Compare commits

...

573 Commits

Author SHA1 Message Date
Pascal Langer
7676398aab Fix OMP protocol 2021-01-25 11:33:30 +01:00
Pascal Langer
9c6c55fa00 E010r5: added 2 TX IDs 2021-01-21 15:31:37 +01:00
Pascal Langer
5b9ca3ba06 Move the CYRF emulation functions around for future 2021-01-21 12:24:46 +01:00
Pascal Langer
23141b6087 E016Hv2 and ESKY150V2 don't need the NRF code anymore 2021-01-21 11:46:54 +01:00
Pascal Langer
6d4b4bd2c0 Update MultiChannelsUpdater.lua 2021-01-21 09:32:45 +01:00
Pascal Langer
5cec22a757 AFHDS2A RX: trial to fix bind with original TX 2021-01-19 22:50:55 +01:00
pascallanger
153ba2e090 Update Transmitters.md 2021-01-19 12:26:15 +01:00
Pascal Langer
21e8bed52b E016HV2: fixed a left over from protocol reverse engineering 2021-01-19 12:15:23 +01:00
Pascal Langer
ecfc5b0313 End bind as requested by the radio on more protocols 2021-01-19 12:13:24 +01:00
Pascal Langer
2bcebbda45 LOLI: adjust timing 2021-01-18 15:51:35 +01:00
Pascal Langer
52e8d87ab1 LOLI RX configuration script 2021-01-18 11:46:19 +01:00
pascallanger
b613345da4 Update Protocols_Details.md 2021-01-17 17:16:11 +01:00
pascallanger
f2665ca786 Update Protocols_Details.md 2021-01-17 16:53:42 +01:00
Pascal Langer
e3189d3aed E010r5: add GLIDE channel 2021-01-17 15:59:05 +01:00
pascallanger
c829e1c86f Protocol E129: Add E130 model, Protocol E010r5: Add GLIDE channel 2021-01-17 15:57:52 +01:00
pascallanger
8499a508f5 Protocol E129: Add E130 model, Protocol E010r5: Add GLIDE channel 2021-01-17 15:57:42 +01:00
Pascal Langer
50dec0e55d AFHDS2A RX: fixed 2021-01-16 18:33:10 +01:00
Pascal Langer
6f419adb7f Fix CRC in various places 2021-01-16 16:50:45 +01:00
pascallanger
502e8beafb Update Protocols_Details.md 2021-01-16 15:48:40 +01:00
Pascal Langer
5aae065dc0 New protocol: E129 2021-01-16 15:45:19 +01:00
pascallanger
152dbed3fa Add Kyosho FHS details 2021-01-14 08:51:22 +01:00
Pascal Langer
b516bb8d20 Fix AFHDS2A RX 2021-01-12 14:02:13 +01:00
Pascal Langer
30e3e84066 LOLI: RX config 2021-01-11 16:27:59 +01:00
Pascal Langer
8338104266 Update XN297Dump_nrf24l01.ino 2021-01-11 12:37:58 +01:00
Pascal Langer
00c6aa52b9 Fix NCC1701... 2021-01-11 12:33:29 +01:00
Pascal Langer
e5689d2f1b Fix FQ777 2021-01-11 12:30:12 +01:00
Pascal Langer
b51dedcea1 M-Link: still work in progress 2021-01-11 12:13:03 +01:00
Pascal Langer
49f004e53f E010r5: added flip, led and calib channels 2021-01-11 12:12:26 +01:00
Pascal Langer
062fc05eac Fix FrSky RX protocol not ending bind when requested 2021-01-11 09:42:16 +01:00
Pascal Langer
6d080d5d5f New LOLI protocol 2021-01-09 18:39:31 +01:00
Pascal Langer
0955340a93 New protocol: E010r5 2021-01-08 21:16:07 +01:00
Ben Lye
9b2318cc7e Fix EEPROM address variable types (#494) 2020-12-27 09:57:41 +01:00
Pascal Langer
2098cdc5e0 Merge branch 'master' of https://github.com/pascallanger/DIY-Multiprotocol-TX-Module 2020-12-23 10:54:43 +01:00
Pascal Langer
d19b5187c5 AFHDS2A RX: stop bind when requested 2020-12-23 10:54:39 +01:00
pascallanger
2a78b1d6b7 Update README.md 2020-12-22 12:01:05 +01:00
pascallanger
84ae6366eb Update README.md 2020-12-21 16:12:04 +01:00
pascallanger
e5b235ac83 Update README.md 2020-12-21 16:08:03 +01:00
Ben Lye
0195384592 Merge pull request #486 from benlye/actions-3
Various fixes for CI workflow
2020-12-21 14:56:29 +00:00
Ben Lye
0937f832fc Rename the build artifact archive 2020-12-21 14:50:31 +00:00
Ben Lye
c77b4af2a0 Various fixes for CI workflow 2020-12-21 14:33:55 +00:00
pascallanger
b943bae8dd Update README.md 2020-12-21 11:39:35 +01:00
pascallanger
4955978eb6 Update README.md 2020-12-21 11:36:39 +01:00
Ben Lye
df409fddf5 Merge pull request #485 from benlye/store-artifacts
Upload build artifacts to workflow job
2020-12-20 20:15:21 +00:00
Ben Lye
0330c596e4 Upload build artifacts to workflow job 2020-12-20 19:56:28 +00:00
Ben Lye
8c6c58f12f Update main.yml
Only run CI workflow on push or PR if firmware source code has changed.
