packet[9] = 0; // Elevator trim, 00 when not used, 20..25 when trimmed up, 0..1F when trimmed down
packet[10] = 0x40; // Aileron trim, 40 when not used, 40..5F when trimmed left, 61..7F when trimmed right
| GET_FLAG(CH6_SW ,JJRC345_FLAG_HEADLESS) // 0x40 HeadLess
| GET_FLAG(CH7_SW ,JJRC345_FLAG_RTH); // 0x80 RTH
packet[9] = 0x00 // Elevator trim, 00 when not used, 20..25 when trimmed up, 0..1F when trimmed down
| GET_FLAG(CH9_SW ,SKYTMBLR_FLAG_UNK1) // 0x40 Unknown
| GET_FLAG(CH10_SW,SKYTMBLR_FLAG_UNK2); // 0x80 Unknown
packet[10] = 0x00 // Aileron trim, 00 when not used, 00..1F when trimmed left, 21..3F when trimmed right
| GET_FLAG(!CH8_SW,SKYTMBLR_FLAG_LED) // 0x40 LED
| GET_FLAG(CH11_SW,SKYTMBLR_FLAG_UNK3); // 0x80 Unknown
packet[11] = hopping_frequency[0]; // First hopping frequency
@@ -110,28 +121,18 @@ static void __attribute__((unused)) JJRC345_send_packet()
packet[14] = rx_tx_addr[2];
packet[15] = rx_tx_addr[3];
// Power on, TX mode
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP));
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
// Send
XN297_SetPower();
XN297_SetTxRxMode(TX_EN);
XN297_WritePayload(packet, JJRC345_PACKET_SIZE);
NRF24L01_SetPower(); // Set tx_power
}
static void __attribute__((unused)) JJRC345_init()
static void __attribute__((unused)) JJRC345_RF_init()
{
NRF24L01_Initialize();
NRF24L01_SetTxRxMode(TX_EN);
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_1M);
XN297_SetTXAddr((uint8_t*)"\xcc\xcc\xcc\xcc\xcc", 5);
NRF24L01_WriteReg(NRF24L01_05_RF_CH, JJRC345_RF_BIND_CHANNEL); // Bind channel
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowldgement on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1 Mbps
NRF24L01_SetPower();
//XN297_HoppingCalib(JJRC345_NUM_CHANNELS);
XN297_RFChannel(sub_protocol == JJRC345 ? JJRC345_RF_BIND_CHANNEL:SKYTMBLR_RF_BIND_CHANNEL); // Bind channel
}
uint16_t JJRC345_callback()
@@ -139,11 +140,10 @@ uint16_t JJRC345_callback()
#ifdef MULTI_SYNC
telemetry_set_input_sync(JJRC345_PACKET_PERIOD);
#endif
if(IS_BIND_IN_PROGRESS)
if(bind_counter)
{
if (bind_counter)
bind_counter--;
else
bind_counter--;
if (bind_counter==0)
BIND_DONE;
}
JJRC345_send_packet();
@@ -172,13 +172,12 @@ static void __attribute__((unused)) JJRC345_initialize_txid()
#endif
}
uint16_t initJJRC345(void)
void JJRC345_init(void)
{
BIND_IN_PROGRESS; // autobind protocol
bind_counter = JJRC345_BIND_COUNT;
JJRC345_initialize_txid();
JJRC345_init();
return JJRC345_INITIAL_WAIT;
JJRC345_RF_init();
}
#endif

View File

@@ -0,0 +1,115 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(JOYSWAY_A7105_INO)
#include "iface_a7105.h"
//#define JOYSWAY_FORCE_ID
static void __attribute__((unused)) JOYSWAY_send_packet()
{
static uint8_t next_ch = 0x30;
//RF frequency
if (packet_count == 254)
{
packet_count = 0;
A7105_WriteID(0x5475c52a);
rf_ch_num = 0x0a;
}
else if (packet_count == 2)
{
A7105_WriteID(MProtocol_id);
rf_ch_num = 0x30;
}
else
{
if (packet_count & 0x01)
rf_ch_num = 0x30;
else
rf_ch_num = next_ch;
}
if (! (packet_count & 0x01))
{
next_ch++;
if (next_ch >= 0x45)
next_ch = 0x30;
}
//Payload
packet[0] = packet_count == 0 ? 0xdd : 0xff;
//ID
packet[1] = rx_tx_addr[0];
packet[2] = rx_tx_addr[1];
packet[3] = rx_tx_addr[2];
packet[4] = rx_tx_addr[3];
packet[5] = 0x00;
//Channels
for (uint8_t i = 0; i < 4; i++)
packet[ 6 + (i & 0x01) + ((i & 0x02)<<1)] = convert_channel_16b_limit(i, 0x00, 0xCC);
packet[8] = 0x64;
packet[9] = 0x64;
packet[12] = 0x64;
packet[13] = 0x64;
packet[14] = packet_count == 0 ? 0x30 : 0xaa;
//Check
uint8_t value = 0;
for (uint8_t i = 0; i < 15; i++)
value += packet[i];
packet[15] = value;
//Send
#if 0
debug("ch=%02X P=",rf_ch_num);
for(uint8_t i=0; i<16; i++)
debug("%02X ", packet[i]);
debugln("");
#endif
A7105_WriteData(16, rf_ch_num);
A7105_SetPower();
packet_count++;
}
uint16_t JOYSWAY_callback()
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(6000);
#endif
#ifndef FORCE_JOYSWAY_TUNING
A7105_AdjustLOBaseFreq(1);
#endif
JOYSWAY_send_packet();
return 6000;
}
void JOYSWAY_init()
{
BIND_DONE; // not a bind protocol
MProtocol_id &= 0x00FFFFFF;
MProtocol_id |= 0xF8000000;
#ifdef JOYSWAY_FORCE_ID
MProtocol_id = 0xf82dcaa0;
#endif
set_rx_tx_addr(MProtocol_id);
A7105_Init();
packet_count = 2;
}
#endif

View File

@@ -14,9 +14,9 @@ Multiprotocol is distributed in the hope that it will be useful,
*/
// Compatible with KF606 plane.
#if defined(KF606_NRF24L01_INO)
#if defined(KF606_CCNRF_INO)
#include "iface_nrf250k.h"
#include "iface_xn297.h"
//#define FORCE_KF606_ORIGINAL_ID
@@ -45,14 +45,15 @@ static void __attribute__((unused)) KF606_send_packet()
}
if(IS_BIND_DONE)
{
XN297L_Hopping(hopping_frequency_no);
XN297_Hopping(hopping_frequency_no);
hopping_frequency_no ^= 1; // 2 RF channels
}
XN297L_WritePayload(packet, KF606_PAYLOAD_SIZE);
XN297L_SetPower(); // Set tx_power
XN297L_SetFreqOffset(); // Set frequency offset
// Send
XN297_SetPower();
XN297_SetFreqOffset();
XN297_SetTxRxMode(TX_EN);
XN297_WritePayload(packet, KF606_PAYLOAD_SIZE);
}
static void __attribute__((unused)) KF606_initialize_txid()
@@ -76,12 +77,12 @@ static void __attribute__((unused)) KF606_initialize_txid()
#endif
}
static void __attribute__((unused)) KF606_init()
static void __attribute__((unused)) KF606_RF_init()
{
XN297L_Init();
XN297L_SetTXAddr((uint8_t*)"\xe7\xe7\xe7\xe7\xe7", 5);
XN297L_HoppingCalib(KF606_RF_NUM_CHANNELS); // Calibrate all channels
XN297L_RFChannel(KF606_RF_BIND_CHANNEL); // Set bind channel
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_250K);
XN297_SetTXAddr((uint8_t*)"\xe7\xe7\xe7\xe7\xe7", 5);
XN297_HoppingCalib(KF606_RF_NUM_CHANNELS); // Calibrate all channels
XN297_RFChannel(KF606_RF_BIND_CHANNEL); // Set bind channel
}
uint16_t KF606_callback()
@@ -89,7 +90,7 @@ uint16_t KF606_callback()
#ifdef MULTI_SYNC
telemetry_set_input_sync(KF606_PACKET_PERIOD);
#endif
if(IS_BIND_IN_PROGRESS)
if(bind_counter)
if(--bind_counter==0)
{
BIND_DONE;
@@ -99,14 +100,13 @@ uint16_t KF606_callback()
return KF606_PACKET_PERIOD;
}
uint16_t initKF606()
void KF606_init()
{
BIND_IN_PROGRESS; // autobind protocol
KF606_initialize_txid();
KF606_init();
KF606_RF_init();
hopping_frequency_no = 0;
bind_counter=KF606_BIND_COUNT;
return KF606_INITIAL_WAIT;
}
#endif

View File

@@ -125,16 +125,16 @@ static void __attribute__((unused)) kn_bind_init()
static void __attribute__((unused)) kn_update_packet_control_data()
{
uint16_t value;
value = convert_channel_10b(THROTTLE);
value = convert_channel_10b(THROTTLE, false);
packet[0] = (value >> 8) & 0xFF;
packet[1] = value & 0xFF;
value = convert_channel_10b(AILERON);
value = convert_channel_10b(AILERON, false);
packet[2] = (value >> 8) & 0xFF;
packet[3] = value & 0xFF;
value = convert_channel_10b(ELEVATOR);
value = convert_channel_10b(ELEVATOR, false);
packet[4] = (value >> 8) & 0xFF;
packet[5] = value & 0xFF;
value = convert_channel_10b(RUDDER);
value = convert_channel_10b(RUDDER, false);
packet[6] = (value >> 8) & 0xFF;
packet[7] = value & 0xFF;
// Trims, middle is 0x64 (100) range 0-200
@@ -239,40 +239,25 @@ static void __attribute__((unused)) kn_calculate_freqency_hopping_channels()
// V977 needs payload length in the packet. We should configure 24L01 to enable Packet Control Field(PCF)
// Some RX reg settings are actually for enable PCF
//-------------------------------------------------------------------------------------------------
static void __attribute__((unused)) kn_init()
static void __attribute__((unused)) KN_RF_init()
{
kn_calculate_tx_addr();
kn_calculate_freqency_hopping_channels();
NRF24L01_Initialize();
NRF24L01_WriteReg(NRF24L01_00_CONFIG, _BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO));
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknoledgement
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x03); // 5-byte RX/TX address
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0); // Disable retransmit
NRF24L01_SetPower();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, 0x20); // bytes of data payload for pipe 0
NRF24L01_Activate(0x73);
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 1); // Dynamic payload for data pipe 0
// Enable: Dynamic Payload Length to enable PCF
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, _BV(NRF2401_1D_EN_DPL));
NRF24L01_SetPower();
NRF24L01_FlushTx();
// Turn radio power on
NRF24L01_SetTxRxMode(TX_EN);
NRF24L01_SetBitrate(NRF24L01_BR_1M); //USE1MBPS_YES ? NRF24L01_BR_1M : NRF24L01_BR_250K;
NRF24L01_SetTxRxMode(TX_EN); // Clear data ready, data sent, retransmit and enable CRC 16bits, ready for TX
}
//================================================================================================
// Private Functions
//================================================================================================
uint16_t initKN()
void KN_init()
{
if(sub_protocol==WLTOYS)
{
@@ -288,13 +273,11 @@ uint16_t initKN()
packet_count = KN_FX_PACKET_SEND_COUNT;
seed = KN_FX_PACKET_SEND_COUNT * KN_FX_SENDING_PACKET_PERIOD;
}
kn_init();
KN_RF_init();
phase = IS_BIND_IN_PROGRESS ? KN_PHASE_PRE_BIND : KN_PHASE_PRE_SEND;
return KN_INIT_WAIT_MS;
}
uint16_t kn_callback()
uint16_t KN_callback()
{
switch (phase)
{

View File

@@ -0,0 +1,201 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(KYOSHO_A7105_INO)
#include "iface_a7105.h"
//#define KYOSHO_FORCE_ID_FHSS
//#define KYOSHO_FORCE_ID_HYPE
//Kyosho constants & variables
#define KYOSHO_BIND_COUNT 2500
static void __attribute__((unused)) KYOSHO_send_packet()
{
//ID
packet[1] = rx_tx_addr[0];
packet[2] = rx_tx_addr[1];
packet[3] = rx_tx_addr[2];
packet[4] = rx_tx_addr[3];
//unknown may be RX ID on some other remotes
memset(packet+5,0xFF,4);
if(IS_BIND_IN_PROGRESS)
{
packet[ 0] = 0xBC; // bind indicator
packet[ 9] &= 0x01;
packet[ 9] ^= 0x01; // high/ low part of the RF table
packet[10] = 0x00;
//RF table
for(uint8_t i=0; i<16;i++)
packet[i+11]=hopping_frequency[i+(packet[9]<<4)];
//unknwon
packet[27] = 0x05;
packet[28] = 0x00;
memset(packet+29,0xFF,8);
//frequency hop during bind
if(packet[9])
rf_ch_num=0x8C;
else
rf_ch_num=0x0D;
}
else
{
packet[ 0] = 0x58; // normal packet
//14 channels: steering, throttle, ...
for(uint8_t i = 0; i < 14; i++)
{
uint16_t temp=convert_channel_ppm(i);
packet[9 + i*2]=temp&0xFF; // low byte of servo timing(1000-2000us)
packet[10 + i*2]=(temp>>8)&0xFF; // high byte of servo timing(1000-2000us)
}
rf_ch_num=hopping_frequency[hopping_frequency_no];
hopping_frequency_no++;
packet[34] |= (hopping_frequency_no&0x0F)<<4;
packet[36] |= (hopping_frequency_no&0xF0); // last byte is ending with F on the dumps so let's see
hopping_frequency_no &= 0x1F;
}
#if 0
debug("ch=%02X P=",rf_ch_num);
for(uint8_t i=0; i<37; i++)
debug("%02X ", packet[i]);
debugln("");
#endif
A7105_WriteData(37, rf_ch_num);
}
static void __attribute__((unused)) KYOSHO_hype_send_packet()
{
if(IS_BIND_IN_PROGRESS)
{
if(packet_sent==0)
{//build the packet and send it
packet[0] = rx_tx_addr[1];
packet[1] = rx_tx_addr[3];
//RF table
for(uint8_t i=0; i<15;i++)
packet[i+2]=hopping_frequency[i];
A7105_WriteData(17, 0x01);
packet_sent++;
packet_period=1421;
#if 0
debug("ch=01 P=");
for(uint8_t i=0; i<17; i++)
debug("%02X ", packet[i]);
debugln("");
#endif
}
else
A7105_Strobe(A7105_TX); //only send
}
else
{
//original TX is only refreshing the packet every 20ms and keep repeating the same packet in between (STROBE_TX)
//build packet=6 channels with order AETR
for(uint8_t i=0;i<6;i++)
packet[i] = convert_channel_8b(CH_AETR[i]);
//set RF channel
rf_ch_num=hopping_frequency[hopping_frequency_no];
hopping_frequency_no++;
if(hopping_frequency_no>14)
hopping_frequency_no = 0;
//send it
A7105_WriteData(6, rf_ch_num);
packet_period=931; //packet period fluctuates a lot on the original TX from one packet to the other but stable if looking over a period of 40ms
#if 0
debug("ch=%02X P=",rf_ch_num);
for(uint8_t i=0; i<6; i++)
debug("%02X ", packet[i]);
debugln("");
#endif
}
}
uint16_t KYOSHO_callback()
{
#ifndef FORCE_KYOSHO_TUNING
A7105_AdjustLOBaseFreq(1);
#endif
if(IS_BIND_IN_PROGRESS)
{
bind_counter--;
if (bind_counter==0)
{
BIND_DONE;
if(sub_protocol==KYOSHO_HYPE)
{
A7105_WriteID(MProtocol_id);
A7105_WriteReg(A7105_03_FIFOI,0x05);
}
}
}
else
{
if(hopping_frequency_no==0)
A7105_SetPower();
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
}
if(sub_protocol==KYOSHO_FHSS)
KYOSHO_send_packet();
else//HYPE
KYOSHO_hype_send_packet();
return packet_period;
}
void KYOSHO_init()
{
A7105_Init();
// compute channels from ID
calc_fh_channels(sub_protocol==KYOSHO_FHSS?32:15);
hopping_frequency_no=0;
#ifdef KYOSHO_FORCE_ID_FHSS
if(sub_protocol==KYOSHO_FHSS)
{
memcpy(rx_tx_addr,"\x3A\x39\x37\x00",4);
memcpy(hopping_frequency,"\x29\x4C\x67\x92\x31\x1C\x77\x18\x23\x6E\x81\x5C\x8F\x5A\x51\x94\x7A\x12\x45\x6C\x7F\x1E\x0D\x88\x63\x8C\x4F\x37\x26\x61\x2C\x8A",32);
}
#endif
if(sub_protocol==KYOSHO_HYPE)
{
MProtocol_id &= 0x00FF00FF;
rx_tx_addr[0] = 0xAF - (rx_tx_addr[1]&0x0F);
rx_tx_addr[2] = 0xFF - rx_tx_addr[3];
MProtocol_id |= (rx_tx_addr[0]<<24) + (rx_tx_addr[2]<<8);
#ifdef KYOSHO_FORCE_ID_HYPE
MProtocol_id=0xAF90738C;
set_rx_tx_addr(MProtocol_id);
memcpy(hopping_frequency,"\x27\x1B\x63\x75\x03\x39\x57\x69\x87\x0F\x7B\x3F\x33\x51\x6F",15);
#endif
if(IS_BIND_IN_PROGRESS)
A7105_WriteID(0xAF00FF00);
else
{
A7105_WriteID(MProtocol_id);
A7105_WriteReg(A7105_03_FIFOI,0x05);
}
}
if(IS_BIND_IN_PROGRESS)
bind_counter = KYOSHO_BIND_COUNT;
packet_sent=0;
packet_period=3852; //FHSS
}
#endif

View File

@@ -0,0 +1,300 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(LOLI_NRF24L01_INO)
#include "iface_nrf24l01.h"
#define LOLI_BIND_CHANNEL 33
#define LOLI_PACKET_SIZE 11
#define LOLI_NUM_CHANNELS 5
static void __attribute__((unused)) LOLI_RF_init()
{
NRF24L01_Initialize();
NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, (uint8_t*)"LOVE!", 5);
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, (uint8_t*)"LOVE!", 5);
NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, LOLI_PACKET_SIZE); // RX FIFO size
NRF24L01_SetBitrate(NRF24L01_BR_250K); // 250Kbps
}
// flags going to packet[1] for packet type 0xa2 (Rx config)
#define LOLI_FLAG_PWM7 0x02
#define LOLI_FLAG_PWM2 0x04
#define LOLI_FLAG_PWM1 0x08
#define LOLI_FLAG_SBUS 0x40
#define LOLI_FLAG_PPM 0x80
// flags going to packet[2] for packet type 0xa2 (Rx config)
#define LOLI_FLAG_SW8 0x01
#define LOLI_FLAG_SW7 0x02
#define LOLI_FLAG_SW6 0x04
#define LOLI_FLAG_SW5 0x08
#define LOLI_FLAG_SW4 0x10
#define LOLI_FLAG_SW3 0x20
#define LOLI_FLAG_SW2 0x40
#define LOLI_FLAG_SW1 0x80
#ifdef LOLI_NRF24L01_INO
uint8_t LOLI_P1, LOLI_P2;
#endif
static void __attribute__((unused)) LOLI_send_packet()
{
if(IS_BIND_IN_PROGRESS)
{
packet[0] = 0xa0;
memcpy(&packet[1], hopping_frequency, LOLI_NUM_CHANNELS);
memcpy(&packet[6], rx_tx_addr, 5);
rf_ch_num = LOLI_BIND_CHANNEL;
}
else
{
//Check RX config
uint8_t P1=0;
uint8_t P2=0;
//ch1: PWM/PPM
if(Channel_data[CH1+8] > CHANNEL_MAX_COMMAND)
P1|=LOLI_FLAG_PWM1;
else if(Channel_data[CH1+8] > CHANNEL_SWITCH)
P1|=LOLI_FLAG_PPM;
//ch2: PWM
if(Channel_data[CH2+8] > CHANNEL_MAX_COMMAND)
P1|=LOLI_FLAG_PWM2;
//ch5: SBUS
if(Channel_data[CH5+8] > CHANNEL_SWITCH)
P1|=LOLI_FLAG_SBUS;
//ch7: PWM
if(Channel_data[CH7+8] > CHANNEL_MAX_COMMAND)
P1|=LOLI_FLAG_PWM7;
//switches
for(uint8_t i=0;i<8;i++)
if(Channel_data[i+8]<CHANNEL_MIN_COMMAND)
P2 |= 1 << (7-i);
if(LOLI_P1!=P1 || LOLI_P2!=P2)
flags=10;
if(flags)
{// Send RX config since P1 or P2 have changed
LOLI_P1=P1;LOLI_P2=P2;
packet[0] = 0xa2;
packet[1] = LOLI_P1; // CH1:LOLI_FLAG_PPM || LOLI_FLAG_PWM1, CH2:LOLI_FLAG_PWM2, CH5:LOLI_FLAG_SBUS, CH7:LOLI_FLAG_PWM7
packet[2] = LOLI_P2; // CHx switch bit(8-x)=1
flags--;
}
else
{// Normal packet
#ifdef FAILSAFE_ENABLE
packet[0] = IS_FAILSAFE_VALUES_on ? 0xa0 : 0xa1;
#else
packet[0] = 0xa1;
#endif
//Build channels
uint8_t ch=0, offset=1;
uint16_t val;
for(uint8_t i=0;i<2;i++)
{
val = convert_channel_10b(ch++, IS_FAILSAFE_VALUES_on);
packet[offset++] = val >> 2;
packet[offset ] = val << 6;
val = convert_channel_10b(ch++, IS_FAILSAFE_VALUES_on);
packet[offset++]|= val >> 4;
packet[offset ] = val << 4;
val = convert_channel_10b(ch++, IS_FAILSAFE_VALUES_on);
packet[offset++]|= val >> 6;
packet[offset ] = val << 2;
val = convert_channel_10b(ch++, IS_FAILSAFE_VALUES_on);
packet[offset++]|= val >> 8;
packet[offset++] = val & 0xff;
}
FAILSAFE_VALUES_off; // Failsafe values are sent if they were available
}
if (++hopping_frequency_no > LOLI_NUM_CHANNELS-1)
hopping_frequency_no = 0;
rf_ch_num = hopping_frequency[hopping_frequency_no];
}
#if 0
debug("P(%02X):",rf_ch_num);
for(uint8_t i=0; i<LOLI_PACKET_SIZE; i++)
debug(" %02X",packet[i]);
debugln("");
#endif
//Send packet
NRF24L01_WriteReg(NRF24L01_05_RF_CH, rf_ch_num);
NRF24L01_SetPower();
NRF24L01_SetTxRxMode(TXRX_OFF);
NRF24L01_SetTxRxMode(TX_EN);
NRF24L01_WriteReg(NRF24L01_00_CONFIG, 0x0a); // 8bit CRC, TX
NRF24L01_FlushTx();
NRF24L01_WritePayload(packet, LOLI_PACKET_SIZE);
}
enum{
LOLI_BIND1,
LOLI_BIND2,
LOLI_BIND3,
LOLI_PREP_DATA,
LOLI_DATA1,
LOLI_DATA2,
LOLI_SET_RX_CONFIG,
LOLI_SET_FAILSAFE
};
#define LOLI_WRITE_TIME 1000
uint16_t LOLI_callback()
{
switch (phase)
{
case LOLI_BIND1:
if(bind_counter)
if(--bind_counter==0)
{
phase=LOLI_PREP_DATA;
break;
}
// send bind packet
NRF24L01_SetTxRxMode(TXRX_OFF);
NRF24L01_SetTxRxMode(TX_EN);
NRF24L01_WriteReg(NRF24L01_00_CONFIG, 0x0a); // 8bit CRC, TX
LOLI_send_packet();
phase++;
return 2000;
case LOLI_BIND2:
// switch to RX mode
NRF24L01_SetTxRxMode(TXRX_OFF);
NRF24L01_FlushRx();
NRF24L01_SetTxRxMode(RX_EN);
NRF24L01_WriteReg(NRF24L01_00_CONFIG, 0x3b); // 8bit CRC, RX
phase++;
packet_count = 0;
return 2000;
case LOLI_BIND3:
// got bind response ?
if (NRF24L01_ReadReg(NRF24L01_07_STATUS) & _BV(NRF24L01_07_RX_DR))
{
NRF24L01_ReadPayload(packet, LOLI_PACKET_SIZE);
if (packet[0] == 'O' && packet[1] == 'K')
{
debugln("Bind OK");
phase++; // LOLI_PREP_DATA
break;
}
}
packet_count++;
if (packet_count > 50)
phase = LOLI_BIND1;
return 1000;
case LOLI_PREP_DATA:
BIND_DONE;
NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, rx_tx_addr, 5);
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, rx_tx_addr, 5);
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushRx();
packet_count = 0;
//defaut RX config with servo outputs
LOLI_P1=0;LOLI_P2=0;flags=10;
phase++;
case LOLI_DATA1:
#ifdef LOLI_HUB_TELEMETRY
// Check telemetry
if (NRF24L01_ReadReg(NRF24L01_07_STATUS) & _BV(NRF24L01_07_RX_DR))
{ // RX fifo data ready
NRF24L01_ReadPayload(packet, LOLI_PACKET_SIZE);
#if 0
debug("T:");
for(uint8_t i=0; i<LOLI_PACKET_SIZE; i++)
debug(" %02X",packet[i]);
debugln("");
#endif
RX_RSSI = packet[0]<<1;
uint16_t val=((packet[1] << 8) | packet[2])/10;
if(val > 255) val=255;
v_lipo1 = val;
val=((packet[3] << 8) | packet[4])/10;
if(val > 255) val=255;
v_lipo2 = val;
telemetry_link = 1;
telemetry_counter++; // TX LQI counter
if(telemetry_lost)
{
telemetry_lost = 0;
packet_count = 100;
telemetry_counter = 100;
}
}
//LQI
packet_count++;
if(packet_count>=100)
{
packet_count=0;
TX_LQI=telemetry_counter;
if(telemetry_counter==0)
telemetry_lost = 1;
telemetry_counter = 0;
}
#endif
// Send data packet
LOLI_send_packet();
#ifdef LOLI_HUB_TELEMETRY
phase ++;
return LOLI_WRITE_TIME;
case LOLI_DATA2:
// Wait for packet to be sent
while( (NRF24L01_ReadReg(NRF24L01_07_STATUS) & _BV(NRF24L01_07_TX_DS)) == 0);
// Switch to RX mode
NRF24L01_SetTxRxMode(TXRX_OFF);
NRF24L01_FlushRx();
NRF24L01_SetTxRxMode(RX_EN);
NRF24L01_WriteReg(NRF24L01_00_CONFIG, 0x3b); // 8bit CRC, RX
phase = LOLI_DATA1;
return 20000 - LOLI_WRITE_TIME;
#else
break;
#endif
}
return 20000;
}
void LOLI_init()
{
rx_tx_addr[1] %= 0x30;
calc_fh_channels(LOLI_NUM_CHANNELS);
for (uint8_t i=0; i < LOLI_NUM_CHANNELS; i++)
if (hopping_frequency[i] == LOLI_BIND_CHANNEL)
hopping_frequency[i]++;
if (IS_BIND_IN_PROGRESS)
{
bind_counter=250;
phase = LOLI_BIND1;
}
else
phase = LOLI_PREP_DATA;
LOLI_RF_init();
}
#endif

View File

@@ -0,0 +1,147 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(LOSI_CYRF6936_INO)
#include "iface_cyrf6936.h"
#define LOSI_FORCE_ID
const uint8_t PROGMEM LOSI_bind_sop_code[] = {0x62, 0xdf, 0xc1, 0x49, 0xdf, 0xb1, 0xc0, 0x49};
const uint8_t LOSI_data_code[][16] = {
{ 0xD7, 0xA1, 0x54, 0xB1, 0x5E, 0x89, 0xAE, 0x86, 0xC9, 0x2C, 0x06, 0x93, 0x86, 0xB9, 0x9E, 0xD7 }, //bind
/* { 0xE1, 0xD6, 0x31, 0x26, 0x5F, 0xBD, 0x40, 0x93, 0xDC, 0x68, 0x08, 0x99, 0x97, 0xAE, 0xAF, 0x8C },
{ 0xDC, 0x68, 0x08, 0x99, 0x97, 0xAE, 0xAF, 0x8C, 0xC3, 0x0E, 0x01, 0x16, 0x0E, 0x32, 0x06, 0xBA },
{ 0xC3, 0x0E, 0x01, 0x16, 0x0E, 0x32, 0x06, 0xBA, 0xE0, 0x83, 0x01, 0xFA, 0xAB, 0x3E, 0x8F, 0xAC },
{ 0xE0, 0x83, 0x01, 0xFA, 0xAB, 0x3E, 0x8F, 0xAC, 0x5C, 0xD5, 0x9C, 0xB8, 0x46, 0x9C, 0x7D, 0x84 },
{ 0x5C, 0xD5, 0x9C, 0xB8, 0x46, 0x9C, 0x7D, 0x84, 0xF1, 0xC6, 0xFE, 0x5C, 0x9D, 0xA5, 0x4F, 0xB7 },
{ 0xF1, 0xC6, 0xFE, 0x5C, 0x9D, 0xA5, 0x4F, 0xB7, 0x58, 0xB5, 0xB3, 0xDD, 0x0E, 0x28, 0xF1, 0xB0 },
{ 0x58, 0xB5, 0xB3, 0xDD, 0x0E, 0x28, 0xF1, 0xB0, 0x5F, 0x30, 0x3B, 0x56, 0x96, 0x45, 0xF4, 0xA1 },*/
{ 0x5F, 0x30, 0x3B, 0x56, 0x96, 0x45, 0xF4, 0xA1, 0x03, 0xBC, 0x6E, 0x8A, 0xEF, 0xBD, 0xFE, 0xF8 } //normal
};
static uint16_t __attribute__((unused)) LOSI_check(uint16_t val)
{
const uint8_t PROGMEM tab[] = { 0xF1, 0xDA, 0xB6, 0xC8 };
uint8_t res = 0x0B, tmp;
uint16_t calc = val>>2; // don't care about the 2 first bits
for(uint8_t i=0; i<5; i++)
{
tmp=pgm_read_byte_near(&tab[i&0x03]);
if(calc&0x0001)
res ^= tmp>>4;
calc >>= 1;
if(calc&0x0001)
res ^= tmp;
calc >>= 1;
}
return val ^ (res<<12);
}
static void __attribute__((unused)) LOSI_send_packet()
{
memcpy(packet, rx_tx_addr, 4);
if(IS_BIND_IN_PROGRESS)
{
memcpy(&packet[4], rx_tx_addr, 4);
packet[8] = 0x05; // CRC?
packet[9] = 0x52; // CRC?
}
else
{
for(uint8_t i=0; i<3; i++)
{
uint16_t val = LOSI_check(Channel_data[i]<<1);
packet[4+i*2] = val >> 8;
packet[5+i*2] = val;
}
}
CYRF_SetPower(0x38);
CYRF_WriteDataPacketLen(packet, 0x0A);
#if 0
for(uint8_t i=0; i < 0x0A; i++)
debug("%02X ", packet[i]);
debugln();
#endif
}
static void __attribute__((unused)) LOSI_cyrf_init()
{
/* Initialise CYRF chip */
CYRF_WriteRegister(CYRF_28_CLK_EN, 0x02);
CYRF_WriteRegister(CYRF_32_AUTO_CAL_TIME, 0x3C);
CYRF_WriteRegister(CYRF_35_AUTOCAL_OFFSET, 0x14);
CYRF_WriteRegister(CYRF_06_RX_CFG, 0x48);
CYRF_WriteRegister(CYRF_1B_TX_OFFSET_LSB, 0x55);
CYRF_WriteRegister(CYRF_1C_TX_OFFSET_MSB, 0x05);
//CYRF_WriteRegister(CYRF_0F_XACT_CFG, 0x24);
CYRF_SetPower(0x38);
CYRF_WriteRegister(CYRF_12_DATA64_THOLD, 0x0A);
CYRF_WriteRegister(CYRF_39_ANALOG_CTRL, 0x01);
CYRF_WritePreamble(0x333304);
//CYRF_WriteRegister(CYRF_27_CLK_OVERRIDE, 0x00);
CYRF_WriteRegister(CYRF_10_FRAMING_CFG, 0x4A);
CYRF_WriteRegister(CYRF_1F_TX_OVERRIDE, 0x04); // No CRC
//CYRF_WriteRegister(CYRF_1E_RX_OVERRIDE, 0x14);
//CYRF_WriteRegister(CYRF_14_EOP_CTRL, 0x02);
}
uint16_t LOSI_callback()
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(19738);
#endif
LOSI_send_packet();
if(bind_counter)
{
bind_counter--;
if(bind_counter==0)
{
BIND_DONE;
CYRF_ConfigDataCode(LOSI_data_code[1], 16); // Load normal data code
}
return 8763;
}
return 19738;
}
void LOSI_init()
{
LOSI_cyrf_init();
//CYRF_FindBestChannels(hopping_frequency, 1, 0, 0x13, 75); // 75 is unknown since dump stops at 0x27, this routine resets the CRC Seed to 0
//CYRF_ConfigRFChannel(hopping_frequency[0] | 1); // Only odd channels
#ifdef LOSI_FORCE_ID
rx_tx_addr[0] = 0x47;
rx_tx_addr[1] = 0x52;
rx_tx_addr[2] = 0xAE;
rx_tx_addr[3] = 0xAA;
CYRF_ConfigRFChannel(0x27);
#endif
if(IS_BIND_IN_PROGRESS)
{
bind_counter = 300;
CYRF_ConfigDataCode(LOSI_data_code[0], 16); // Load bind data code
}
else
{
CYRF_ConfigDataCode(LOSI_data_code[1], 16); // Load normal data code
bind_counter = 0;
}
}
#endif