2020-12-20 19:08:36 +00:00
Ben Lye
4bc08d22b8 Merge pull request #484 from benlye/github-actions
Configure GitHub Actions
2020-12-20 17:44:28 +00:00
Ben Lye
96fb3b20b7 Configure GitHub Actions for testing and releases 2020-12-20 17:11:18 +00:00
Ben Lye
47f713c6c8 Disable Travis 2020-12-20 11:38:34 +00:00
Pascal Langer
443c7a6b99 WFLY2: WBUS <-> PPM 2020-12-20 12:05:43 +01:00
Pascal Langer
e79ca9b7d7 E016H: Calibration on channel 8 2020-12-19 12:16:51 +01:00
Pascal Langer
b94f774f80 WFLY2: Failsafe doc update 2020-12-18 17:34:09 +01:00
Pascal Langer
5614e8bef6 E016H: Multi IDs 2020-12-18 15:30:50 +01:00
Pascal Langer
4ce3a5d298 Renamed protocol E016H to E016HV2 2020-12-18 00:09:13 +01:00
Pascal Langer
f6de3de78c Update Protocols_Details.md 2020-12-17 21:28:42 +01:00
Pascal Langer
8099018132 RLINK: subprotocol DumboRC 2020-12-17 21:24:56 +01:00
Pascal Langer
360dde2e1b E016H: compilation fix 2020-12-17 21:09:13 +01:00
Pascal Langer
cc7b7638d3 Update Protocols_Details.md 2020-12-17 18:23:38 +01:00
Pascal Langer
321e4aee34 E016H v2: new protocol WIP only 1 ID 2020-12-17 18:05:04 +01:00
Pascal Langer
f18847df57 Update Convert.ino 2020-12-17 09:02:11 +01:00
Pascal Langer
a2559a65d3 WFLY2: add switch from PPM <-> WBUS 2020-12-16 18:40:46 +01:00
Pascal Langer
5ac41fdd15 WFLY2: add failsafe (hold/no pulse not available yet) 2020-12-16 16:14:45 +01:00
Pascal Langer
6d38dd2d7a WFLY2: auto stop bind when the RX replies 2020-12-15 23:58:56 +01:00
Ben Lye
667058269c Add latest boards 2020-12-15 09:50:28 +00:00
Ben Lye
ad6f934892 Pin arduino-cli version to 0.13.0 2020-12-15 09:32:34 +00:00
Pascal Langer
714220c349 Update Protocols_Details.md 2020-12-15 10:20:05 +01:00
Pascal Langer
4887fca873 WFLY2: fix bind after code cleanup... 2020-12-15 09:51:11 +01:00
Pascal Langer
cfe80edcb6 WFLY2: update channels throw, bind frequencies 2020-12-14 18:56:12 +01:00
Pascal Langer
484588ff6b WFLY2: documentation 2020-12-14 11:07:21 +01:00
Pascal Langer
1bb059c2a2 WFLY: renamed WFLYRF to WFLY2 2020-12-13 23:15:43 +01:00
Pascal Langer
ef5d9cb6b3 HoTT: update doc for 16 channels 2020-12-13 23:00:47 +01:00
Pascal Langer
37a06c050d HoTT: added support for 16 channels (previously 12) 2020-12-13 22:56:47 +01:00
Pascal Langer
5f0ed395ba WFLYRF: use Radio ID 2020-12-11 13:55:50 +01:00
Pascal Langer
ae27c8b671 WFLYRF: Fixed partial ID for telemetry 2020-12-11 11:23:06 +01:00
Pascal Langer
088bfb9c2f WFLYRF: added ext voltage to A2 2020-12-11 10:57:14 +01:00
Pascal Langer
b01462e36b WFLYRF: fixed normal mode, added telemetry, bind is not working yet 2020-12-11 10:40:00 +01:00
Pascal Langer
abd36dc6a4 WFLY: Track changes in A7105 config (radio has A7106) 2020-12-10 18:57:06 +01:00
Pascal Langer
ebb8a33c1a Fix potential bug with wait loops 2020-12-10 16:52:34 +01:00
Pascal Langer
2b0f663482 WFLY RF: WIP protocol 2020-12-10 16:51:55 +01:00
pascallanger
956e632392 Update Protocols_Details.md 2020-12-10 13:48:04 +01:00
pascallanger
90b6bb8f7d Update Protocols_Details.md 2020-12-08 18:52:13 +01:00
pascallanger
6153e84abf Update README.md 2020-12-08 16:51:52 +01:00
pascallanger
16357f29e9 Add files via upload 2020-12-08 16:48:04 +01:00
Pascal Langer
0b8a5a7539 MLINK protocol: WIP, works only for a few sec... 2020-12-05 19:13:11 +01:00
Pascal Langer
6874e3a6a7 Template for WFLY RF 2020-12-05 19:12:11 +01:00
Pascal Langer
96263ed8a6 Prep for M-LINK 2020-12-04 09:00:17 +01:00
Ben Lye
7bb1cb9ae3 Add STM32 EEPROM initialization at startup (#475) 2020-11-30 18:11:35 +01:00
Pascal Langer
20e32c4cb0 Fix XK450 twitching? 2020-11-30 13:36:29 +01:00
Ben Lye
b4421306c0 Fix compiler errors when telemetry is disabled (#474) 2020-11-30 08:38:21 +01:00
Pascal Langer
e53f723fdb Update DSM FwdPrg.lua 2020-11-25 10:37:47 +01:00
Ben Lye
832a331437 Update Frequency_Tuning.md 2020-11-22 10:09:07 +00:00
Ben Lye
12e66bd84f Add tests for STM32F103C8 board 2020-11-09 11:09:12 +00:00
Pascal Langer
d290cc519f Bayang telemetry OpenTX Ratio and Offset 2020-11-06 10:04:01 +01:00
Ben Lye
f4b19fe33e Add module sub-type to signature
Differentiates between the STM32F1 boards.
2020-11-03 08:08:10 +00:00
pascallanger
767d2c079a Update Protocols_Details.md 2020-10-31 16:24:02 +01:00
pascallanger
7750310be5 Update Protocols_Details.md 2020-10-31 16:06:18 +01:00
Pascal Langer
6de4e1e1dd Protocols order 2020-10-31 15:59:04 +01:00
Ben Lye
627d47f139 C8 MCU flash size check (#461) 2020-10-30 12:21:39 +01:00
pascallanger
36675cf729 Change Travis links 2020-10-30 12:18:15 +01:00
Pascal Langer
33d8234eb3 Update JJRC345_nrf24l01.ino 2020-10-30 12:01:40 +01:00
Pascal Langer
347eb11328 SFHSS name change to Futaba 2020-10-30 12:01:29 +01:00
Ben Lye
5ed61f30e1 STM32 release file name standardization (#451)
Tweak the names of the STM32 serial and CC2500-only release files.
2020-10-11 14:09:42 +01:00
Ben Lye
a633f46f4f Travis release build changes (#450)
* Move the release build steps into separate shell scripts
* Remove builds that we don't need any more
  * Latest builds of er9x and erSkyTx both support MULTI_TELEMETRY so separate OpenTX / erSkyTx builds are no longer needed
  * Radio can switch telemetry inversion on or off automatically so STM32 inv / noinv builds are no longer needed
2020-10-11 12:52:05 +01:00
Pascal Langer
baf9a0f978 Update DSM FwdPrg.lua 2020-10-03 11:06:22 +02:00
Pascal Langer
c98b8fc8bf Flysky: Fix AFHDS and AFHDS2A 2020-10-03 10:52:11 +02:00
Pascal Langer
2fae0a35b8 Merge branch 'master' of https://github.com/pascallanger/DIY-Multiprotocol-TX-Module 2020-10-01 00:18:28 +02:00
Pascal Langer
b04f38ed3d Indicate ratio values to be used for A1 and A2 voltage sensors
OMP, RadioLink, Hubsan, Bayang, ...
2020-10-01 00:18:13 +02:00
pascallanger
60d5dd4101 Update Protocols_Details.md 2020-10-01 00:06:40 +02:00
Pascal Langer
75b7dd1dd7 Kyosho/Hype: channel order & doc 2020-10-01 00:05:20 +02:00
Pascal Langer
aa2717d6ab Kyosho/Hype: bind fix 2020-09-30 20:30:07 +02:00
Pascal Langer
4058f04b39 Kyosho/Hype: another attempt to fix bind... 2020-09-30 11:06:30 +02:00
Pascal Langer
25ebd55c85 Update Protocols_Details.md 2020-09-29 19:14:41 +02:00
Pascal Langer
d00b58c8ed Kyosho/Hype: fix bind 2020-09-29 17:06:01 +02:00
Pascal Langer
e7eb07a5a4 Kyosho: new sub_protocol Hype
Initial release
2020-09-29 11:24:55 +02:00
Ben Lye
a4cac50261 Add builds for modules with only CC2500 2020-09-24 14:09:08 +01:00
Pascal Langer
4f8da64822 OMP: doc update 2020-09-23 23:52:22 +02:00
Pascal Langer
4f89721cd0 RadioLink: any id
Need to rebind RXs...
2020-09-23 23:42:03 +02:00
Pascal Langer
43c2843490 Update AFHDS2A_a7105.ino 2020-09-23 23:08:26 +02:00
Pascal Langer
c152265284 OMP: doc 2020-09-23 23:05:05 +02:00
Pascal Langer
b591b92b4e Update OMP documentation 2020-09-23 09:41:26 +02:00
Pascal Langer
090388aa1b OMP: improve telemetry 2020-09-22 15:15:14 +02:00
Pascal Langer
c6ab696949 AFHDS2A: fix X6B telemetry issue? 2020-09-21 10:57:19 +02:00
Pascal Langer
df45a3ff83 OMP: prevent telemetry voltage from rolling over 2020-09-21 10:50:01 +02:00
pascallanger
fedd04b724 Update Troubleshooting.md 2020-09-19 21:23:51 +02:00
pascallanger
d8630da09d Update Troubleshooting.md 2020-09-19 20:35:44 +02:00
pascallanger
6192f7287e Update README.md 2020-09-18 17:15:18 +02:00
Pascal Langer
5b8a08ab22 OMP: added telemetry 2020-09-18 16:13:45 +02:00
Ben Lye
313b03fb84 Disable PPM/serial in builds as needed 2020-09-17 10:13:00 +01:00
Pascal Langer
5639def6fb Update DSM FwdPrg.lua 2020-09-15 12:05:26 +02:00
Pascal Langer
15a254879c DSM_RX: bind with other radio modules off 2020-09-15 12:03:16 +02:00
pascallanger
5baa9bd256 Update README.md 2020-09-13 11:34:23 +02:00
Pascal Langer
d5346c0eaf Add DISABLE_FLASH_SIZE_CHECK 2020-09-09 16:47:32 +02:00
Pascal Langer
a2213fd6dc DSM Forward Programming: work in progress 2020-09-09 10:45:14 +02:00
Pascal Langer
9b07f12f90 AFHDS2A: add sub proto 2020-09-08 08:49:38 +02:00
Pascal Langer
c9b49483e0 NanoRF 2020-09-07 22:58:37 +02:00
Pascal Langer
e2972a5823 AFHDS2A: enable 16 channels on SBUS 2020-09-07 20:31:47 +02:00
Pascal Langer
d5b3ed832d Update Multiprotocol.ino 2020-09-04 10:59:31 +02:00
Pascal Langer
9fcc030c15 STM32: test flash size 2020-09-04 10:39:30 +02:00
pascallanger
fc81b7ee5a Update Protocols_Details.md 2020-09-03 17:28:54 +02:00
Pascal Langer
f168abc2bb Fixed frame size 2020-08-31 22:21:21 +02:00
pascallanger
fe6778635e Add Realacc R11 protocol 2020-08-30 14:57:56 +02:00
Pascal Langer
65a6c19d02 OMP doc 2020-08-30 14:35:44 +02:00
pascallanger
a32b5561a1 Update Protocols_Details.md 2020-08-30 14:30:28 +02:00
pascallanger
4b4393952e Update README.md 2020-08-24 14:41:10 +02:00
Pascal Langer
ea205b1e69 Bayanf: fix telemetry batt 2020-08-20 19:00:06 +02:00
pascallanger
748140cdee Update Protocols_Details.md 2020-08-18 12:02:08 +02:00
Pascal Langer
e8037c857f OMP fixes 2020-08-17 08:26:42 +02:00
Pascal Langer
15e37cefee OMP: fix? 2020-08-16 18:48:40 +02:00
Pascal Langer
b1e4daf1c2 OMP: new protocol intial release
Untested!!!
2020-08-15 16:17:18 +02:00
Pascal Langer
4e0fccfc63 Update Protocols_Details.md 2020-08-14 19:40:25 +02:00
Pascal Langer
48b90029c4 V761: Work with any ID. Tested on Eachine RX. 2020-08-14 19:39:24 +02:00
Pascal Langer
8b189af2f9 R9: small change 2020-08-13 21:21:34 +02:00
Pascal Langer
030cdd35a2 Update REALACC_nrf24l01.ino 2020-08-11 00:02:19 +02:00
Pascal Langer
3789998ba9 Update ZSX_nrf24l01.ino 2020-08-10 23:54:51 +02:00
Pascal Langer
ea24ab6032 New protocol Realacc 2020-08-10 23:54:33 +02:00
Pascal Langer
1408431649 XN297Dump: increase the number of RF channels to look for 2020-08-10 22:52:50 +02:00
Pascal Langer
6810372064 RadioLink: enable Range test mode 2020-08-10 20:30:19 +02:00
Pascal Langer
708e2ac5f6 V761 bug fix: the model was not reconnecting unless you did a bind first 2020-08-07 15:18:15 +02:00
Pascal Langer
2178f6761d RadioLink: update A2=Batt telemetry value 2020-08-07 15:11:59 +02:00
Pascal Langer
aa5fd82004 Update FrSky_Rx_cc2500.ino 2020-08-05 09:50:40 +02:00
Pascal Langer
660282db2e RX protocols: abort RX bind as requested 2020-08-04 10:42:35 +02:00
Ben Lye
fdd357619b Fix folder structure inside LUA script zip file 2020-08-03 22:39:10 +01:00
Pascal Langer
5f12f99761 Update Validate.h 2020-08-01 19:35:39 +02:00
Pascal Langer
3d98abb6d4 Rename the Flyzone protocol by Height which is the original manufacturer 2020-08-01 19:19:11 +02:00
Pascal Langer
e35879a5d0 RadioLink: fix 2020-08-01 10:19:30 +02:00
Pascal Langer
37138f03ae Few fixes 2020-07-31 15:58:07 +02:00
Pascal Langer
51d39bbd8c RadioLink: add RXs to the supported list 2020-07-31 10:56:34 +02:00
Pascal Langer
0932a1c93f Update Protocols_Details.md 2020-07-31 10:52:37 +02:00
Pascal Langer
19164521e4 Flyzone protocol: 8 channels support 2020-07-31 10:42:10 +02:00
Pascal Langer
df28cfe3cc Radiolink: final version with 64 IDs 2020-07-31 10:41:07 +02:00
Pascal Langer
354878d542 RadioLink: preparation for final 2020-07-28 15:53:58 +02:00
Pascal Langer
695264d59a RadioLink: update 2020-07-28 00:55:47 +02:00
pascallanger
de190f3349 Update Protocols_Details.md 2020-07-25 14:43:52 +02:00
Pascal Langer
b049385094 Update Protocols_Details.md 2020-07-23 21:40:26 +02:00
Pascal Langer
75dc616130 Update RadioLink_cc2500.ino 2020-07-23 15:08:23 +02:00
Pascal Langer
b542f5e7cd RLINK: remove fixed ID 2020-07-23 10:10:08 +02:00
Pascal Langer
f3bee3cded RLINK: Fix voltage values 2020-07-23 10:03:04 +02:00
Pascal Langer
a9b7ab9a06 Update Protocols_Details.md 2020-07-22 20:13:54 +02:00
Pascal Langer
ed019e954e RadioLink: few fixes 2020-07-22 20:05:56 +02:00
Pascal Langer
65186b4356 Add Kyosho to the Lua channel namer exception list 2020-07-22 18:18:35 +02:00
Pascal Langer
e1d4f9a270 RadioLink Surface protocol: initial commit 2020-07-22 15:37:47 +02:00
Pascal Langer
69c95ca153 Fix compilation issues when Telem is disabled 2020-07-22 15:27:06 +02:00
Pascal Langer
e6976fb08d Merge branch 'master' of https://github.com/pascallanger/DIY-Multiprotocol-TX-Module 2020-07-21 01:40:19 +02:00
Pascal Langer
f502ba3659 FrSkyX Cloned: 8 channels option 2020-07-21 01:40:14 +02:00
pascallanger
e6ccc7e7cc Update Protocols_Details.md 2020-07-17 14:21:57 +02:00
Pascal Langer
da9d8851c2 Fix FrSkyX and FrSkyR9 bind options 2020-07-16 10:28:07 +02:00
pascallanger
ad48291d2a Update Protocols_Details.md 2020-07-16 00:02:29 +02:00