View File

@@ -15,10 +15,9 @@
// compatible with MJX WLH08, X600, X800, H26D, Eachine E010
// Last sync with hexfet new_protocols/mjxq_nrf24l01.c dated 2016-01-17
#if defined(MJXQ_NRF24L01_INO)
#if defined(MJXQ_CCNRF_INO)
#include "iface_nrf24l01.h"
#include "iface_nrf250k.h"
#include "iface_xn297.h"
#define MJXQ_BIND_COUNT 150
#define MJXQ_PACKET_PERIOD 4000 // Timeout for callback in uSec
@@ -103,6 +102,12 @@ static uint8_t __attribute__((unused)) MJXQ_pan_tilt_value()
#define MJXQ_CHAN2TRIM(X) (((X) & 0x80 ? (X) : 0x7f - (X)) >> 1)
static void __attribute__((unused)) MJXQ_send_packet(uint8_t bind)
{
//RF freq
hopping_frequency_no++;
XN297_Hopping(hopping_frequency_no / 2);
hopping_frequency_no %= 2 * MJXQ_RF_NUM_CHANNELS; // channels repeated
//Build packet
packet[0] = convert_channel_8b(THROTTLE);
packet[1] = convert_channel_s8b(RUDDER);
packet[4] = 0x40; // rudder does not work well with dyntrim
@@ -192,38 +197,29 @@ static void __attribute__((unused)) MJXQ_send_packet(uint8_t bind)
uint8_t sum = packet[0];
for (uint8_t i=1; i < MJXQ_PACKET_SIZE-1; i++) sum += packet[i];
packet[15] = sum;
hopping_frequency_no++;
if (sub_protocol == E010 || sub_protocol == PHOENIX)
// Send
XN297_SetTxRxMode(TX_EN);
XN297_SetPower();
#ifdef NRF24L01_INSTALLED
if (sub_protocol == H26D || sub_protocol == H26WH)
{
XN297L_Hopping(hopping_frequency_no / 2);
XN297L_SetFreqOffset();
XN297L_SetPower();
XN297L_WritePayload(packet, MJXQ_PACKET_SIZE);
//NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency[hopping_frequency_no / 2]);
//NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
//NRF24L01_FlushTx();
//NRF24L01_SetTxRxMode(TX_EN);
//NRF24L01_SetPower();
NRF24L01_WritePayload(packet, MJXQ_PACKET_SIZE);
}
else
{
NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency[hopping_frequency_no / 2]);
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
// Power on, TX mode, 2byte CRC and send packet
if (sub_protocol == H26D || sub_protocol == H26WH)
{
NRF24L01_SetTxRxMode(TX_EN);
NRF24L01_WritePayload(packet, MJXQ_PACKET_SIZE);
}
else
{
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP));
XN297_WritePayload(packet, MJXQ_PACKET_SIZE);
}
NRF24L01_SetPower();
#endif
{//E010, PHOENIX, WLH08, X600, X800
XN297_SetFreqOffset();
XN297_WritePayload(packet, MJXQ_PACKET_SIZE);
}
hopping_frequency_no %= 2 * MJXQ_RF_NUM_CHANNELS; // channels repeated
}
static void __attribute__((unused)) MJXQ_init()
static void __attribute__((unused)) MJXQ_RF_init()
{
uint8_t addr[MJXQ_ADDRESS_LENGTH];
memcpy(addr, "\x6d\x6a\x77\x77\x77", MJXQ_ADDRESS_LENGTH);
@@ -239,32 +235,20 @@ static void __attribute__((unused)) MJXQ_init()
}
if (sub_protocol == E010 || sub_protocol == PHOENIX)
{
XN297L_Init();
XN297L_SetTXAddr(addr, sizeof(addr));
XN297L_HoppingCalib(MJXQ_RF_NUM_CHANNELS);
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_250K);
XN297_SetTXAddr(addr, MJXQ_ADDRESS_LENGTH);
XN297_HoppingCalib(MJXQ_RF_NUM_CHANNELS);
}
else
{
NRF24L01_Initialize();
NRF24L01_SetTxRxMode(TX_EN);
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_1M); // this will select the nrf and initialize it, therefore both H26 sub protocols can use common instructions
#ifdef NRF24L01_INSTALLED
if (sub_protocol == H26D || sub_protocol == H26WH)
{
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x03); // 5-byte RX/TX address
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, addr, MJXQ_ADDRESS_LENGTH);
}
else
#endif
XN297_SetTXAddr(addr, MJXQ_ADDRESS_LENGTH);
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowledgment on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0x00); // no retransmits
NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, MJXQ_PACKET_SIZE);
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps
NRF24L01_SetPower();
//NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, MJXQ_PACKET_SIZE); // no RX???
}
}
@@ -285,7 +269,7 @@ static void __attribute__((unused)) MJXQ_init2()
hopping_frequency[i]=pgm_read_byte_near( &E010_map_rfchan[rx_tx_addr[3]&0x0F][i] );
hopping_frequency[i+2]=hopping_frequency[i]+0x10;
}
XN297L_HoppingCalib(MJXQ_RF_NUM_CHANNELS);
XN297_HoppingCalib(MJXQ_RF_NUM_CHANNELS);
break;
case WLH08:
// do nothing
@@ -350,14 +334,13 @@ uint16_t MJXQ_callback()
return MJXQ_PACKET_PERIOD;
}
uint16_t initMJXQ(void)
void MJXQ_init(void)
{
BIND_IN_PROGRESS; // autobind protocol
bind_counter = MJXQ_BIND_COUNT;
MJXQ_initialize_txid();
MJXQ_init();
MJXQ_RF_init();
packet_count=0;
return MJXQ_INITIAL_WAIT+MJXQ_PACKET_PERIOD;
}
#endif

View File

@@ -0,0 +1,608 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(MLINK_CYRF6936_INO)
#include "iface_cyrf6936.h"
//#define MLINK_FORCE_ID
#define MLINK_BIND_COUNT 696 // around 20s
#define MLINK_NUM_FREQ 78
#define MLINK_BIND_CHANNEL 0x01
#define MLINK_PACKET_SIZE 8
enum {
MLINK_BIND_TX=0,
MLINK_BIND_PREP_RX,
MLINK_BIND_RX,
MLINK_PREP_DATA,
MLINK_SEND1,
MLINK_SEND2,
MLINK_SEND3,
MLINK_CHECK3,
MLINK_RX,
MLINK_BUILD4,
};
uint8_t MLINK_Data_Code[16], MLINK_CRC_Init, MLINK_Unk_6_2;
const uint8_t PROGMEM MLINK_init_vals[][2] = {
//Init from dump
{ CYRF_01_TX_LENGTH, 0x08 }, // Length of packet
{ CYRF_02_TX_CTRL, 0x40 }, // Clear TX Buffer
{ CYRF_03_TX_CFG, 0x3C }, //0x3E in normal mode, 0x3C in bind mode: SDR 64 chip codes (=8 bytes data code used)
{ CYRF_05_RX_CTRL, 0x00 },
{ CYRF_06_RX_CFG, 0x93 }, // AGC enabled, overwrite enable, valid flag enable
{ CYRF_0B_PWR_CTRL, 0x00 },
//{ CYRF_0C_XTAL_CTRL, 0x00 }, // Set to GPIO on reset
//{ CYRF_0D_IO_CFG, 0x00 }, // Set to GPIO on reset
//{ CYRF_0E_GPIO_CTRL, 0x00 }, // Set by the CYRF_SetTxRxMode function
{ CYRF_0F_XACT_CFG, 0x04 }, // end state idle
{ CYRF_10_FRAMING_CFG, 0x00 }, // SOP disabled
{ CYRF_11_DATA32_THOLD, 0x05 }, // not used???
{ CYRF_12_DATA64_THOLD, 0x0F }, // 64 Chip Data PN Code Correlator Threshold
{ CYRF_14_EOP_CTRL, 0x05 }, // 5 consecutive noncorrelations symbol for EOP
{ CYRF_15_CRC_SEED_LSB, 0x00 }, // not used???
{ CYRF_16_CRC_SEED_MSB, 0x00 }, // not used???
{ CYRF_1B_TX_OFFSET_LSB,0x00 },
{ CYRF_1C_TX_OFFSET_MSB,0x00 },
{ CYRF_1D_MODE_OVERRIDE,0x00 },
{ CYRF_1E_RX_OVERRIDE, 0x14 }, // RX CRC16 is disabled and Force Receive Data Rate
{ CYRF_1F_TX_OVERRIDE, 0x04 }, // TX CRC16 is disabled
{ CYRF_26_XTAL_CFG, 0x08 },
{ CYRF_29_RX_ABORT, 0x00 },
{ CYRF_32_AUTO_CAL_TIME,0x3C },
{ CYRF_35_AUTOCAL_OFFSET,0x14 },
{ CYRF_39_ANALOG_CTRL, 0x03 }, // Receive invert and all slow
};
static void __attribute__((unused)) MLINK_cyrf_config()
{
for(uint8_t i = 0; i < sizeof(MLINK_init_vals) / 2; i++)
CYRF_WriteRegister(pgm_read_byte_near(&MLINK_init_vals[i][0]), pgm_read_byte_near(&MLINK_init_vals[i][1]));
CYRF_WritePreamble(0x333304);
CYRF_SetTxRxMode(TX_EN);
}
static void __attribute__((unused)) MLINK_send_bind_packet()
{
uint8_t p_c=packet_count>>1;
memset(packet, p_c<0x16?0x00:0xFF, MLINK_PACKET_SIZE-1);
packet[0]=0x0F; // bind
packet[1]=p_c;
switch(p_c)
{
case 0x00:
packet[2]=0x40; //unknown but seems constant
packet[4]=0x01; //unknown but seems constant
packet[5]=0x03; //unknown but seems constant
packet[6]=0xE3; //unknown but seems constant
break;
case 0x05:
packet[6]=MLINK_CRC_Init; //CRC init value
break;
case 0x06:
packet[2]=MLINK_Unk_6_2; //unknown and different
//Start of hopping frequencies
for(uint8_t i=0;i<4;i++)
packet[i+3]=hopping_frequency[i];
break;
case 0x15:
packet[6]=0x51; //unknown but seems constant
break;
case 0x16:
packet[2]=0x51; //unknown but seems constant
packet[3]=0xEC; //unknown but seems constant
packet[4]=0x05; //unknown but seems constant
break;
case 0x1A:
packet[1]=0xFF;
memset(&packet[2],0x00,5);
break;
}
if(p_c>=0x01 && p_c<=0x04)
{//DATA_CODE
uint8_t p_c_5=(p_c-1)*5;
for(uint8_t i=0;i<5;i++)
if(i+p_c_5<16)
packet[i+2]=MLINK_Data_Code[i+p_c_5];
}
else
if(p_c>=0x07 && p_c<=0x15)
{//Hopping frequencies
uint8_t p_c_5=5*(p_c-6)-1;
for(uint8_t i=0;i<5;i++)
if(i+p_c_5<MLINK_NUM_FREQ)
packet[i+2]=hopping_frequency[i+p_c_5];
}
else
if(p_c>0x19)
{
packet[1]=0xFF;
memset(&packet[2], 0x00, MLINK_PACKET_SIZE-3);
}
//Calculate CRC
crc8=0xFF; // Init = 0xFF
for(uint8_t i=0;i<MLINK_PACKET_SIZE-1;i++)
crc8_update(bit_reverse(packet[i]));
packet[7] = bit_reverse(crc8); // CRC reflected out
//Debug
#if 0
debug("P(%02d):",p_c);
for(uint8_t i=0;i<8;i++)
debug(" %02X",packet[i]);
debugln("");
#endif
//Send packet
CYRF_WriteDataPacketLen(packet, MLINK_PACKET_SIZE);
}
static void __attribute__((unused)) MLINK_send_data_packet()
{
static uint8_t tog=0;
uint8_t start;
#ifdef FAILSAFE_ENABLE
static uint8_t fs=0;
if(IS_FAILSAFE_VALUES_on && phase==MLINK_SEND1)
{
fs=10; // Original radio is sending 70 packets
FAILSAFE_VALUES_off;
}
if(fs)
{// Failsafe packets
switch(phase)
{
case MLINK_SEND2:
packet[0]=0x06;
start=17;
break;
case MLINK_SEND3:
packet[0]=0x84;
start=5;
fs--;
break;
default: //MLINK_SEND1:
packet[0]=0x05;
start=11;
break;
}
//Pack 6 channels per packet
for(uint8_t i=0;i<6;i++)
{
uint8_t val=start<16 ? convert_channel_16b_nolimit(start,426 >> 4,3448 >> 4,true) : 0x00;
start--; // switch to next channel
packet[i+1]=val;
}
}
else
#endif
{// Normal packets
if(hopping_frequency_no==0)
tog=1;
//Channels to be sent
if(phase==MLINK_SEND1 || ((hopping_frequency_no%5==0) && (phase==MLINK_SEND2)))
{
if((hopping_frequency_no&1)==0)
packet[0] = 0x09; //10,8,6
else
packet[0] = 0x01; //11,9,7
}
else
if(phase==MLINK_SEND2)
{
if(tog)
packet[0] = 0x02; //x,15,13
else
packet[0] = 0x0A; //x,14,12
tog^=1;
}
else
{//phase==MLINK_SEND3
if((hopping_frequency_no&1)==0)
packet[0] = 0x88; //4,2,0
else
packet[0] = 0x80; //5,3,1
}
//Start channel
start=4+6*(packet[0]&3);
if((packet[0]&0x08)==0)
start++;
//Channels 426..1937..3448
for(uint8_t i=0;i<3;i++)
{
uint16_t val=start<16 ? convert_channel_16b_nolimit(start,426,3448,false) : 0x0000;
start-=2; // switch to next channel
packet[i*2+1]=val>>8;
packet[i*2+2]=val;
}
}
//Calculate CRC
crc8=bit_reverse(hopping_frequency_no + MLINK_CRC_Init); // Init = relected freq index + offset
for(uint8_t i=0;i<MLINK_PACKET_SIZE-1;i++)
crc8_update(bit_reverse(packet[i]));
packet[7] = bit_reverse(crc8); // CRC reflected out
//Send
CYRF_WriteDataPacketLen(packet, MLINK_PACKET_SIZE);
//Debug
#if 0
debug("P(%02d):",hopping_frequency_no);
for(uint8_t i=0;i<8;i++)
debug(" %02X",packet[i]);
debugln("");
#endif
}
#ifdef MLINK_HUB_TELEMETRY
static void __attribute__((unused)) MLINK_Send_Telemetry()
{ // not sure how MLINK telemetry works, the 2 RXs I have are sending something completly different...
telemetry_counter += 2; // TX LQI counter
telemetry_link = 1;
if(packet_in[0]==0x13)
{ // RX-9-DR : 13 1A C8 00 01 64 00
uint8_t id;
for(uint8_t i=1; i<5; i+=3)
{//2 sensors per packet
id=0x00;
switch(packet_in[i]&0x0F)
{
case 1: //voltage
if((packet_in[i]&0xF0) == 0x00)
v_lipo1 = packet_in[i+1]; // Rx_Batt*20
else
v_lipo2 = packet_in[i+1];
break;
case 2: //current
id = 0x28;
break;
case 3: //vario
id = 0x30;
break;
case 5: //rpm
id = 0x03;
break;
case 6: //temp
id = 0x02;
break;
case 10: //lqi
RX_RSSI=RX_LQI=packet_in[i+1]>>1;
break;
}
#if defined HUB_TELEMETRY
if(id)
{
uint16_t val=((packet_in[i+2]&0x80)<<8)|((packet_in[i+2]&0x7F)<<7)|(packet_in[i+1]>>1); //remove the alarm LSB bit, move the sign bit to MSB
frsky_send_user_frame(id, val, val>>8);
}
#endif
}
}
else
if(packet_in[0]==0x03)
{ // RX-5 : 03 15 23 00 00 01 02
//Incoming packet values
RX_RSSI = packet_in[2]<<1; // Looks to be the RX RSSI value
RX_LQI = packet_in[5]; // Looks to be connection lost
}
else
RX_RSSI = TX_LQI;
// Read TX RSSI
TX_RSSI = CYRF_ReadRegister(CYRF_13_RSSI)&0x1F;
if(telemetry_lost)
{
telemetry_lost = 0;
packet_count = 50;
telemetry_counter = 100;
}
}
#endif
#ifdef MLINK_FW_TELEMETRY
static void __attribute__((unused)) MLINK_Send_Telemetry()
{
telemetry_counter += 2; // TX LQI counter
telemetry_link = 4;
// Read TX RSSI
TX_RSSI = CYRF_ReadRegister(CYRF_13_RSSI)&0x1F;
if(telemetry_lost)
{
telemetry_lost = 0;
packet_count = 50;
telemetry_counter = 100;
}
}
#endif
uint16_t MLINK_callback()
{
uint8_t status;
uint16_t start;
switch(phase)
{
case MLINK_BIND_RX:
//debugln("RX");
status=CYRF_ReadRegister(CYRF_05_RX_CTRL);
if( (status&0x80) == 0 )
{//Packet received
len=CYRF_ReadRegister(CYRF_09_RX_COUNT);
debugln("L=%02X",len)
if( len==8 )
{
CYRF_ReadDataPacketLen(packet, len*2);
debug("RX=");
for(uint8_t i=0;i<8;i++)
debug(" %02X",packet[i*2]);
debugln("");
//Check CRC
crc8=0xFF; // Init = 0xFF
for(uint8_t i=0;i<MLINK_PACKET_SIZE-1;i++)
crc8_update(bit_reverse(packet[i<<1]));
if(packet[14] == bit_reverse(crc8))
{// CRC is ok
debugln("CRC ok");
if(packet[0]==0x7F)
packet_count=3; // Start sending bind payload
else if(packet_count > 0x19*2)
{
if(packet[0] == 0x8F)
packet_count++;
else if(packet[0] == 0x9F)
packet_count=0x80; // End bind
else
packet_count=0; // Restart bind...
}
}
}
}
else
packet_count=0;
CYRF_WriteRegister(CYRF_29_RX_ABORT, 0x20); // Enable RX abort
CYRF_WriteRegister(CYRF_0F_XACT_CFG, 0x24); // Force end state
CYRF_WriteRegister(CYRF_29_RX_ABORT, 0x00); // Disable RX abort
phase=MLINK_BIND_TX; // Retry sending bind packet
CYRF_SetTxRxMode(TX_EN); // Transmit mode
if(packet_count)
return 18136;
case MLINK_BIND_TX:
if(--bind_counter==0 || packet_count>=0x1B*2)
{ // Switch to normal mode
BIND_DONE;
phase=MLINK_PREP_DATA;
return 22720;
}
MLINK_send_bind_packet();
if(packet_count == 0 || packet_count > 0x19*2)
{
phase++; // MLINK_BIND_PREP_RX
return 4700; // Original is 4900
}
packet_count++;
if(packet_count&1)
return 6000;
return 22720;
case MLINK_BIND_PREP_RX:
start=micros();
while ((uint16_t)((uint16_t)micros()-(uint16_t)start) < 200) // Wait max 200µs for TX to finish
if((CYRF_ReadRegister(CYRF_02_TX_CTRL) & 0x80) == 0x00)
break; // Packet transmission complete
CYRF_SetTxRxMode(RX_EN); // Receive mode
CYRF_WriteRegister(CYRF_05_RX_CTRL, 0x82); // Prepare to receive
phase++; //MLINK_BIND_RX
if(packet_count > 0x19*2)
return 28712; // Give more time to the RX to confirm that the bind is ok...
return 28712-4700;
case MLINK_PREP_DATA:
CYRF_ConfigDataCode(MLINK_Data_Code,16);
MLINK_CRC_Init += 0xED;
hopping_frequency_no = 0x00;
CYRF_ConfigRFChannel(hopping_frequency[hopping_frequency_no]);
CYRF_SetPower(0x38);
#if defined(MLINK_HUB_TELEMETRY) || defined(MLINK_FW_TELEMETRY)
packet_count = 0;
telemetry_lost = 1;
#endif
phase++;
case MLINK_SEND1:
MLINK_send_data_packet();
phase++;
return 4880+1111;
case MLINK_SEND2:
MLINK_send_data_packet();
phase++;
if(hopping_frequency_no%5==0)
return 4617+1017;
return 4617+1422;
case MLINK_SEND3:
MLINK_send_data_packet();
phase++;
return 4611;
case MLINK_CHECK3:
//Switch to next channel
hopping_frequency_no++;
if(hopping_frequency_no>=MLINK_NUM_FREQ)
hopping_frequency_no=0;
CYRF_ConfigRFChannel(hopping_frequency[hopping_frequency_no]);
//Receive telemetry
if(hopping_frequency_no%5==0)
{//Receive telemetry
CYRF_SetTxRxMode(RX_EN); // Receive mode
CYRF_WriteRegister(CYRF_05_RX_CTRL, 0x82); // Prepare to receive
phase++; //MLINK_RX
return 8038+2434+410-1000;
}
else
CYRF_SetPower(0x38);
phase=MLINK_SEND1;
return 4470;
case MLINK_RX:
#if defined(MLINK_HUB_TELEMETRY) || defined(MLINK_FW_TELEMETRY)
//TX LQI calculation
packet_count++;
if(packet_count>=50)
{
packet_count=0;
TX_LQI=telemetry_counter;
if(telemetry_counter==0)
telemetry_lost = 1;
telemetry_counter = 0;
}
#endif
status=CYRF_ReadRegister(CYRF_05_RX_CTRL);
debug("T(%02X):",status);
if( (status&0x80) == 0 )
{//Packet received
len=CYRF_ReadRegister(CYRF_09_RX_COUNT);
debug("(%X)",len)
if( len && len <= MLINK_PACKET_SIZE )
{
CYRF_ReadDataPacketLen(packet_in, len*2);
#if defined(MLINK_HUB_TELEMETRY) || defined(MLINK_FW_TELEMETRY)
if(len==MLINK_PACKET_SIZE)
{
for(uint8_t i=0;i<8;i++)
//Check CRC
crc8=bit_reverse(MLINK_CRC_Init);
for(uint8_t i=0;i<MLINK_PACKET_SIZE-1;i++)
{
packet_in[i]=packet_in[i<<1];
crc8_update(bit_reverse(packet_in[i]));
debug(" %02X",packet_in[i]);
}
if(packet_in[14] == bit_reverse(crc8)) // Packet CRC is ok
MLINK_Send_Telemetry();
else
debug(" NOK");
}
#endif
}
}
debugln("");
CYRF_WriteRegister(CYRF_29_RX_ABORT, 0x20); // Enable RX abort
CYRF_WriteRegister(CYRF_0F_XACT_CFG, 0x24); // Force end state
CYRF_WriteRegister(CYRF_29_RX_ABORT, 0x00); // Disable RX abort
CYRF_SetTxRxMode(TX_EN); // Transmit mode
phase=MLINK_SEND2;
return 1000;
}
return 1000;
}
static void __attribute__((unused)) MLINK_shuffle_freqs(uint32_t seed, uint8_t *hop)
{
randomSeed(seed);
for(uint8_t i=0; i < MLINK_NUM_FREQ/2; i++)
{
uint8_t r = random(0xfefefefe) % (MLINK_NUM_FREQ/2);
uint8_t tmp = hop[r];
hop[r] = hop[i];
hop[i] = tmp;
}
}
void MLINK_init()
{
MLINK_cyrf_config();
//Init ID and RF freqs
for(uint8_t i=0; i < MLINK_NUM_FREQ/2; i++)
{
hopping_frequency[i ] = (i<<1) + 3;
hopping_frequency[i+MLINK_NUM_FREQ/2] = (i<<1) + 3;
}
// part1
memcpy(MLINK_Data_Code ,rx_tx_addr,4);
MLINK_shuffle_freqs(MProtocol_id, hopping_frequency);
// part2
MProtocol_id ^= 0x6FBE3201;
set_rx_tx_addr(MProtocol_id);
memcpy(MLINK_Data_Code+4,rx_tx_addr,4);
MLINK_shuffle_freqs(MProtocol_id, &hopping_frequency[MLINK_NUM_FREQ/2]);
// part3
MLINK_CRC_Init = rx_tx_addr[3]; //value sent during bind then used to init the CRC
MLINK_Unk_6_2 = 0x3A; //unknown value sent during bind but doesn't seem to matter
#ifdef MLINK_FORCE_ID
if(RX_num)
{
//Cockpit SX
memcpy(MLINK_Data_Code,"\x4C\x97\x9D\xBF\xB8\x3D\xB5\xBE",8);
memcpy(hopping_frequency,"\x0D\x41\x09\x43\x17\x2D\x05\x31\x13\x3B\x1B\x3D\x0B\x41\x11\x45\x09\x2B\x17\x4D\x19\x3F\x03\x3F\x0F\x37\x1F\x47\x1B\x49\x07\x35\x27\x2F\x15\x33\x23\x39\x1F\x33\x19\x45\x0D\x2D\x11\x35\x0B\x47\x25\x3D\x21\x37\x1D\x3B\x05\x2F\x21\x39\x23\x4B\x03\x31\x25\x29\x07\x4F\x1D\x4B\x15\x4D\x13\x4F\x0F\x49\x29\x2B\x27\x43",MLINK_NUM_FREQ);
MLINK_Unk_6_2 = 0x3A; //unknown value sent during bind but doesn't seem to matter
MLINK_CRC_Init = 0x07; //value sent during bind then used to init the CRC
}
else
{
//HFM3
memcpy(MLINK_Data_Code,"\xC0\x90\x8F\xBB\x7C\x8E\x2B\x8E",8);
memcpy(hopping_frequency,"\x05\x41\x27\x4B\x17\x33\x11\x39\x0F\x3F\x05\x2F\x13\x2D\x25\x31\x1F\x2D\x25\x35\x03\x41\x1B\x43\x09\x3D\x1F\x29\x1D\x35\x0D\x3B\x19\x49\x23\x3B\x17\x47\x1D\x2B\x13\x37\x0B\x31\x23\x33\x29\x3F\x07\x37\x07\x43\x11\x2B\x1B\x39\x0B\x4B\x03\x4F\x21\x47\x0F\x4D\x15\x45\x21\x4F\x09\x3D\x19\x2F\x15\x45\x0D\x49\x27\x4D",MLINK_NUM_FREQ);
MLINK_Unk_6_2 = 0x02; //unknown value but doesn't seem to matter
MLINK_CRC_Init = 0x3E; //value sent during bind then used to init the CRC
}
//Other TX
//MLINK_Unk_6_2 = 0x7e; //unknown value but doesn't seem to matter
//MLINK_CRC_Init = 0xA2; //value sent during bind then used to init the CRC
#endif
for(uint8_t i=0;i<8;i++)
MLINK_Data_Code[i+8]=MLINK_Data_Code[7-i];
debug("ID:")
for(uint8_t i=0;i<16;i++)
debug(" %02X", MLINK_Data_Code[i]);
debugln("");
debugln("CRC init: %02X", MLINK_CRC_Init)
debug("RF:")
for(uint8_t i=0;i<MLINK_NUM_FREQ;i++)
debug(" %02X", hopping_frequency[i]);
debugln("");
if(IS_BIND_IN_PROGRESS)
{
packet_count = 0;
bind_counter = MLINK_BIND_COUNT;
CYRF_ConfigDataCode((uint8_t*)"\x6F\xBE\x32\x01\xDB\xF1\x2B\x01\xE3\x5C\xFA\x02\x97\x93\xF9\x02",16); //Bind data code
CYRF_ConfigRFChannel(MLINK_BIND_CHANNEL);
phase = MLINK_BIND_TX;
}
else
phase = MLINK_PREP_DATA;
}
#endif

View File

@@ -0,0 +1,424 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// compatible with MT99xx, Eachine H7, Yi Zhan i6S and LS114/124
// Last sync with Goebish mt99xx_nrf24l01.c dated 2016-01-29
#if defined(MT99XX_CCNRF_INO)
#include "iface_xn297.h"
#define MT99XX_BIND_COUNT 928
#define MT99XX_PACKET_PERIOD_FY805 2460
#define MT99XX_PACKET_PERIOD_MT 2625
#define MT99XX_PACKET_PERIOD_YZ 3125
#define MT99XX_PACKET_PERIOD_A180 3400 // timing changes between the packets 2 x 27220 then 1x 26080, it seems that it is only on the first RF channel which jitters by 1.14ms but hard to pinpoint with XN297dump
#define MT99XX_PACKET_PERIOD_DRAGON 1038 // there is a pause of 2x1038 between two packets, no idea why and how since it is not even stable on a same dump...
#define MT99XX_PACKET_PERIOD_DRAGON_TELEM 10265 // long pause to receive the telemetry packets, 3 are sent by the RX one after the other
#define MT99XX_INITIAL_WAIT 500
#define MT99XX_PACKET_SIZE 9
//#define FORCE_A180_ID
//#define FORCE_DRAGON_ID
enum {
MT99XX_DATA,
MT99XX_RX,
MT99XX_CHECK,
};
enum{
// flags going to packet[6] (MT99xx, H7)
FLAG_MT_RATE1 = 0x01, // (H7 & A180 high rate)
FLAG_MT_RATE2 = 0x02, // (MT9916 only)
FLAG_MT_VIDEO = 0x10,
FLAG_MT_SNAPSHOT= 0x20,
FLAG_MT_FLIP = 0x80,
};
enum{
// flags going to packet[6] (LS)
FLAG_LS_INVERT = 0x01,
FLAG_LS_RATE = 0x02,
FLAG_LS_HEADLESS= 0x10,
FLAG_LS_SNAPSHOT= 0x20,
FLAG_LS_VIDEO = 0x40,
FLAG_LS_FLIP = 0x80,
};
enum{
// flags going to packet[7] (FY805)
FLAG_FY805_HEADLESS= 0x10,
};
enum{
// flags going to packet[6] (A180)
FLAG_A180_3D6G = 0x01,
FLAG_A180_RATE = 0x02,
};
enum{
// flags going to packet[6] (DRAGON)
FLAG_DRAGON_RATE = 0x01,
FLAG_DRAGON_RTH = 0x80,
FLAG_DRAGON_UNK = 0x04,
};
const uint8_t h7_mys_byte[] = {
0x01, 0x11, 0x02, 0x12, 0x03, 0x13, 0x04, 0x14,
0x05, 0x15, 0x06, 0x16, 0x07, 0x17, 0x00, 0x10
};
const uint8_t ls_mys_byte[] = {
0x05, 0x15, 0x25, 0x06, 0x16, 0x26,
0x07, 0x17, 0x27, 0x00, 0x10, 0x20,
0x01, 0x11, 0x21, 0x02, 0x12, 0x22,
0x03, 0x13, 0x23, 0x04, 0x14, 0x24
};
const uint8_t yz_p4_seq[] = {0xa0, 0x20, 0x60};
#ifdef MT99XX_HUB_TELEMETRY
const uint8_t DRAGON_seq[] = {0x20, 0x60, 0x20, 0x80};
#endif
static void __attribute__((unused)) MT99XX_send_packet()
{
static uint8_t seq_num=0;
if(IS_BIND_IN_PROGRESS)
{
//Bind packet
packet[0] = 0x20;
switch(sub_protocol)
{
case YZ:
packet_period = MT99XX_PACKET_PERIOD_YZ;
packet[1] = 0x15;
packet[2] = 0x05;
packet[3] = 0x06;
break;
case LS:
packet[1] = 0x14;
packet[2] = 0x05;
packet[3] = 0x11;
break;
case FY805:
packet_period = MT99XX_PACKET_PERIOD_FY805;
packet[1] = 0x15;
packet[2] = 0x12;
packet[3] = 0x17;
break;
case A180:
packet_period = MT99XX_PACKET_PERIOD_A180;
default: // MT99 & H7 & A180 & DRAGON
packet[1] = 0x14;
packet[2] = 0x03;
packet[3] = 0x25;
break;
}
packet[4] = rx_tx_addr[0];
packet[5] = rx_tx_addr[1];
packet[6] = rx_tx_addr[2];
packet[7] = crc8; // checksum offset
packet[8] = 0xAA; // fixed
}
else
{
if(sub_protocol != YZ)
{ // MT99XX & H7 & LS & FY805 & A180 & DRAGON
packet[0] = convert_channel_16b_limit(THROTTLE,0xE1,0x00); // throttle
packet[1] = convert_channel_16b_limit(RUDDER ,0x00,0xE1); // rudder
packet[2] = convert_channel_16b_limit(AILERON ,0xE1,0x00); // aileron
packet[3] = convert_channel_16b_limit(ELEVATOR,0x00,0xE1); // elevator
packet[4] = 0x20; // pitch trim (0x3f-0x20-0x00)
packet[5] = 0x20; // roll trim (0x00-0x20-0x3f)
packet[6] = GET_FLAG( CH5_SW, FLAG_MT_FLIP );
packet[7] = h7_mys_byte[hopping_frequency_no]; // next rf channel index ?
switch(sub_protocol)
{
case MT99:
packet[6] |= 0x40 | FLAG_MT_RATE2 // max rate on MT99xx
| GET_FLAG( CH7_SW, FLAG_MT_SNAPSHOT )
| GET_FLAG( CH8_SW, FLAG_MT_VIDEO );
break;
case H7:
packet[6] |= FLAG_MT_RATE1; // max rate on H7
break;
case LS:
packet[6] |= FLAG_LS_RATE // max rate
| GET_FLAG( CH6_SW, FLAG_LS_INVERT ) // invert
| GET_FLAG( CH7_SW, FLAG_LS_SNAPSHOT ) // snapshot
| GET_FLAG( CH8_SW, FLAG_LS_VIDEO ) // video
| GET_FLAG( CH9_SW, FLAG_LS_HEADLESS ); // Headless
packet[7] = ls_mys_byte[seq_num++];
if(seq_num >= sizeof(ls_mys_byte))
seq_num=0;
break;
case FY805:
packet[6]=0x20;
//Rate 0x01?
//Flip ?
packet[7]=0x01
|GET_FLAG( CH5_SW, FLAG_MT_FLIP )
|GET_FLAG( CH9_SW, FLAG_FY805_HEADLESS ); //HEADLESS
crc8=0;
break;
case A180:
packet[6] = FLAG_A180_RATE
| GET_FLAG( CH5_SW, FLAG_A180_3D6G );
packet[7] = 0x00;
break;
case DRAGON:
if(CH5_SW) // Advanced mode
packet[5] |= 0x80;
else
if(Channel_data[CH5] > CHANNEL_MIN_COMMAND) // Beginner mode
packet[5] |= 0x40;
packet[6] = FLAG_DRAGON_RATE
| GET_FLAG( CH6_SW, FLAG_DRAGON_RTH );
#ifdef MT99XX_HUB_TELEMETRY
//Telemetry
if(hopping_frequency_no == 0)
{
seq_num++;
seq_num &= 0x03;
packet_count++;
if(packet_count > 11)
packet_count = 0;
}
if(packet_count > 10) // Telemetry packet request every 10 or 11 packets
{
packet[6] |= 0x04; // Request telemetry flag
phase = MT99XX_RX;
}
packet[7] = DRAGON_seq[seq_num]; // seq: 20 80 20 60 20 80 20 60... 80 changes to 80+batt from telem
if(seq_num==3)
packet[7] |= v_lipo1;
#else
packet[7] = 0x20;
#endif
break;
}
uint8_t result=crc8;
for(uint8_t i=0; i<8; i++)
result += packet[i];
packet[8] = result;
}
else
{ // YZ
packet[0] = convert_channel_16b_limit(THROTTLE,0x00,0x64); // throttle
packet[1] = convert_channel_16b_limit(RUDDER ,0x64,0x00); // rudder
packet[2] = convert_channel_16b_limit(ELEVATOR,0x00,0x64); // elevator
packet[3] = convert_channel_16b_limit(AILERON ,0x64,0x00); // aileron
if(packet_count++ >= 23)
{
seq_num ++;
if(seq_num > 2)
seq_num = 0;
packet_count=0;
}
packet[4] = yz_p4_seq[seq_num];
packet[5] = 0x02 // expert ? (0=unarmed, 1=normal)
| GET_FLAG(CH8_SW, 0x10) //VIDEO
| GET_FLAG(CH5_SW, 0x80) //FLIP
| GET_FLAG(CH9_SW, 0x04) //HEADLESS
| GET_FLAG(CH7_SW, 0x20); //SNAPSHOT
packet[6] = GET_FLAG(CH6_SW, 0x80); //LED
packet[7] = packet[0];
for(uint8_t idx = 1; idx < MT99XX_PACKET_SIZE-2; idx++)
packet[7] += packet[idx];
packet[8] = 0xff;
}
}
//RF freq
if(sub_protocol == LS)
XN297_RFChannel(0x2D); // LS always transmits on the same channel
else
if(sub_protocol==FY805)
XN297_RFChannel(0x4B); // FY805 always transmits on the same channel
else // MT99 & H7 & YZ & A180 & DRAGON
XN297_Hopping(hopping_frequency_no);
hopping_frequency_no++;
if(sub_protocol == YZ || sub_protocol == A180 || sub_protocol == DRAGON )
hopping_frequency_no++; // skip every other channel
if(hopping_frequency_no > 15)
hopping_frequency_no = 0;
// Send
XN297_SetPower();
XN297_SetFreqOffset();
XN297_SetTxRxMode(TX_EN);
XN297_WritePayload(packet, MT99XX_PACKET_SIZE);
}
static void __attribute__((unused)) MT99XX_RF_init()
{
if(sub_protocol == YZ)
XN297_Configure(XN297_CRCEN, XN297_UNSCRAMBLED, XN297_250K);
else
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_1M);
XN297_SetTXAddr((uint8_t *)"\xCC\xCC\xCC\xCC\xCC", 5);
XN297_HoppingCalib(16);
#ifdef MT99XX_HUB_TELEMETRY
XN297_SetRXAddr(rx_tx_addr, MT99XX_PACKET_SIZE);
#endif
}
static void __attribute__((unused)) MT99XX_initialize_txid()
{
rx_tx_addr[1] = rx_tx_addr[3]; // RX_Num
switch(protocol)
{
case YZ:
rx_tx_addr[0] = 0x53; // test (SB id)
rx_tx_addr[1] = 0x00;
rx_tx_addr[2] = 0x00;
break;
case FY805:
rx_tx_addr[0] = 0x81; // test (SB id)
rx_tx_addr[1] = 0x0F;
rx_tx_addr[2] = 0x00;
break;
case LS:
rx_tx_addr[0] = 0xCC;
break;
#ifdef FORCE_A180_ID
case A180:
rx_tx_addr[0] = 0x84; // MikeHRC ID
rx_tx_addr[1] = 0x62;
rx_tx_addr[2] = 0x4A;
//crc8 = 0x30
//channel_offset = 0x03;
break;
#endif
#ifdef FORCE_DRAGON_ID
case DRAGON:
rx_tx_addr[0] = 0x6C; // Laurie ID
rx_tx_addr[1] = 0x00;
rx_tx_addr[2] = 0x22;
//crc8 = 0x8E
//channel_offset = 0x06
break;
#endif
default: //MT99 & H7 & A180 & DRAGON
rx_tx_addr[2] = 0x00;
break;
}
rx_tx_addr[3] = 0xCC;
rx_tx_addr[4] = 0xCC;
crc8 = rx_tx_addr[0] + rx_tx_addr[1] + rx_tx_addr[2];
//memcpy(hopping_frequency,"\x02\x48\x0C\x3e\x16\x34\x20\x2A\x2A\x20\x34\x16\x3e\x0c\x48\x02",16);
for(uint8_t i=0; i<8; i++)
{
hopping_frequency[(i<<1) ]=0x02 + (10*i);
hopping_frequency[(i<<1)+1]=0x48 - (10*i);
}
hopping_frequency_no=0;
}
uint16_t MT99XX_callback()
{
switch(phase)
{
case MT99XX_DATA:
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
if(bind_counter)
{
bind_counter--;
if (bind_counter == 0)
{
// set tx address for data packets
XN297_SetTXAddr(rx_tx_addr, 5);
// set rf channels
uint8_t channel_offset = ((crc8>>4) + (crc8 & 0x0f)) % 8;
for(uint8_t i=0;i<16;i++)
hopping_frequency[i] += channel_offset;
XN297_HoppingCalib(16);
BIND_DONE;
}
}
MT99XX_send_packet();
break;
#ifdef MT99XX_HUB_TELEMETRY
case MT99XX_RX:
//Switch to RX
XN297_SetTxRxMode(TXRX_OFF);
XN297_SetTxRxMode(RX_EN);
phase++;
return MT99XX_PACKET_PERIOD_DRAGON_TELEM - MT99XX_PACKET_PERIOD_DRAGON - 500;
case MT99XX_CHECK:
//Check telem
if(XN297_IsRX())
{
//debug("RX");
if(XN297_ReadPayload(packet_in, MT99XX_PACKET_SIZE))
{
// C=48 S=Y A= 6C 00 22 CC CC P(9)= 6C 00 22 27 00 00 00 00 60
// C=48 S=Y A= 6C 00 22 CC CC P(9)= 6C 00 22 28 00 00 00 00 61
// C=18 S=Y A= 6C 00 22 CC CC P(9)= 6C 00 22 24 00 00 00 00 5D
// 6C 00 22 = TX address, 27/28/24=vbatt, check = sum(P[0..7]) + AB
// D2 EE 00 25 00 00 00 00 90 -> check also + AB
//for(uint8_t i=0; i<MT99XX_PACKET_SIZE; i++)
// debug(" %02X",packet_in[i]);
uint8_t check=0xAB;
for(uint8_t i=0; i<8; i++)
check += packet_in[i];
if(packet_in[8] == check && packet_in[0] == rx_tx_addr[0] && packet_in[1] == rx_tx_addr[1] && packet_in[2] == rx_tx_addr[2])
{ // checksum and address are ok
// debug(" OK");
v_lipo1 = packet_in[3] & 0x7F; // Batt
v_lipo2 = packet_in[3] & 0x80; // Low batt flag
RX_RSSI=100;
telemetry_link = 1;
}
}
//debugln("");
}
//Switch to TX
XN297_SetTxRxMode(TXRX_OFF);
XN297_SetTxRxMode(TX_EN);
phase=MT99XX_DATA;
return 500;
#endif
}
return packet_period;
}
void MT99XX_init(void)
{
if(sub_protocol != A180 && sub_protocol != DRAGON)
BIND_IN_PROGRESS; // autobind protocol
bind_counter = MT99XX_BIND_COUNT;
MT99XX_initialize_txid();
MT99XX_RF_init();
packet_period = MT99XX_PACKET_PERIOD_MT;
packet_count=0;
phase=MT99XX_DATA;
}
#endif