Pascal Langer
d6da230369 Flysky AFHDS2A: 16 channels + LQI
Use the 2 new sub protocols to extend the protocol to 16 channels on IBUS
2020-07-15 23:58:41 +02:00
pascallanger
f8ac406a94 Update Frequency_Tuning.md 2020-07-15 20:31:55 +02:00
Pascal Langer
e691ecd167 Update doc 2020-07-15 19:09:56 +02:00
Pascal Langer
930c26a111 Kyosho: new protocol 2020-07-10 15:25:32 +02:00
Pascal Langer
64419a6cf4 V2x2: fix? 2020-07-09 22:49:48 +02:00
Pascal Langer
5c59cddc7a FrSkyR9: FCC initial support 2020-07-06 09:52:43 +02:00
Ben Lye
4c7a51be46 Create folders in LUA script zip file 2020-07-05 16:54:55 +01:00
Ben Lye
7dad0fb89f Update install_drivers.bat
Change to libusbk driver for DFU device
2020-07-05 16:32:56 +01:00
Pascal Langer
adebb3fc5c FrSkyX: clean up 2020-07-05 17:19:29 +02:00
Pascal Langer
5ab00b9d18 FrSkyX: TXQly is the percentage of telemetry received packets (100...0%) 2020-07-05 00:28:43 +02:00
Pascal Langer
fbd5d7cf48 FrSky R9: telemetry TX to RX attempt 2020-07-04 22:43:19 +02:00
Pascal Langer
84132678cc FrSkyR9: TQLY = percentage of telemetry frames per second 2020-07-04 18:40:29 +02:00
Pascal Langer
78421748ba FrSky R9: fix sensors telem? 2020-07-04 17:50:05 +02:00
Pascal Langer
7112f58dae FrSkyX: fix telem 2020-07-04 15:15:55 +02:00
Pascal Langer
e56f737b34 FrSkyX: fix telemetry not stopping when RX is off 2020-07-04 13:33:56 +02:00
Pascal Langer
49d993f613 FrSkyR9: fix independant compilation issue 2020-07-04 11:48:26 +02:00
Pascal Langer
63dd8a9215 Update iface_sx1276.h 2020-07-03 19:51:22 +02:00
Pascal Langer
d5f819dd59 FrSkyR9: initial telemetry support 2020-07-03 19:51:11 +02:00
pascallanger
a68787f16e Update Protocols_Details.md 2020-07-03 18:03:36 +02:00
Pascal Langer
858ef5801c FrSkyX: fix AVR telemetry and may be improve telemetry overall 2020-07-03 17:42:12 +02:00
Pascal Langer
9e0bd29cee FrSkyD: clone mode - additional ID byte 2020-07-03 16:15:47 +02:00
Pascal Langer
15395de579 FrSky R9: adding CH1-8/CH9-16 and Telem ON/OFF (not that telem is supported yet) 2020-07-01 15:39:40 +02:00
Pascal Langer
db4aad04a7 FrSkyR9: fix 868 2020-07-01 14:39:11 +02:00
Pascal Langer
466e4cf227 Update DSM protocol details 2020-06-29 23:31:17 +02:00
Ben Lye
05a3780c38 Add latest STM32 board 2020-06-29 19:55:29 +01:00
pascallanger
85ea91cdbb Update README.md 2020-06-28 19:54:14 +02:00
pascallanger
985d7a6fd9 Update README.md 2020-06-28 19:37:58 +02:00
pascallanger
2a19b8dd45 Update README.md 2020-06-28 19:35:12 +02:00
Pascal Langer
b2b3078861 Update README.md 2020-06-28 19:17:02 +02:00
Pascal Langer
2ac92f5725 Create README.md 2020-06-28 19:15:39 +02:00
Pascal Langer
e2f5afd71e V761 doc updates 2020-06-28 19:07:34 +02:00
Ben Lye
e094ee036d Zip the LUA scripts for release 2020-06-28 16:06:06 +01:00
Ben Lye
2ad7f3e9f2 Fix LUA script copy 2020-06-28 15:13:33 +01:00
Pascal Langer
8e1f2258f8 OpenTX Lua scripts related to Multi 2020-06-27 17:59:06 +02:00
Pascal Langer
5c01bbf284 V761: additional channles 2020-06-27 17:58:29 +02:00
Pascal Langer
647425fc1a Revert "V761 additonal channels"
This reverts commit 7286049d07.
2020-06-27 17:56:19 +02:00
Pascal Langer
7286049d07 V761 additonal channels 2020-06-27 17:55:36 +02:00
Pascal Langer
ce67a065cd V761 - Eachine sub protocol 2020-06-26 17:54:56 +02:00
Ben Lye
8948cb6287 Switch to Arduino CLI instead of IDE for Travis CI builds 2020-06-26 09:56:07 +01:00
pascallanger
4daa5fa2bb Update Advanced_XN297Ldump.md 2020-06-22 10:10:57 +02:00
Pascal Langer
c49a7dae0a Few changes 2020-06-20 22:04:26 +02:00
Pascal Langer
890a042a43 V2X2 new sub proto MR101 and protocol rewrite
MR101 sub proto for Dromida XL
2020-06-20 21:40:03 +02:00
Pascal Langer
c95e576ef3 DSM RX: end bind and increased retry 2020-06-18 10:53:03 +02:00
Pascal Langer
2aa96dd129 SX1276: indent with tabs 2020-06-15 23:34:56 +02:00
AlessandroAU
908634474b Adds SX1276_DetectChip() function (#373)
* Adds SX1276_DetectChip() function

works by testing for 0x12 match in version reg 0x42

* fix build err
2020-06-15 23:03:03 +02:00
AlessandroAU
79b525ee71 Implement datasheet errata recommendation (#372) 2020-06-15 23:02:30 +02:00
Pascal Langer
872b8259ab Q90C VTX channel 2020-06-15 19:39:43 +02:00
Pascal Langer
a14c82708f Update Q90C_nrf24l01.ino 2020-06-15 15:30:31 +02:00
Pascal Langer
7e53778680 Update Q90C_nrf24l01.ino 2020-06-15 15:23:02 +02:00
Pascal Langer
210fbe3b9e Update Q90C_nrf24l01.ino 2020-06-15 14:45:49 +02:00
Pascal Langer
0a5fd72bdc DSM: 3 ch timing on CH13 2020-06-15 14:45:42 +02:00
Pascal Langer
6e1701ecc5 Q90C: Flight Modes 2020-06-14 23:22:27 +02:00
Pascal Langer
a5f627a2d6 Q90C test 2020-06-14 22:28:36 +02:00
Pascal Langer
b4a1f175c6 Update Q90C_nrf24l01.ino 2020-06-14 22:22:13 +02:00
Pascal Langer
e0690fa661 Update Q90C_nrf24l01.ino 2020-06-14 19:10:59 +02:00
Pascal Langer
bd962eff35 DSM: SAFE setting how to 2020-06-14 18:34:38 +02:00
Pascal Langer
b515355249 DSM RX: remove reverse on aileron and rudder 2020-06-13 21:54:18 +02:00
Pascal Langer
d1feef97be DSM: adjust end points, solve SAFE? 2020-06-13 16:20:51 +02:00
Pascal Langer
f52f96d44e DSM: selectable refresh rate 22/11ms when supported 2020-06-12 00:25:09 +02:00
Pascal Langer
944ec62f49 Update DSM_cyrf6936.ino 2020-06-10 09:03:41 +02:00
Pascal Langer
30905014d2 DSM: fix 11ms issue on some RXs? 2020-06-09 23:49:51 +02:00
Pascal Langer
32dbdfc6e3 Fix compilation when telemetry is disabled 2020-06-09 20:08:00 +02:00
Pascal Langer
b2e312b41e FrSkyX: force tuning fix for FrSkyX2 2020-06-07 18:06:19 +02:00
Ben Lye
52f4096197 Force 'noinv' for the T18 5in1 release files
And put it in the file name, just for consistency
2020-06-06 19:16:19 +01:00
Ben Lye
c547ea0c0f Disable some protocols for Atmega CC2500 builds
Trying to get the build to fit again.