View File

@@ -1,310 +0,0 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// compatible with MT99xx, Eachine H7, Yi Zhan i6S and LS114/124
// Last sync with Goebish mt99xx_nrf24l01.c dated 2016-01-29
#if defined(MT99XX_NRF24L01_INO)
#include "iface_nrf24l01.h"
#define MT99XX_BIND_COUNT 928
#define MT99XX_PACKET_PERIOD_FY805 2460
#define MT99XX_PACKET_PERIOD_MT 2625
#define MT99XX_PACKET_PERIOD_YZ 3125
#define MT99XX_INITIAL_WAIT 500
#define MT99XX_PACKET_SIZE 9
#define checksum_offset rf_ch_num
#define channel_offset phase
enum{
// flags going to packet[6] (MT99xx, H7)
FLAG_MT_RATE1 = 0x01, // (H7 high rate)
FLAG_MT_RATE2 = 0x02, // (MT9916 only)
FLAG_MT_VIDEO = 0x10,
FLAG_MT_SNAPSHOT= 0x20,
FLAG_MT_FLIP = 0x80,
};
enum{
// flags going to packet[6] (LS)
FLAG_LS_INVERT = 0x01,
FLAG_LS_RATE = 0x02,
FLAG_LS_HEADLESS= 0x10,
FLAG_LS_SNAPSHOT= 0x20,
FLAG_LS_VIDEO = 0x40,
FLAG_LS_FLIP = 0x80,
};
enum{
// flags going to packet[7] (FY805)
FLAG_FY805_HEADLESS= 0x10,
};
enum {
MT99XX_INIT = 0,
MT99XX_BIND,
MT99XX_DATA
};
const uint8_t h7_mys_byte[] = {
0x01, 0x11, 0x02, 0x12, 0x03, 0x13, 0x04, 0x14,
0x05, 0x15, 0x06, 0x16, 0x07, 0x17, 0x00, 0x10
};
static const uint8_t ls_mys_byte[] = {
0x05, 0x15, 0x25, 0x06, 0x16, 0x26,
0x07, 0x17, 0x27, 0x00, 0x10, 0x20,
0x01, 0x11, 0x21, 0x02, 0x12, 0x22,
0x03, 0x13, 0x23, 0x04, 0x14, 0x24
};
static void __attribute__((unused)) MT99XX_send_packet()
{
const uint8_t yz_p4_seq[] = {0xa0, 0x20, 0x60};
static uint8_t yz_seq_num=0;
static uint8_t ls_counter=0;
if(sub_protocol != YZ)
{ // MT99XX & H7 & LS
packet[0] = convert_channel_16b_limit(THROTTLE,0xE1,0x00); // throttle
packet[1] = convert_channel_16b_limit(RUDDER ,0x00,0xE1); // rudder
packet[2] = convert_channel_16b_limit(AILERON ,0xE1,0x00); // aileron
packet[3] = convert_channel_16b_limit(ELEVATOR,0x00,0xE1); // elevator
packet[4] = 0x20; // pitch trim (0x3f-0x20-0x00)
packet[5] = 0x20; // roll trim (0x00-0x20-0x3f)
packet[6] = GET_FLAG( CH5_SW, FLAG_MT_FLIP );
packet[7] = h7_mys_byte[hopping_frequency_no]; // next rf channel index ?
if(sub_protocol==H7)
packet[6]|=FLAG_MT_RATE1; // max rate on H7
else
if(sub_protocol==MT99)
packet[6] |= 0x40 | FLAG_MT_RATE2
| GET_FLAG( CH7_SW, FLAG_MT_SNAPSHOT )
| GET_FLAG( CH8_SW, FLAG_MT_VIDEO ); // max rate on MT99xx
else
if(sub_protocol==FY805)
{
packet[6]=0x20;
//Rate 0x01?
//Flip ?
packet[7]=0x01
|GET_FLAG( CH5_SW, FLAG_MT_FLIP )
|GET_FLAG( CH9_SW, FLAG_FY805_HEADLESS ); //HEADLESS
checksum_offset=0;
}
else //LS
{
packet[6] |= FLAG_LS_RATE // max rate
| GET_FLAG( CH6_SW, FLAG_LS_INVERT ) //INVERT
| GET_FLAG( CH7_SW, FLAG_LS_SNAPSHOT ) //SNAPSHOT
| GET_FLAG( CH8_SW, FLAG_LS_VIDEO ) //VIDEO
| GET_FLAG( CH9_SW, FLAG_LS_HEADLESS ); //HEADLESS
packet[7] = ls_mys_byte[ls_counter++];
if(ls_counter >= sizeof(ls_mys_byte))
ls_counter=0;
}
uint8_t result=checksum_offset;
for(uint8_t i=0; i<8; i++)
result += packet[i];
packet[8] = result;
}
else
{ // YZ
packet[0] = convert_channel_16b_limit(THROTTLE,0x00,0x64); // throttle
packet[1] = convert_channel_16b_limit(RUDDER ,0x64,0x00); // rudder
packet[2] = convert_channel_16b_limit(ELEVATOR,0x00,0x64); // elevator
packet[3] = convert_channel_16b_limit(AILERON ,0x64,0x00); // aileron
if(packet_count++ >= 23)
{
yz_seq_num ++;
if(yz_seq_num > 2)
yz_seq_num = 0;
packet_count=0;
}
packet[4] = yz_p4_seq[yz_seq_num];
packet[5] = 0x02 // expert ? (0=unarmed, 1=normal)
| GET_FLAG(CH8_SW, 0x10) //VIDEO
| GET_FLAG(CH5_SW, 0x80) //FLIP
| GET_FLAG(CH9_SW, 0x04) //HEADLESS
| GET_FLAG(CH7_SW, 0x20); //SNAPSHOT
packet[6] = GET_FLAG(CH6_SW, 0x80); //LED
packet[7] = packet[0];
for(uint8_t idx = 1; idx < MT99XX_PACKET_SIZE-2; idx++)
packet[7] += packet[idx];
packet[8] = 0xff;
}
if(sub_protocol == LS)
NRF24L01_WriteReg(NRF24L01_05_RF_CH, 0x2D); // LS always transmits on the same channel
else
if(sub_protocol==FY805)
NRF24L01_WriteReg(NRF24L01_05_RF_CH, 0x4B); // FY805 always transmits on the same channel
else
NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency[hopping_frequency_no] + channel_offset);
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
XN297_WritePayload(packet, MT99XX_PACKET_SIZE);
hopping_frequency_no++;
if(sub_protocol == YZ)
hopping_frequency_no++; // skip every other channel
if(hopping_frequency_no > 15)
hopping_frequency_no = 0;
NRF24L01_SetPower();
}
static void __attribute__((unused)) MT99XX_init()
{
NRF24L01_Initialize();
if(sub_protocol == YZ)
XN297_SetScrambledMode(XN297_UNSCRAMBLED);
NRF24L01_SetTxRxMode(TX_EN);
NRF24L01_FlushTx();
XN297_SetTXAddr((uint8_t *)"\xCC\xCC\xCC\xCC\xCC", 5);
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowldgement on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x03); // 5 bytes address
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0x00); // no auto retransmit
if(sub_protocol == YZ)
NRF24L01_SetBitrate(NRF24L01_BR_250K); // 250Kbps (nRF24L01+ only)
else
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps
NRF24L01_SetPower();
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP) );
}
static void __attribute__((unused)) MT99XX_initialize_txid()
{
rx_tx_addr[3] = 0xCC;
rx_tx_addr[4] = 0xCC;
if(sub_protocol == YZ)
{
rx_tx_addr[0] = 0x53; // test (SB id)
rx_tx_addr[1] = 0x00;
rx_tx_addr[2] = 0x00;
}
else
if(sub_protocol == FY805)
{
rx_tx_addr[0] = 0x81; // test (SB id)
rx_tx_addr[1] = 0x0F;
rx_tx_addr[2] = 0x00;
}
else
if(sub_protocol == LS)
rx_tx_addr[0] = 0xCC;
else //MT99 & H7
rx_tx_addr[2] = 0x00;
checksum_offset = rx_tx_addr[0] + rx_tx_addr[1] + rx_tx_addr[2];
channel_offset = (((checksum_offset & 0xf0)>>4) + (checksum_offset & 0x0f)) % 8;
}
uint16_t MT99XX_callback()
{
if(IS_BIND_DONE)
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
MT99XX_send_packet();
}
else
{
if (bind_counter == 0)
{
// set tx address for data packets
XN297_SetTXAddr(rx_tx_addr, 5);
BIND_DONE;
}
else
{
if(sub_protocol == LS)
NRF24L01_WriteReg(NRF24L01_05_RF_CH, 0x2D); // LS always transmits on the same channel
else
if(sub_protocol==FY805)
NRF24L01_WriteReg(NRF24L01_05_RF_CH, 0x4B); // FY805 always transmits on the same channel
else
NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency[hopping_frequency_no]);
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
XN297_WritePayload(packet, MT99XX_PACKET_SIZE); // bind packet
hopping_frequency_no++;
if(sub_protocol == YZ)
hopping_frequency_no++; // skip every other channel
if(hopping_frequency_no > 15)
hopping_frequency_no = 0;
bind_counter--;
}
}
return packet_period;
}
uint16_t initMT99XX(void)
{
BIND_IN_PROGRESS; // autobind protocol
bind_counter = MT99XX_BIND_COUNT;
memcpy(hopping_frequency,"\x02\x48\x0C\x3e\x16\x34\x20\x2A\x2A\x20\x34\x16\x3e\x0c\x48\x02",16);
hopping_frequency_no=0;
MT99XX_initialize_txid();
MT99XX_init();
packet[0] = 0x20;
packet_period = MT99XX_PACKET_PERIOD_MT;
switch(sub_protocol)
{ // MT99 & H7
case MT99:
case H7:
packet[1] = 0x14;
packet[2] = 0x03;
packet[3] = 0x25;
break;
case YZ:
packet_period = MT99XX_PACKET_PERIOD_YZ;
packet[1] = 0x15;
packet[2] = 0x05;
packet[3] = 0x06;
break;
case LS:
packet[1] = 0x14;
packet[2] = 0x05;
packet[3] = 0x11;
break;
case FY805:
packet_period = MT99XX_PACKET_PERIOD_FY805;
packet[1] = 0x15;
packet[2] = 0x12;
packet[3] = 0x17;
break;
}
packet[4] = rx_tx_addr[0];
packet[5] = rx_tx_addr[1];
packet[6] = rx_tx_addr[2];
packet[7] = checksum_offset; // checksum offset
packet[8] = 0xAA; // fixed
packet_count=0;
return MT99XX_INITIAL_WAIT+MT99XX_PACKET_PERIOD_MT;
}
#endif

View File

@@ -0,0 +1,241 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(MOULDKG_NRF24L01_INO)
#include "iface_xn297.h"
//#define FORCE_MOULDKG_ORIGINAL_ID
#define MOULDKG_PACKET_PERIOD 5000
#define MOULDKG_BIND_PACKET_PERIOD 12000
#define MOULDKG_TX_BIND_CHANNEL 11
#define MOULDKG_RX_BIND_CHANNEL 76
#define MOULDKG_PAYLOAD_SIZE_DIGIT 5
#define MOULDKG_PAYLOAD_SIZE_ANALOG 10
#define MOULDKG_BIND_PAYLOAD_SIZE 7
#define MOULDKG_BIND_COUNT 300
#define MOULDKG_RF_NUM_CHANNELS 4
enum {
MOULDKG_BINDTX=0,
MOULDKG_BINDRX,
MOULDKG_PREP_DATA,
MOULDKG_PREP_DATA1,
MOULDKG_DATA,
};
uint8_t MOULDKG_RX_id[4*3];
static void __attribute__((unused)) MOULDKG_send_packet()
{
uint8_t len = MOULDKG_BIND_PAYLOAD_SIZE;
memcpy(&packet[1],rx_tx_addr,3);
if(IS_BIND_IN_PROGRESS)
{
packet[0] = 0xC0;
memset(&packet[4], 0x00, 3);
}
else
{
uint8_t n = num_ch<<2;
if(sub_protocol == MOULDKG_ANALOG)
{
packet[0] = 0x36;
uint8_t ch[]={ 1,0,2,3 };
for(uint8_t i=0;i<4;i++)
packet[i+4] = convert_channel_8b(ch[i]+n);
len = MOULDKG_PAYLOAD_SIZE_ANALOG;
}
else
{//DIGIT
len = MOULDKG_PAYLOAD_SIZE_DIGIT;
uint8_t val=0;
if(packet_count&1)
{
packet[0] = 0x31;
//Button B
if(Channel_data[CH2+n]>CHANNEL_MAX_COMMAND) val |= 0x40;
else if(Channel_data[CH2+n]<CHANNEL_MIN_COMMAND) val |= 0x80;
//Button C
if(Channel_data[CH3+n]>CHANNEL_MAX_COMMAND) val |= 0x10;
else if(Channel_data[CH3+n]<CHANNEL_MIN_COMMAND) val |= 0x20;
}
else
{
packet[0] = 0x30;
val = 0x60;
// | GET_FLAG(CH5_SW, 0x80) // Button E
// | GET_FLAG(CH6_SW, 0x10); // Button F
}
//Button A
if(Channel_data[CH1+n]>CHANNEL_MAX_COMMAND) val |= 0x01;
else if(Channel_data[CH1+n]<CHANNEL_MIN_COMMAND) val |= 0x02;
//Button D
if(Channel_data[CH4+n]>CHANNEL_MAX_COMMAND) val |= 0x04;
else if(Channel_data[CH4+n]<CHANNEL_MIN_COMMAND) val |= 0x08;
packet[4]= val;
}
}
// Send
XN297_SetPower();
XN297_SetTxRxMode(TX_EN);
XN297_WritePayload(packet, len);
#if 0
for(uint8_t i=0; i < len; i++)
debug("%02X ", packet[i]);
debugln();
#endif
}
static void __attribute__((unused)) MOULDKG_initialize_txid()
{
//rx_tx_addr[0] = rx_tx_addr[3]; // Use RX_num;
#ifdef FORCE_MOULDKG_ORIGINAL_ID
rx_tx_addr[0]=0x57;
rx_tx_addr[1]=0x1B;
rx_tx_addr[2]=0xF8;
#endif
}
static void __attribute__((unused)) MOULDKG_RF_init()
{
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_1M);
XN297_SetTXAddr((uint8_t*)"KDH", 3);
XN297_SetRXAddr((uint8_t*)"KDH", MOULDKG_BIND_PAYLOAD_SIZE);
}
uint16_t MOULDKG_callback()
{
uint8_t rf,n;
uint16_t addr;
switch(phase)
{
case MOULDKG_BINDTX:
if(XN297_IsRX())
{
//Example: TX: C=11 S=Y A= 4B 44 48 P(7)= C0 37 02 4F 00 00 00
// RX: C=76 S=Y A= 4B 44 48 P(7)= 5A 37 02 4F 03 0D 8E
// 03 0D 8E => RF channels 0F,1C,39,3C
XN297_ReadPayload(packet_in, MOULDKG_BIND_PAYLOAD_SIZE);
for(uint8_t i=0; i < MOULDKG_BIND_PAYLOAD_SIZE; i++)
debug("%02X ", packet_in[i]);
debugln();
//Not sure if I should test packet_in[0]
if(memcmp(&packet_in[1],&packet[1],3)==0)
{//TX ID match
if(option == 0)
{
memcpy(MOULDKG_RX_id,&packet_in[4],3);
phase = MOULDKG_PREP_DATA1;
}
else
{// Store RX ID
addr=MOULDKG_EEPROM_OFFSET+RX_num*3;
for(uint8_t i=0;i<3;i++)
eeprom_write_byte((EE_ADDR)(addr+i),packet_in[4+i]);
phase = MOULDKG_PREP_DATA;
}
break;
}
}
XN297_RFChannel(MOULDKG_TX_BIND_CHANNEL); // Set TX bind channel
XN297_SetTxRxMode(TXRX_OFF);
MOULDKG_send_packet();
phase++;
return 600;
case MOULDKG_BINDRX:
//Wait for the packet transmission to finish
while(XN297_IsPacketSent()==false);
//Switch to RX
XN297_SetTxRxMode(TXRX_OFF);
XN297_RFChannel(MOULDKG_RX_BIND_CHANNEL); // Set RX bind channel
XN297_SetTxRxMode(RX_EN);
phase = MOULDKG_BINDTX;
return MOULDKG_BIND_PACKET_PERIOD-600;
case MOULDKG_PREP_DATA:
addr=MOULDKG_EEPROM_OFFSET+RX_num*3;
debug("RXID: ");
for(uint8_t i=0;i<3*4;i++)
{ // load 4 consecutive RX IDs
MOULDKG_RX_id[i]=eeprom_read_byte((EE_ADDR)(addr+i));
debug(" %02X",MOULDKG_RX_id[i]);
}
debugln("");
case MOULDKG_PREP_DATA1:
//Switch to normal mode
BIND_DONE;
XN297_SetTxRxMode(TXRX_OFF);
phase = MOULDKG_DATA;
break;
case MOULDKG_DATA:
#ifdef MULTI_SYNC
if(num_ch==0)
telemetry_set_input_sync(MOULDKG_PACKET_PERIOD);
#endif
if(option == 0) option++;
if(num_ch<option)
{
//Set RX ID address
n = num_ch*3;
XN297_SetTXAddr(&MOULDKG_RX_id[n], 3);
//Set frequency based on current RX ID and packet number
rf = 0x0C;
if(packet_count & 0x04)
{
n++;
rf += 0x20;
}
if(packet_count & 0x02)
rf += 0x10 + (MOULDKG_RX_id[n] >> 4);
else
rf += MOULDKG_RX_id[n] & 0x0F;
XN297_RFChannel(rf);
#if 1
debugln("num_ch=%d,packet_count=%d,rf=%02X,ID=%02X %02X %02X",num_ch,packet_count,rf,MOULDKG_RX_id[num_ch*3],MOULDKG_RX_id[num_ch*3+1],MOULDKG_RX_id[num_ch*3+2]);
#endif
MOULDKG_send_packet();
if(num_ch==0)
packet_count++;
}
num_ch++;
num_ch &= 0x03;
break;
}
return MOULDKG_PACKET_PERIOD/4;
}
void MOULDKG_init()
{
if(option == 0)
BIND_IN_PROGRESS;
MOULDKG_initialize_txid();
MOULDKG_RF_init();
bind_counter = MOULDKG_BIND_COUNT;
if(IS_BIND_IN_PROGRESS)
phase = MOULDKG_BINDTX;
else
phase = MOULDKG_PREP_DATA;
packet_count = 0;
num_ch = 0;
}
#endif
// Analog
// Bind TX: C=11 S=Y A= 4B 44 48 P(7)= C0 46 01 00 00 00 00
// Bind RX: 5A 46 01 00 63 82 4E
// Norm: C=15 S=Y A= 63 82 4E P(10)= 36 46 01 00 80 80 80 80 00 00

View File

@@ -3,7 +3,7 @@
3,FrskyD,D8,Cloned
4,Hisky,Hisky,HK310
5,V2x2,V2x2,JXD506,MR101
6,DSM,DSM2_1F,DSM2_2F,DSMX_1F,DSMX_2F,AUTO
6,DSM,DSM2_1F,DSM2_2F,DSMX_1F,DSMX_2F,AUTO,DSMR_1F
7,Devo,8CH,10CH,12CH,6CH,7CH
8,YD717,YD717,SKYWLKR,SYMAX4,XINXUN,NIHUI
9,KN,WLTOYS,FEILUN
@@ -12,20 +12,20 @@
12,CX10,GREEN,BLUE,DM007,---,J3015_1,J3015_2,MK33041
13,CG023,CG023,YD829
14,Bayang,Bayang,H8S3D,X16_AH,IRDRONE,DHD_D4,QX100
15,FrskyX,CH_16,CH_8,EU_16,EU_8,Cloned
15,FrskyX,CH_16,CH_8,EU_16,EU_8,Cloned,Clon_8
16,ESky,Std,ET4
17,MT99xx,MT,H7,YZ,LS,FY805
17,MT99xx,MT,H7,YZ,LS,FY805,A180,Dragon
18,MJXq,WLH08,X600,X800,H26D,E010,H26WH,PHOENIX
19,Shenqi
20,FY326,FY326,FY319
21,SFHSS
21,Futaba,SFHSS
22,J6PRO
23,FQ777
24,ASSAN
25,FrskyV
26,HONTAI,HONTAI,JJRCX1,X5C1,FQ777_951
27,OpnLrs
28,AFHDS2A,PWM_IBUS,PPM_IBUS,PWM_SBUS,PPM_SBUS
28,AFHDS2A,PWM_IBUS,PPM_IBUS,PWM_SBUS,PPM_SBUS,PWM_IB16,PPM_IB16
29,Q2X2,Q222,Q242,Q282
30,WK2x01,WK2801,WK2401,W6_5_1,W6_6_1,W6_HEL,W6_HEL_I
31,Q303,Q303,CX35,CX10D,CX10WD
@@ -37,12 +37,12 @@
37,CORONA,COR_V1,COR_V2,FD_V3
38,CFlie
39,Hitec,OPT_FW,OPT_HUB,MINIMA
40,WFLY
40,WFLY,WFR0x
41,BUGS
42,BUGSMINI,BUGSMINI,BUGS3H
43,Traxxas,RX6519
44,NCC1701
45,E01X,E012,E015,E016H
45,E01X,E012,E015
46,V911S,V911S,E119
47,GD00x,GD_V1,GD_V2
48,V761,3CH,4CH
@@ -50,23 +50,39 @@
50,Redpine,Fast,Slow
51,Potensic,A20
52,ZSX,280
53,Flyzone,FZ-410
53,Height,5ch,8ch
54,Scanner
55,Frsky_RX,RX,CloneTX
56,AFHDS2A_RX
55,Frsky_RX,Multi,CloneTX,EraseTX,CPPM
56,AFHDS2A_RX,Multi,CPPM
57,HoTT,Sync,No_Sync
58,FX816,P38
59,Bayang_RX
60,Pelikan,Pro,Lite
59,Bayang_RX,Multi,CPPM
60,Pelikan,Pro,Lite,SCX24
61,Tiger
62,XK,X450,X420
63,XN_DUMP,250K,1M,2M,AUTO
64,FrskyX2,CH_16,CH_8,EU_16,EU_8,Cloned
65,FrSkyR9,915MHz,868MHz,915_8ch,868_8ch
65,FrSkyR9,915MHz,868MHz,915_8ch,868_8ch,FCC,--,FCC_8ch,--_8ch
66,PROPEL,74-Z
67,LR12,LR12,LR12_6ch
68,Skyartec
69,ESKYv2,150V2
70,DSM_RX
71,JJRC345
72,Q90C
70,DSM_RX,Multi,CPPM
71,JJRC345,JJRC345,SkyTmblr
72,Q90C
73,Kyosho,FHSS,Hype
74,RadioLink,Surface,Air,DumboRC
75,---
76,Realacc,R11
77,OMP
78,M-Link
79,WFLY,RF20x
80,E016H,E016Hv2
81,E010r5
82,LOLI
83,E129
84,JOYSWAY
85,E016H
87,IKEA
89,Losi
90,MouldKg,Analog,Digit

View File

@@ -0,0 +1,192 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(MULTI_CONFIG_INO)
#ifdef CYRF6936_INSTALLED
#include "iface_cyrf6936.h"
#endif
void CONFIG_write_GID(uint32_t id)
{
for(uint8_t i=0;i<4;i++)
eeprom_write_byte((EE_ADDR)EEPROM_ID_OFFSET+i,id >> (i*8));
//eeprom_write_byte((EE_ADDR)(EEPROM_ID_OFFSET+10),0xf0);
}
void CONFIG_write_CID(uint8_t *data)
{
for(uint8_t i=0;i<6;i++)
eeprom_write_byte((EE_ADDR)EEPROM_CID_OFFSET+i, data[i]);
//eeprom_write_byte((EE_ADDR)EEPROM_CID_INIT_OFFSET, 0xf0);
}
uint16_t CONFIG_callback()
{
static uint8_t line=0, page=0;
uint32_t id=0;
// [0] = page<<4|line number
// [1..6] = max 6 bytes
if(CONFIG_SerialRX)
{
debug("config");
for(uint8_t i=0; i<7; i++)
debug("%02X ",CONFIG_SerialRX_val[i]);
debugln("");
CONFIG_SerialRX = false;
switch(CONFIG_SerialRX_val[0]&0x0F)
{
//case 0:
// Page change
// break;
case 1:
for(uint8_t i=0; i<4; i++)
{
id <<= 8;
id |= CONFIG_SerialRX_val[i+1];
}
debugln("Update ID to %lx", id);
CONFIG_write_GID(id);
break;
case 2:
if(CONFIG_SerialRX_val[1]==0xAA)
{
#define STM32_UUID ((uint32_t *)0x1FFFF7E8)
id = STM32_UUID[0] ^ STM32_UUID[1] ^ STM32_UUID[2];
debugln("Reset GID to %lx", id);
CONFIG_write_GID(id);
}
break;
#ifdef CYRF6936_INSTALLED
case 4:
debug("Update CID to ");
for(uint8_t i=0; i<6; i++)
debug("%02X ",CONFIG_SerialRX_val[i+1]);
debugln("");
CONFIG_write_CID(&CONFIG_SerialRX_val[1]);
case 5:
if(CONFIG_SerialRX_val[1]==0xAA)
{
uint8_t data[6];
CYRF_WriteRegister(CYRF_25_MFG_ID, 0xFF); /* Fuses power on */
CYRF_ReadRegisterMulti(CYRF_25_MFG_ID, data, 6);
CYRF_WriteRegister(CYRF_25_MFG_ID, 0x00); /* Fuses power off */
debug("Reset CID to ");
for(uint8_t i=0; i<6; i++)
debug("%02X ",data[i]);
debugln("");
CONFIG_write_CID(data);
}
break;
#endif
case 7:
if(CONFIG_SerialRX_val[1]==0xAA)
{
debugln("Format EE");
#if defined(STM32_BOARD)
EEPROM.format();
#else
for (uint16_t i = 0; i < 512; i++)
eeprom_write_byte((EE_ADDR)i, 0xFF);
#endif
}
break;
}
}
if( telemetry_link )
return 10000;
// [0] = page<<4|line number
// line=0: VERSION_MAJOR, VERSION_MINOR, VERSION_REVISION, VERSION_PATCH_LEVEL, Channel order:RUDDER<<6|THROTTLE<<4|ELEVATOR<<2|AILERON
// [1..21] = max 20 characters, any displayable chars followed by:
// 0x00 : end of line
// 0x80+len: selectable text to follow
// 0x90+len: selectable text to follow with "Are you sure?"
// 0xA0+len: not editable dec value
// 0xB0+len: editable dec value
// 0xC0+len: not editable hex value
// 0xD0+len: editable hex value
memset(&packet_in[1],0,20);
do
{
packet_in[0] = (page<<4) | line;
switch(line)
{
case 0:
packet_in[1]=VERSION_MAJOR;
packet_in[2]=VERSION_MINOR;
packet_in[3]=VERSION_REVISION;
packet_in[4]=VERSION_PATCH_LEVEL;
packet_in[5]=RUDDER<<6|THROTTLE<<4|ELEVATOR<<2|AILERON;
break;
case 1:
//Global ID
#ifndef FORCE_GLOBAL_ID
memcpy(&packet_in[1],"Global ID",9);
packet_in[10] = 0xD0 + 4;
#else
memcpy(&packet_in[1],"Fixed ID ",9);
packet_in[10] = 0xC0 + 4;
#endif
MProtocol_id_master = random_id(EEPROM_ID_OFFSET,false);
set_rx_tx_addr(MProtocol_id_master);
for(uint8_t i=0; i<4; i++)
packet_in[11+i]=rx_tx_addr[i];
break;
#if defined(STM32_BOARD) && not defined(FORCE_GLOBAL_ID)
case 2:
//Reset global ID
packet_in[1] = 0x90+9;
memcpy(&packet_in[2],"Reset GID",9);
break;
#endif
#ifdef CYRF6936_INSTALLED
case 4:
//Cyrf ID
#ifndef FORCE_CYRF_ID
memcpy(&packet_in[1],"Cyrf ID",7);
packet_in[8] = 0xD0 + 6;
CYRF_GetMfgData(&packet_in[9]);
#else
memcpy(&packet_in[1],"Fixed CID",9);
packet_in[10] = 0xC0 + 6;
CYRF_GetMfgData(&packet_in[11]);
#endif
break;
#ifndef FORCE_CYRF_ID
case 5:
//Reset Cyrf ID
packet_in[1] = 0x90+9;
memcpy(&packet_in[2],"Reset CID",9);
break;
#endif
#endif
case 7:
packet_in[1] = 0x90+13;
memcpy(&packet_in[2],"Format EEPROM",13);
break;
}
line++;
line %= 8;
}
while(packet_in[1]==0); // next line if empty
telemetry_link = 1;
return 10000;
}
void CONFIG_init()
{
}
#endif

View File

@@ -1,383 +0,0 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(MULTI_NAMES)
const char STR_FLYSKY[] ="FlySky";
const char STR_HUBSAN[] ="Hubsan";
const char STR_FRSKYD[] ="FrSky D";
const char STR_HISKY[] ="Hisky";
const char STR_V2X2[] ="V2x2";
const char STR_DSM[] ="DSM";
const char STR_DSM_RX[] ="DSM_RX";
const char STR_DEVO[] ="Devo";
const char STR_YD717[] ="YD717";
const char STR_KN[] ="KN";
const char STR_SYMAX[] ="SymaX";
const char STR_SLT[] ="SLT";
const char STR_CX10[] ="CX10";
const char STR_CG023[] ="CG023";
const char STR_BAYANG[] ="Bayang";
const char STR_FRSKYL[] ="FrSky L";
const char STR_FRSKYX[] ="FrSky X";
const char STR_FRSKYX2[] ="FrSkyX2";
const char STR_ESKY[] ="ESky";
const char STR_MT99XX[] ="MT99XX";
const char STR_MJXQ[] ="MJXq";
const char STR_SHENQI[] ="Shenqi";
const char STR_FY326[] ="FY326";
const char STR_SFHSS[] ="SFHSS";
const char STR_J6PRO[] ="J6 Pro";
const char STR_JJRC345[] ="JJRC345";
const char STR_FQ777[] ="FQ777";
const char STR_ASSAN[] ="Assan";
const char STR_FRSKYV[] ="FrSky V";
const char STR_HONTAI[] ="Hontai";
const char STR_AFHDS2A[] ="FlSky2A";
const char STR_Q2X2[] ="Q2x2";
const char STR_WK2x01[] ="Walkera";
const char STR_Q303[] ="Q303";
const char STR_Q90C[] ="Q90C";
const char STR_GW008[] ="GW008";
const char STR_DM002[] ="DM002";
const char STR_CABELL[] ="Cabell";
const char STR_ESKY150[] ="Esky150";
const char STR_ESKY150V2[] ="EskyV2";
const char STR_H8_3D[] ="H8 3D";
const char STR_CORONA[] ="Corona";
const char STR_CFLIE[] ="CFlie";
const char STR_HITEC[] ="Hitec";
const char STR_WFLY[] ="WFly";
const char STR_BUGS[] ="Bugs";
const char STR_BUGSMINI[] ="BugMini";
const char STR_TRAXXAS[] ="Traxxas";
const char STR_NCC1701[] ="NCC1701";
const char STR_E01X[] ="E01X";
const char STR_V911S[] ="V911S";
const char STR_GD00X[] ="GD00x";
const char STR_V761[] ="V761";
const char STR_KF606[] ="KF606";
const char STR_REDPINE[] ="Redpine";
const char STR_POTENSIC[] ="Potensi";
const char STR_ZSX[] ="ZSX";
const char STR_FLYZONE[] ="FlyZone";
const char STR_SCANNER[] ="Scanner";
const char STR_FRSKY_RX[] ="FrSkyRX";
const char STR_AFHDS2A_RX[] ="FS2A_RX";
const char STR_HOTT[] ="HoTT";
const char STR_FX816[] ="FX816";
const char STR_BAYANG_RX[] ="BayanRX";
const char STR_PELIKAN[] ="Pelikan";
const char STR_TIGER[] ="Tiger";
const char STR_XK[] ="XK";
const char STR_XN297DUMP[] ="XN297DP";
const char STR_FRSKYR9[] ="FrSkyR9";
const char STR_PROPEL[] ="Propel";
const char STR_SKYARTEC[] ="Skyartc";
const char STR_TEST[] ="Test";
const char STR_FAKE[] ="Fake";
const char STR_SUBTYPE_FLYSKY[] = "\x04""Std\0""V9x9""V6x6""V912""CX20";
const char STR_SUBTYPE_HUBSAN[] = "\x04""H107""H301""H501";
const char STR_SUBTYPE_FRSKYD[] = "\x06""D8\0 ""Cloned";
const char STR_SUBTYPE_FRSKYX[] = "\x07""D16\0 ""D16 8ch""LBT(EU)""LBT 8ch""Cloned\0";
const char STR_SUBTYPE_HISKY[] = "\x05""Std\0 ""HK310";
const char STR_SUBTYPE_V2X2[] = "\x06""Std\0 ""JXD506""MR101\0";
const char STR_SUBTYPE_DSM[] = "\x04""2 1F""2 2F""X 1F""X 2F""Auto";
const char STR_SUBTYPE_DEVO[] = "\x04""8ch\0""10ch""12ch""6ch\0""7ch\0";
const char STR_SUBTYPE_YD717[] = "\x07""Std\0 ""SkyWlkr""Syma X4""XINXUN\0""NIHUI\0 ";
const char STR_SUBTYPE_KN[] = "\x06""WLtoys""FeiLun";
const char STR_SUBTYPE_SYMAX[] = "\x03""Std""X5C";
const char STR_SUBTYPE_SLT[] = "\x06""V1_6ch""V2_8ch""Q100\0 ""Q200\0 ""MR100\0";
const char STR_SUBTYPE_CX10[] = "\x07""Green\0 ""Blue\0 ""DM007\0 ""-\0 ""JC3015a""JC3015b""MK33041";
const char STR_SUBTYPE_CG023[] = "\x05""Std\0 ""YD829";
const char STR_SUBTYPE_BAYANG[] = "\x07""Std\0 ""H8S3D\0 ""X16 AH\0""IRDrone""DHD D4\0""QX100\0 ";
const char STR_SUBTYPE_MT99[] = "\x06""MT99\0 ""H7\0 ""YZ\0 ""LS\0 ""FY805";
const char STR_SUBTYPE_MJXQ[] = "\x07""WLH08\0 ""X600\0 ""X800\0 ""H26D\0 ""E010\0 ""H26WH\0 ""Phoenix";
const char STR_SUBTYPE_FY326[] = "\x05""Std\0 ""FY319";
const char STR_SUBTYPE_HONTAI[] = "\x07""Std\0 ""JJRC X1""X5C1\0 ""FQ_951";
const char STR_SUBTYPE_AFHDS2A[] = "\x08""PWM,IBUS""PPM,IBUS""PWM,SBUS""PPM,SBUS";
const char STR_SUBTYPE_Q2X2[] = "\x04""Q222""Q242""Q282";
const char STR_SUBTYPE_WK2x01[] = "\x06""WK2801""WK2401""W6_5_1""W6_6_1""W6_HeL""W6_HeI";
const char STR_SUBTYPE_Q303[] = "\x06""Std\0 ""CX35\0 ""CX10D\0""CX10WD";
const char STR_SUBTYPE_CABELL[] = "\x07""V3\0 ""V3 Telm""-\0 ""-\0 ""-\0 ""-\0 ""F-Safe\0""Unbind\0";
const char STR_SUBTYPE_H83D[] = "\x07""Std\0 ""H20H\0 ""H20Mini""H30Mini";
const char STR_SUBTYPE_CORONA[] = "\x05""V1\0 ""V2\0 ""FD V3";
const char STR_SUBTYPE_HITEC[] = "\x07""Optima\0""Opt Hub""Minima\0";
const char STR_SUBTYPE_BUGS_MINI[] = "\x06""Std\0 ""Bugs3H";
const char STR_SUBTYPE_TRAXXAS[] = "\x04""6519";
const char STR_SUBTYPE_E01X[] = "\x05""E012\0""E015\0""E016H";
const char STR_SUBTYPE_GD00X[] = "\x05""GD_V1""GD_V2";
const char STR_SUBTYPE_REDPINE[] = "\x04""Fast""Slow";
const char STR_SUBTYPE_POTENSIC[] = "\x03""A20";
const char STR_SUBTYPE_ZSX[] = "\x07""280JJRC";
const char STR_SUBTYPE_FLYZONE[] = "\x05""FZ410";
const char STR_SUBTYPE_FX816[] = "\x03""P38";
const char STR_SUBTYPE_XN297DUMP[] = "\x07""250Kbps""1Mbps\0 ""2Mbps\0 ""Auto\0 ""NRF\0 ";
const char STR_SUBTYPE_ESKY150[] = "\x03""4ch""7ch";
const char STR_SUBTYPE_ESKY150V2[] = "\x05""150V2";
const char STR_SUBTYPE_V911S[] = "\x05""V911S""E119\0";
const char STR_SUBTYPE_XK[] = "\x04""X450""X420";
const char STR_SUBTYPE_FRSKYR9[] = "\x07""915MHz\0""868MHz\0""915 8ch""868 8ch";
const char STR_SUBTYPE_ESKY[] = "\x03""Std""ET4";
const char STR_SUBTYPE_PROPEL[] = "\x04""74-Z";
const char STR_SUBTYPE_FRSKY_RX[] = "\x07""RX\0 ""CloneTX";
const char STR_SUBTYPE_FRSKYL[] = "\x08""LR12\0 ""LR12 6ch";
const char STR_SUBTYPE_WFLY[] = "\x06""WFR0xS";
const char STR_SUBTYPE_HOTT[] = "\x07""Sync\0 ""No_Sync";
const char STR_SUBTYPE_PELIKAN[] = "\x04""Pro\0""Lite";
const char STR_SUBTYPE_V761[] = "\x03""3CH""4CH";
enum
{
OPTION_NONE,
OPTION_OPTION,
OPTION_RFTUNE,
OPTION_VIDFREQ,
OPTION_FIXEDID,
OPTION_TELEM,
OPTION_SRVFREQ,
OPTION_MAXTHR,
OPTION_RFCHAN,
OPTION_RFPOWER,
};
#define NO_SUBTYPE nullptr
const mm_protocol_definition multi_protocols[] = {
// Protocol number, Protocol String, Number of sub_protocols, Sub_protocol strings, Option type
#if defined(ASSAN_NRF24L01_INO)
{PROTO_ASSAN, STR_ASSAN, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(BAYANG_NRF24L01_INO)
{PROTO_BAYANG, STR_BAYANG, 6, STR_SUBTYPE_BAYANG, OPTION_TELEM },
#endif
#if defined(BAYANG_RX_NRF24L01_INO)
{PROTO_BAYANG_RX, STR_BAYANG_RX, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(BUGS_A7105_INO)
{PROTO_BUGS, STR_BUGS, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(BUGSMINI_NRF24L01_INO)
{PROTO_BUGSMINI, STR_BUGSMINI, 2, STR_SUBTYPE_BUGS_MINI, OPTION_NONE },
#endif
#if defined(CABELL_NRF24L01_INO)
{PROTO_CABELL, STR_CABELL, 8, STR_SUBTYPE_CABELL, OPTION_OPTION },
#endif
#if defined(CFLIE_NRF24L01_INO)
{PROTO_CFLIE, STR_CFLIE, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(CG023_NRF24L01_INO)
{PROTO_CG023, STR_CG023, 2, STR_SUBTYPE_CG023, OPTION_NONE },
#endif
#if defined(CORONA_CC2500_INO)
{PROTO_CORONA, STR_CORONA, 3, STR_SUBTYPE_CORONA, OPTION_RFTUNE },
#endif
#if defined(CX10_NRF24L01_INO)
{PROTO_CX10, STR_CX10, 7, STR_SUBTYPE_CX10, OPTION_NONE },
#endif
#if defined(DEVO_CYRF6936_INO)
{PROTO_DEVO, STR_DEVO, 5, STR_SUBTYPE_DEVO, OPTION_FIXEDID },
#endif
#if defined(DM002_NRF24L01_INO)
{PROTO_DM002, STR_DM002, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(DSM_CYRF6936_INO)
{PROTO_DSM, STR_DSM, 5, STR_SUBTYPE_DSM, OPTION_MAXTHR },
#endif
#if defined(DSM_RX_CYRF6936_INO)
{PROTO_DSM_RX, STR_DSM_RX, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(E01X_NRF24L01_INO)
{PROTO_E01X, STR_E01X, 3, STR_SUBTYPE_E01X, OPTION_OPTION },
#endif
#if defined(ESKY_NRF24L01_INO)
{PROTO_ESKY, STR_ESKY, 2, STR_SUBTYPE_ESKY, OPTION_NONE },
#endif
#if defined(ESKY150_NRF24L01_INO)
{PROTO_ESKY150, STR_ESKY150, 2, STR_SUBTYPE_ESKY150, OPTION_NONE },
#endif
#if defined(ESKY150V2_CC2500_INO)
{PROTO_ESKY150V2, STR_ESKY150V2, 1, STR_SUBTYPE_ESKY150V2, OPTION_RFTUNE },
#endif
#if defined(FLYSKY_A7105_INO)
{PROTO_FLYSKY, STR_FLYSKY, 5, STR_SUBTYPE_FLYSKY, OPTION_NONE },
#endif
#if defined(AFHDS2A_A7105_INO)
{PROTO_AFHDS2A, STR_AFHDS2A, 4, STR_SUBTYPE_AFHDS2A, OPTION_SRVFREQ },
#endif
#if defined(AFHDS2A_RX_A7105_INO)
{PROTO_AFHDS2A_RX, STR_AFHDS2A_RX,0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(FLYZONE_A7105_INO)
{PROTO_FLYZONE, STR_FLYZONE, 1, STR_SUBTYPE_FLYZONE, OPTION_NONE },
#endif
#if defined(FQ777_NRF24L01_INO)
{PROTO_FQ777, STR_FQ777, 0, NO_SUBTYPE, OPTION_NONE },
#endif
//OpenTX 2.3.x issue: DO NOT CHANGE ORDER below
#if defined(FRSKY_RX_CC2500_INO)
{PROTO_FRSKY_RX, STR_FRSKY_RX, 2, STR_SUBTYPE_FRSKY_RX, OPTION_RFTUNE },
#endif
#if defined(FRSKYD_CC2500_INO)
{PROTO_FRSKYD, STR_FRSKYD, 2, STR_SUBTYPE_FRSKYD, OPTION_RFTUNE },
#endif
#if defined(FRSKYV_CC2500_INO)
{PROTO_FRSKYV, STR_FRSKYV, 0, NO_SUBTYPE, OPTION_RFTUNE },
#endif
#if defined(FRSKYX_CC2500_INO)
{PROTO_FRSKYX, STR_FRSKYX, 5, STR_SUBTYPE_FRSKYX, OPTION_RFTUNE },
{PROTO_FRSKYX2, STR_FRSKYX2, 5, STR_SUBTYPE_FRSKYX, OPTION_RFTUNE },
#endif
//OpenTX 2.3.x issue: DO NOT CHANGE ORDER above
#if defined(FRSKYL_CC2500_INO)
{PROTO_FRSKYL, STR_FRSKYL, 2, STR_SUBTYPE_FRSKYL, OPTION_RFTUNE },
#endif
#if defined(FRSKYR9_SX1276_INO)
{PROTO_FRSKY_R9, STR_FRSKYR9, 4, STR_SUBTYPE_FRSKYR9, OPTION_NONE },
#endif
#if defined(FX816_NRF24L01_INO)
{PROTO_FX816, STR_FX816, 1, STR_SUBTYPE_FX816, OPTION_NONE },
#endif
#if defined(FY326_NRF24L01_INO)
{PROTO_FY326, STR_FY326, 2, STR_SUBTYPE_FY326, OPTION_NONE },
#endif
#if defined(GD00X_NRF24L01_INO)
{PROTO_GD00X, STR_GD00X, 2, STR_SUBTYPE_GD00X, OPTION_RFTUNE },
#endif
#if defined(GW008_NRF24L01_INO)
{PROTO_GW008, STR_GW008, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(H8_3D_NRF24L01_INO)
{PROTO_H8_3D, STR_H8_3D, 4, STR_SUBTYPE_H83D, OPTION_NONE },
#endif
#if defined(HISKY_NRF24L01_INO)
{PROTO_HISKY, STR_HISKY, 2, STR_SUBTYPE_HISKY, OPTION_NONE },
#endif
#if defined(HITEC_CC2500_INO)
{PROTO_HITEC, STR_HITEC, 3, STR_SUBTYPE_HITEC, OPTION_RFTUNE },
#endif
#if defined(HONTAI_NRF24L01_INO)
{PROTO_HONTAI, STR_HONTAI, 4, STR_SUBTYPE_HONTAI, OPTION_NONE },
#endif
#if defined(HOTT_CC2500_INO)
{PROTO_HOTT, STR_HOTT, 2, STR_SUBTYPE_HOTT, OPTION_RFTUNE },
#endif
#if defined(HUBSAN_A7105_INO)
{PROTO_HUBSAN, STR_HUBSAN, 3, STR_SUBTYPE_HUBSAN, OPTION_VIDFREQ },
#endif
#if defined(J6PRO_CYRF6936_INO)
{PROTO_J6PRO, STR_J6PRO, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(JJRC345_NRF24L01_INO)
{PROTO_JJRC345, STR_JJRC345, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(KF606_NRF24L01_INO)
{PROTO_KF606, STR_KF606, 0, NO_SUBTYPE, OPTION_RFTUNE },
#endif
#if defined(KN_NRF24L01_INO)
{PROTO_KN, STR_KN, 2, STR_SUBTYPE_KN, OPTION_NONE },
#endif
#if defined(MJXQ_NRF24L01_INO)
{PROTO_MJXQ, STR_MJXQ, 7, STR_SUBTYPE_MJXQ, OPTION_RFTUNE },
#endif
#if defined(MT99XX_NRF24L01_INO)
{PROTO_MT99XX, STR_MT99XX, 5, STR_SUBTYPE_MT99, OPTION_NONE },
#endif
#if defined(NCC1701_NRF24L01_INO)
{PROTO_NCC1701, STR_NCC1701, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(PELIKAN_A7105_INO)
{PROTO_PELIKAN, STR_PELIKAN , 2, STR_SUBTYPE_PELIKAN, OPTION_NONE },
#endif
#if defined(POTENSIC_NRF24L01_INO)
{PROTO_POTENSIC, STR_POTENSIC, 1, STR_SUBTYPE_POTENSIC, OPTION_NONE },
#endif
#if defined(PROPEL_NRF24L01_INO)
{PROTO_PROPEL, STR_PROPEL, 1, STR_SUBTYPE_PROPEL, OPTION_NONE },
#endif
#if defined(CX10_NRF24L01_INO)
{PROTO_Q2X2, STR_Q2X2, 3, STR_SUBTYPE_Q2X2, OPTION_NONE },
#endif
#if defined(Q303_NRF24L01_INO)
{PROTO_Q303, STR_Q303, 4, STR_SUBTYPE_Q303, OPTION_NONE },
#endif
#if defined(Q90C_NRF24L01_INO)
{PROTO_Q90C, STR_Q90C, 0, NO_SUBTYPE, OPTION_RFTUNE },
#endif
#if defined(REDPINE_CC2500_INO)
{PROTO_REDPINE, STR_REDPINE, 2, STR_SUBTYPE_REDPINE, OPTION_RFTUNE },
#endif
#if defined(SCANNER_CC2500_INO)
// {PROTO_SCANNER, STR_SCANNER, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(SFHSS_CC2500_INO)
{PROTO_SFHSS, STR_SFHSS, 0, NO_SUBTYPE, OPTION_RFTUNE },
#endif
#if defined(SHENQI_NRF24L01_INO)
{PROTO_SHENQI, STR_SHENQI, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(SKYARTEC_CC2500_INO)
{PROTO_SKYARTEC, STR_SKYARTEC, 0, NO_SUBTYPE, OPTION_RFTUNE },
#endif
#if defined(SLT_NRF24L01_INO)
{PROTO_SLT, STR_SLT, 5, STR_SUBTYPE_SLT, OPTION_RFTUNE },
#endif
#if defined(SYMAX_NRF24L01_INO)
{PROTO_SYMAX, STR_SYMAX, 2, STR_SUBTYPE_SYMAX, OPTION_NONE },
#endif
#if defined(TIGER_NRF24L01_INO)
{PROTO_TIGER, STR_TIGER , 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(TRAXXAS_CYRF6936_INO)
{PROTO_TRAXXAS, STR_TRAXXAS, 1, STR_SUBTYPE_TRAXXAS, OPTION_NONE },
#endif
#if defined(V2X2_NRF24L01_INO)
{PROTO_V2X2, STR_V2X2, 3, STR_SUBTYPE_V2X2, OPTION_NONE },
#endif
#if defined(V761_NRF24L01_INO)
{PROTO_V761, STR_V761, 2, STR_SUBTYPE_V761, OPTION_NONE },
#endif
#if defined(V911S_NRF24L01_INO)
{PROTO_V911S, STR_V911S, 2, STR_SUBTYPE_V911S, OPTION_RFTUNE },
#endif
#if defined(WK2x01_CYRF6936_INO)
{PROTO_WK2x01, STR_WK2x01, 6, STR_SUBTYPE_WK2x01, OPTION_NONE },
#endif
#if defined(WFLY_CYRF6936_INO)
{PROTO_WFLY, STR_WFLY, 1, STR_SUBTYPE_WFLY, OPTION_NONE },
#endif
#if defined(XK_NRF24L01_INO)
{PROTO_XK, STR_XK , 2, STR_SUBTYPE_XK, OPTION_RFTUNE },
#endif
#if defined(XN297DUMP_NRF24L01_INO)
{PROTO_XN297DUMP, STR_XN297DUMP, 5, STR_SUBTYPE_XN297DUMP, OPTION_RFCHAN },
#endif
#if defined(YD717_NRF24L01_INO)
{PROTO_YD717, STR_YD717, 5, STR_SUBTYPE_YD717, OPTION_NONE },
#endif
#if defined(ZSX_NRF24L01_INO)
{PROTO_ZSX, STR_ZSX, 1, STR_SUBTYPE_ZSX, OPTION_NONE },
#endif
#if defined(TEST_CC2500_INO)
{PROTO_TEST, STR_TEST, 0, NO_SUBTYPE, OPTION_RFTUNE },
#endif
#if defined(FAKE_NRF24L01_INO)
{PROTO_FAKE, STR_FAKE, 0, NO_SUBTYPE, OPTION_NONE },
#endif
{0x00, nullptr, 0, nullptr, 0 }
};
#endif