2020-06-06 18:47:32 +01:00
Ben Lye
c73ee61128 Add T18 5in1 tests and release builds 2020-06-06 18:47:32 +01:00
Pascal Langer
90b287f1f4 Multi 5-in-1 initial support 2020-06-06 01:57:52 +02:00
Pascal Langer
0316c9eea9 HoTT: telem code cleanup 2020-06-05 22:44:32 +02:00
Pascal Langer
374b46966c FrSkyX: small change 2020-06-05 22:22:13 +02:00
Pascal Langer
3705415927 HoTT: fix telemetry 2020-06-05 22:20:19 +02:00
Pascal Langer
bff68f482e Update Protocols_Details.md 2020-06-03 14:08:09 +02:00
Pascal Langer
32ed758072 Update DSM_Rx_cyrf6936.ino 2020-06-03 12:55:45 +02:00
Pascal Langer
5ce99ee419 Test protocol 2020-06-03 11:43:27 +02:00
Pascal Langer
ceea384a36 Pelikan Lite: force_id update 2020-06-03 10:29:34 +02:00
Pascal Langer
fd3b026e12 Update Pelikan_a7105.ino 2020-06-02 19:10:11 +02:00
Pascal Langer
7e451c13a8 Pelikan: add sub protocol for Lite version 2020-06-02 19:04:05 +02:00
Pascal Langer
3dcf74c2e4 Bayang: renamed CX100 to QX100 2020-06-02 17:17:49 +02:00
Pascal Langer
50f1eca4be Bayang: new subprotocol CX100 2020-06-02 14:59:32 +02:00
Pascal Langer
0d97af5ae2 XN297dump: Auto mode small fix 2020-06-02 14:34:50 +02:00
Pascal Langer
aeb8d67219 HoTT: add subprotocols 2020-06-01 22:55:32 +02:00
Pascal Langer
1f65025036 HoTT: add LBT and telemetry improvment 2020-05-31 23:54:13 +02:00
Pascal Langer
8df3687684 Q90C: channels reverse 2020-05-26 22:26:30 +02:00
MRC3742
adf59a9d0d Misc updates for errors, omissions amd corrections (#359) 2020-05-26 19:52:09 +02:00
Pascal Langer
b9f00bdbc5 Q90C: checksum fix 2020-05-26 12:41:33 +02:00
Pascal Langer
a10e169573 New protocol Q90C 2020-05-24 17:39:14 +02:00
Pascal Langer
317b9a8156 Fix compilation when ESKY150V2 was built without HoTT 2020-05-23 23:34:05 +02:00
Pascal Langer
1c632d462f Update Protocols_Details.md 2020-05-23 22:53:53 +02:00
Pascal Langer
c46b49ccf1 HoTT: cleanup 2020-05-23 22:41:07 +02:00
Pascal Langer
e70708b133 FrSkyX: push more parts to common 2020-05-23 22:39:26 +02:00
Konstantin Tretyakov
62486c2220 JJRC345: Reduce stick sensitivity (#355)
A largely symbolic contribution to record participation in protocol development.
See: https://github.com/DeviationTX/deviation/pull/853
2020-05-23 00:09:46 +02:00
Pascal Langer
cffe66747a JJRC345: last commit 2020-05-22 21:03:01 +02:00
Pascal Langer
b31bbfa04f JJRC345: Change checksum calculation 2020-05-21 23:40:23 +02:00
Pascal Langer
48e4cad3ad JJRC345: add RTH on CH7 2020-05-21 17:49:04 +02:00
Pascal Langer
53f58ce2e1 JJRC345: update 2020-05-21 17:24:11 +02:00
Pascal Langer
eb8b5eac01 JJRC345: update channels range 2020-05-21 11:56:08 +02:00
Pascal Langer
02008a8b2e New protocol JJRC345: WIP
Work in progress
2020-05-21 11:47:51 +02:00
Pascal Langer
5b82599eb9 Update Protocols_Details.md 2020-05-20 12:23:37 +02:00
Pascal Langer
a5e4b2c6fa DSM RX: Fix compilation 2020-05-18 01:30:52 +02:00
Pascal Langer
987753ff73 DSM and DSM RX: fix bind 2020-05-18 01:13:08 +02:00
Pascal Langer
ee080839b1 Update DSM_Rx_cyrf6936.ino 2020-05-17 17:26:43 +02:00
Pascal Langer
4290c75478 HoTT: support for auto sensors discovery and sensors text config 2020-05-17 15:47:56 +02:00
Pascal Langer
cc6be6027d New DSM RX protocol 2020-05-17 15:45:23 +02:00
Pascal Langer
4cfde0a80a Update Protocols_Details.md 2020-05-10 13:41:14 +02:00
Pascal Langer
a77aee0e1a Update Protocols_Details.md 2020-05-09 16:11:36 +02:00
Pascal Langer
6f36473975 Devo basic telemetry 2020-05-09 16:11:10 +02:00
pascallanger
f5720d38bb Update Flash_from_Tx.md 2020-05-09 09:10:09 +02:00
pascallanger
23478d3d21 Update Protocols_Details.md 2020-05-08 22:50:52 +02:00
Pascal Langer
ba72b6dedd eSky150v2 last minute typo... 2020-05-08 20:01:33 +02:00
Pascal Langer
103f595891 New protocol eSky 150 v2
Protocol: 69
No sub protocol
No extended limit
RX outputs is be set automatically to the eSky default TAER
16 channels
2020-05-08 19:55:16 +02:00
Pascal Langer
957d623b4b FrSky D16 LBT v1.x & 2.1: adjust thresholds to match ETSI requirements 2020-05-02 18:20:47 +02:00
Pascal Langer
2be757e609 Skyartec: small changes 2020-04-22 15:02:06 +02:00
Pascal Langer
c4be660a05 Skyartec: activate cc2500 rf tune 2020-04-21 18:27:15 +02:00
Pascal Langer
c1c5f9fe3a Hide Proto Scanner 2020-04-21 12:15:53 +02:00
Pascal Langer
53c0637a85 Fix a bug introduced with Alpha protocols ordering 2020-04-21 11:43:48 +02:00
Pascal Langer
4ae30dc3b0 New protocol: Skyartec 2020-04-18 19:04:38 +02:00
Pascal Langer
fc5fbc9899 Multi_Names update for OpenTX 2020-04-16 17:03:17 +02:00
Pascal Langer
2397bf365b Update Multi_Names.ino 2020-04-16 13:52:10 +02:00
Pascal Langer