View File

@@ -0,0 +1,467 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
const char STR_FLYSKY[] ="FlySky";
const char STR_HUBSAN[] ="Hubsan";
const char STR_FRSKYD[] ="FrSky D";
const char STR_HISKY[] ="Hisky";
const char STR_V2X2[] ="V2x2";
const char STR_DSM[] ="DSM";
const char STR_DSM_RX[] ="DSM_RX";
const char STR_DEVO[] ="Devo";
const char STR_YD717[] ="YD717";
const char STR_KN[] ="KN";
const char STR_SYMAX[] ="SymaX";
const char STR_SLT[] ="SLT";
const char STR_CX10[] ="CX10";
const char STR_CG023[] ="CG023";
const char STR_BAYANG[] ="Bayang";
const char STR_FRSKYL[] ="FrSky L";
const char STR_FRSKYX[] ="FrSky X";
const char STR_FRSKYX2[] ="FrSkyX2";
const char STR_ESKY[] ="ESky";
const char STR_MT99XX[] ="MT99XX";
const char STR_MJXQ[] ="MJXq";
const char STR_SHENQI[] ="Shenqi";
const char STR_FY326[] ="FY326";
const char STR_FUTABA[] ="Futaba";
const char STR_J6PRO[] ="J6 Pro";
const char STR_JJRC345[] ="JJRC345";
const char STR_JOYSWAY[] ="JOYSWAY";
const char STR_FQ777[] ="FQ777";
const char STR_ASSAN[] ="Assan";
const char STR_FRSKYV[] ="FrSky V";
const char STR_HONTAI[] ="Hontai";
const char STR_AFHDS2A[] ="FlSky2A";
const char STR_Q2X2[] ="Q2x2";
const char STR_WK2x01[] ="Walkera";
const char STR_Q303[] ="Q303";
const char STR_Q90C[] ="Q90C";
const char STR_GW008[] ="GW008";
const char STR_DM002[] ="DM002";
const char STR_CABELL[] ="Cabell";
const char STR_ESKY150[] ="Esky150";
const char STR_ESKY150V2[] ="EskyV2";
const char STR_H8_3D[] ="H8 3D";
const char STR_CORONA[] ="Corona";
const char STR_CFLIE[] ="CFlie";
const char STR_HITEC[] ="Hitec";
const char STR_WFLY[] ="WFLY";
const char STR_WFLY2[] ="WFLY2";
const char STR_BUGS[] ="Bugs";
const char STR_BUGSMINI[] ="BugMini";
const char STR_TRAXXAS[] ="Traxxas";
const char STR_NCC1701[] ="NCC1701";
const char STR_E01X[] ="E01X";
const char STR_V911S[] ="V911S";
const char STR_GD00X[] ="GD00x";
const char STR_V761[] ="V761";
const char STR_KF606[] ="KF606";
const char STR_REDPINE[] ="Redpine";
const char STR_POTENSIC[] ="Potensi";
const char STR_ZSX[] ="ZSX";
const char STR_HEIGHT[] ="Height";
const char STR_SCANNER[] ="Scanner";
const char STR_FRSKY_RX[] ="FrSkyRX";
const char STR_AFHDS2A_RX[] ="FS2A_RX";
const char STR_HOTT[] ="HoTT";
const char STR_FX816[] ="FX816";
const char STR_BAYANG_RX[] ="BayanRX";
const char STR_PELIKAN[] ="Pelikan";
const char STR_TIGER[] ="Tiger";
const char STR_XK[] ="XK";
const char STR_XN297DUMP[] ="XN297DP";
const char STR_FRSKYR9[] ="FrSkyR9";
const char STR_PROPEL[] ="Propel";
const char STR_SKYARTEC[] ="Skyartc";
const char STR_KYOSHO[] ="Kyosho";
const char STR_RLINK[] ="RadLink";
const char STR_REALACC[] ="Realacc";
const char STR_OMP[] ="OMP";
const char STR_MLINK[] ="M-Link";
const char STR_TEST[] ="Test";
const char STR_NANORF[] ="NanoRF";
const char STR_E016HV2[] ="E016Hv2";
const char STR_E010R5[] ="E010r5";
const char STR_LOLI[] ="LOLI";
const char STR_E129[] ="E129";
const char STR_E016H[] ="E016H";
const char STR_IKEAANSLUTA[]="Ansluta";
const char STR_CONFIG[] ="Config";
const char STR_LOSI[] ="Losi";
const char STR_MOULDKG[] ="MouldKg";
const char STR_SUBTYPE_FLYSKY[] = "\x04""Std\0""V9x9""V6x6""V912""CX20";
const char STR_SUBTYPE_HUBSAN[] = "\x04""H107""H301""H501";
const char STR_SUBTYPE_FRSKYD[] = "\x06""D8\0 ""Cloned";
const char STR_SUBTYPE_FRSKYX[] = "\x07""D16\0 ""D16 8ch""LBT(EU)""LBT 8ch""Cloned\0""Clo 8ch";
const char STR_SUBTYPE_HISKY[] = "\x05""Std\0 ""HK310";
const char STR_SUBTYPE_V2X2[] = "\x06""Std\0 ""JXD506""MR101\0";
const char STR_SUBTYPE_DSM[] = "\x04""2 1F""2 2F""X 1F""X 2F""Auto""R 1F";
const char STR_SUBTYPE_DEVO[] = "\x04""8ch\0""10ch""12ch""6ch\0""7ch\0";
const char STR_SUBTYPE_YD717[] = "\x07""Std\0 ""SkyWlkr""Syma X4""XINXUN\0""NIHUI\0 ";
const char STR_SUBTYPE_KN[] = "\x06""WLtoys""FeiLun";
const char STR_SUBTYPE_SYMAX[] = "\x03""Std""X5C";
const char STR_SUBTYPE_SLT[] = "\x06""V1_6ch""V2_8ch""Q100\0 ""Q200\0 ""MR100\0";
const char STR_SUBTYPE_CX10[] = "\x07""Green\0 ""Blue\0 ""DM007\0 ""-\0 ""JC3015a""JC3015b""MK33041";
const char STR_SUBTYPE_CG023[] = "\x05""Std\0 ""YD829";
const char STR_SUBTYPE_BAYANG[] = "\x07""Std\0 ""H8S3D\0 ""X16 AH\0""IRDrone""DHD D4\0""QX100\0 ";
const char STR_SUBTYPE_MT99[] = "\x06""MT99\0 ""H7\0 ""YZ\0 ""LS\0 ""FY805\0""A180\0 ""Dragon";
const char STR_SUBTYPE_MJXQ[] = "\x07""WLH08\0 ""X600\0 ""X800\0 ""H26D\0 ""E010\0 ""H26WH\0 ""Phoenix";
const char STR_SUBTYPE_FY326[] = "\x05""Std\0 ""FY319";
const char STR_SUBTYPE_HONTAI[] = "\x07""Std\0 ""JJRC X1""X5C1\0 ""FQ_951";
const char STR_SUBTYPE_AFHDS2A[] = "\x08""PWM,IBUS""PPM,IBUS""PWM,SBUS""PPM,SBUS""PWM,IB16""PPM,IB16""PWM,SB16""PPM,SB16";
const char STR_SUBTYPE_Q2X2[] = "\x04""Q222""Q242""Q282";
const char STR_SUBTYPE_WK2x01[] = "\x06""WK2801""WK2401""W6_5_1""W6_6_1""W6_HeL""W6_HeI";
const char STR_SUBTYPE_Q303[] = "\x06""Std\0 ""CX35\0 ""CX10D\0""CX10WD";
const char STR_SUBTYPE_CABELL[] = "\x07""V3\0 ""V3 Telm""-\0 ""-\0 ""-\0 ""-\0 ""F-Safe\0""Unbind\0";
const char STR_SUBTYPE_H83D[] = "\x07""Std\0 ""H20H\0 ""H20Mini""H30Mini";
const char STR_SUBTYPE_CORONA[] = "\x05""V1\0 ""V2\0 ""FD V3";
const char STR_SUBTYPE_HITEC[] = "\x07""Optima\0""Opt Hub""Minima\0";
const char STR_SUBTYPE_BUGS_MINI[] = "\x06""Std\0 ""Bugs3H";
const char STR_SUBTYPE_TRAXXAS[] = "\x04""6519";
const char STR_SUBTYPE_E01X[] = "\x05""E012\0""E015\0";
const char STR_SUBTYPE_GD00X[] = "\x05""GD_V1""GD_V2";
const char STR_SUBTYPE_REDPINE[] = "\x04""Fast""Slow";
const char STR_SUBTYPE_POTENSIC[] = "\x03""A20";
const char STR_SUBTYPE_ZSX[] = "\x07""280JJRC";
const char STR_SUBTYPE_HEIGHT[] = "\x03""5ch""8ch";
const char STR_SUBTYPE_FX816[] = "\x03""P38";
const char STR_SUBTYPE_XN297DUMP[] = "\x07""250Kbps""1Mbps\0 ""2Mbps\0 ""Auto\0 ""NRF\0 ""CC2500\0";
const char STR_SUBTYPE_ESKY150[] = "\x03""4ch""7ch";
const char STR_SUBTYPE_ESKY150V2[] = "\x05""150V2";
const char STR_SUBTYPE_V911S[] = "\x05""V911S""E119\0";
const char STR_SUBTYPE_XK[] = "\x04""X450""X420";
const char STR_SUBTYPE_FRSKYR9[] = "\x07""915MHz\0""868MHz\0""915 8ch""868 8ch""FCC\0 ""--\0 ""FCC 8ch""-- 8ch\0";
const char STR_SUBTYPE_ESKY[] = "\x03""Std""ET4";
const char STR_SUBTYPE_PROPEL[] = "\x04""74-Z";
const char STR_SUBTYPE_FRSKYL[] = "\x08""LR12\0 ""LR12 6ch";
const char STR_SUBTYPE_WFLY[] = "\x05""WFR0x";
const char STR_SUBTYPE_WFLY2[] = "\x05""RF20x";
const char STR_SUBTYPE_HOTT[] = "\x07""Sync\0 ""No_Sync";
const char STR_SUBTYPE_PELIKAN[] = "\x05""Pro\0 ""Lite\0""SCX24";
const char STR_SUBTYPE_V761[] = "\x03""3ch""4ch";
const char STR_SUBTYPE_RLINK[] = "\x07""Surface""Air\0 ""DumboRC";
const char STR_SUBTYPE_REALACC[] = "\x03""R11";
const char STR_SUBTYPE_KYOSHO[] = "\x04""FHSS""Hype";
const char STR_SUBTYPE_FUTABA[] = "\x05""SFHSS";
const char STR_SUBTYPE_JJRC345[] = "\x08""JJRC345\0""SkyTmblr";
const char STR_SUBTYPE_MOULKG[] = "\x06""Analog""Digit\0";
#define NO_SUBTYPE nullptr
#ifdef SEND_CPPM
const char STR_SUB_FRSKY_RX[] = "\x07""Multi\0 ""CloneTX""EraseTX""CPPM\0 ";
#define FRCPPM 4
const char STR_CPPM[] = "\x05""Multi""CPPM\0";
#define NBR_CPPM 2
#else
const char STR_SUB_FRSKY_RX[] = "\x07""Multi\0 ""CloneTX""EraseTX";
#define FRCPPM 3
#define STR_CPPM NO_SUBTYPE
#define NBR_CPPM 0
#endif
enum
{
OPTION_NONE,
OPTION_OPTION,
OPTION_RFTUNE,
OPTION_VIDFREQ,
OPTION_FIXEDID,
OPTION_TELEM,
OPTION_SRVFREQ,
OPTION_MAXTHR,
OPTION_RFCHAN,
OPTION_RFPOWER,
OPTION_WBUS,
};
const mm_protocol_definition multi_protocols[] = {
// Protocol number, Protocol String, Sub_protocol strings, Number of sub_protocols, Option type, Failsafe, ChMap, RF switch, Init, Callback
#if defined(MULTI_CONFIG_INO)
{PROTO_CONFIG, STR_CONFIG, NO_SUBTYPE, 0, OPTION_NONE, 0, 0, 0, CONFIG_init, CONFIG_callback },
#endif
#if defined(ASSAN_NRF24L01_INO)
{PROTO_ASSAN, STR_ASSAN, NO_SUBTYPE, 0, OPTION_NONE, 0, 0, SW_NRF, ASSAN_init, ASSAN_callback },
#endif
#if defined(BAYANG_NRF24L01_INO)
{PROTO_BAYANG, STR_BAYANG, STR_SUBTYPE_BAYANG, 6, OPTION_TELEM, 0, 0, SW_NRF, BAYANG_init, BAYANG_callback },
#endif
#if defined(BAYANG_RX_NRF24L01_INO)
{PROTO_BAYANG_RX, STR_BAYANG_RX, STR_CPPM, NBR_CPPM, OPTION_NONE, 0, 0, SW_NRF, BAYANG_RX_init, BAYANG_RX_callback },
#endif
#if defined(BUGS_A7105_INO)
{PROTO_BUGS, STR_BUGS, NO_SUBTYPE, 0, OPTION_NONE, 0, 0, SW_A7105, BUGS_init, BUGS_callback },
#endif
#if defined(BUGSMINI_NRF24L01_INO)
{PROTO_BUGSMINI, STR_BUGSMINI, STR_SUBTYPE_BUGS_MINI, 2, OPTION_NONE, 0, 0, SW_NRF, BUGSMINI_init, BUGSMINI_callback },
#endif
#if defined(CABELL_NRF24L01_INO)
{PROTO_CABELL, STR_CABELL, STR_SUBTYPE_CABELL, 8, OPTION_OPTION, 0, 0, SW_NRF, CABELL_init, CABELL_callback },
#endif
#if defined(CFLIE_NRF24L01_INO)
{PROTO_CFLIE, STR_CFLIE, NO_SUBTYPE, 0, OPTION_NONE, 0, 0, SW_NRF, CFLIE_init, CFLIE_callback }, // review protocol
#endif
#if defined(CG023_NRF24L01_INO)
{PROTO_CG023, STR_CG023, STR_SUBTYPE_CG023, 2, OPTION_NONE, 0, 0, SW_NRF, CG023_init, CG023_callback },
#endif
#if defined(CORONA_CC2500_INO)
{PROTO_CORONA, STR_CORONA, STR_SUBTYPE_CORONA, 3, OPTION_RFTUNE, 0, 0, SW_CC2500, CORONA_init, CORONA_callback },
#endif
#if defined(CX10_NRF24L01_INO)
{PROTO_CX10, STR_CX10, STR_SUBTYPE_CX10, 7, OPTION_NONE, 0, 0, SW_NRF, CX10_init, CX10_callback },
#endif
#if defined(DEVO_CYRF6936_INO)
{PROTO_DEVO, STR_DEVO, STR_SUBTYPE_DEVO, 5, OPTION_FIXEDID, 1, 1, SW_CYRF, DEVO_init, DEVO_callback },
#endif
#if defined(DM002_NRF24L01_INO)
{PROTO_DM002, STR_DM002, NO_SUBTYPE, 0, OPTION_NONE, 0, 0, SW_NRF, DM002_init, DM002_callback },
#endif
#if defined(DSM_CYRF6936_INO)
{PROTO_DSM, STR_DSM, STR_SUBTYPE_DSM, 6, OPTION_MAXTHR, 0, 1, SW_CYRF, DSM_init, DSM_callback },
#endif
#if defined(DSM_RX_CYRF6936_INO)
{PROTO_DSM_RX, STR_DSM_RX, STR_CPPM, NBR_CPPM, OPTION_NONE, 0, 1, SW_CYRF, DSM_RX_init, DSM_RX_callback },
#endif
#if defined(E010R5_CYRF6936_INO)
{PROTO_E010R5, STR_E010R5, NO_SUBTYPE, 0, OPTION_NONE, 0, 0, SW_CYRF, E010R5_init, E010R5_callback },
#endif
#if defined(E016H_NRF24L01_INO)
{PROTO_E016H, STR_E016H, NO_SUBTYPE, 0, OPTION_NONE, 0, 0, SW_NRF, E016H_init, E016H_callback },
#endif
#if defined(E016HV2_CC2500_INO)
{PROTO_E016HV2, STR_E016HV2, NO_SUBTYPE, 0, OPTION_RFTUNE, 0, 0, SW_CC2500, E016HV2_init, E016HV2_callback },
#endif
#if defined(E01X_NRF24L01_INO)
{PROTO_E01X, STR_E01X, STR_SUBTYPE_E01X, 2, OPTION_OPTION, 0, 0, SW_NRF, E01X_init, E01X_callback },
#endif
#if defined(E129_CYRF6936_INO)
{PROTO_E129, STR_E129, NO_SUBTYPE, 0, OPTION_NONE, 0, 0, SW_CYRF, E129_init, E129_callback },
#endif
#if defined(ESKY_NRF24L01_INO)
{PROTO_ESKY, STR_ESKY, STR_SUBTYPE_ESKY, 2, OPTION_NONE, 0, 1, SW_NRF, ESKY_init, ESKY_callback },
#endif
#if defined(ESKY150_NRF24L01_INO)
{PROTO_ESKY150, STR_ESKY150, STR_SUBTYPE_ESKY150, 2, OPTION_NONE, 0, 0, SW_NRF, ESKY150_init, ESKY150_callback },
#endif
#if defined(ESKY150V2_CC2500_INO)
{PROTO_ESKY150V2, STR_ESKY150V2, STR_SUBTYPE_ESKY150V2, 1, OPTION_RFTUNE, 0, 1, SW_CC2500, ESKY150V2_init, ESKY150V2_callback },
#endif
#if defined(FLYSKY_A7105_INO)
{PROTO_FLYSKY, STR_FLYSKY, STR_SUBTYPE_FLYSKY, 5, OPTION_NONE, 0, 1, SW_A7105, FLYSKY_init, FLYSKY_callback },
#endif
#if defined(AFHDS2A_A7105_INO)
{PROTO_AFHDS2A, STR_AFHDS2A, STR_SUBTYPE_AFHDS2A, 8, OPTION_SRVFREQ, 1, 1, SW_A7105, AFHDS2A_init, AFHDS2A_callback },
#endif
#if defined(AFHDS2A_RX_A7105_INO)
{PROTO_AFHDS2A_RX, STR_AFHDS2A_RX,STR_CPPM, NBR_CPPM, OPTION_NONE, 0, 0, SW_A7105, AFHDS2A_RX_init, AFHDS2A_RX_callback },
#endif
#if defined(FQ777_NRF24L01_INO)
{PROTO_FQ777, STR_FQ777, NO_SUBTYPE, 0, OPTION_NONE, 0, 0, SW_NRF, FQ777_init, FQ777_callback },
#endif
//OpenTX 2.3.x issue: DO NOT CHANGE ORDER below
#if defined(FRSKY_RX_CC2500_INO)
{PROTO_FRSKY_RX, STR_FRSKY_RX, STR_SUB_FRSKY_RX, FRCPPM, OPTION_RFTUNE, 0, 0, SW_CC2500, FRSKY_RX_init, FRSKY_RX_callback },
#endif
#if defined(FRSKYD_CC2500_INO)
{PROTO_FRSKYD, STR_FRSKYD, STR_SUBTYPE_FRSKYD, 2, OPTION_RFTUNE, 0, 0, SW_CC2500, FRSKYD_init, FRSKYD_callback },
#endif
#if defined(FRSKYV_CC2500_INO)
{PROTO_FRSKYV, STR_FRSKYV, NO_SUBTYPE, 0, OPTION_RFTUNE, 0, 0, SW_CC2500, FRSKYV_init, FRSKYV_callback },
#endif
#if defined(FRSKYX_CC2500_INO)
{PROTO_FRSKYX, STR_FRSKYX, STR_SUBTYPE_FRSKYX, 6, OPTION_RFTUNE, 1, 0, SW_CC2500, FRSKYX_init, FRSKYX_callback },
{PROTO_FRSKYX2, STR_FRSKYX2, STR_SUBTYPE_FRSKYX, 6, OPTION_RFTUNE, 1, 0, SW_CC2500, FRSKYX_init, FRSKYX_callback },
#endif
//OpenTX 2.3.x issue: DO NOT CHANGE ORDER above
#if defined(FRSKYL_CC2500_INO)
{PROTO_FRSKYL, STR_FRSKYL, STR_SUBTYPE_FRSKYL, 2, OPTION_RFTUNE, 0, 0, SW_CC2500, FRSKYL_init, FRSKYL_callback },
#endif
#if defined(FRSKYR9_SX1276_INO)
#if MULTI_5IN1_INTERNAL == T18
{PROTO_FRSKY_R9, STR_FRSKYR9, STR_SUBTYPE_FRSKYR9, 8, OPTION_NONE, 1, 0, 0, FRSKYR9_init, FRSKYR9_callback },
#else // DIY & T-Lite
{PROTO_FRSKY_R9, STR_FRSKYR9, STR_SUBTYPE_FRSKYR9, 8, OPTION_RFPOWER, 1, 0, 0, FRSKYR9_init, FRSKYR9_callback },
#endif
#endif
#if defined(FUTABA_CC2500_INO)
{PROTO_FUTABA, STR_FUTABA, STR_SUBTYPE_FUTABA, 1, OPTION_RFTUNE, 1, 1, SW_CC2500, SFHSS_init, SFHSS_callback },
#endif
#if defined(FX816_NRF24L01_INO)
{PROTO_FX816, STR_FX816, STR_SUBTYPE_FX816, 1, OPTION_NONE, 0, 0, SW_NRF, FX816_init, FX816_callback },
#endif
#if defined(FY326_NRF24L01_INO)
{PROTO_FY326, STR_FY326, STR_SUBTYPE_FY326, 2, OPTION_NONE, 0, 0, SW_NRF, FY326_init, FY326_callback },
#endif
#if defined(GD00X_CCNRF_INO)
{PROTO_GD00X, STR_GD00X, STR_SUBTYPE_GD00X, 2, OPTION_RFTUNE, 0, 0, SW_NRF, GD00X_init, GD00X_callback },
#endif
#if defined(GW008_NRF24L01_INO)
{PROTO_GW008, STR_GW008, NO_SUBTYPE, 0, OPTION_NONE, 0, 0, SW_NRF, GW008_init, GW008_callback },
#endif
#if defined(H8_3D_NRF24L01_INO)
{PROTO_H8_3D, STR_H8_3D, STR_SUBTYPE_H83D, 4, OPTION_NONE, 0, 0, SW_NRF, H8_3D_init, H8_3D_callback },
#endif
#if defined(HEIGHT_A7105_INO)
{PROTO_HEIGHT, STR_HEIGHT, STR_SUBTYPE_HEIGHT, 2, OPTION_NONE, 0, 0, SW_A7105, HEIGHT_init, HEIGHT_callback },
#endif
#if defined(HISKY_NRF24L01_INO)
{PROTO_HISKY, STR_HISKY, STR_SUBTYPE_HISKY, 2, OPTION_NONE, 1, 1, SW_NRF, HISKY_init, HISKY_callback },
#endif
#if defined(HITEC_CC2500_INO)
{PROTO_HITEC, STR_HITEC, STR_SUBTYPE_HITEC, 3, OPTION_RFTUNE, 0, 0, SW_CC2500, HITEC_init, HITEC_callback },
#endif
#if defined(HONTAI_NRF24L01_INO)
{PROTO_HONTAI, STR_HONTAI, STR_SUBTYPE_HONTAI, 4, OPTION_NONE, 0, 0, SW_NRF, HONTAI_init, HONTAI_callback },
#endif
#if defined(HOTT_CC2500_INO)
{PROTO_HOTT, STR_HOTT, STR_SUBTYPE_HOTT, 2, OPTION_RFTUNE, 1, 0, SW_CC2500, HOTT_init, HOTT_callback },
#endif
#if defined(HUBSAN_A7105_INO)
{PROTO_HUBSAN, STR_HUBSAN, STR_SUBTYPE_HUBSAN, 3, OPTION_VIDFREQ, 0, 0, SW_A7105, HUBSAN_init, HUBSAN_callback },
#endif
#if defined(IKEAANSLUTA_CC2500_INO)
{PROTO_IKEAANSLUTA,STR_IKEAANSLUTA,NO_SUBTYPE, 0, OPTION_OPTION, 0, 0, SW_CC2500, IKEAANSLUTA_init,IKEAANSLUTA_callback },
#endif
#if defined(J6PRO_CYRF6936_INO)
{PROTO_J6PRO, STR_J6PRO, NO_SUBTYPE, 0, OPTION_NONE, 0, 1, SW_CYRF, J6PRO_init, J6PRO_callback },
#endif
#if defined(JJRC345_NRF24L01_INO)
{PROTO_JJRC345, STR_JJRC345, STR_SUBTYPE_JJRC345, 2, OPTION_NONE, 0, 0, SW_NRF, JJRC345_init, JJRC345_callback },
#endif
#if defined(JOYSWAY_A7105_INO)
{PROTO_JOYSWAY, STR_JOYSWAY, NO_SUBTYPE, 0, OPTION_NONE, 0, 0, SW_A7105, JOYSWAY_init, JOYSWAY_callback },
#endif
#if defined(KF606_CCNRF_INO)
{PROTO_KF606, STR_KF606, NO_SUBTYPE, 0, OPTION_RFTUNE, 0, 0, SW_NRF, KF606_init, KF606_callback },
#endif
#if defined(KN_NRF24L01_INO)
{PROTO_KN, STR_KN, STR_SUBTYPE_KN, 2, OPTION_NONE, 0, 0, SW_NRF, KN_init, KN_callback },
#endif
#if defined(KYOSHO_A7105_INO)
{PROTO_KYOSHO, STR_KYOSHO, STR_SUBTYPE_KYOSHO, 2, OPTION_NONE, 0, 1, SW_A7105, KYOSHO_init, KYOSHO_callback },
#endif
#if defined(LOLI_NRF24L01_INO)
{PROTO_LOLI, STR_LOLI, NO_SUBTYPE, 0, OPTION_NONE, 1, 0, SW_NRF, LOLI_init, LOLI_callback },
#endif
#if defined(LOSI_CYRF6936_INO)
{PROTO_LOSI, STR_LOSI, NO_SUBTYPE, 0, OPTION_NONE, 0, 0, SW_CYRF, LOSI_init, LOSI_callback },
#endif
#if defined(MJXQ_CCNRF_INO)
{PROTO_MJXQ, STR_MJXQ, STR_SUBTYPE_MJXQ, 7, OPTION_NONE, 0, 0, SW_NRF, MJXQ_init, MJXQ_callback },
#endif
#if defined(MLINK_CYRF6936_INO)
{PROTO_MLINK, STR_MLINK, NO_SUBTYPE, 0, OPTION_NONE, 1, 0, SW_CYRF, MLINK_init, MLINK_callback },
#endif
#if defined(MOULDKG_NRF24L01_INO)
{PROTO_MOULDKG, STR_MOULDKG, STR_SUBTYPE_MOULKG, 2, OPTION_OPTION, 0, 0, SW_NRF, MOULDKG_init, MOULDKG_callback },
#endif
#if defined(MT99XX_CCNRF_INO)
{PROTO_MT99XX, STR_MT99XX, STR_SUBTYPE_MT99, 7, OPTION_NONE, 0, 0, SW_NRF, MT99XX_init, MT99XX_callback },
#endif
#if defined(NCC1701_NRF24L01_INO)
{PROTO_NCC1701, STR_NCC1701, NO_SUBTYPE, 0, OPTION_NONE, 0, 0, SW_NRF, NCC_init, NCC_callback },
#endif
#if defined(OMP_CCNRF_INO)
{PROTO_OMP, STR_OMP, NO_SUBTYPE, 0, OPTION_NONE, 0, 0, SW_NRF, OMP_init, OMP_callback },
#endif
#if defined(PELIKAN_A7105_INO)
{PROTO_PELIKAN, STR_PELIKAN, STR_SUBTYPE_PELIKAN, 3, OPTION_NONE, 0, 1, SW_A7105, PELIKAN_init, PELIKAN_callback },
#endif
#if defined(POTENSIC_NRF24L01_INO)
{PROTO_POTENSIC, STR_POTENSIC, STR_SUBTYPE_POTENSIC, 1, OPTION_NONE, 0, 0, SW_NRF, POTENSIC_init, POTENSIC_callback },
#endif
#if defined(PROPEL_NRF24L01_INO)
{PROTO_PROPEL, STR_PROPEL, STR_SUBTYPE_PROPEL, 1, OPTION_NONE, 0, 0, SW_NRF, PROPEL_init, PROPEL_callback },
#endif
#if defined(CX10_NRF24L01_INO)
{PROTO_Q2X2, STR_Q2X2, STR_SUBTYPE_Q2X2, 3, OPTION_NONE, 0, 0, SW_NRF, CX10_init, CX10_callback },
#endif
#if defined(Q303_CCNRF_INO)
{PROTO_Q303, STR_Q303, STR_SUBTYPE_Q303, 4, OPTION_NONE, 0, 0, SW_NRF, Q303_init, Q303_callback },
#endif
#if defined(Q90C_CCNRF_INO)
{PROTO_Q90C, STR_Q90C, NO_SUBTYPE, 0, OPTION_RFTUNE, 0, 0, SW_NRF, Q90C_init, Q90C_callback },
#endif
#if defined(RLINK_CC2500_INO)
{PROTO_RLINK, STR_RLINK, STR_SUBTYPE_RLINK, 3, OPTION_RFTUNE, 0, 0, SW_CC2500, RLINK_init, RLINK_callback },
#endif
#if defined(REALACC_NRF24L01_INO)
{PROTO_REALACC, STR_REALACC, STR_SUBTYPE_REALACC, 1, OPTION_NONE, 0, 0, SW_NRF, REALACC_init, REALACC_callback },
#endif
#if defined(REDPINE_CC2500_INO)
{PROTO_REDPINE, STR_REDPINE, STR_SUBTYPE_REDPINE, 2, OPTION_RFTUNE, 0, 0, SW_CC2500, REDPINE_init, REDPINE_callback },
#endif
#if defined(SCANNER_CC2500_INO)
{PROTO_SCANNER, STR_SCANNER, NO_SUBTYPE, 0, OPTION_NONE, 0, 0, SW_CC2500, SCANNER_init, SCANNER_callback },
#endif
#if defined(SHENQI_NRF24L01_INO)
{PROTO_SHENQI, STR_SHENQI, NO_SUBTYPE, 0, OPTION_NONE, 0, 0, SW_NRF, SHENQI_init, SHENQI_callback },
#endif
#if defined(SKYARTEC_CC2500_INO)
{PROTO_SKYARTEC, STR_SKYARTEC, NO_SUBTYPE, 0, OPTION_RFTUNE, 0, 1, SW_CC2500, SKYARTEC_init, SKYARTEC_callback },
#endif
#if defined(SLT_CCNRF_INO)
{PROTO_SLT, STR_SLT, STR_SUBTYPE_SLT, 5, OPTION_RFTUNE, 0, 1, SW_NRF, SLT_init, SLT_callback },
#endif
#if defined(SYMAX_NRF24L01_INO)
{PROTO_SYMAX, STR_SYMAX, STR_SUBTYPE_SYMAX, 2, OPTION_NONE, 0, 0, SW_NRF, SYMAX_init, SYMAX_callback },
#endif
#if defined(TIGER_NRF24L01_INO)
{PROTO_TIGER, STR_TIGER, NO_SUBTYPE, 0, OPTION_NONE, 0, 0, SW_NRF, TIGER_init, TIGER_callback },
#endif
#if defined(TRAXXAS_CYRF6936_INO)
{PROTO_TRAXXAS, STR_TRAXXAS, STR_SUBTYPE_TRAXXAS, 1, OPTION_NONE, 0, 0, SW_CYRF, TRAXXAS_init, TRAXXAS_callback },
#endif
#if defined(V2X2_NRF24L01_INO)
{PROTO_V2X2, STR_V2X2, STR_SUBTYPE_V2X2, 3, OPTION_NONE, 0, 0, SW_NRF, V2X2_init, V2X2_callback },
#endif
#if defined(V761_NRF24L01_INO)
{PROTO_V761, STR_V761, STR_SUBTYPE_V761, 2, OPTION_NONE, 0, 0, SW_NRF, V761_init, V761_callback },
#endif
#if defined(V911S_CCNRF_INO)
{PROTO_V911S, STR_V911S, STR_SUBTYPE_V911S, 2, OPTION_RFTUNE, 0, 0, SW_NRF, V911S_init, V911S_callback },
#endif
#if defined(WK2x01_CYRF6936_INO)
{PROTO_WK2x01, STR_WK2x01, STR_SUBTYPE_WK2x01, 6, OPTION_NONE, 1, 1, SW_CYRF, WK_init, WK_callback },
#endif
#if defined(WFLY_CYRF6936_INO)
{PROTO_WFLY, STR_WFLY, STR_SUBTYPE_WFLY, 1, OPTION_NONE, 1, 0, SW_CYRF, WFLY_init, WFLY_callback },
#endif
#if defined(WFLY2_A7105_INO)
{PROTO_WFLY2, STR_WFLY2, STR_SUBTYPE_WFLY2, 1, OPTION_OPTION, 1, 0, SW_A7105, WFLY2_init, WFLY2_callback },
// {PROTO_WFLY2, STR_WFLY2, STR_SUBTYPE_WFLY2, 1, OPTION_WBUS, 1, 0, SW_A7105, WFLY2_init, WFLY2_callback },// crash OpenTX...
#endif
#if defined(XK_CCNRF_INO)
{PROTO_XK, STR_XK, STR_SUBTYPE_XK, 2, OPTION_RFTUNE, 0, 0, SW_NRF, XK_init, XK_callback },
#endif
#if defined(XN297DUMP_NRF24L01_INO)
{PROTO_XN297DUMP, STR_XN297DUMP, STR_SUBTYPE_XN297DUMP, 6, OPTION_RFCHAN, 0, 0, SW_NRF, XN297Dump_init, XN297Dump_callback },
#endif
#if defined(YD717_NRF24L01_INO)
{PROTO_YD717, STR_YD717, STR_SUBTYPE_YD717, 5, OPTION_NONE, 0, 0, SW_NRF, YD717_init, YD717_callback },
#endif
#if defined(ZSX_NRF24L01_INO)
{PROTO_ZSX, STR_ZSX, STR_SUBTYPE_ZSX, 1, OPTION_NONE, 0, 0, SW_NRF, ZSX_init, ZSX_callback },
#endif
#if defined(TEST_CC2500_INO)
{PROTO_TEST, STR_TEST, NO_SUBTYPE, 0, OPTION_RFTUNE, 0, 0, SW_NRF, TEST_init, TEST_callback },
#endif
#if defined(NANORF_NRF24L01_INO)
{PROTO_NANORF, STR_NANORF, NO_SUBTYPE, 0, OPTION_NONE, 0, 0, SW_NRF, NANORF_init, NANORF_callback },
#endif
{0xFF, nullptr, nullptr, 0, 0, 0, 0, 0, nullptr, nullptr }
};

View File

@@ -18,15 +18,16 @@
//******************
#define VERSION_MAJOR 1
#define VERSION_MINOR 3
#define VERSION_REVISION 1
#define VERSION_PATCH_LEVEL 24
#define VERSION_REVISION 2
#define VERSION_PATCH_LEVEL 86
#define MODE_SERIAL 0
//******************
// Protocols
//******************
enum PROTOCOLS
{
MODE_SERIAL = 0, // Serial commands
PROTO_FLYSKY = 1, // =>A7105
PROTO_HUBSAN = 2, // =>A7105
PROTO_FRSKYD = 3, // =>CC2500
@@ -47,7 +48,7 @@ enum PROTOCOLS
PROTO_MJXQ = 18, // =>NRF24L01
PROTO_SHENQI = 19, // =>NRF24L01
PROTO_FY326 = 20, // =>NRF24L01
PROTO_SFHSS = 21, // =>CC2500
PROTO_FUTABA = 21, // =>CC2500
PROTO_J6PRO = 22, // =>CYRF6936
PROTO_FQ777 = 23, // =>NRF24L01
PROTO_ASSAN = 24, // =>NRF24L01
@@ -79,7 +80,7 @@ enum PROTOCOLS
PROTO_REDPINE = 50, // =>CC2500
PROTO_POTENSIC = 51, // =>NRF24L01
PROTO_ZSX = 52, // =>NRF24L01
PROTO_FLYZONE = 53, // =>A7105
PROTO_HEIGHT = 53, // =>A7105
PROTO_SCANNER = 54, // =>CC2500
PROTO_FRSKY_RX = 55, // =>CC2500
PROTO_AFHDS2A_RX= 56, // =>A7105
@@ -99,8 +100,25 @@ enum PROTOCOLS
PROTO_DSM_RX = 70, // =>CYRF6936
PROTO_JJRC345 = 71, // =>NRF24L01
PROTO_Q90C = 72, // =>NRF24L01 or CC2500
PROTO_KYOSHO = 73, // =>A7105
PROTO_RLINK = 74, // =>CC2500
PROTO_REALACC = 76, // =>NRF24L01
PROTO_OMP = 77, // =>CC2500 & NRF24L01
PROTO_MLINK = 78, // =>CYRF6936
PROTO_WFLY2 = 79, // =>A7105
PROTO_E016HV2 = 80, // =>CC2500 & NRF24L01
PROTO_E010R5 = 81, // =>CYRF6936
PROTO_LOLI = 82, // =>NRF24L01
PROTO_E129 = 83, // =>CYRF6936
PROTO_JOYSWAY = 84, // =>A7105
PROTO_E016H = 85, // =>NRF24L01
PROTO_CONFIG = 86, // Module config
PROTO_IKEAANSLUTA = 87, // =>CC2500
PROTO_WILLIFM = 88, // 27/35ab/40/41/72 MHz module external project
PROTO_LOSI = 89, // =>CYRF6936
PROTO_MOULDKG = 90, // =>NRF24L01
PROTO_FAKE = 126, // =>CC2500+NRF24L01
PROTO_NANORF = 126, // =>NRF24L01
PROTO_TEST = 127, // =>CC2500
};
@@ -112,7 +130,7 @@ enum Flysky
V912 = 3,
CX20 = 4,
};
enum Flyzone
enum Height
{
FZ410 = 0,
};
@@ -128,6 +146,8 @@ enum AFHDS2A
PPM_IBUS = 1,
PWM_SBUS = 2,
PPM_SBUS = 3,
PWM_IB16 = 4,
PPM_IB16 = 5,
};
enum Hisky
{
@@ -136,11 +156,12 @@ enum Hisky
};
enum DSM
{
DSM2_22 = 0,
DSM2_11 = 1,
DSMX_22 = 2,
DSMX_11 = 3,
DSM_AUTO = 4,
DSM2_1F = 0,
DSM2_2F = 1,
DSMX_1F = 2,
DSMX_2F = 3,
DSM_AUTO = 4,
DSMR = 5,
};
enum YD717
{
@@ -207,6 +228,8 @@ enum MT99XX
YZ = 2,
LS = 3,
FY805 = 4,
A180 = 5,
DRAGON = 6,
};
enum MJXQ
{
@@ -225,11 +248,12 @@ enum FRSKYD
};
enum FRSKYX
{
CH_16 = 0,
CH_8 = 1,
EU_16 = 2,
EU_8 = 3,
XCLONE = 4,
CH_16 = 0,
CH_8 = 1,
EU_16 = 2,
EU_8 = 3,
XCLONE_16 = 4,
XCLONE_8 = 5,
};
enum HONTAI
{
@@ -337,6 +361,8 @@ enum XN297DUMP
XN297DUMP_1M = 1,
XN297DUMP_2M = 2,
XN297DUMP_AUTO = 3,
XN297DUMP_NRF = 4,
XN297DUMP_CC2500 = 5,
};
enum FRSKY_R9
{
@@ -344,6 +370,10 @@ enum FRSKY_R9
R9_868 = 1,
R9_915_8CH = 2,
R9_868_8CH = 3,
R9_FCC = 4,
R9_EU = 5,
R9_FCC_8CH = 6,
R9_EU_8CH = 7,
};
enum ESKY
{
@@ -355,6 +385,8 @@ enum FRSKY_RX
{
FRSKY_RX = 0,
FRSKY_CLONE = 1,
FRSKY_ERASE = 2,
FRSKY_CPPM = 3,
};
enum FRSKYL
@@ -373,6 +405,7 @@ enum PELIKAN
{
PELIKAN_PRO = 0,
PELIKAN_LITE= 1,
PELIKAN_SCX24=2,
};
enum V761
@@ -381,12 +414,44 @@ enum V761
V761_4CH = 1,
};
enum HEIGHT
{
HEIGHT_5CH = 0,
HEIGHT_8CH = 1,
};
enum KYOSHO
{
KYOSHO_FHSS = 0,
KYOSHO_HYPE = 1,
};
enum JJRC345
{
JJRC345 = 0,
SKYTMBLR = 1,
};
enum RLINK
{
RLINK_SURFACE = 0,
RLINK_AIR = 1,
RLINK_DUMBORC = 2,
};
enum MOULDKG
{
MOULDKG_ANALOG = 0,
MOULDKG_DIGIT = 1,
};
#define NONE 0
#define P_HIGH 1
#define P_LOW 0
#define AUTOBIND 1
#define NO_AUTOBIND 0
//PPM protocols
struct PPM_Parameters
{
uint8_t protocol;
@@ -398,6 +463,33 @@ struct PPM_Parameters
uint32_t chan_order;
};
//Callback
typedef uint16_t (*uint16_function_t) (void); //pointer to a function with no parameters which return an uint16_t integer
typedef void (*void_function_t ) (void); //pointer to a function with no parameters which returns nothing
//Protocols definition
struct __attribute__((__packed__)) mm_protocol_definition {
uint8_t protocol;
const char *ProtoString;
const char *SubProtoString;
uint8_t nbrSubProto : 4;
uint8_t optionType : 4;
uint8_t failSafe : 1;
uint8_t chMap : 1;
uint8_t rfSwitch : 2;
void_function_t Init;
uint16_function_t CallBack;
};
extern const mm_protocol_definition multi_protocols[];
enum RF_SWITCH
{
SW_A7105 = 0, //antenna RF1
SW_CC2500 = 1, //antenna RF2
SW_NRF = 2, //antenna RF3
SW_CYRF = 3, //antenna RF4
};
// Telemetry
enum MultiPacketTypes
{
@@ -415,17 +507,13 @@ enum MultiPacketTypes
MULTI_TELEMETRY_AFHDS2A_AC = 12,
MULTI_TELEMETRY_RX_CHANNELS = 13,
MULTI_TELEMETRY_HOTT = 14,
MULTI_TELEMETRY_MLINK = 15,
MULTI_TELEMETRY_CONFIG = 16,
};
// Macros
#define NOP() __asm__ __volatile__("nop")
//***************
//*** Tests ***
//***************
#define IS_FAILSAFE_PROTOCOL ( (protocol==PROTO_HISKY && sub_protocol==HK310) || protocol==PROTO_AFHDS2A || protocol==PROTO_DEVO || protocol==PROTO_SFHSS || protocol==PROTO_WK2x01 || protocol== PROTO_HOTT || protocol==PROTO_FRSKYX || protocol==PROTO_FRSKYX2 || protocol==PROTO_FRSKY_R9)
#define IS_CHMAP_PROTOCOL ( (protocol==PROTO_HISKY && sub_protocol==HK310) || protocol==PROTO_AFHDS2A || protocol==PROTO_DEVO || protocol==PROTO_SFHSS || protocol==PROTO_WK2x01 || protocol== PROTO_DSM || protocol==PROTO_SLT || protocol==PROTO_FLYSKY || protocol==PROTO_ESKY || protocol==PROTO_J6PRO || protocol==PROTO_PELIKAN || protocol==PROTO_SKYARTEC || protocol==PROTO_ESKY150V2 || protocol==PROTO_DSM_RX)
//***************
//*** Flags ***
//***************
@@ -514,6 +602,11 @@ enum MultiPacketTypes
#define DISABLE_TELEM_on protocol_flags3 |= _BV(3)
#define IS_DISABLE_TELEM_on ( ( protocol_flags3 & _BV(3) ) !=0 )
#define IS_DISABLE_TELEM_off ( ( protocol_flags3 & _BV(3) ) ==0 )
//Valid/invalid sub_proto
#define SUB_PROTO_VALID protocol_flags3 &= ~_BV(6)
#define SUB_PROTO_INVALID protocol_flags3 |= _BV(6)
#define IS_SUB_PROTO_INVALID ( ( protocol_flags3 & _BV(6) ) !=0 )
#define IS_SUB_PROTO_VALID ( ( protocol_flags3 & _BV(6) ) ==0 )
//LBT power
#define LBT_POWER_off protocol_flags3 &= ~_BV(7)
#define LBT_POWER_on protocol_flags3 |= _BV(7)
@@ -530,8 +623,9 @@ enum MultiPacketTypes
//********************
#if defined(STM32_BOARD) && (defined (DEBUG_SERIAL) || defined (ARDUINO_MULTI_DEBUG))
uint16_t debug_time=0;
#define debug(msg, ...) {char debug_buf[64]; sprintf(debug_buf, msg, ##__VA_ARGS__); Serial.write(debug_buf);}
#define debugln(msg, ...) {char debug_buf[64]; sprintf(debug_buf, msg "\r\n", ##__VA_ARGS__); Serial.write(debug_buf);}
char debug_buf[64];
#define debug(msg, ...) { sprintf(debug_buf, msg, ##__VA_ARGS__); Serial.write(debug_buf);}
#define debugln(msg, ...) { sprintf(debug_buf, msg "\r\n", ##__VA_ARGS__); Serial.write(debug_buf);}
#define debug_time(msg) { uint16_t debug_time_TCNT1=TCNT1; debug_time=debug_time_TCNT1-debug_time; debug(msg "%u", debug_time>>1); debug_time=debug_time_TCNT1; }
#define debugln_time(msg) { uint16_t debug_time_TCNT1=TCNT1; debug_time=debug_time_TCNT1-debug_time; debug(msg "%u\r\n", debug_time>>1); debug_time=debug_time_TCNT1; }
#else
@@ -587,17 +681,17 @@ enum {
};
// A7105 power
// Power amp is ~+16dBm so:
// The numbers do not take into account any outside amplifier
enum A7105_POWER
{
A7105_POWER_0 = 0x00<<3 | 0x00, // TXPOWER_100uW = -23dBm == PAC=0 TBG=0
A7105_POWER_1 = 0x00<<3 | 0x01, // TXPOWER_300uW = -20dBm == PAC=0 TBG=1
A7105_POWER_2 = 0x00<<3 | 0x02, // TXPOWER_1mW = -16dBm == PAC=0 TBG=2
A7105_POWER_3 = 0x00<<3 | 0x04, // TXPOWER_3mW = -11dBm == PAC=0 TBG=4
A7105_POWER_4 = 0x01<<3 | 0x05, // TXPOWER_10mW = -6dBm == PAC=1 TBG=5
A7105_POWER_5 = 0x02<<3 | 0x07, // TXPOWER_30mW = 0dBm == PAC=2 TBG=7
A7105_POWER_6 = 0x03<<3 | 0x07, // TXPOWER_100mW = 1dBm == PAC=3 TBG=7
A7105_POWER_7 = 0x03<<3 | 0x07 // TXPOWER_150mW = 1dBm == PAC=3 TBG=7
A7105_POWER_0 = 0x00<<3 | 0x00, // -23dBm == PAC=0 TBG=0
A7105_POWER_1 = 0x00<<3 | 0x01, // -20dBm == PAC=0 TBG=1
A7105_POWER_2 = 0x00<<3 | 0x02, // -16dBm == PAC=0 TBG=2
A7105_POWER_3 = 0x00<<3 | 0x04, // -11dBm == PAC=0 TBG=4
A7105_POWER_4 = 0x01<<3 | 0x05, // -6dBm == PAC=1 TBG=5
A7105_POWER_5 = 0x02<<3 | 0x07, // 0dBm == PAC=2 TBG=7
A7105_POWER_6 = 0x03<<3 | 0x07, // +1dBm == PAC=3 TBG=7
A7105_POWER_7 = 0x03<<3 | 0x07 // +1dBm == PAC=3 TBG=7
};
#define A7105_HIGH_POWER A7105_POWER_7
#define A7105_LOW_POWER A7105_POWER_3
@@ -605,14 +699,13 @@ enum A7105_POWER
#define A7105_BIND_POWER A7105_POWER_0
// NRF Power
// Power setting is 0..3 for nRF24L01
// Claimed power amp for nRF24L01 from eBay is 20dBm.
// The numbers do not take into account any outside amplifier
enum NRF_POWER
{ // Raw w 20dBm PA
NRF_POWER_0 = 0x00, // 0 : -18dBm (16uW) 2dBm (1.6mW)
NRF_POWER_1 = 0x01, // 1 : -12dBm (60uW) 8dBm (6mW)
NRF_POWER_2 = 0x02, // 2 : -6dBm (250uW) 14dBm (25mW)
NRF_POWER_3 = 0x03 // 3 : 0dBm (1mW) 20dBm (100mW)
{
NRF_POWER_0 = 0x00, // -18dBm
NRF_POWER_1 = 0x01, // -12dBm
NRF_POWER_2 = 0x02, // -6dBm
NRF_POWER_3 = 0x03 // 0dBm
};
#define NRF_HIGH_POWER NRF_POWER_3
#define NRF_LOW_POWER NRF_POWER_1
@@ -649,6 +742,7 @@ enum CC2500_POWER
#define CC2500_BIND_POWER CC2500_POWER_1
// CYRF power
// The numbers do not take into account any outside amplifier
enum CYRF_POWER
{
CYRF_POWER_0 = 0x00, // -35dbm
@@ -665,6 +759,10 @@ enum CYRF_POWER
#define CYRF_RANGE_POWER CYRF_POWER_1 // 1/30 of the full power distance
#define CYRF_BIND_POWER CYRF_POWER_0
// SX1276
#define JP_T18 1
#define JP_TLite 2
enum TXRX_State {
TXRX_OFF,
TX_EN,
@@ -685,6 +783,8 @@ enum {
#define SPEED_125K 3
/** EEPROM Layout */
#define EEPROM_CID_INIT_OFFSET 0 // 1 byte flag that Cyrf ID is initialized
#define EEPROM_CID_OFFSET 1 // 6 bytes Cyrf ID
#define EEPROM_ID_OFFSET 10 // Module ID (4 bytes)
#define EEPROM_BANK_OFFSET 15 // Current bank number (1 byte)
#define EEPROM_ID_VALID_OFFSET 20 // 1 byte flag that ID is valid
@@ -701,7 +801,17 @@ enum {
#define FRSKYX_CLONE_EEPROM_OFFSET 822 // (1) format + (3) TX ID + (47) channels, 51 bytes, end is 873
#define FRSKYX2_CLONE_EEPROM_OFFSET 873 // (1) format + (3) TX ID, 4 bytes, end is 877
#define DSM_RX_EEPROM_OFFSET 877 // (4) TX ID + format, 5 bytes, end is 882
//#define CONFIG_EEPROM_OFFSET 882 // Current configuration of the multimodule
#define MOULDKG_EEPROM_OFFSET 882 // RX ID, 3 bytes per model, end is 882+64*3=1074
//#define CONFIG_EEPROM_OFFSET 1074 // Current configuration of the multimodule
/* STM32 Flash Size */
#ifndef DISABLE_FLASH_SIZE_CHECK
#ifdef MCU_STM32F103C8
#define MCU_EXPECTED_FLASH_SIZE 64 // STM32F103C8 has 64KB of flash space
#else
#define MCU_EXPECTED_FLASH_SIZE 128 // STM32F103CB has 128KB of flash space
#endif
#endif
//****************************************
//*** MULTI protocol serial definition ***
@@ -717,8 +827,9 @@ Serial: 100000 Baud 8e2 _ xxxx xxxx p --
0x54 sub_protocol values are 32..63 Stream contains channels
0x57 sub_protocol values are 0..31 Stream contains failsafe
0x56 sub_protocol values are 32..63 Stream contains failsafe
Note: V2 adds the 2 top bits to extend the number of protocols to 256 in Stream[26]
Stream[1] = sub_protocol|BindBit|RangeCheckBit|AutoBindBit;
sub_protocol is 0..31 (bits 0..4), value should be added with 32 if Stream[0] = 0x54 | 0x56
sub_protocol is 0..31 (bits 0..4)
Reserved 0
Flysky 1
Hubsan 2
@@ -740,7 +851,7 @@ Serial: 100000 Baud 8e2 _ xxxx xxxx p --
MJXQ 18
SHENQI 19
FY326 20
SFHSS 21
Futaba 21
J6PRO 22
FQ777 23
ASSAN 24
@@ -772,7 +883,7 @@ Serial: 100000 Baud 8e2 _ xxxx xxxx p --
REDPINE 50
POTENSIC 51
ZSX 52
FLYZONE 53
HEIGHT 53
SCANNER 54
FRSKY_RX 55
AFHDS2A_RX 56
@@ -792,6 +903,18 @@ Serial: 100000 Baud 8e2 _ xxxx xxxx p --
DSM_RX 70
JJRC345 71
Q90C 72
KYOSHO 73
RLINK 74
REALACC 76
OMP 77
MLINK 78
WFLY2 79
E016HV2 80
E010R5 81
LOLI 82
E129 83
JOYSWAY 84
E016H 85
BindBit=> 0x80 1=Bind/0=No
AutoBindBit=> 0x40 1=Yes /0=No
RangeCheck=> 0x20 1=Yes /0=No
@@ -812,10 +935,10 @@ Serial: 100000 Baud 8e2 _ xxxx xxxx p --
Hisky 0
HK310 1
sub_protocol==DSM
DSM2_22 0
DSM2_11 1
DSMX_22 2
DSMX_11 3
DSM2_1F 0
DSM2_2F 1
DSMX_1F 2
DSMX_2F 3
DSM_AUTO 4
sub_protocol==YD717
YD717 0
@@ -889,6 +1012,8 @@ Serial: 100000 Baud 8e2 _ xxxx xxxx p --
PPM_IBUS 1
PWM_SBUS 2
PPM_SBUS 3
PWM_IB16 4
PPM_IB16 5
sub_protocol==V2X2
V2X2 0
JXD506 1
@@ -935,7 +1060,6 @@ Serial: 100000 Baud 8e2 _ xxxx xxxx p --
sub_protocol==E01X
E012 0
E015 1
E016H 2
sub_protocol==GD00X
GD_V1 0
GD_V2 1
@@ -958,6 +1082,10 @@ Serial: 100000 Baud 8e2 _ xxxx xxxx p --
R9_868 1
R9_915_8CH 2
R9_868_8CH 3
R9_FCC 4
R9_EU 5
R9_FCC_8CH 6
R9_EU_8CH 7
sub_protocol==ESKY
ESKY_STD 0
ESKY_ET4 1
@@ -973,9 +1101,20 @@ Serial: 100000 Baud 8e2 _ xxxx xxxx p --
sub_protocol==PELIKAN
PELIKAN_PRO 0
PELIKAN_LITE 1
PELIKAN_SCX24 2
sub_protocol==V761
V761_3CH 0
V761_4CH 1
sub_protocol==HEIGHT
HEIGHT_5CH 0
HEIGHT_8CH 1
sub_protocol==JJRC345
JJRC345 0
SKYTMBLR 1
sub_protocol==RLINK
RLINK_SURFACE 0
RLINK_AIR 1
RLINK_DUMBORC 2
Power value => 0x80 0=High/1=Low
Stream[3] = option_protocol;
@@ -1002,37 +1141,11 @@ Serial: 100000 Baud 8e2 _ xxxx xxxx p --
FrSkyX and FrSkyX2: Stream[27] during bind Telem on=0x00,off=0x01 | CH1-8=0x00,CH9-16=0x02
FrSkyX and FrSkyX2: Stream[27..34] during normal operation unstuffed SPort data to be sent
HoTT: Stream[27] 1 byte for telemetry type
DSM: Stream[27..33] Forward Programming
*/
/*
Multimodule Status
Based on #define MULTI_STATUS
Serial: 100000 Baud 8e2 (same as input)
Format: header (2 bytes) + data (variable)
[0] = 'M' (0x4d)
[1] Length (excluding the 2 header bytes)
[2-xx] data
Type = 0x01 Multimodule Status:
[2] Flags
0x01 = Input signal detected
0x02 = Serial mode enabled
0x04 = Protocol is valid
0x08 = Module is in binding mode
0x10 = Module waits a bind event to load the protocol
0x20 = Current protocol supports failsafe
0x40 = Current protocol supports disable channel mapping
0x80 = Data buffer is almost full
[3] major
[4] minor
[5] revision
[6] patchlevel,
version of multi code, should be displayed as major.minor.revision.patchlevel
*/
/*
Multiprotocol telemetry/command definition for OpenTX
Based on #define MULTI_TELEMETRY enables OpenTX to get the multimodule status and select the correct telemetry type automatically.
Multiprotocol telemetry/command definition for OpenTX and erskyTX
Based on #define MULTI_TELEMETRY enables OpenTX and erskyTX to get the multimodule status and select the correct telemetry type automatically.
Serial: 100000 Baud 8e2 (same as input)
@@ -1073,16 +1186,17 @@ Serial: 100000 Baud 8e2 _ xxxx xxxx p --
[11] Prev valid protocol number, can be used to skip invalid protocols
[12..18] Protocol name [7], not null terminated if prototcol len == 7
[19>>4] Option text to be displayed:
OPTION_NONE 0
OPTION_OPTION 1
OPTION_RFTUNE 2
OPTION_VIDFREQ 3
OPTION_FIXEDID 4
OPTION_TELEM 5
OPTION_SRVFREQ 6
OPTION_MAXTHR 7
OPTION_RFCHAN 8
OPTION_RFPOWER 9
OPTION_NONE 0 Hidden field
OPTION_OPTION 1 "Option:" value=-128..0(default)..127
OPTION_RFTUNE 2 "RF freq tune:" value=-128..0(default)..127
OPTION_VIDFREQ 3 "Video freq:" value=-128..0(default)..127
OPTION_FIXEDID 4 "ID type:" value="Auto":0(default), "Fixed":1
OPTION_TELEM 5 "Telem:" value="Off":0(default), "On":1, "Off+Aux":2, "On+Aux":3
OPTION_SRVFREQ 6 "Servo freq(Hz):" value="50":0(default).."400":70 => display=50+5*option with option=0..70
OPTION_MAXTHR 7 "Max throw:" value="Disabled":0, "Enabled":1
OPTION_RFCHAN 8 "Select RF chan:" value=-128..0(default)..127
OPTION_RFPOWER 9 "RF power:" "1.6mW":0(default),"2.0mW":1,"2.5mW":2,"3.2mW":3,"4.0mW":4,"5.0mW":5,"6.3mW":6,"7.9mW":7,"10mW\0":8,"13mW\0":9,"16mW\0":10,"20mW\0":11,"25mW\0":12,"32mW\0":13,"40mW\0":14,"50mW\0":15
OPTION_WBUS 10 "Output:" "WBUS":0(default),"PPM":1
[19&0x0F] Number of sub protocols
[20..27] Sub protocol name [8], not null terminated if sub prototcol len == 8
If the current protocol is invalid [12..27] are all 0x00.
@@ -1156,4 +1270,14 @@ Serial: 100000 Baud 8e2 _ xxxx xxxx p --
data[3] = page
data[4-13] = data
Type 0x0F M-Link telemetry
length: 10
data[0] = TX_RSSI
data[1] = TX_LQI
data[2] = telem_type
data[3-9] = data
Type 0x10 Config telemetry
length: 22
data[0..21] = Config data
*/

File diff suppressed because it is too large Load Diff

View File

@@ -31,25 +31,16 @@ enum {
NCC_RX3,
};
static void __attribute__((unused)) NCC_init()
static void __attribute__((unused)) NCC_RF_init()
{
NRF24L01_Initialize();
NRF24L01_SetTxRxMode(TX_EN);
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x03); // 5-byte RX/TX address
NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, (uint8_t*)"\xE7\xE7\xC7\xD7\x67",5);
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, (uint8_t*)"\xE7\xE7\xC7\xD7\x67",5);
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowledgment on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, NCC_RX_PACKET_LEN); // Enable rx pipe 0
NRF24L01_SetBitrate(NRF24L01_BR_250K); // NRF24L01_BR_1M, NRF24L01_BR_2M, NRF24L01_BR_250K
NRF24L01_SetPower();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_00_CONFIG, (0 << NRF24L01_00_EN_CRC) // switch to TX mode and disable CRC
NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, NCC_RX_PACKET_LEN); // Enable rx pipe 0
NRF24L01_SetBitrate(NRF24L01_BR_250K); // NRF24L01_BR_1M, NRF24L01_BR_2M, NRF24L01_BR_250K
NRF24L01_WriteReg(NRF24L01_00_CONFIG, (0 << NRF24L01_00_EN_CRC) // switch to TX mode and disable CRC
| (1 << NRF24L01_00_CRCO)
| (1 << NRF24L01_00_PWR_UP)
| (0 << NRF24L01_00_PRIM_RX));
@@ -58,11 +49,11 @@ static void __attribute__((unused)) NCC_init()
const uint8_t NCC_xor[]={0x80, 0x44, 0x64, 0x75, 0x6C, 0x71, 0x2A, 0x36, 0x7C, 0xF1, 0x6E, 0x52, 0x09, 0x9D};
static void __attribute__((unused)) NCC_Crypt_Packet()
{
uint16_t crc=0;
crc=0;
for(uint8_t i=0; i< NCC_TX_PACKET_LEN-2; i++)
{
packet[i]^=NCC_xor[i];
crc=crc16_update(crc, packet[i], 8);
crc16_update(packet[i], 8);
}
crc^=0x60DE;
packet[NCC_TX_PACKET_LEN-2]=crc>>8;
@@ -70,11 +61,11 @@ static void __attribute__((unused)) NCC_Crypt_Packet()
}
static boolean __attribute__((unused)) NCC_Decrypt_Packet()
{
uint16_t crc=0;
crc=0;
debug("RX: ");
for(uint8_t i=0; i< NCC_RX_PACKET_LEN-2; i++)
{
crc=crc16_update(crc, packet[i], 8);
crc16_update( packet[i], 8);
packet[i]^=NCC_xor[i];
debug("%02X ",packet[i]);
}
@@ -247,7 +238,7 @@ const uint8_t PROGMEM NCC_TX_DATA[][6]= {
{ 0xC2, 0x93, 0x55, 0x44, 0x4C, 0x0B },
};
uint16_t initNCC(void)
void NCC_init(void)
{
BIND_IN_PROGRESS; // autobind protocol
@@ -269,9 +260,8 @@ uint16_t initNCC(void)
hopping_frequency[4]=0x08; // bind channel 1
hopping_frequency[5]=0x2A; // bind channel 2
hopping_frequency_no=4; // start with bind
NCC_init();
NCC_RF_init();
phase=NCC_BIND_TX1;
return 10000;
}
#endif

View File

@@ -16,7 +16,7 @@
#ifdef NRF24L01_INSTALLED
#include "iface_nrf24l01.h"
#include "iface_xn297.h"
//---------------------------
// NRF24L01+ SPI Specific Functions
@@ -28,7 +28,19 @@ void NRF24L01_Initialize()
{
rf_setup = 0x09;
prev_power = 0x00; // Make sure prev_power is inline with current power
XN297_SetScrambledMode(XN297_SCRAMBLED);
//Load most likely default NRF config
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowldgement on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x03); // 5 bytes rx/tx address
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0x00); // no retransmits
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 0x00); // Disable dynamic payload length on all pipes
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, 0x01); // Set feature bits off and enable the command NRF24L01_B0_TX_PYLD_NOACK
NRF24L01_SetPower();
NRF24L01_SetTxRxMode(TX_EN); // Clear data ready, data sent, retransmit and enable CRC 16bits, ready for TX
}
void NRF24L01_WriteReg(uint8_t reg, uint8_t data)
@@ -117,13 +129,13 @@ static uint8_t NRF24L01_GetDynamicPayloadSize()
return len;
}
void NRF24L01_Activate(uint8_t code)
/*void NRF24L01_Activate(uint8_t code)
{
NRF_CSN_off;
SPI_Write(ACTIVATE);
SPI_Write(code);
NRF_CSN_on;
}
}*/
void NRF24L01_SetBitrate(uint8_t bitrate)
{
@@ -183,11 +195,11 @@ void NRF24L01_SetPower()
void NRF24L01_SetTxRxMode(enum TXRX_State mode)
{
NRF24L01_WriteReg(NRF24L01_07_STATUS, (1 << NRF24L01_07_RX_DR) //reset the flag(s)
| (1 << NRF24L01_07_TX_DS)
| (1 << NRF24L01_07_MAX_RT));
if(mode == TX_EN) {
NRF_CE_off;
NRF24L01_WriteReg(NRF24L01_07_STATUS, (1 << NRF24L01_07_RX_DR) //reset the flag(s)
| (1 << NRF24L01_07_TX_DS)
| (1 << NRF24L01_07_MAX_RT));
NRF24L01_WriteReg(NRF24L01_00_CONFIG, (1 << NRF24L01_00_EN_CRC) // switch to TX mode
| (1 << NRF24L01_00_CRCO)
| (1 << NRF24L01_00_PWR_UP));
@@ -198,9 +210,6 @@ void NRF24L01_SetTxRxMode(enum TXRX_State mode)
if (mode == RX_EN)
{
NRF_CE_off;
NRF24L01_WriteReg(NRF24L01_07_STATUS, (1 << NRF24L01_07_RX_DR) //reset the flag(s)
| (1 << NRF24L01_07_TX_DS)
| (1 << NRF24L01_07_MAX_RT));
NRF24L01_WriteReg(NRF24L01_00_CONFIG, (1 << NRF24L01_00_EN_CRC) // switch to RX mode
| (1 << NRF24L01_00_CRCO)
| (1 << NRF24L01_00_PWR_UP)
@@ -217,13 +226,6 @@ void NRF24L01_SetTxRxMode(enum TXRX_State mode)
void NRF24L01_Reset()
{
//** not in deviation but needed to hot switch between models
NRF24L01_Activate(0x73); // Activate feature register
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 0x00); // Disable dynamic payload length on all pipes
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, 0x00); // Set feature bits off
NRF24L01_Activate(0x73);
//**
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_Strobe(0xff); // NOP
@@ -244,342 +246,6 @@ uint8_t NRF24L01_packet_ack()
return PKT_PENDING;
}
///////////////
// XN297 emulation layer
uint8_t xn297_scramble_enabled=XN297_SCRAMBLED; //enabled by default
uint8_t xn297_addr_len;
uint8_t xn297_tx_addr[5];
uint8_t xn297_rx_addr[5];
uint8_t xn297_crc = 0;
// xn297 address / pcf / payload scramble table
const uint8_t xn297_scramble[] = {
0xE3, 0xB1, 0x4B, 0xEA, 0x85, 0xBC, 0xE5, 0x66,
0x0D, 0xAE, 0x8C, 0x88, 0x12, 0x69, 0xEE, 0x1F,
0xC7, 0x62, 0x97, 0xD5, 0x0B, 0x79, 0xCA, 0xCC,
0x1B, 0x5D, 0x19, 0x10, 0x24, 0xD3, 0xDC, 0x3F,
0x8E, 0xC5, 0x2F, 0xAA, 0x16, 0xF3, 0x95 };
// scrambled, standard mode crc xorout table
const uint16_t PROGMEM xn297_crc_xorout_scrambled[] = {
0x0000, 0x3448, 0x9BA7, 0x8BBB, 0x85E1, 0x3E8C,
0x451E, 0x18E6, 0x6B24, 0xE7AB, 0x3828, 0x814B,
0xD461, 0xF494, 0x2503, 0x691D, 0xFE8B, 0x9BA7,
0x8B17, 0x2920, 0x8B5F, 0x61B1, 0xD391, 0x7401,
0x2138, 0x129F, 0xB3A0, 0x2988, 0x23CA, 0xC0CB,
0x0C6C, 0xB329, 0xA0A1, 0x0A16, 0xA9D0 };
// unscrambled, standard mode crc xorout table
const uint16_t PROGMEM xn297_crc_xorout[] = {
0x0000, 0x3D5F, 0xA6F1, 0x3A23, 0xAA16, 0x1CAF,
0x62B2, 0xE0EB, 0x0821, 0xBE07, 0x5F1A, 0xAF15,
0x4F0A, 0xAD24, 0x5E48, 0xED34, 0x068C, 0xF2C9,
0x1852, 0xDF36, 0x129D, 0xB17C, 0xD5F5, 0x70D7,
0xB798, 0x5133, 0x67DB, 0xD94E, 0x0A5B, 0xE445,
0xE6A5, 0x26E7, 0xBDAB, 0xC379, 0x8E20 };
// scrambled enhanced mode crc xorout table
const uint16_t PROGMEM xn297_crc_xorout_scrambled_enhanced[] = {
0x0000, 0x7EBF, 0x3ECE, 0x07A4, 0xCA52, 0x343B,
0x53F8, 0x8CD0, 0x9EAC, 0xD0C0, 0x150D, 0x5186,
0xD251, 0xA46F, 0x8435, 0xFA2E, 0x7EBD, 0x3C7D,
0x94E0, 0x3D5F, 0xA685, 0x4E47, 0xF045, 0xB483,
0x7A1F, 0xDEA2, 0x9642, 0xBF4B, 0x032F, 0x01D2,
0xDC86, 0x92A5, 0x183A, 0xB760, 0xA953 };
// unscrambled enhanced mode crc xorout table
// unused so far
#ifdef XN297DUMP_NRF24L01_INO
const uint16_t xn297_crc_xorout_enhanced[] = {
0x0000, 0x8BE6, 0xD8EC, 0xB87A, 0x42DC, 0xAA89,
0x83AF, 0x10E4, 0xE83E, 0x5C29, 0xAC76, 0x1C69,
0xA4B2, 0x5961, 0xB4D3, 0x2A50, 0xCB27, 0x5128,
0x7CDB, 0x7A14, 0xD5D2, 0x57D7, 0xE31D, 0xCE42,
0x648D, 0xBF2D, 0x653B, 0x190C, 0x9117, 0x9A97,
0xABFC, 0xE68E, 0x0DE7, 0x28A2, 0x1965 };
#endif
static uint8_t bit_reverse(uint8_t b_in)
{
uint8_t b_out = 0;
for (uint8_t i = 0; i < 8; ++i)
{
b_out = (b_out << 1) | (b_in & 1);
b_in >>= 1;
}
return b_out;
}
static const uint16_t polynomial = 0x1021;
static uint16_t crc16_update(uint16_t crc, uint8_t a, uint8_t bits)
{
crc ^= a << 8;
while(bits--)
if (crc & 0x8000)
crc = (crc << 1) ^ polynomial;
else
crc = crc << 1;
return crc;
}
void XN297_SetTXAddr(const uint8_t* addr, uint8_t len)
{
if (len > 5) len = 5;
if (len < 3) len = 3;
uint8_t buf[] = { 0x55, 0x0F, 0x71, 0x0C, 0x00 }; // bytes for XN297 preamble 0xC710F55 (28 bit)
xn297_addr_len = len;
if (xn297_addr_len < 4)
for (uint8_t i = 0; i < 4; ++i)
buf[i] = buf[i+1];
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, len-2);
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, buf, 5);
// Receive address is complicated. We need to use scrambled actual address as a receive address
// but the TX code now assumes fixed 4-byte transmit address for preamble. We need to adjust it
// first. Also, if the scrambled address begins with 1 nRF24 will look for preamble byte 0xAA
// instead of 0x55 to ensure enough 0-1 transitions to tune the receiver. Still need to experiment
// with receiving signals.
memcpy(xn297_tx_addr, addr, len);
}
void XN297_SetRXAddr(const uint8_t* addr, uint8_t len)
{
if (len > 5) len = 5;
if (len < 3) len = 3;
uint8_t buf[] = { 0, 0, 0, 0, 0 };
memcpy(buf, addr, len);
memcpy(xn297_rx_addr, addr, len);
for (uint8_t i = 0; i < xn297_addr_len; ++i)
{
buf[i] = xn297_rx_addr[i];
if(xn297_scramble_enabled)
buf[i] ^= xn297_scramble[xn297_addr_len-i-1];
}
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, len-2);
NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, buf, 5);
}
void XN297_Configure(uint8_t flags)
{
xn297_crc = !!(flags & _BV(NRF24L01_00_EN_CRC));
flags &= ~(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO));
NRF24L01_WriteReg(NRF24L01_00_CONFIG, flags & 0xFF);
}
void XN297_SetScrambledMode(const uint8_t mode)
{
xn297_scramble_enabled = mode;
}
void XN297_WritePayload(uint8_t* msg, uint8_t len)
{
uint8_t buf[32];
uint8_t last = 0;
if (xn297_addr_len < 4)
{
// If address length (which is defined by receive address length)
// is less than 4 the TX address can't fit the preamble, so the last
// byte goes here
buf[last++] = 0x55;
}
for (uint8_t i = 0; i < xn297_addr_len; ++i)
{
buf[last] = xn297_tx_addr[xn297_addr_len-i-1];
if(xn297_scramble_enabled)
buf[last] ^= xn297_scramble[i];
last++;
}
for (uint8_t i = 0; i < len; ++i)
{
// bit-reverse bytes in packet
buf[last] = bit_reverse(msg[i]);
if(xn297_scramble_enabled)
buf[last] ^= xn297_scramble[xn297_addr_len+i];
last++;
}
if (xn297_crc)
{
uint8_t offset = xn297_addr_len < 4 ? 1 : 0;
uint16_t crc = 0xb5d2;
for (uint8_t i = offset; i < last; ++i)
crc = crc16_update(crc, buf[i], 8);
if(xn297_scramble_enabled)
crc ^= pgm_read_word(&xn297_crc_xorout_scrambled[xn297_addr_len - 3 + len]);
else
crc ^= pgm_read_word(&xn297_crc_xorout[xn297_addr_len - 3 + len]);
buf[last++] = crc >> 8;
buf[last++] = crc & 0xff;
}
NRF24L01_WritePayload(buf, last);
}
void XN297_WriteEnhancedPayload(uint8_t* msg, uint8_t len, uint8_t noack)
{
uint8_t packet[32];
uint8_t scramble_index=0;
uint8_t last = 0;
static uint8_t pid=0;
// address
if (xn297_addr_len < 4)
{
// If address length (which is defined by receive address length)
// is less than 4 the TX address can't fit the preamble, so the last
// byte goes here
packet[last++] = 0x55;
}
for (uint8_t i = 0; i < xn297_addr_len; ++i)
{
packet[last] = xn297_tx_addr[xn297_addr_len-i-1];
if(xn297_scramble_enabled)
packet[last] ^= xn297_scramble[scramble_index++];
last++;
}
// pcf
packet[last] = (len << 1) | (pid>>1);
if(xn297_scramble_enabled)
packet[last] ^= xn297_scramble[scramble_index++];
last++;
packet[last] = (pid << 7) | (noack << 6);
// payload
packet[last]|= bit_reverse(msg[0]) >> 2; // first 6 bit of payload
if(xn297_scramble_enabled)
packet[last] ^= xn297_scramble[scramble_index++];
for (uint8_t i = 0; i < len-1; ++i)
{
last++;
packet[last] = (bit_reverse(msg[i]) << 6) | (bit_reverse(msg[i+1]) >> 2);
if(xn297_scramble_enabled)
packet[last] ^= xn297_scramble[scramble_index++];
}
last++;
packet[last] = bit_reverse(msg[len-1]) << 6; // last 2 bit of payload
if(xn297_scramble_enabled)
packet[last] ^= xn297_scramble[scramble_index++] & 0xc0;
// crc
if (xn297_crc)
{
uint8_t offset = xn297_addr_len < 4 ? 1 : 0;
uint16_t crc = 0xb5d2;
for (uint8_t i = offset; i < last; ++i)
crc = crc16_update(crc, packet[i], 8);
crc = crc16_update(crc, packet[last] & 0xc0, 2);
if (xn297_scramble_enabled)
crc ^= pgm_read_word(&xn297_crc_xorout_scrambled_enhanced[xn297_addr_len-3+len]);
//else
// crc ^= pgm_read_word(&xn297_crc_xorout_enhanced[xn297_addr_len - 3 + len]);
packet[last++] |= (crc >> 8) >> 2;
packet[last++] = ((crc >> 8) << 6) | ((crc & 0xff) >> 2);
packet[last++] = (crc & 0xff) << 6;
}
NRF24L01_WritePayload(packet, last);
pid++;
if(pid>3)
pid=0;
}
boolean XN297_ReadPayload(uint8_t* msg, uint8_t len)
{ //!!! Don't forget if using CRC to do a +2 on any of the used NRF24L01_11_RX_PW_Px !!!
uint8_t buf[32];
if (xn297_crc)
NRF24L01_ReadPayload(buf, len+2); // Read payload + CRC
else
NRF24L01_ReadPayload(buf, len);
// Decode payload
for(uint8_t i=0; i<len; i++)
{
uint8_t b_in=buf[i];
if(xn297_scramble_enabled)
b_in ^= xn297_scramble[i+xn297_addr_len];
msg[i] = bit_reverse(b_in);
}
if (!xn297_crc)
return true; // No CRC so OK by default...
// Calculate CRC
uint16_t crc = 0xb5d2;
//process address
for (uint8_t i = 0; i < xn297_addr_len; ++i)
{
uint8_t b_in=xn297_rx_addr[xn297_addr_len-i-1];
if(xn297_scramble_enabled)
b_in ^= xn297_scramble[i];
crc = crc16_update(crc, b_in, 8);
}
//process payload
for (uint8_t i = 0; i < len; ++i)
crc = crc16_update(crc, buf[i], 8);
//xorout
if(xn297_scramble_enabled)
crc ^= pgm_read_word(&xn297_crc_xorout_scrambled[xn297_addr_len - 3 + len]);
else
crc ^= pgm_read_word(&xn297_crc_xorout[xn297_addr_len - 3 + len]);
//test
if( (crc >> 8) == buf[len] && (crc & 0xff) == buf[len+1])
return true; // CRC OK
return false; // CRC NOK
}
uint8_t XN297_ReadEnhancedPayload(uint8_t* msg, uint8_t len)
{ //!!! Don't forget do a +2 and if using CRC add +2 on any of the used NRF24L01_11_RX_PW_Px !!!
uint8_t buffer[32];
uint8_t pcf_size; // pcf payload size
if (xn297_crc)
NRF24L01_ReadPayload(buffer, len+4); // Read pcf + payload + CRC
else
NRF24L01_ReadPayload(buffer, len+2); // Read pcf + payload
pcf_size = buffer[0];
if(xn297_scramble_enabled)
pcf_size ^= xn297_scramble[xn297_addr_len];
pcf_size = pcf_size >> 1;
for(int i=0; i<len; i++)
{
msg[i] = bit_reverse((buffer[i+1] << 2) | (buffer[i+2] >> 6));
if(xn297_scramble_enabled)
msg[i] ^= bit_reverse((xn297_scramble[xn297_addr_len+i+1] << 2) |
(xn297_scramble[xn297_addr_len+i+2] >> 6));
}
if (!xn297_crc)
return pcf_size; // No CRC so OK by default...
// Calculate CRC
uint16_t crc = 0xb5d2;
//process address
for (uint8_t i = 0; i < xn297_addr_len; ++i)
{
uint8_t b_in=xn297_rx_addr[xn297_addr_len-i-1];
if(xn297_scramble_enabled)
b_in ^= xn297_scramble[i];
crc = crc16_update(crc, b_in, 8);
}
//process payload
for (uint8_t i = 0; i < len+1; ++i)
crc = crc16_update(crc, buffer[i], 8);
crc = crc16_update(crc, buffer[len+1] & 0xc0, 2);
//xorout
if (xn297_scramble_enabled)
crc ^= pgm_read_word(&xn297_crc_xorout_scrambled_enhanced[xn297_addr_len-3+len]);
#ifdef XN297DUMP_NRF24L01_INO
else
crc ^= pgm_read_word(&xn297_crc_xorout_enhanced[xn297_addr_len - 3 + len]);
#endif
uint16_t crcxored=(buffer[len+1]<<10)|(buffer[len+2]<<2)|(buffer[len+3]>>6) ;
if( crc == crcxored)
return pcf_size; // CRC OK
return 0; // CRC NOK
}
// End of XN297 emulation
//
// HS6200 emulation layer
///////////////////////////
@@ -606,9 +272,10 @@ void HS6200_SetTXAddr(const uint8_t* addr, uint8_t len)
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, (uint8_t*)"\xaa\xaa\xaa\xaa\xaa", 5);
// precompute address crc
hs6200_crc_init = 0xffff;
crc = 0xffff;
for(int i=0; i<len; i++)
hs6200_crc_init = crc16_update(hs6200_crc_init, addr[len-1-i], 8);
crc16_update(addr[len-1-i], 8);
hs6200_crc_init=crc;
memcpy(hs6200_tx_addr, addr, len);
hs6200_address_length = len;
}
@@ -616,14 +283,14 @@ void HS6200_SetTXAddr(const uint8_t* addr, uint8_t len)
static uint16_t hs6200_calc_crc(uint8_t* msg, uint8_t len)
{
uint8_t pos;
uint16_t crc = hs6200_crc_init;
crc = hs6200_crc_init;
// pcf + payload
for(pos=0; pos < len-1; pos++)
crc = crc16_update(crc, msg[pos], 8);
crc16_update(msg[pos], 8);
// last byte (1 bit only)
if(len > 0)
crc = crc16_update(crc, msg[pos+1], 1);
crc16_update(msg[pos+1], 1);
return crc;
}
@@ -797,7 +464,8 @@ void LT8900_SetAddress(uint8_t *address,uint8_t addr_size)
uint8_t LT8900_ReadPayload(uint8_t* msg, uint8_t len)
{
uint8_t i,pos=0,shift,end,buffer[32];
unsigned int crc=LT8900_CRC_Initial_Data,a;
unsigned int a;
crc=LT8900_CRC_Initial_Data;
pos=LT8900_buffer_overhead_bits/8-LT8900_buffer_start;
end=pos+len+(LT8900_Flags&_BV(LT8900_PACKET_LENGTH_EN)?1:0)+(LT8900_Flags&_BV(LT8900_CRC_ON)?2:0);
//Read payload
@@ -817,14 +485,14 @@ uint8_t LT8900_ReadPayload(uint8_t* msg, uint8_t len)
//Check len
if(LT8900_Flags&_BV(LT8900_PACKET_LENGTH_EN))
{
crc=crc16_update(crc,buffer[pos],8);
crc16_update(buffer[pos],8);
if(bit_reverse(len)!=buffer[pos++])
return 0; // wrong len...
}
//Decode message
for(i=0;i<len;i++)
{
crc=crc16_update(crc,buffer[pos],8);
crc16_update(buffer[pos],8);
msg[i]=bit_reverse(buffer[pos++]);
}
//Check CRC
@@ -839,21 +507,22 @@ uint8_t LT8900_ReadPayload(uint8_t* msg, uint8_t len)
void LT8900_WritePayload(uint8_t* msg, uint8_t len)
{
unsigned int crc=LT8900_CRC_Initial_Data,a,mask;
unsigned int a,mask;
uint8_t i, pos=0,tmp, buffer[64], pos_final,shift;
crc=LT8900_CRC_Initial_Data;
//Add packet len
if(LT8900_Flags&_BV(LT8900_PACKET_LENGTH_EN))
{
tmp=bit_reverse(len);
buffer[pos++]=tmp;
crc=crc16_update(crc,tmp,8);
crc16_update(tmp,8);
}
//Add payload
for(i=0;i<len;i++)
{
tmp=bit_reverse(msg[i]);
buffer[pos++]=tmp;
crc=crc16_update(crc,tmp,8);
crc16_update(tmp,8);
}
//Add CRC
if(LT8900_Flags&_BV(LT8900_CRC_ON))