42cd17d5f2 Multi Names: if proto invalid give first available proto 2020-04-16 12:07:19 +02:00
Pascal Langer
a35e01bbeb Update Protocols_Details.md 2020-04-15 11:23:40 +02:00
Pascal Langer
b21e8030b3 Fix independant protocols build 2020-04-15 01:30:06 +02:00
Pascal Langer
0984a42fe5 Update Protocols_Details.md 2020-04-13 22:42:41 +02:00
Pascal Langer
ed50d60108 Update Protocols_Details.md 2020-04-13 22:41:37 +02:00
Pascal Langer
a7f72a73e5 Update Protocols_Details.md 2020-04-13 22:31:26 +02:00
Pascal Langer
1c02cb46f5 FrSky Clone mode
Check documentation for full details: https://github.com/pascallanger/DIY-Multiprotocol-TX-Module/blob/master/Protocols_Details.md#FRSKY_RX---55
2020-04-13 22:10:58 +02:00
Pascal Langer
da8fd21177 Update FrSkyL_cc2500.ino 2020-04-11 20:17:02 +02:00
Pascal Langer
7e5cd9819a New protocol FrSkyL: LR12
Model: L9R RX
2 sub protocols: LR12 and LR12_6CH
2020-04-11 20:09:32 +02:00
Pascal Langer
00aecb3ab1 Update Protocols_Details.md 2020-04-10 19:38:49 +02:00
Pascal Langer
cde77a88fd FrSkyRX: added sub_protocol, documentation and more 2020-04-10 19:32:50 +02:00
E1yot
08a555f187 Initial Version of CloneMode (#342)
* Initial Version

* Bugfix and change of the handling of the RX Num.

If RX Num is 63, write a finetune value of 127 to the EEPROM.
A real finetune value of 127 means, the frequency of module is out of range and
the module should be replaced. This way the clone mode should not get unwanted
active by a module with a frequency drift arround 63.
2020-04-10 19:01:01 +02:00
Pascal Langer
4039cbf8af Small corrections 2020-04-07 10:55:54 +02:00
Pascal Langer
3f652fa06c FrSkyX: improve SPort to RX code 2020-04-07 01:43:05 +02:00
Pascal Langer
272d2be3ae Update FrSky_Rx_cc2500.ino 2020-04-05 16:05:51 +02:00
Pascal Langer
7e461344a8 Update Protocols_Details.md 2020-04-05 10:46:26 +02:00
Pascal Langer
8af985a2cb FrSkyRX: check additional ID and use RX num 2020-04-05 10:44:09 +02:00
Pascal Langer
08eee34446 Protocol PROPEL: enhanced telemetry 2020-04-05 09:39:33 +02:00
Pascal Langer
0a5b97a177 New Protocol: PROPEL
Compatible model: PROPEL 74-Z Speeder Bike
Protcol: PROPEL (66)
Sub protocol: none
Autobind protocol
Extended limits not supported
Telemetry supported
14 channels in use due to many features
2020-04-03 19:36:05 +02:00
Bryce Johnson
cab782b38e redpine updates to make released betaflight and deviation builds (#341)
Co-authored-by: Bryce Johnson <bryce@redpinelabs.com>
2020-04-02 12:39:26 +02:00
pascallanger
d1518d763b Add files via upload 2020-03-30 21:22:12 +02:00
Pascal Langer
44a676b809 Update Multiprotocol.h 2020-03-30 18:22:13 +02:00
Pascal Langer
d66709ea87 Update Protocols_Details.md 2020-03-29 19:23:28 +02:00
Pascal Langer
358a77cf7c Update Protocols_Details.md 2020-03-29 19:15:32 +02:00
Pascal Langer
1a631908f4 Update FrSky_Rx_cc2500.ino 2020-03-29 19:09:56 +02:00
Pascal Langer
9f32a1f22b FrSkyRX protocol: chanskip test 2020-03-29 18:49:37 +02:00
Pascal Langer
dfd3386319 FrSkyX v2.1: initial support
Rewrite of the FrSkyX code to support both v1 and v2.1.0 with FCC and LBT.
FrSky v1 accessible as usual
FrSky v2.1.0 accessible through the protocol 64=FrSkyX2 with the same subprotocols as v1
The LBT feature is now fully implemented on the TX and turned on for both v1 LBT and v2.1.0 LBT.
For v2.1.0, to access the bind functions Telem=on/off, CH1-8/9-16 and bidirectional SPort (SxR setup for example), you need to update OpenTX to the latest 2.3.8 nightly (not available yet).
2020-03-29 18:44:03 +02:00
Pascal Langer
3df836e6b8 Hitec: fix a bind issue 2020-03-21 19:00:40 +01:00
Pascal Langer
2b8ed25843 FrSkyD: Change hopping frequencies
WARNING: all receivers must be rebound !!!
2020-03-21 15:17:46 +01:00
Pascal Langer
62250d2f25 ESky: addition of sub-protocol ET4 2020-03-21 15:16:01 +01:00
Pascal Langer
a4e9082f53 SLT CC2500 fix 2020-02-20 17:37:58 +01:00
Pascal Langer
7217e8c41d SLT: fix? 2020-02-18 15:50:54 +01:00
Pascal Langer
a7ac093753 SLT: CC2500 fix 2020-02-17 16:44:02 +01:00
Pascal Langer
5503502bad SLT: fix going from NRF to CC2500 2020-02-17 13:10:57 +01:00
Pascal Langer
5124c2a96d SLT: use the CC2500 emulation layer if requested/available 2020-02-17 11:45:28 +01:00
Pascal Langer
73d7728e08 Change CC2500 emulation layer to support NRF24L01 @250K 2020-02-17 11:44:53 +01:00
Pascal Langer
8b7bd00a48 Update Multi.txt 2020-02-16 20:48:49 +01:00
Pascal Langer
68a6af0eb5 Update E119 channels and flags
Default is high rate
CH5 is calib
2020-02-16 20:18:02 +01:00
Pascal Langer
693f9f58eb V911S: new sub protocol E119
Model: Eachine E119
Protocol: V911S -> 46
Sub protocol: E119 -> 1
CH5: left button ???
CH6: right button ???