View File

@@ -12,369 +12,28 @@
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef NRF24L01_INSTALLED
#if defined(CC2500_INSTALLED) || defined(NRF24L01_INSTALLED)
#include "iface_nrf250k.h"
static void __attribute__((unused)) XN297L_Init()
{
#ifdef CC2500_INSTALLED
if(option==0)
#endif
{//NRF
debugln("Using NRF");
PE1_on; //NRF24L01 antenna RF3 by default
PE2_off; //NRF24L01 antenna RF3 by default
NRF24L01_Initialize();
NRF24L01_SetTxRxMode(TX_EN);
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowldgement on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_SetBitrate(NRF24L01_BR_250K); // 250Kbps
NRF24L01_SetPower();
return;
}
//CC2500
#ifdef CC2500_INSTALLED
debugln("Using CC2500");
PE1_off; // antenna RF2
PE2_on;
CC2500_Reset();
CC2500_Strobe(CC2500_SIDLE);
// Address Config = No address check
// Base Frequency = 2400
// CRC Autoflush = false
// CRC Enable = false
// Channel Spacing = 333.251953
// Data Format = Normal mode
// Data Rate = 249.939
// Deviation = 126.953125
// Device Address = 0
// Manchester Enable = false
// Modulated = true
// Modulation Format = GFSK
// Packet Length Mode = Variable packet length mode. Packet length configured by the first byte after sync word
// RX Filter BW = 203.125000
// Sync Word Qualifier Mode = No preamble/sync
// TX Power = 0
// Whitening = false
// Fast Frequency Hopping - no PLL auto calibration
CC2500_WriteReg(CC2500_08_PKTCTRL0, 0x01); // Packet Automation Control
CC2500_WriteReg(CC2500_0B_FSCTRL1, 0x0A); // Frequency Synthesizer Control
CC2500_WriteReg(CC2500_0C_FSCTRL0, option); // Frequency offset hack
CC2500_WriteReg(CC2500_0D_FREQ2, 0x5C); // Frequency Control Word, High Byte
CC2500_WriteReg(CC2500_0E_FREQ1, 0x4E); // Frequency Control Word, Middle Byte
CC2500_WriteReg(CC2500_0F_FREQ0, 0xC3); // Frequency Control Word, Low Byte
CC2500_WriteReg(CC2500_10_MDMCFG4, 0x8D); // Modem Configuration
CC2500_WriteReg(CC2500_11_MDMCFG3, 0x3B); // Modem Configuration
CC2500_WriteReg(CC2500_12_MDMCFG2, 0x10); // Modem Configuration
CC2500_WriteReg(CC2500_13_MDMCFG1, 0x23); // Modem Configuration
CC2500_WriteReg(CC2500_14_MDMCFG0, 0xA4); // Modem Configuration
CC2500_WriteReg(CC2500_15_DEVIATN, 0x62); // Modem Deviation Setting
CC2500_WriteReg(CC2500_18_MCSM0, 0x08); // Main Radio Control State Machine Configuration
CC2500_WriteReg(CC2500_19_FOCCFG, 0x1D); // Frequency Offset Compensation Configuration
CC2500_WriteReg(CC2500_1A_BSCFG, 0x1C); // Bit Synchronization Configuration
CC2500_WriteReg(CC2500_1B_AGCCTRL2, 0xC7); // AGC Control
CC2500_WriteReg(CC2500_1C_AGCCTRL1, 0x00); // AGC Control
CC2500_WriteReg(CC2500_1D_AGCCTRL0, 0xB0); // AGC Control
CC2500_WriteReg(CC2500_21_FREND1, 0xB6); // Front End RX Configuration
CC2500_WriteReg(CC2500_23_FSCAL3, 0xEA); // Frequency Synthesizer Calibration
CC2500_WriteReg(CC2500_25_FSCAL1, 0x00); // Frequency Synthesizer Calibration
CC2500_WriteReg(CC2500_26_FSCAL0, 0x11); // Frequency Synthesizer Calibration
CC2500_SetTxRxMode(TX_EN);
CC2500_SetPower();
xn297_scramble_enabled=XN297_SCRAMBLED; //enabled by default
#endif
}
static void __attribute__((unused)) XN297L_SetTXAddr(const uint8_t* addr, uint8_t len)
{
#ifdef CC2500_INSTALLED
if(option==0)
#endif
{//NRF
XN297_SetTXAddr(addr,len);
return;
}
//CC2500
#ifdef CC2500_INSTALLED
if (len > 5) len = 5;
if (len < 3) len = 3;
xn297_addr_len = len;
memcpy(xn297_tx_addr, addr, len);
#endif
}
static void __attribute__((unused)) XN297L_WritePayload(uint8_t* msg, uint8_t len)
{
#ifdef CC2500_INSTALLED
if(option==0)
#endif
{//NRF
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP));
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
XN297_WritePayload(msg, len);
return;
}
//CC2500
#ifdef CC2500_INSTALLED
uint8_t buf[32];
uint8_t last = 0;
uint8_t i;
static const uint16_t initial = 0xb5d2;
// address
for (i = 0; i < xn297_addr_len; ++i)
{
buf[last] = xn297_tx_addr[xn297_addr_len - i - 1];
if(xn297_scramble_enabled)
buf[last] ^= xn297_scramble[i];
last++;
}
// payload
for (i = 0; i < len; ++i) {
// bit-reverse bytes in packet
buf[last] = bit_reverse(msg[i]);
if(xn297_scramble_enabled)
buf[last] ^= xn297_scramble[xn297_addr_len+i];
last++;
}
// crc
uint16_t crc = initial;
for (uint8_t i = 0; i < last; ++i)
crc = crc16_update(crc, buf[i], 8);
if(xn297_scramble_enabled)
crc ^= pgm_read_word(&xn297_crc_xorout_scrambled[xn297_addr_len - 3 + len]);
else
crc ^= pgm_read_word(&xn297_crc_xorout[xn297_addr_len - 3 + len]);
buf[last++] = crc >> 8;
buf[last++] = crc & 0xff;
// stop TX/RX
CC2500_Strobe(CC2500_SIDLE);
// flush tx FIFO
CC2500_Strobe(CC2500_SFTX);
// packet length
CC2500_WriteReg(CC2500_3F_TXFIFO, last + 3);
// xn297L preamble
CC2500_WriteRegisterMulti(CC2500_3F_TXFIFO, (uint8_t*)"\x71\x0f\x55", 3);
// xn297 packet
CC2500_WriteRegisterMulti(CC2500_3F_TXFIFO, buf, last);
// transmit
CC2500_Strobe(CC2500_STX);
#endif
}
static void __attribute__((unused)) XN297L_WriteEnhancedPayload(uint8_t* msg, uint8_t len, uint8_t noack)
{
#ifdef CC2500_INSTALLED
if(option==0)
#endif
{//NRF
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP));
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
XN297_WriteEnhancedPayload(msg, len, noack);
return;
}
//CC2500
#ifdef CC2500_INSTALLED
uint8_t buf[32];
uint8_t scramble_index=0;
uint8_t last = 0;
static uint8_t pid=0;
// address
for (uint8_t i = 0; i < xn297_addr_len; ++i)
{
buf[last] = xn297_tx_addr[xn297_addr_len-i-1];
if(xn297_scramble_enabled)
buf[last] ^= xn297_scramble[scramble_index++];
last++;
}
// pcf
buf[last] = (len << 1) | (pid>>1);
if(xn297_scramble_enabled)
buf[last] ^= xn297_scramble[scramble_index++];
last++;
buf[last] = (pid << 7) | (noack << 6);
// payload
buf[last]|= bit_reverse(msg[0]) >> 2; // first 6 bit of payload
if(xn297_scramble_enabled)
buf[last] ^= xn297_scramble[scramble_index++];
for (uint8_t i = 0; i < len-1; ++i)
{
last++;
buf[last] = (bit_reverse(msg[i]) << 6) | (bit_reverse(msg[i+1]) >> 2);
if(xn297_scramble_enabled)
buf[last] ^= xn297_scramble[scramble_index++];
}
last++;
buf[last] = bit_reverse(msg[len-1]) << 6; // last 2 bit of payload
if(xn297_scramble_enabled)
buf[last] ^= xn297_scramble[scramble_index++] & 0xc0;
// crc
//if (xn297_crc)
{
uint16_t crc = 0xb5d2;
for (uint8_t i = 0; i < last; ++i)
crc = crc16_update(crc, buf[i], 8);
crc = crc16_update(crc, buf[last] & 0xc0, 2);
if (xn297_scramble_enabled)
crc ^= pgm_read_word(&xn297_crc_xorout_scrambled_enhanced[xn297_addr_len-3+len]);
//else
// crc ^= pgm_read_word(&xn297_crc_xorout_enhanced[xn297_addr_len - 3 + len]);
buf[last++] |= (crc >> 8) >> 2;
buf[last++] = ((crc >> 8) << 6) | ((crc & 0xff) >> 2);
buf[last++] = (crc & 0xff) << 6;
}
pid++;
pid &= 3;
// stop TX/RX
CC2500_Strobe(CC2500_SIDLE);
// flush tx FIFO
CC2500_Strobe(CC2500_SFTX);
// packet length
CC2500_WriteReg(CC2500_3F_TXFIFO, last + 3);
// xn297L preamble
CC2500_WriteRegisterMulti(CC2500_3F_TXFIFO, (uint8_t*)"\x71\x0F\x55", 3);
// xn297 packet
CC2500_WriteRegisterMulti(CC2500_3F_TXFIFO, buf, last);
// transmit
CC2500_Strobe(CC2500_STX);
#endif
}
static void __attribute__((unused)) XN297L_HoppingCalib(uint8_t num_freq)
{ //calibrate hopping frequencies
#ifdef CC2500_INSTALLED
if(option==0)
#endif
return; //NRF
#ifdef CC2500_INSTALLED
for (uint8_t i = 0; i < num_freq; i++)
{
CC2500_Strobe(CC2500_SIDLE);
CC2500_WriteReg(CC2500_0A_CHANNR, hopping_frequency[i]*3);
CC2500_Strobe(CC2500_SCAL);
delayMicroseconds(900);
calData[i]=CC2500_ReadReg(CC2500_25_FSCAL1);
}
#endif
}
static void __attribute__((unused)) XN297L_Hopping(uint8_t index)
{
#ifdef CC2500_INSTALLED
if(option==0)
#endif
{//NRF
NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency[index]);
return;
}
#ifdef CC2500_INSTALLED
// spacing is 333.25 kHz, must multiply xn297 channel by 3
CC2500_WriteReg(CC2500_0A_CHANNR, hopping_frequency[index] * 3);
// set PLL calibration
CC2500_WriteReg(CC2500_25_FSCAL1, calData[index]);
#endif
}
static void __attribute__((unused)) XN297L_RFChannel(uint8_t number)
{ //change channel
#ifdef CC2500_INSTALLED
if(option==0)
#endif
{//NRF
NRF24L01_WriteReg(NRF24L01_05_RF_CH, number);
return;
}
#ifdef CC2500_INSTALLED
CC2500_Strobe(CC2500_SIDLE);
CC2500_WriteReg(CC2500_0A_CHANNR, number*3);
CC2500_Strobe(CC2500_SCAL);
delayMicroseconds(900);
#endif
}
static void __attribute__((unused)) XN297L_SetPower()
{
#ifdef CC2500_INSTALLED
if(option==0)
#endif
{//NRF
NRF24L01_SetPower();
return;
}
#ifdef CC2500_INSTALLED
CC2500_SetPower();
#endif
}
static void __attribute__((unused)) XN297L_SetFreqOffset()
{ // Frequency offset
#ifdef CC2500_INSTALLED
if(option==0 && prev_option==0)
#endif
return; //NRF
#ifdef CC2500_INSTALLED
if (prev_option != option)
{
if(prev_option==0 || option==0)
CHANGE_PROTOCOL_FLAG_on;
prev_option = option;
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
}
#endif
}
uint8_t cc2500_nrf_tx_addr[5], cc2500_nrf_addr_len;
static void __attribute__((unused)) NRF250K_SetTXAddr(uint8_t* addr, uint8_t len)
{
if (len > 5) len = 5;
if (len < 3) len = 3;
#ifdef CC2500_INSTALLED
if(option==0)
#endif
{//NRF
#if defined(CC2500_INSTALLED)
cc2500_nrf_addr_len = len;
memcpy(cc2500_nrf_tx_addr, addr, len);
#elif defined(NRF24L01_INSTALLED)
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, len-2);
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, addr, len);
return;
}
//CC2500
#ifdef CC2500_INSTALLED
xn297_addr_len = len;
memcpy(xn297_tx_addr, addr, len);
#endif
}
static void __attribute__((unused)) NRF250K_WritePayload(uint8_t* msg, uint8_t len)
{
#ifdef CC2500_INSTALLED
if(option==0)
#endif
{//NRF
NRF24L01_FlushTx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, _BV(NRF24L01_07_TX_DS) | _BV(NRF24L01_07_RX_DR) | _BV(NRF24L01_07_MAX_RT));
NRF24L01_WritePayload(msg, len);
return;
}
//CC2500
#ifdef CC2500_INSTALLED
#if defined(CC2500_INSTALLED)
#if defined(ESKY150V2_CC2500_INO)
uint8_t buf[158];
#else
@@ -384,22 +43,22 @@ static void __attribute__((unused)) NRF250K_WritePayload(uint8_t* msg, uint8_t l
uint8_t i;
//nrf preamble
if(xn297_tx_addr[xn297_addr_len - 1] & 0x80)
if(cc2500_nrf_tx_addr[cc2500_nrf_addr_len - 1] & 0x80)
buf[0]=0xAA;
else
buf[0]=0x55;
last++;
// address
for (i = 0; i < xn297_addr_len; ++i)
buf[last++] = xn297_tx_addr[xn297_addr_len - i - 1];
for (i = 0; i < cc2500_nrf_addr_len; ++i)
buf[last++] = cc2500_nrf_tx_addr[cc2500_nrf_addr_len - i - 1];
// payload
for (i = 0; i < len; ++i)
buf[last++] = msg[i];
// crc
uint16_t crc = 0xffff;
crc = 0xffff;
for (uint8_t i = 1; i < last; ++i)
crc = crc16_update(crc, buf[i], 8);
crc16_update( buf[i], 8);
buf[last++] = crc >> 8;
buf[last++] = crc & 0xff;
buf[last++] = 0;
@@ -447,18 +106,14 @@ static void __attribute__((unused)) NRF250K_WritePayload(uint8_t* msg, uint8_t l
CC2500_WriteRegisterMulti(CC2500_3F_TXFIFO, buff, last);
CC2500_Strobe(CC2500_STX);
}
#elif defined(NRF24L01_INSTALLED)
if(len<=32)
{
NRF24L01_FlushTx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, _BV(NRF24L01_07_TX_DS) | _BV(NRF24L01_07_RX_DR) | _BV(NRF24L01_07_MAX_RT));
NRF24L01_WritePayload(msg, len);
}
#endif
}
static boolean __attribute__((unused)) NRF250K_IsPacketSent()
{
#ifdef CC2500_INSTALLED
if(option==0)
#endif
{ //NRF
return NRF24L01_ReadReg(NRF24L01_07_STATUS) & _BV(NRF24L01_07_TX_DS);
}
return true; // don't know on the CC2500 how to detect if the packet has been transmitted...
}
#endif
#endif

View File

@@ -0,0 +1,65 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(NANORF_NRF24L01_INO)
#include "iface_nrf24l01.h"
#define NANORF_PACKET_PERIOD 40000
#define NANORF_INITIAL_WAIT 500
#define NANORF_RF_CHANNEL 40
#define NANORF_PAYLOADSIZE 7
static void __attribute__((unused)) NANORF_send_packet()
{
packet[0] = convert_channel_8b(AILERON);
packet[1] = convert_channel_8b(ELEVATOR);
packet[2] = convert_channel_8b(THROTTLE);
packet[3] = convert_channel_8b(RUDDER);
packet[4] = convert_channel_8b(CH5);
packet[5] = convert_channel_8b(CH6);
packet[6] = 0;
for (uint8_t i=0; i < NANORF_PAYLOADSIZE-1; i++)
packet[6] += packet[i];
packet[6] += 0x55;
// clear packet status bits and TX FIFO
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
NRF24L01_WritePayload(packet, NANORF_PAYLOADSIZE);
}
static void __attribute__((unused)) NANORF_RF_init()
{
NRF24L01_Initialize();
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR , (uint8_t *)"Nano1",5);
NRF24L01_WriteReg(NRF24L01_05_RF_CH, NANORF_RF_CHANNEL);
}
uint16_t NANORF_callback()
{
NANORF_send_packet();
return NANORF_PACKET_PERIOD;
}
void NANORF_init()
{
BIND_DONE;
NANORF_RF_init();
}
#endif

284
Multiprotocol/OMP_ccnrf.ino Normal file
View File

@@ -0,0 +1,284 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(OMP_CCNRF_INO)
#include "iface_xn297.h"
//#define FORCE_OMP_ORIGINAL_ID
//#define OMP_TELEM_DEBUG
#define OMP_INITIAL_WAIT 500
#define OMP_PACKET_PERIOD 5000
#define OMP_RF_BIND_CHANNEL 35
#define OMP_RF_NUM_CHANNELS 8
#define OMP_PAYLOAD_SIZE 16
#define OMP_BIND_COUNT 600 //3sec
static void __attribute__((unused)) OMP_send_packet()
{
if(IS_BIND_IN_PROGRESS)
{
memcpy(packet,"BND",3);
memcpy(&packet[3],rx_tx_addr,5);
memcpy(&packet[8],hopping_frequency,8);
}
else
{
memset(packet,0x00,OMP_PAYLOAD_SIZE);
#ifdef OMP_HUB_TELEMETRY
//RX telem request every 7*5=35ms
packet_sent++;
packet_sent %= OMP_RF_NUM_CHANNELS-1; // Change telem RX channels every time
if(packet_sent==0)
packet[0] |= 0x40; // |0x40 to request RX telemetry
#endif
//hopping frequency
packet[0 ] |= hopping_frequency_no;
XN297_Hopping(hopping_frequency_no);
hopping_frequency_no++;
hopping_frequency_no &= OMP_RF_NUM_CHANNELS-1; // 8 RF channels
//flags
packet[1 ] = 0x08 //unknown
| GET_FLAG(CH5_SW, 0x20); // HOLD
packet[2 ] = 0x40; //unknown
if(Channel_data[CH6] > CHANNEL_MAX_COMMAND)
packet[2 ] |= 0x20; // IDLE2
else if(Channel_data[CH6] > CHANNEL_MIN_COMMAND)
packet[1 ] |= 0x40; // IDLE1
if(Channel_data[CH7] > CHANNEL_MAX_COMMAND)
packet[2 ] |= 0x08; // 3D
else if(Channel_data[CH7] > CHANNEL_MIN_COMMAND)
packet[2 ] |= 0x04; // ATTITUDE
//trims??
//packet[3..6]
//channels TAER packed 11bits
uint16_t channel=convert_channel_16b_limit(THROTTLE,0,2047);
packet[7 ] = channel;
packet[8 ] = channel>>8;
channel=convert_channel_16b_limit(AILERON,2047,0);
packet[8 ] |= channel<<3;
packet[9 ] = channel>>5;
channel=convert_channel_16b_limit(ELEVATOR,0,2047);
packet[9] |= channel<<6;
packet[10] = channel>>2;
packet[11] = channel>>10;
channel=convert_channel_16b_limit(RUDDER,2047,0);
packet[11] |= channel<<1;
packet[12] = channel>>7;
//unknown
//packet[13..15]
packet[15] = 0x04;
}
XN297_SetPower(); // Set tx_power
XN297_SetFreqOffset(); // Set frequency offset
XN297_SetTxRxMode(TX_EN);
XN297_WriteEnhancedPayload(packet, OMP_PAYLOAD_SIZE, packet_sent!=0);
}
static void __attribute__((unused)) OMP_RF_init()
{
//Config CC2500
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_250K);
XN297_SetTXAddr((uint8_t*)"FLPBD", 5);
XN297_HoppingCalib(OMP_RF_NUM_CHANNELS); // Calibrate all channels
XN297_RFChannel(OMP_RF_BIND_CHANNEL); // Set bind channel
#ifdef OMP_HUB_TELEMETRY
XN297_SetRXAddr(rx_tx_addr, OMP_PAYLOAD_SIZE);
#endif
}
static void __attribute__((unused)) OMP_initialize_txid()
{
calc_fh_channels(OMP_RF_NUM_CHANNELS);
#ifdef FORCE_OMP_ORIGINAL_ID
rx_tx_addr[0]=0x4E;
rx_tx_addr[1]=0x72;
rx_tx_addr[2]=0x8E;
rx_tx_addr[3]=0x70;
rx_tx_addr[4]=0x62;
for(uint8_t i=0; i<OMP_RF_NUM_CHANNELS;i++)
hopping_frequency[i]=(i+3)*5;
#endif
}
#ifdef OMP_HUB_TELEMETRY
static void __attribute__((unused)) OMP_Send_Telemetry(uint8_t v)
{
v_lipo1=v;
telemetry_counter++; //LQI
telemetry_link=1;
if(telemetry_lost)
{
telemetry_lost = 0;
packet_count = 100;
telemetry_counter = 100;
}
}
#endif
enum {
OMP_BIND = 0x00,
OMP_PREPDATA = 0x01,
OMP_DATA = 0x02,
OMP_RX = 0x03,
};
#define OMP_WRITE_TIME 850
uint16_t OMP_callback()
{
bool rx;
switch(phase)
{
case OMP_BIND:
if(--bind_counter==0)
phase++; // OMP_PREPDATA
OMP_send_packet();
return OMP_PACKET_PERIOD;
case OMP_PREPDATA:
BIND_DONE;
XN297_SetTXAddr(rx_tx_addr, 5);
phase++; // OMP_DATA
case OMP_DATA:
#ifdef MULTI_SYNC
telemetry_set_input_sync(OMP_PACKET_PERIOD);
#endif
#ifdef OMP_HUB_TELEMETRY
rx = XN297_IsRX(); // Needed for the NRF24L01 since otherwise the bit gets cleared
#endif
OMP_send_packet();
#ifdef OMP_HUB_TELEMETRY
if(packet_sent == 0)
{
phase++; // OMP_RX
return OMP_WRITE_TIME;
}
else if(packet_sent == 1)
{
if( rx )
{ // a packet has been received
#ifdef OMP_TELEM_DEBUG
debug("RX :");
#endif
if(XN297_ReadEnhancedPayload(packet_in, OMP_PAYLOAD_SIZE) == OMP_PAYLOAD_SIZE)
{ // packet with good CRC and length
#ifdef OMP_TELEM_DEBUG
debug("OK :");
for(uint8_t i=0;i<OMP_PAYLOAD_SIZE;i++)
debug(" %02X",packet_in[i]);
#endif
// packet_in = 01 00 98 2C 03 19 19 F0 49 02 00 00 00 00 00 00
// all bytes are fixed and unknown except 2 and 3 which represent the battery voltage: packet_in[3]*256+packet_in[2]=lipo voltage*100 in V
uint16_t v=((packet_in[3]<<8)+packet_in[2]-400)/50;
if(v>255) v=255;
v_lipo2=v;
OMP_Send_Telemetry(v);
}
else
{ // As soon as the motor spins the telem packets are becoming really bad and the CRC throws most of them in error as it should but...
#ifdef OMP_TELEM_DEBUG
debug("NOK:");
for(uint8_t i=0;i<OMP_PAYLOAD_SIZE;i++)
debug(" %02X",packet_in[i]);
#endif
if(packet_in[0]==0x01 && packet_in[1]==0x00)
{// the start of the packet looks ok...
uint16_t v=((packet_in[3]<<8)+packet_in[2]-400)/50;
if(v<260 && v>180)
{ //voltage is less than 13V and more than 9V (3V/element)
if(v>255) v=255;
uint16_t v1=v-v_lipo2;
if(v1&0x8000) v1=-v1;
if(v1<20) // the batt voltage is within 1V from a good reading...
{
OMP_Send_Telemetry(v); // ok to send
#ifdef OMP_TELEM_DEBUG
debug(" OK");
#endif
}
}
}
else
telemetry_counter++; //LQI
}
#ifdef OMP_TELEM_DEBUG
debugln("");
#endif
}
XN297_SetTxRxMode(TXRX_OFF);
packet_count++;
if(packet_count>=100)
{//LQI calculation
packet_count=0;
TX_LQI=telemetry_counter;
RX_RSSI=telemetry_counter;
if(telemetry_counter==0)
telemetry_lost = 1;
telemetry_counter = 0;
}
}
#endif
return OMP_PACKET_PERIOD;
#ifdef OMP_HUB_TELEMETRY
case OMP_RX:
{
uint16_t start=(uint16_t)micros();
while ((uint16_t)((uint16_t)micros()-(uint16_t)start) < 500)
{
if(XN297_IsPacketSent())
break;
}
}
XN297_SetTxRxMode(RX_EN);
phase = OMP_DATA;
return OMP_PACKET_PERIOD-OMP_WRITE_TIME;
#endif
}
return OMP_PACKET_PERIOD;
}
void OMP_init()
{
OMP_initialize_txid();
OMP_RF_init();
hopping_frequency_no = 0;
packet_sent = 0;
#ifdef OMP_HUB_TELEMETRY
packet_count = 0;
telemetry_lost = 1;
#endif
if(IS_BIND_IN_PROGRESS)
{
bind_counter = OMP_BIND_COUNT;
phase = OMP_BIND;
}
else
phase = OMP_PREPDATA;
}
#endif

View File

@@ -13,7 +13,7 @@ Multiprotocol is distributed in the hope that it will be useful,
#if defined(POTENSIC_NRF24L01_INO)
#include "iface_nrf24l01.h"
#include "iface_xn297.h"
//#define FORCE_POTENSIC_ORIGINAL_ID
@@ -61,36 +61,25 @@ static void __attribute__((unused)) POTENSIC_send_packet()
}
POTENSIC_set_checksum();
packet[9] = hopping_frequency_no;
NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency[hopping_frequency_no&0x03]);
//RF channel
XN297_Hopping(hopping_frequency_no&0x03);
hopping_frequency_no++;
// Power on, TX mode, 2byte CRC
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP));
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
// Send
XN297_SetPower();
XN297_SetTxRxMode(TX_EN);
XN297_WritePayload(packet, POTENSIC_PACKET_SIZE);
NRF24L01_SetPower();
}
static void __attribute__((unused)) POTENSIC_init()
static void __attribute__((unused)) POTENSIC_RF_init()
{
NRF24L01_Initialize();
NRF24L01_SetTxRxMode(TX_EN);
NRF24L01_FlushTx();
NRF24L01_FlushRx();
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_1M);
if(IS_BIND_IN_PROGRESS)
XN297_SetTXAddr((uint8_t*)"\x01\x01\x01\x01\x06", 5); // Bind address
else
XN297_SetTXAddr(rx_tx_addr,5); // Normal address
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowldgement on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x03); // set address length (5 bytes)
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0x00); // no retransmits
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps
NRF24L01_SetPower();
NRF24L01_Activate(0x73); // Activate feature register
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 0x00); // Disable dynamic payload length on all pipes
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, 0x01);
NRF24L01_Activate(0x73);
}
static void __attribute__((unused)) POTENSIC_initialize_txid()
@@ -103,26 +92,25 @@ static void __attribute__((unused)) POTENSIC_initialize_txid()
uint16_t POTENSIC_callback()
{
if(IS_BIND_IN_PROGRESS)
#ifdef MULTI_SYNC
telemetry_set_input_sync(POTENSIC_PACKET_PERIOD);
#endif
if(bind_counter)
if(--bind_counter==0)
{
BIND_DONE;
XN297_SetTXAddr(rx_tx_addr,5);
}
#ifdef MULTI_SYNC
telemetry_set_input_sync(POTENSIC_PACKET_PERIOD);
#endif
POTENSIC_send_packet();
return POTENSIC_PACKET_PERIOD;
}
uint16_t initPOTENSIC(void)
void POTENSIC_init(void)
{
bind_counter = POTENSIC_BIND_COUNT;
POTENSIC_initialize_txid();
POTENSIC_init();
POTENSIC_RF_init();
hopping_frequency_no = 0;
return POTENSIC_INITIAL_WAIT;
}
#endif

View File

@@ -20,97 +20,143 @@
//#define PELIKAN_FORCE_ID
//#define PELIKAN_LITE_FORCE_ID
#define PELIKAN_LITE_FORCE_HOP
#define PELIKAN_LITE_FORCE_HOP // hop sequence creation is unknown
//#define PELIKAN_SCX24_FORCE_ID
#define PELIKAN_SCX24_FORCE_HOP // hop sequence creation is unknown
#define PELIKAN_BIND_COUNT 400
#define PELIKAN_BIND_COUNT 400 // 3sec
#define PELIKAN_BIND_RF 0x3C
#define PELIKAN_NUM_RF_CHAN 0x1D
#define PELIKAN_PACKET_PERIOD 7980
#define PELIKAN_LITE_PACKET_PERIOD 18000
#define PELIKAN_SCX24_PACKET_PERIOD 15069
static void __attribute__((unused)) pelikan_build_packet()
{
static boolean upper=false;
packet[0] = 0x15;
uint8_t sum;
uint16_t channel;
if(sub_protocol == PELIKAN_SCX24)
packet[0] = 0x11;
else //PELIKAN_PRO & PELIKAN_LITE
packet[0] = 0x15;
if(IS_BIND_IN_PROGRESS)
{
packet[1] = 0x04; //version??
packet[2] = rx_tx_addr[0];
packet[3] = rx_tx_addr[1];
packet[4] = rx_tx_addr[2];
packet[5] = rx_tx_addr[3];
if(sub_protocol==PELIKAN_PRO)
packet[6] = 0x05; //sub version??
else //PELIKAN_LITE
packet[6] = 0x03; //sub version??
packet[7] = 0x00; //??
packet[8] = 0x55; //??
if(sub_protocol == PELIKAN_SCX24)
{
packet[1] = 0x65; //??
packet[6] = 0x55; //??
packet[7] = 0xAA; //??
}
else
{//PELIKAN_PRO & PELIKAN_LITE
packet[1] = 0x04; //version??
if(sub_protocol==PELIKAN_PRO)
packet[6] = 0x05; //sub version??
else //PELIKAN_LITE
packet[6] = 0x03; //sub version??
packet[7] = 0x00; //??
}
packet[8] = 0x55; //??
packet_length = 10;
}
else
{
//ID
packet[1] = rx_tx_addr[0];
packet[7] = rx_tx_addr[1];
packet[12] = rx_tx_addr[2];
packet[13] = rx_tx_addr[3];
//Channels
uint8_t offset=upper?4:0;
uint16_t channel=convert_channel_16b_nolimit(CH_AETR[offset++], 153, 871);
uint8_t top=(channel>>2) & 0xC0;
packet[2] = channel;
channel=convert_channel_16b_nolimit(CH_AETR[offset++], 153, 871);
top|=(channel>>4) & 0x30;
packet[3] = channel;
channel=convert_channel_16b_nolimit(CH_AETR[offset++], 153, 871);
top|=(channel>>6) & 0x0C;
packet[4] = channel;
channel=convert_channel_16b_nolimit(CH_AETR[offset], 153, 871);
top|=(channel>>8) & 0x03;
packet[5] = channel;
packet[6] = top;
//Check
crc8=0x15;
for(uint8_t i=1;i<8;i++)
crc8+=packet[i];
packet[8]=crc8;
//Low/Up channel flag
packet[9]=upper?0xAA:0x00;
upper=!upper;
//Hopping counters
if(sub_protocol==PELIKAN_LITE || ++packet_count>4)
if(sub_protocol == PELIKAN_SCX24)
{
packet_count=0;
if(++hopping_frequency_no>=PELIKAN_NUM_RF_CHAN)
hopping_frequency_no=0;
//ID
packet[4] = rx_tx_addr[1];
//Channels
channel = Channel_data[0]; //STEERING: 1B1..23B..2C5 ???
packet[2] = channel >> 9;
packet[3] = channel >> 1;
channel = Channel_data[1]; //THROTTLE: 0DB..1FF..30E
packet[5] = channel >> 9;
packet[6] = channel >> 1;
channel = Channel_data[2]; //CH3: 055..3AA
packet[7] = channel >> 9;
packet[8] = channel >> 1;
//Hopping counters
if(++packet_count>2)
{
packet_count=0;
if(++hopping_frequency_no>=PELIKAN_NUM_RF_CHAN)
hopping_frequency_no=0;
}
//Length
packet_length = 14;
}
packet[10]=hopping_frequency_no;
packet[11]=packet_count;
packet_length = 15;
else
{//PELIKAN_PRO & PELIKAN_LITE
//ID
packet[7] = rx_tx_addr[1];
//Channels
uint8_t offset=upper?4:0;
channel=convert_channel_16b_nolimit(CH_AETR[offset++], 153, 871,false);
uint8_t top=(channel>>2) & 0xC0;
packet[2] = channel;
channel=convert_channel_16b_nolimit(CH_AETR[offset++], 153, 871,false);
top|=(channel>>4) & 0x30;
packet[3] = channel;
channel=convert_channel_16b_nolimit(CH_AETR[offset++], 153, 871,false);
top|=(channel>>6) & 0x0C;
packet[4] = channel;
channel=convert_channel_16b_nolimit(CH_AETR[offset], 153, 871,false);
top|=(channel>>8) & 0x03;
packet[5] = channel;
packet[6] = top;
//Check
sum=0x00;
for(uint8_t i=0;i<8;i++)
sum+=packet[i];
packet[8]=sum;
//Low/Up channel flag
packet[9]=upper?0xAA:0x00;
upper=!upper;
//Hopping counters
if(sub_protocol==PELIKAN_LITE || ++packet_count>4)
{
packet_count=0;
if(++hopping_frequency_no>=PELIKAN_NUM_RF_CHAN)
hopping_frequency_no=0;
}
//Length
packet_length = 15;
}
//Hopping
packet[packet_length-5] = hopping_frequency_no;
packet[packet_length-4] = packet_count;
//ID
packet[packet_length-3] = rx_tx_addr[2];
packet[packet_length-2] = rx_tx_addr[3];
}
//Check
crc8=0x15;
for(uint8_t i=1; i<packet_length-1 ;i++)
crc8+=packet[i];
packet[packet_length-1]=crc8;
sum=0x00;
for(uint8_t i=0; i<packet_length-1 ;i++)
sum+=packet[i];
packet[packet_length-1] = sum;
//Send
#ifdef DEBUG_SERIAL
if(packet[9]==0x00)
{
debug("C: %02X P(%d):",IS_BIND_IN_PROGRESS?PELIKAN_BIND_RF:hopping_frequency[hopping_frequency_no],packet_length);
for(uint8_t i=0;i<packet_length;i++)
debug(" %02X",packet[i]);
debugln("");
}
debug("C: %02X P(%d):",IS_BIND_IN_PROGRESS?PELIKAN_BIND_RF:hopping_frequency[hopping_frequency_no],packet_length);
for(uint8_t i=0;i<packet_length;i++)
debug(" %02X",packet[i]);
debugln("");
#endif
A7105_WriteData(packet_length, IS_BIND_IN_PROGRESS?PELIKAN_BIND_RF:hopping_frequency[hopping_frequency_no]);
A7105_SetPower();
}
uint16_t ReadPelikan()
uint16_t PELIKAN_callback()
{
if(phase==0)
{
@@ -125,17 +171,19 @@ uint16_t ReadPelikan()
BIND_DONE;
A7105_Strobe(A7105_STANDBY);
if(sub_protocol==PELIKAN_PRO)
A7105_WriteReg(A7105_03_FIFOI,0x28);
A7105_WriteReg(A7105_03_FIFOI,0x28); //????
else if(sub_protocol==PELIKAN_SCX24)
A7105_WriteReg(A7105_03_FIFOI,0x0D);
else//PELIKAN_LITE
A7105_WriteID((rx_tx_addr[0]<<24)|(rx_tx_addr[1]<<16)|(rx_tx_addr[2]<<8)|(rx_tx_addr[3]));
A7105_WriteID(MProtocol_id);
}
}
#ifdef MULTI_SYNC
telemetry_set_input_sync(sub_protocol==PELIKAN_PRO?PELIKAN_PACKET_PERIOD:PELIKAN_LITE_PACKET_PERIOD);
telemetry_set_input_sync(packet_period);
#endif
pelikan_build_packet();
if(sub_protocol==PELIKAN_PRO || IS_BIND_IN_PROGRESS)
return PELIKAN_PACKET_PERIOD;
if(IS_BIND_IN_PROGRESS || sub_protocol != PELIKAN_LITE)
return packet_period;
//PELIKAN_LITE
phase++;
return 942;
@@ -241,19 +289,26 @@ const uint8_t PROGMEM pelikan_lite_hopp[][PELIKAN_NUM_RF_CHAN] = {
{ 0x46,0x2A,0x3E,0x5A,0x5C,0x24,0x4E,0x32,0x54,0x26,0x2C,0x34,0x56,0x1E,0x3A,0x3C,0x50,0x4A,0x2E,0x42,0x20,0x52,0x28,0x22,0x44,0x58,0x36,0x38,0x4C }
};
#endif
#ifdef PELIKAN_SCX24_FORCE_HOP
const uint8_t PROGMEM pelikan_scx24_hopp[][PELIKAN_NUM_RF_CHAN] = {
{ 0x1E,0x32,0x46,0x5A,0x44,0x58,0x2E,0x42,0x56,0x2C,0x40,0x54,0x2A,0x3E,0x52,0x28,0x3C,0x50,0x26,0x3A,0x4E,0x24,0x38,0x4C,0x22,0x36,0x4A,0x20,0x1A },
{ 0x2C,0x44,0x1E,0x52,0x56,0x22,0x3A,0x3E,0x34,0x4C,0x26,0x5A,0x50,0x2A,0x42,0x38,0x2E,0x46,0x20,0x54,0x4A,0x24,0x3C,0x32,0x28,0x40,0x58,0x1B,0x4E }
};
#endif
uint16_t initPelikan()
void PELIKAN_init()
{
A7105_Init();
if(IS_BIND_IN_PROGRESS || sub_protocol==PELIKAN_LITE)
A7105_WriteReg(A7105_03_FIFOI,0x10);
pelikan_init_hop();
bind_counter = PELIKAN_BIND_COUNT;
//ID from dump
#if defined(PELIKAN_FORCE_ID)
if(sub_protocol==PELIKAN_PRO)
{
if(sub_protocol==PELIKAN_PRO)
{
pelikan_init_hop();
//ID from dump
#if defined(PELIKAN_FORCE_ID)
rx_tx_addr[0]=0x0D; // hopping freq
rx_tx_addr[1]=0xF4; // hopping freq
rx_tx_addr[2]=0x50; // ID
@@ -261,16 +316,14 @@ uint16_t initPelikan()
// Fill frequency table
for(uint8_t i=0;i<PELIKAN_NUM_RF_CHAN;i++)
hopping_frequency[i]=pgm_read_byte_near(&pelikan_hopp[0][i]);
}
#endif
#if defined(PELIKAN_LITE_FORCE_ID) || defined(PELIKAN_LITE_FORCE_HOP)
#endif
packet_period = PELIKAN_PACKET_PERIOD;
}
else
{
bind_counter >>= 1;
if(sub_protocol==PELIKAN_LITE)
{
#if defined(PELIKAN_LITE_FORCE_ID)
// ID
rx_tx_addr[2]=0x60;
rx_tx_addr[3]=0x18;
#endif
#if defined(PELIKAN_LITE_FORCE_HOP)
// Hop frequency table
rx_tx_addr[0]=0x04; // hopping freq
@@ -278,15 +331,52 @@ uint16_t initPelikan()
for(uint8_t i=0;i<PELIKAN_NUM_RF_CHAN;i++)
hopping_frequency[i]=pgm_read_byte_near(&pelikan_lite_hopp[0][i]);
#endif
#if defined(PELIKAN_LITE_FORCE_ID)
// ID
rx_tx_addr[2]=0x60;
rx_tx_addr[3]=0x18;
#endif
MProtocol_id = ((uint32_t)rx_tx_addr[0]<<24)|((uint32_t)rx_tx_addr[1]<<16)|((uint32_t)rx_tx_addr[2]<<8)|(rx_tx_addr[3]);
if(IS_BIND_DONE)
A7105_WriteID(MProtocol_id);
packet_period = PELIKAN_LITE_PACKET_PERIOD;
}
#endif
else// if(sub_protocol==PELIKAN_SCX24)
{
#if defined(PELIKAN_SCX24_FORCE_HOP)
// Hop frequency table
uint8_t num=rx_tx_addr[3] & 0x01;
if(num)
{//1
rx_tx_addr[0]=0x10; // hopping freq TX2
rx_tx_addr[1]=0x63; // hopping freq TX2
}
else
{//0
rx_tx_addr[0]=0x12; // hopping freq TX1
rx_tx_addr[1]=0x46; // hopping freq TX1
}
if(sub_protocol==PELIKAN_LITE && IS_BIND_DONE)
A7105_WriteID((rx_tx_addr[0]<<24)|(rx_tx_addr[1]<<16)|(rx_tx_addr[2]<<8)|(rx_tx_addr[3]));
for(uint8_t i=0;i<PELIKAN_NUM_RF_CHAN;i++)
hopping_frequency[i]=pgm_read_byte_near(&pelikan_scx24_hopp[num][i]);
#endif
#if defined(PELIKAN_SCX24_FORCE_ID)
// ID
rx_tx_addr[2]=0x80; // TX1
rx_tx_addr[3]=0x19; // TX1
rx_tx_addr[2]=0x80; // TX2
rx_tx_addr[3]=0x22; // TX2
#endif
A7105_WriteReg(A7105_0E_DATA_RATE,0x03);
if(IS_BIND_DONE)
A7105_WriteReg(A7105_03_FIFOI,0x0D);
packet_period = PELIKAN_SCX24_PACKET_PERIOD;
}
}
hopping_frequency_no=PELIKAN_NUM_RF_CHAN;
packet_count=5;
phase=0;
return 2400;
hopping_frequency_no = PELIKAN_NUM_RF_CHAN;
packet_count = 5;
phase = 0;
bind_counter = PELIKAN_BIND_COUNT;
}
#endif