2020-02-16 20:05:29 +01:00
Tomer Abramovich
4a01e2d472 missed the last 3 bytes here, loop should continue one more time (#322) 2020-01-24 21:09:37 +01:00
pascallanger
e4fd1f4399 FrSkyR9: 16 channels 2020-01-24 14:59:26 +01:00
pascallanger
0d5fcb0849 FrskyR9 protocol 2020-01-24 12:12:07 +01:00
pascallanger
2236c256ba Merge pull request #320 from UnTraDe/master
initial working version of R9M, 8 CH and BINDING support only
2020-01-24 10:12:19 +01:00
Tomer Abramovich
945ad2e7bd now using FrSkyX_scaleForPXX to scale channel values for FrSky R9 instead of using floating point math 2020-01-23 22:29:57 +02:00
Tomer Abramovich
6f9740f03f moved register definitions to a different file and created higher level functions for using them; added preliminary support for 868 MHz mode, not fully working yet 2020-01-23 22:25:00 +02:00
pascallanger
f9fa4dff73 Update _Config.h 2020-01-22 16:11:42 +01:00
Tomer Abramovich
77bf17967d initial working version of R9M, 8 CH and BINDING support only 2020-01-21 17:42:33 +02:00
pascallanger
7281c0b5bf Comment FRSKYX2 protocol for now 2020-01-21 10:51:07 +01:00
pascallanger
e6cab65560 Fix paranthesis... 2020-01-21 10:29:11 +01:00
pascallanger
cc115323e1 Prep for FrSky X v2 2020-01-20 23:52:17 +01:00
Ben Lye
58665ea7a7 Bubble up errors in release builds 2020-01-17 21:37:16 +00:00
Ben Lye
3920644caf Reduce protocols for debug test builds.
Make the debug builds small enough to pass the buildDefault test.
2020-01-17 21:37:16 +00:00
pascallanger
25aecbf15e XK full ID to address and hop freqs generation 2020-01-16 23:43:29 +01:00
pascallanger
e18d8868d2 Protocol Pelikan: hop freq change with RX_num 2020-01-15 16:28:03 +01:00
pascallanger
c6e5d00a2b Protocol Pelikan: fix rx_tx_addr[1]... 2020-01-14 23:00:50 +01:00
pascallanger
7a5b4dea1a XK X420/X520: 2 valid IDs
IDs are selected using RX num.
2020-01-14 22:51:47 +01:00
pascallanger
5df877f32c Protocol XK X420: Changed bitrate to 1Mbps 2020-01-14 22:05:30 +01:00
pascallanger
c5c7dda2e0 Update XK X420 channel order
Change channel order
Add CH140 for video
2020-01-14 21:25:43 +01:00
pascallanger
492b9e5ed4 New protocol XK
Still work in progress
Subprotocols: X450 and X420 -> not sure if they are subprotocols or just different IDs...
CH5: M-Mode=-100%, 6G-Mode=0%, V-Mode=+100%
CH6: Take off momentary switch
CH7: Emergency stop momentary switch
CH8: 3D/6G momentary switch
CH9: Photo momentary switch
2020-01-14 12:19:12 +01:00
pascallanger
9f721c528d Bayang: rewritten the protocol to be more friendly with main scheduler 2020-01-12 19:42:51 +01:00
pascallanger
7f3c80c2a9 Fix DSM invalid protocol when binding 2020-01-12 18:18:47 +01:00
pascallanger
8f789607e4 Pelikan: add some hopping frequencies 2020-01-12 17:38:30 +01:00
pascallanger
6a9b6ed4be XN297EMU: option=0->nrf24L01, option!=0 -> CC2500
XN297L@250kbps is emulated by default with the NRF24L01. If option (freq tune) is diffrent from 0, the CC2500 module (if installed) will be used instead with option being the freq usual tuning.
2020-01-12 14:06:27 +01:00
pascallanger
953a97dae4 Flyzone: add channel 5 2020-01-12 13:17:17 +01:00
pascallanger
86778c5997 XN297Dump: new auto mode
Automatically:
 - find XN297L packet -> bitrate, scrambling, enhanced...
 - use address to filter incoming packets
 - find all frequencies
 - determine channel order (basic)
 - help to find out the changes by only displaying packets when there is a change in the packet
2020-01-12 13:16:30 +01:00
pascallanger
8c32cdf5fd Pelikan: fix TX and multi ID
Still 1 hopping freq table
2020-01-12 13:00:30 +01:00
pascallanger
d092593e5c Fix FrSky RX bind which could fail if another TX was around 2020-01-12 12:57:16 +01:00
pascallanger
edbf4b6908 Merge pull request #311 from benlye/multi-status-fix
Fix module status on erSkyTX
2020-01-11 10:20:03 +01:00
Ben Lye
43f688d011 Fix module status on erSkyTX 2020-01-10 18:25:56 +00:00
pascallanger
054c3088c3 Merge pull request #305 from Shkolik/Direct_inputs
Direct inputs
2020-01-02 17:29:45 +01:00
Andrew Shkolik
0cedd5bb66 disable myConfig 2019-12-30 16:53:12 -06:00
Andrew Shkolik
1961579fe4 code cleanup 2019-12-30 15:44:16 -06:00
Andrew Shkolik
6906f1652e Inputs logic added 2019-12-24 23:41:04 -06:00
Andrew Shkolik
e2bbe8a422 definitions for direct inputs 2019-12-24 15:03:35 -06:00
pascallanger
8ea4e00d31 Pelikan protocol fix ? 2019-12-20 15:43:44 +01:00
pascallanger
917e27280f Pelikan and Tiger protocol fixes 2019-12-20 09:29:37 +01:00
pascallanger
ec92edfc85 New protocol Tiger
Model: Tiger drone 1400782
Protocol number: 61
No sub_protocol
CH5: Flip
CH6: Light
2019-12-19 23:40:33 +01:00
pascallanger
afd2be6c59 New Pelikan protocol
Protocol number: 60
No sub proto
8 channels AETR...
Extended limit supported
!!Only 1 ID for now!!