View File

@@ -155,27 +155,21 @@ static void __attribute__((unused)) PROPEL_data_packet()
NRF24L01_WritePayload(packet, PROPEL_PACKET_SIZE);
}
static void __attribute__((unused)) PROPEL_init()
static void __attribute__((unused)) PROPEL_RF_init()
{
NRF24L01_Initialize();
NRF24L01_WriteReg(NRF24L01_00_CONFIG, 0x7f);
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x3f); // AA on all pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x3f); // Enable all pipes
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x03); // 5-byte address
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0x36); // retransmit 1ms, 6 times
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps
NRF24L01_SetPower();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x07); // ?? match protocol capture
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x3f); // AA on all pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x3f); // Enable all pipes
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0x36); // retransmit 1ms, 6 times
NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, (uint8_t *)"\x99\x77\x55\x33\x11", PROPEL_ADDRESS_LENGTH); //Bind address
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, (uint8_t *)"\x99\x77\x55\x33\x11", PROPEL_ADDRESS_LENGTH); //Bind address
NRF24L01_WriteReg(NRF24L01_05_RF_CH, PROPEL_BIND_RF_CHANNEL);
NRF24L01_Activate(0x73); // Activate feature register
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 0x3f); // Enable dynamic payload length
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, 0x07); // Enable all features
// Beken 2425 register bank 1 initialized here in stock tx capture
// Hopefully won't matter for nRF compatibility
NRF24L01_FlushTx();
NRF24L01_SetTxRxMode(TX_EN);
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 0x3f); // Enable dynamic payload length
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, 0x07); // Enable all features
NRF24L01_SetTxRxMode(TX_EN); // Clear data ready, data sent, retransmit and enable CRC 16bits, ready for TX
}
const uint8_t PROGMEM PROPEL_hopping []= { 0x47,0x36,0x27,0x44,0x33,0x0D,0x3C,0x2E,0x1B,0x39,0x2A,0x18 };
@@ -281,14 +275,13 @@ uint16_t PROPEL_callback()
return PROPEL_PACKET_PERIOD;
}
uint16_t initPROPEL()
void PROPEL_init()
{
BIND_IN_PROGRESS; // autobind protocol
PROPEL_initialize_txid();
PROPEL_init();
PROPEL_RF_init();
hopping_frequency_no = 0;
phase=PROPEL_BIND1;
return PROPEL_INITIAL_WAIT;
}
#endif

View File

@@ -13,9 +13,9 @@
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(Q303_NRF24L01_INO)
#if defined(Q303_CCNRF_INO)
#include "iface_nrf24l01.h"
#include "iface_xn297.h"
#define Q303_BIND_COUNT 1500
#define Q303_INITIAL_WAIT 500
@@ -174,10 +174,10 @@ static uint8_t __attribute__((unused)) cx35_lastButton()
return command;
}
static void __attribute__((unused)) Q303_send_packet(uint8_t bind)
static void __attribute__((unused)) Q303_send_packet()
{
uint16_t aileron, elevator, throttle, rudder, slider;
if(bind)
if(IS_BIND_IN_PROGRESS)
{
packet[0] = 0xaa;
memcpy(&packet[1], rx_tx_addr + 1, 4);
@@ -185,6 +185,11 @@ static void __attribute__((unused)) Q303_send_packet(uint8_t bind)
}
else
{
//RF freq
XN297_Hopping(hopping_frequency_no++);
hopping_frequency_no %= rf_ch_num;
//Build packet
packet[0] = 0x55;
// sticks
switch(sub_protocol)
@@ -267,51 +272,27 @@ static void __attribute__((unused)) Q303_send_packet(uint8_t bind)
}
}
// Power on, TX mode, CRC enabled
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP));
NRF24L01_WriteReg(NRF24L01_05_RF_CH, bind ? Q303_RF_BIND_CHANNEL : hopping_frequency[hopping_frequency_no++]);
hopping_frequency_no %= rf_ch_num;
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
// Send
XN297_SetPower();
XN297_SetFreqOffset();
XN297_SetTxRxMode(TX_EN);
XN297_WritePayload(packet, packet_length);
NRF24L01_SetPower(); // Set tx_power
}
static void __attribute__((unused)) Q303_init()
static void __attribute__((unused)) Q303_RF_init()
{
const uint8_t bind_address[] = {0xcc,0xcc,0xcc,0xcc,0xcc};
NRF24L01_Initialize();
NRF24L01_SetTxRxMode(TX_EN);
switch(sub_protocol)
if(sub_protocol==Q303)
{
case CX35:
case CX10D:
case CX10WD:
NRF24L01_SetBitrate(NRF24L01_BR_1M);
break;
case Q303:
XN297_SetScrambledMode(XN297_UNSCRAMBLED);
NRF24L01_SetBitrate(NRF24L01_BR_250K);
break;
XN297_Configure(XN297_CRCEN, XN297_UNSCRAMBLED, XN297_250K);
XN297_HoppingCalib(rf_ch_num);
}
else
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_1M);
XN297_SetTXAddr(bind_address, 5);
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowldgement on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01);
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x03);
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0x00); // no retransmits
NRF24L01_SetPower();
NRF24L01_Activate(0x73); // Activate feature register
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 0x00); // Disable dynamic payload length on all pipes
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, 0x01); // Set feature bits on
NRF24L01_Activate(0x73);
XN297_RFChannel(Q303_RF_BIND_CHANNEL);
}
static void __attribute__((unused)) Q303_initialize_txid()
@@ -353,34 +334,27 @@ static void __attribute__((unused)) Q303_initialize_txid()
uint16_t Q303_callback()
{
if(IS_BIND_DONE)
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
Q303_send_packet(0);
}
else
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
if(bind_counter)
{
bind_counter--;
if (bind_counter == 0)
{
XN297_SetTXAddr(rx_tx_addr, 5);
packet_count = 0;
BIND_DONE;
}
else
{
Q303_send_packet(1);
bind_counter--;
}
}
Q303_send_packet();
return packet_period;
}
uint16_t initQ303()
void Q303_init()
{
Q303_initialize_txid();
Q303_init();
Q303_RF_init();
bind_counter = Q303_BIND_COUNT;
switch(sub_protocol)
{
@@ -407,7 +381,6 @@ uint16_t initQ303()
}
hopping_frequency_no = 0;
BIND_IN_PROGRESS; // autobind protocol
return Q303_INITIAL_WAIT;
}
#endif

View File

@@ -14,9 +14,9 @@ Multiprotocol is distributed in the hope that it will be useful,
*/
// Compatible with Q90C quad.
#if defined(Q90C_NRF24L01_INO)
#if defined(Q90C_CCNRF_INO)
#include "iface_nrf250k.h"
#include "iface_xn297.h"
//#define FORCE_Q90C_ORIGINAL_ID
@@ -51,7 +51,7 @@ static void __attribute__((unused)) Q90C_send_packet()
}
else
{
XN297L_Hopping(hopping_frequency_no++); // RF Freq
XN297_Hopping(hopping_frequency_no++); // RF Freq
hopping_frequency_no %= Q90C_RF_NUM_CHANNELS;
packet[0]= convert_channel_8b(THROTTLE); // 0..255
// A,E,R have weird scaling, 0x00-0xff range (unsigned) but center isn't 7f or 80
@@ -108,9 +108,11 @@ static void __attribute__((unused)) Q90C_send_packet()
packet[11] = sum ^ crc8;
}
XN297L_SetFreqOffset(); // Set frequency offset
XN297L_SetPower(); // Set tx_power
XN297L_WriteEnhancedPayload(packet, Q90C_PACKET_SIZE, 0);
// Send
XN297_SetFreqOffset(); // Set frequency offset
XN297_SetPower(); // Set tx_power
XN297_SetTxRxMode(TX_EN);
XN297_WriteEnhancedPayload(packet, Q90C_PACKET_SIZE, 0);
}
static void __attribute__((unused)) Q90C_initialize_txid()
@@ -131,15 +133,15 @@ static void __attribute__((unused)) Q90C_initialize_txid()
crc8=rx_tx_addr[0]^rx_tx_addr[1]^rx_tx_addr[2]^rx_tx_addr[3];
}
static void __attribute__((unused)) Q90C_init()
static void __attribute__((unused)) Q90C_RF_init()
{
XN297L_Init();
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_250K);
if(IS_BIND_IN_PROGRESS)
XN297L_SetTXAddr((uint8_t*)"\x4F\x43\x54\x81\x81", Q90C_ADDRESS_LENGTH);
XN297_SetTXAddr((uint8_t*)"\x4F\x43\x54\x81\x81", Q90C_ADDRESS_LENGTH);
else
XN297L_SetTXAddr(rx_tx_addr, Q90C_ADDRESS_LENGTH);
XN297L_HoppingCalib(Q90C_RF_NUM_CHANNELS); // Calibrate all channels
XN297L_RFChannel(Q90C_RF_BIND_CHANNEL); // Set bind channel
XN297_SetTXAddr(rx_tx_addr, Q90C_ADDRESS_LENGTH);
XN297_HoppingCalib(Q90C_RF_NUM_CHANNELS); // Calibrate all channels
XN297_RFChannel(Q90C_RF_BIND_CHANNEL); // Set bind channel
}
uint16_t Q90C_callback()
@@ -147,20 +149,20 @@ uint16_t Q90C_callback()
#ifdef MULTI_SYNC
telemetry_set_input_sync(Q90C_PACKET_PERIOD);
#endif
if(IS_BIND_IN_PROGRESS)
if(bind_counter)
if(--bind_counter==0)
{
BIND_DONE;
XN297L_SetTXAddr(rx_tx_addr, Q90C_ADDRESS_LENGTH);
XN297_SetTXAddr(rx_tx_addr, Q90C_ADDRESS_LENGTH);
}
Q90C_send_packet();
return Q90C_PACKET_PERIOD;
}
uint16_t initQ90C()
void Q90C_init()
{
Q90C_initialize_txid();
Q90C_init();
Q90C_RF_init();
hopping_frequency_no = 0;
packet_count = 0;
bind_counter=Q90C_BIND_COUNT;
@@ -170,7 +172,6 @@ uint16_t initQ90C()
Q90C_VTX=CH6_SW;
packet[8] = 0x00;
packet[9] = 0x00;
return Q90C_INITIAL_WAIT;
}
#endif

View File

@@ -0,0 +1,146 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// Compatible with Realacc R11
#if defined(REALACC_NRF24L01_INO)
#include "iface_xn297.h"
#define FORCE_REALACC_ORIGINAL_ID
#define REALACC_INITIAL_WAIT 500
#define REALACC_PACKET_PERIOD 2268
#define REALACC_BIND_RF_CHANNEL 80
#define REALACC_BIND_PAYLOAD_SIZE 10
#define REALACC_PAYLOAD_SIZE 13
#define REALACC_BIND_COUNT 50
#define REALACC_RF_NUM_CHANNELS 5
static void __attribute__((unused)) REALACC_send_packet()
{
packet[ 0]= 0xDC;
packet[ 1]= convert_channel_8b(AILERON); // 00..80..FF
packet[ 2]= convert_channel_8b(ELEVATOR); // 00..80..FF
packet[ 3]= convert_channel_8b(THROTTLE); // 00..FF
packet[ 4]= convert_channel_8b(RUDDER); // 00..80..FF
packet[ 5]= 0x20; // Trim
packet[ 6]= 0x20; // Trim
packet[ 7]= 0x20; // Trim
packet[ 8]= 0x20; // Trim
packet[ 9]= num_ch; // Change at each power up
packet[10]= 0x04 // Flag1
| 0x02 // Rate1=0, Rate2=1, Rate3=2
| GET_FLAG(CH8_SW, 0x20); // Headless
packet[11]= 0x00 // Flag2
| GET_FLAG(CH7_SW, 0x01) // Calib
| GET_FLAG(CH9_SW, 0x20) // Return
| GET_FLAG(CH10_SW,0x80); // Unknown
packet[12]= 0x00 // Flag3
| GET_FLAG(CH5_SW, 0x01) // Flip
| GET_FLAG(CH6_SW, 0x80); // Light
XN297_Hopping(hopping_frequency_no);
hopping_frequency_no++;
hopping_frequency_no %= REALACC_RF_NUM_CHANNELS;
XN297_WriteEnhancedPayload(packet, REALACC_PAYLOAD_SIZE,0);
}
static void __attribute__((unused)) REALACC_send_bind_packet()
{
packet[0] = 0xB1;
memcpy(&packet[1],rx_tx_addr,4);
memcpy(&packet[5],hopping_frequency,5);
XN297_WriteEnhancedPayload(packet, REALACC_BIND_PAYLOAD_SIZE,1);
}
static void __attribute__((unused)) REALACC_initialize_txid()
{
calc_fh_channels(REALACC_RF_NUM_CHANNELS);
num_ch=random(0xfefefefe); // 00..FF
#ifdef FORCE_REALACC_ORIGINAL_ID
//Dump
rx_tx_addr[0]=0x99;
rx_tx_addr[1]=0x06;
rx_tx_addr[2]=0x00;
rx_tx_addr[3]=0x00;
hopping_frequency[0]=0x55;
hopping_frequency[1]=0x59;
hopping_frequency[2]=0x5A;
hopping_frequency[3]=0x5A;
hopping_frequency[4]=0x62;
num_ch=0xC5; // Value in dumps: C5 A2 77 F0 84 58
#endif
}
static void __attribute__((unused)) REALACC_RF_init()
{
XN297_Configure(XN297_CRCEN, XN297_SCRAMBLED, XN297_1M);
XN297_SetTXAddr((uint8_t*)"MAIN", 4);
XN297_RFChannel(REALACC_BIND_RF_CHANNEL); // Set bind channel
}
uint16_t REALACC_callback()
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(REALACC_PACKET_PERIOD);
#endif
XN297_SetPower();
XN297_SetTxRxMode(TX_EN);
if(IS_BIND_IN_PROGRESS)
{
REALACC_send_bind_packet();
if(--bind_counter==0)
{
BIND_DONE;
XN297_SetTXAddr(rx_tx_addr, 4);
}
}
else
REALACC_send_packet();
return REALACC_PACKET_PERIOD;
}
void REALACC_init()
{
BIND_IN_PROGRESS; // autobind protocol
REALACC_initialize_txid();
REALACC_RF_init();
bind_counter=REALACC_BIND_COUNT;
hopping_frequency_no=0;
}
#endif
// XN297 speed 1Mb, scrambled, enhanced
// Bind
// Address = 4D 41 49 4E = 'MAIN'
// Channel = 80 (most likely from dump)
// P(10) = B1 99 06 00 00 55 59 5A 5A 62
// B1 indicates bind packet
// 99 06 00 00 = ID = address of normal packets
// 55 59 5A 5A 62 = 85, 89, 90, 90, 98 = RF channels to be used (kind of match previous dumps)// Normal
// Normal
// Address = 99 06 00 00
// Channels = 84, 89, 90, 90, 98 (guess from bind)
// P(13)= DC 80 80 32 80 20 20 20 20 58 04 00 00
// DC = normal packet
// 80 80 32 80 : AETR 00..80..FF
// 20 20 20 20 : Trims
// 58 : changing every time the TX restart
// 04 : |0x20=headless, |0x01=rate2, |0x02=rate3
// 00 : |0x01=calib, |0x20=return, |0x80=unknown
// 00 : |0x80=light, |0x01=flip

View File

@@ -0,0 +1,104 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef CYRF6936_INSTALLED
#include "iface_rf2500.h"
#define RF2500_ADDR_LENGTH 4
uint8_t RF2500_payload_length, RF2500_tx_addr[RF2500_ADDR_LENGTH], RF2500_buf[80];
bool RF2500_scramble_enabled;
static void __attribute__((unused)) RF2500_Init(uint8_t payload_length, bool scramble)
{
CYRF_GFSK1M_Init( RF2500_ADDR_LENGTH + 2 + (payload_length+2)*4, 2 ); // full payload length with CRC + address + 5 + FEC
RF2500_payload_length=payload_length;
RF2500_scramble_enabled=scramble;
}
static void __attribute__((unused)) RF2500_SetTXAddr(const uint8_t* addr)
{
memcpy(RF2500_tx_addr, addr, RF2500_ADDR_LENGTH);
}
static void __attribute__((unused)) RF2500_BuildPayload(uint8_t* buffer)
{
const uint8_t RF2500_scramble[] = { 0xD0, 0x9E, 0x53, 0x33, 0xD8, 0xBA, 0x98, 0x08, 0x24, 0xCB, 0x3B, 0xFC, 0x71, 0xA3, 0xF4, 0x55 };
const uint16_t RF2500_crc_xorout_scramble = 0xAEE4;
//Scramble the incoming buffer
if(RF2500_scramble_enabled)
for(uint8_t i=0; i<RF2500_payload_length; i++)
buffer[i] ^= RF2500_scramble[i];
//Add CRC to the buffer
crc=0x0000;
for(uint8_t i=0;i<RF2500_payload_length;i++)
crc16_update(bit_reverse(buffer[i]),8);
buffer[RF2500_payload_length ] = bit_reverse(crc>>8);
buffer[RF2500_payload_length+1] = bit_reverse(crc);
if(RF2500_scramble_enabled)
{
buffer[RF2500_payload_length ] ^= RF2500_crc_xorout_scramble>>8;
buffer[RF2500_payload_length+1] ^= RF2500_crc_xorout_scramble;
}
#if 0
debug("B:");
for(uint8_t i=0; i<RF2500_payload_length+2; i++)
debug(" %02X",buffer[i]);
debugln("");
#endif
memcpy(RF2500_buf,RF2500_tx_addr,RF2500_ADDR_LENGTH); // Address
uint8_t pos = RF2500_ADDR_LENGTH;
RF2500_buf[pos++]=0xC3;RF2500_buf[pos++]=0xC3; // 5 FEC encoded
memset(&RF2500_buf[pos],0x00,(RF2500_payload_length+2)*4); // + CRC) * 4 FEC bytes per byte
//FEC encode
for(uint8_t i=0; i<RF2500_payload_length+2; i++) // Include CRC
{
for(uint8_t j=0;j<8;j++)
{
uint8_t offset=pos + (i<<2) + (j>>1);
RF2500_buf[offset] <<= 4;
if( (buffer[i]>>j) & 0x01 )
RF2500_buf[offset] |= 0x0C;
else
RF2500_buf[offset] |= 0x03;
}
}
#if 0
debug("E:");
for(uint8_t i=0; i<RF2500_ADDR_LENGTH+2+(RF2500_payload_length+2)*4; i++)
debug(" %02X",RF2500_buf[i]);
debugln("");
#endif
//CYRF wants LSB first
for(uint8_t i=0; i<RF2500_ADDR_LENGTH+2+(RF2500_payload_length+2)*4; i++)
RF2500_buf[i]=bit_reverse(RF2500_buf[i]);
}
static void __attribute__((unused)) RF2500_SendPayload()
{
CYRF_GFSK1M_SendPayload(RF2500_buf, RF2500_ADDR_LENGTH + 2 + (RF2500_payload_length+2)*4 );
}
#endif

View File

@@ -0,0 +1,311 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// Radiolink surface protocol. TXs: RC4GS,RC6GS. Compatible RXs:R7FG(Std),R6FG,R6F,R8EF,R8FM,R8F,R4FGM
#if defined(RLINK_CC2500_INO)
#include "iface_cc2500.h"
//#define RLINK_FORCE_ID
#define RLINK_TX_PACKET_LEN 33
#define RLINK_RX_PACKET_LEN 15
#define RLINK_TX_ID_LEN 4
#define RLINK_HOP 16
enum {
RLINK_DATA = 0x00,
RLINK_RX1 = 0x01,
RLINK_RX2 = 0x02,
};
uint32_t RLINK_rand1;
uint32_t RLINK_rand2;
static uint32_t __attribute__((unused)) RLINK_prng_next(uint32_t r)
{
return 0xA5E2A705 * r + 0x754DB79B;
}
static void __attribute__((unused)) RLINK_init_random(uint32_t id)
{
uint32_t result = id;
RLINK_rand2 = result;
for (uint8_t i=0; i<31; i++)
result = RLINK_prng_next(result);
RLINK_rand1 = result;
}
static uint8_t __attribute__((unused)) RLINK_next_random_swap()
{
uint8_t result = (RLINK_rand2 >> 16) + RLINK_rand2 + (RLINK_rand1 >> 16) + RLINK_rand1;
RLINK_rand2 = RLINK_prng_next(RLINK_rand2);
RLINK_rand1 = RLINK_prng_next(RLINK_rand1);
return result & 0x0F;
}
static uint32_t __attribute__((unused)) RLINK_compute_start_id(uint32_t id)
{
return id * 0xF65EF9F9u + 0x2EDDF6CAu;
}
static void __attribute__((unused)) RLINK_shuffle_freqs(uint32_t seed)
{
RLINK_init_random(seed);
for(uint8_t i=0; i<RLINK_HOP; i++)
{
uint8_t r = RLINK_next_random_swap();
uint8_t tmp = hopping_frequency[r];
hopping_frequency[r] = hopping_frequency[i];
hopping_frequency[i] = tmp;
}
}
static void __attribute__((unused)) RLINK_hop()
{
uint8_t inc=3*(rx_tx_addr[0]&3);
// init hop table
for(uint8_t i=0; i<RLINK_HOP; i++)
hopping_frequency[i] = (12*i) + inc;
// shuffle
RLINK_shuffle_freqs(RLINK_compute_start_id(rx_tx_addr[0] + (rx_tx_addr[1] << 8)));
RLINK_shuffle_freqs(RLINK_compute_start_id(rx_tx_addr[2] + (rx_tx_addr[3] << 8)));
// replace one of the channel randomely
rf_ch_num=random(0xfefefefe)%0x11; // 0x00..0x10
if(inc==9) inc=6; // frequency exception
hopping_frequency[rf_ch_num]=12*16+inc;
}
static void __attribute__((unused)) RLINK_TXID_init()
{
#ifdef RLINK_FORCE_ID
//surface RC6GS
memcpy(rx_tx_addr,"\x3A\x99\x22\x3A",RLINK_TX_ID_LEN);
//air T8FB
//memcpy(rx_tx_addr,"\xFC\x11\x0D\x20",RLINK_TX_ID_LEN);
#endif
// channels order depend on ID
RLINK_hop();
#if 0
debug("ID:");
for(uint8_t i=0;i<RLINK_TX_ID_LEN;i++)
debug(" 0x%02X",rx_tx_addr[i]);
debugln("");
debug("Hop(%d):", rf_ch_num);
for(uint8_t i=0;i<RLINK_HOP;i++)
debug(" 0x%02X",hopping_frequency[i]);
debugln("");
#endif
}
const PROGMEM uint8_t RLINK_init_values[] = {
/* 00 */ 0x5B, 0x06, 0x5C, 0x07, 0xAB, 0xCD, 0x40, 0x04,
/* 08 */ 0x45, 0x00, 0x00, 0x06, 0x00, 0x5C, 0x62, 0x76,
/* 10 */ 0x7A, 0x7F, 0x13, 0x23, 0xF8, 0x44, 0x07, 0x30,
/* 18 */ 0x18, 0x16, 0x6C, 0x43, 0x40, 0x91, 0x87, 0x6B,
/* 20 */ 0xF8, 0x56, 0x10, 0xA9, 0x0A, 0x00, 0x11
};
static void __attribute__((unused)) RLINK_rf_init()
{
CC2500_Strobe(CC2500_SIDLE);
for (uint8_t i = 0; i < 39; ++i)
CC2500_WriteReg(i, pgm_read_byte_near(&RLINK_init_values[i]));
if(sub_protocol==RLINK_DUMBORC)
{
CC2500_WriteReg(4, 0xBA);
CC2500_WriteReg(5, 0xDC);
}
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
CC2500_SetTxRxMode(TX_EN);
}
static void __attribute__((unused)) RLINK_send_packet()
{
static uint32_t pseudo=0;
uint32_t bits = 0;
uint8_t bitsavailable = 0;
uint8_t idx = 6;
CC2500_Strobe(CC2500_SIDLE);
// packet length
packet[0] = RLINK_TX_PACKET_LEN;
// header
if(packet_count>3)
packet[1] = 0x02; // 0x02 telemetry request flag
else
packet[1] = 0x00; // no telemetry
switch(sub_protocol)
{
case RLINK_SURFACE:
packet[1] |= 0x01;
//radiolink additionnal ID which is working only on a small set of RXs
//if(RX_num) packet[1] |= ((RX_num+2)<<4)+4; // RX number limited to 10 values, 0 is a wildcard
break;
case RLINK_AIR:
packet[1] |= 0x21; //air 0x21 on dump but it looks to support telemetry at least RSSI
break;
case RLINK_DUMBORC:
packet[1] = 0x00; //always 0x00 on dump
break;
}
// ID
memcpy(&packet[2],rx_tx_addr,RLINK_TX_ID_LEN);
// pack 16 channels on 11 bits values between 170 and 1876, 1023 middle. The last 8 channels are failsafe values associated to the first 8 values.
for (uint8_t i = 0; i < 16; i++)
{
uint32_t val = convert_channel_16b_nolimit(i,170,1876,false); // allow extended limits
if (val & 0x8000)
val = 0;
else if (val > 2047)
val=2047;
bits |= val << bitsavailable;
bitsavailable += 11;
while (bitsavailable >= 8) {
packet[idx++] = bits & 0xff;
bits >>= 8;
bitsavailable -= 8;
}
}
// hop
pseudo=((pseudo * 0xAA) + 0x03) % 0x7673; // calc next pseudo random value
CC2500_WriteReg(CC2500_0A_CHANNR, hopping_frequency[pseudo & 0x0F]);
packet[28]= pseudo;
packet[29]= pseudo >> 8;
packet[30]= 0x00; // unknown
packet[31]= 0x00; // unknown
packet[32]= rf_ch_num; // index of value changed in the RF table
// check
uint8_t sum=0;
for(uint8_t i=1;i<33;i++)
sum+=packet[i];
packet[33]=sum;
// send packet
CC2500_WriteData(packet, RLINK_TX_PACKET_LEN+1);
// packets type
packet_count++;
if(packet_count>5) packet_count=0;
//debugln("C= 0x%02X",hopping_frequency[pseudo & 0x0F]);
//debug("P=");
//for(uint8_t i=1;i<RLINK_TX_PACKET_LEN+1;i++)
// debug(" 0x%02X",packet[i]);
//debugln("");
}
#define RLINK_TIMING_PROTO 20000-100 // -100 for compatibility with R8EF
#define RLINK_TIMING_RFSEND 10500
#define RLINK_TIMING_CHECK 2000
uint16_t RLINK_callback()
{
switch(phase)
{
case RLINK_DATA:
#ifdef MULTI_SYNC
telemetry_set_input_sync(RLINK_TIMING_PROTO);
#endif
CC2500_SetPower();
CC2500_SetFreqOffset();
RLINK_send_packet();
#if not defined RLINK_HUB_TELEMETRY
return RLINK_TIMING_PROTO;
#else
if(!(packet[1]&0x02))
return RLINK_TIMING_PROTO; //Normal packet
//Telemetry packet
phase++; // RX1
return RLINK_TIMING_RFSEND;
case RLINK_RX1:
CC2500_Strobe(CC2500_SIDLE);
CC2500_Strobe(CC2500_SFRX);
CC2500_SetTxRxMode(RX_EN);
CC2500_Strobe(CC2500_SRX);
phase++; // RX2
return RLINK_TIMING_PROTO-RLINK_TIMING_RFSEND-RLINK_TIMING_CHECK;
case RLINK_RX2:
len = CC2500_ReadReg(CC2500_3B_RXBYTES | CC2500_READ_BURST) & 0x7F;
if (len == RLINK_RX_PACKET_LEN + 1 + 2) //Telemetry frame is 15 bytes + 1 byte for length + 2 bytes for RSSI&LQI&CRC
{
//debug("Telem:");
CC2500_ReadData(packet_in, len);
if(packet_in[0]==RLINK_RX_PACKET_LEN && (packet_in[len-1] & 0x80) && memcmp(&packet[2],rx_tx_addr,RLINK_TX_ID_LEN)==0 && packet_in[6]==packet[1])
{//Correct telemetry received: length, CRC, ID and type
//Debug
//for(uint8_t i=0;i<len;i++)
// debug(" %02X",packet_in[i]);
TX_RSSI = packet_in[len-2];
if(TX_RSSI >=128)
TX_RSSI -= 128;
else
TX_RSSI += 128;
RX_RSSI=packet_in[7]; //Should be packet_in[7]-256 but since it's an uint8_t...
v_lipo1=packet_in[8]<<1; //RX Batt
v_lipo2=packet_in[9]; //Batt
telemetry_link=1; //Send telemetry out
pps_counter++;
packet_count=0;
}
//debugln("");
}
if (millis() - pps_timer >= 2000)
{//1 telemetry packet every 100ms
pps_timer = millis();
if(pps_counter<20)
pps_counter*=5;
else
pps_counter=100;
debugln("%d pps", pps_counter);
TX_LQI = pps_counter; //0..100%
pps_counter = 0;
}
CC2500_SetTxRxMode(TX_EN);
phase=RLINK_DATA; // DATA
return RLINK_TIMING_CHECK;
#endif
}
return 0;
}
void RLINK_init()
{
BIND_DONE; // Not a TX bind protocol
RLINK_TXID_init();
RLINK_rf_init();
packet_count = 0;
phase = RLINK_DATA;
}
#endif

View File

@@ -96,17 +96,13 @@ static void REDPINE_data_frame() {
packet[10] = REDPINE_LOOPTIME_SLOW;
}
static uint16_t ReadREDPINE()
uint16_t REDPINE_callback()
{
if ( prev_option != option )
{ // Frequency adjust
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
prev_option = option ;
}
CC2500_SetFreqOffset();
if(IS_BIND_IN_PROGRESS)
{
if (state == REDPINE_BIND) {
REDPINE_init(0);
REDPINE_RF_init(0);
}
REDPINE_set_channel(49);
CC2500_SetTxRxMode(TX_EN);
@@ -118,26 +114,22 @@ static uint16_t ReadREDPINE()
if(--bind_counter==0)
{
BIND_DONE;
REDPINE_init(sub_protocol);
REDPINE_RF_init(sub_protocol);
}
return 4000;
}
else
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
CC2500_SetTxRxMode(TX_EN);
REDPINE_set_channel(hopping_frequency_no);
CC2500_SetPower();
CC2500_Strobe(CC2500_SFRX);
REDPINE_data_frame();
CC2500_Strobe(CC2500_SIDLE);
hopping_frequency_no = (hopping_frequency_no + 1) % 49;
CC2500_WriteData(packet, REDPINE_PACKET_SIZE);
return packet_period;
}
return 1;
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
CC2500_SetTxRxMode(TX_EN);
REDPINE_set_channel(hopping_frequency_no);
CC2500_SetPower();
CC2500_Strobe(CC2500_SFRX);
REDPINE_data_frame();
CC2500_Strobe(CC2500_SIDLE);
hopping_frequency_no = (hopping_frequency_no + 1) % 49;
CC2500_WriteData(packet, REDPINE_PACKET_SIZE);
return packet_period;
}
// register, fast 250k, slow
@@ -179,7 +171,7 @@ static const uint8_t REDPINE_init_data[][3] = {
{CC2500_3E_PATABLE, 0xff, 0xff}
};
static void REDPINE_init(uint8_t format)
static void REDPINE_RF_init(uint8_t format)
{
CC2500_Reset();
@@ -189,7 +181,6 @@ static void REDPINE_init(uint8_t format)
CC2500_WriteReg(REDPINE_init_data[i][0], REDPINE_init_data[i][format+1]);
}
prev_option = option;
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
CC2500_Strobe(CC2500_SIDLE);
@@ -204,7 +195,7 @@ static void REDPINE_init(uint8_t format)
}
}
static uint16_t initREDPINE()
void REDPINE_init()
{
hopping_frequency_no = 0;
// Used from kn_nrf24l01.c : kn_calculate_freqency_hopping_channels
@@ -237,8 +228,7 @@ static uint16_t initREDPINE()
packet_period = REDPINE_LOOPTIME_SLOW*1000;
bind_counter=REDPINE_BIND;
REDPINE_init(sub_protocol);
REDPINE_RF_init(sub_protocol);
CC2500_SetTxRxMode(TX_EN); // enable PA
return 10000;
}
#endif

View File

@@ -29,15 +29,9 @@ const uint8_t PROGMEM SHENQI_Freq[] = {
10,60,10,50,30,40,
20,10,40,30,60,20 };
void SHENQI_init()
void SHENQI_RF_init()
{
NRF24L01_Initialize();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowldgement on all data pipes
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps
NRF24L01_SetPower();
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x03); // 5 bytes rx/tx address
LT8900_Config(4, 8, _BV(LT8900_CRC_ON)|_BV(LT8900_PACKET_LENGTH_EN), 0xAA);
LT8900_SetChannel(2);
@@ -116,14 +110,13 @@ uint16_t SHENQI_callback()
return packet_period;
}
uint16_t initSHENQI()
void SHENQI_init()
{
BIND_IN_PROGRESS; // autobind protocol
SHENQI_init();
SHENQI_RF_init();
hopping_frequency_no = 0;
packet_count=0;
packet_period=500;
return 1000;
}
#endif

Some files were not shown because too many files have changed in this diff Show More