2019-12-19 22:39:01 +01:00
pascallanger
a23d50bf0d FrSkyX add bind options CH1-8/CH9-16 & Telem ON/OFF 2019-12-19 17:26:47 +01:00
pascallanger
cace1144db Add TX_LQI (TLQY) comment 2019-12-09 10:47:17 +01:00
pascallanger
0d646ed1a6 Update Protocols_Details.md 2019-12-05 17:14:26 +01:00
pascallanger
e9b09ffecd Update Protocols_Details.md 2019-12-04 10:58:40 +01:00
pascallanger
0008633d6e Bayang RX: Sync 2019-11-30 12:11:08 +01:00
pascallanger
396c005b0a BAYANG RX: enables 6 analog channels
Fix channels range -100%..+100%
2019-11-29 20:26:10 +01:00
pascallanger
d3c3fac4f7 Multi_names mandatory when using multi_telemetry
Validate that sub_proto is valid for the current protocol
Validate that disable channel mapping is valid for the current protocol
2019-11-29 18:50:57 +01:00
pascallanger
cf4acc1d4c Bayang RX: fix warnings 2019-11-29 18:46:24 +01:00
pascallanger
5bd95f8414 Merge pull request #300 from goebish/protocol_bayang_rx
Protocol Bayang rx
2019-11-29 16:37:13 +01:00
Goebish
a31d9a83a3 Use table for channel mapping 2019-11-29 14:26:59 +01:00
Goebish
9b24589897 Fix linefeeds 2019-11-29 14:24:23 +01:00
Goebish
8f3d634132 Fix documentation tag 2019-11-29 14:21:58 +01:00
Goebish
5ef1ccb99b Update protocol details 2019-11-29 13:36:36 +01:00
Goebish
e7d91bc76a Update protocol details 2019-11-29 12:10:56 +01:00
Goebish
e4309824c2 Add missing stuffs 2019-11-29 11:57:06 +01:00
Goebish
cc6a35ac8a Fix channel count 2019-11-29 02:53:19 +01:00
Goebish
1f13a6c281 Add Bayang RX protocol 2019-11-29 02:06:58 +01:00
Goebish
69519bdf14 Add skeleton for Bayang RX protocol 2019-11-28 20:02:59 +01:00
Ben Lye
2e5a8f384a Add '-inv-' to file names for the xn297dump builds 2019-11-28 18:59:40 +00:00
pascallanger
c803eeb26a Esky150: add sub protocols 4CH and 7CH 2019-11-28 17:01:33 +01:00
pascallanger
6a7497cdf8 Update FX816_nrf24l01.ino 2019-11-27 12:24:49 +01:00
pascallanger
3067ea3a5c New protocol: FX816
Model P38
Protocol number: 58
Sub protocol: None
Channels: A & T
2019-11-27 12:12:13 +01:00
pascallanger
9a5309d84b V911S: revert to nrf24l01 2019-11-27 12:10:49 +01:00
pascallanger
fff18f825a DSM: change timing to see if it improves long range telemetry RX range 2019-11-27 12:08:17 +01:00
Ben Lye
e70bdd4152 Update .travis.yml
Put the 'v' back in the version number in the file names
2019-11-26 09:28:45 +00:00
Ben Lye
cf77a1981f Travis CI test changes (#297) 2019-11-26 07:51:00 +00:00
pascallanger
10e33f5d5c Update _Config.h 2019-11-21 08:49:39 +01:00
pascallanger
db442d81dd Fix all compilation issues (?) 2019-11-11 19:15:39 +01:00
pascallanger
f800b4f90b Merge pull request #291 from pascallanger/SPort_Send
New features
2019-11-11 17:30:26 +01:00
pascallanger
712f297d86 Update _Config.h 2019-11-11 17:19:27 +01:00
pascallanger
0afed7d3a4 Fix HoTT menu for internal module 2019-11-11 15:36:39 +01:00
pascallanger
6a03972ff3 Update Protocols_Details.md 2019-11-10 19:34:31 +01:00
pascallanger
0e40f64c6b Enable HoTT RX config menu
Use OpenTX lua script
2019-11-10 18:55:03 +01:00
pascallanger
c83b769f28 Update Multiprotocol.ino 2019-11-10 09:25:42 +01:00
pascallanger
dad3282bbb XN297Dump RF channel display 2019-11-09 19:26:31 +01:00
pascallanger
1621263fb0 HoTT telem doc update 2019-11-09 12:10:56 +01:00
pascallanger
2686cd0c48 Scanner in blocking mode for best perf 2019-11-09 12:10:34 +01:00
pascallanger
b07b081a15 HoTT telemetry size change 2019-11-07 11:13:48 +01:00
pascallanger
c5d4e8c191 Failsafe improvement 2019-11-07 02:30:03 +01:00
pascallanger
928641f535 HoTT: add progmem to tables 2019-11-07 01:56:13 +01:00
pascallanger
c4c5ffec4f HoTT: Failsafe
Failsafe MUST be configured once with the desired channel values (hold or position) while the RX is up (wait 10+sec for the RX to learn the config) and then failsafe MUST be set to RX/Receiver otherwise the servos will jitter!!!
2019-11-07 01:03:57 +01:00
pascallanger
c048e97d3a DSM configurable max throw parameter through option 2019-11-05 19:12:06 +01:00
pascallanger
00f0719659 HoTT: more hop tables 2019-11-05 19:11:28 +01:00
pascallanger
0482627512 HoTT telem 2019-11-05 00:31:20 +01:00
pascallanger
5856442e0f First HoTT version 2019-11-04 19:16:19 +01:00
pascallanger
7b281e47d6 HoTT work in progress 2019-11-04 09:26:12 +01:00
pascallanger
6ef2934c18 Update Telemetry.ino 2019-11-03 15:48:14 +01:00
pascallanger
19b931223b Changed serial timer source 2019-11-03 15:46:05 +01:00
pascallanger
ca15d7108f Prep for HoTT protocol and fix STM32 seed 2019-11-02 20:51:41 +01:00
pascallanger
e6e4d33847 Few changes... 2019-11-02 18:13:47 +01:00
pascallanger
815cf4fd99 FrSky X telemetry quick fix 2019-11-01 18:42:45 +01:00
pascallanger
5cf2bf2cf5 Small tweaks 2019-11-01 15:11:31 +01:00
pascallanger
6632da0276 Fix link 2019-11-01 14:52:50 +01:00
pascallanger
9b499ab7d1 Fix (?) protocol issues 2019-10-31 23:33:10 +01:00
pascallanger
d29461607b Tweakes 2019-10-29 00:36:57 +01:00
pascallanger
243bdf2240 Merge branch 'master' into SPort_Send 2019-10-29 00:02:59 +01:00
pascallanger
cde185901a PPM protcols: remove warning when setting negative option values 2019-10-28 23:29:34 +01:00
pascallanger
a9f35f8095 Update _Config.h 2019-10-27 17:05:02 +01:00
pascallanger
63d7e32e06 INVERT_TELEMETRY_TX flag 2019-10-27 17:02:38 +01:00
pascallanger
400fdb3cc6 FrSkyX LBT RSSI timing improvement 2019-10-27 16:44:36 +01:00
pascallanger
9f1bdc901c FrSkyX LBT: implement LBT instead of transmitting all the time
Needs to be activated using FRSKYX_LBT for now.
2019-10-27 13:20:53 +01:00
pascallanger
61970b028e AFHDS2A: Fix LQI to channel 2019-10-26 15:40:46 +02:00
pascallanger
aee92737ca Fix Failsafe compilation 2019-10-25 22:27:46 +02:00
pascallanger
0fddd9c119 Fix AFHDS2A RX_LQI forward on CH
Hopefully...
2019-10-25 22:03:39 +02:00
pascallanger
b156f66146 Fix Failsafe compilation 2019-10-25 21:35:25 +02:00
pascallanger
63e6590b65 Merge branch 'master' into SPort_Send 2019-10-20 15:48:18 +02:00
pascallanger
103be7f6e0 Update Protocols_Details.md 2019-10-18 18:08:42 +02:00
pascallanger
2154b75499 Fix MULTI_NAMES len... 2019-10-17 22:35:43 +02:00
goebish
6a83cb5577 Frsky rx fixes (#289)
* Restore previous cc2500 register init

* Fix failsafe packets locks

* Fix D8 checksum check
2019-10-17 16:59:08 +02:00
pascallanger
70ce8e9a1f Fix SLT inversion 2019-10-17 16:56:15 +02:00
pascallanger
fdd0a00d5a Correct option value for FrSky protocols 2019-10-17 11:38:23 +02:00
pascallanger
a8cad1e70a Move optionDisp to Data[19] 2019-10-17 09:41:20 +02:00
pascallanger
40afd67fc6 Disable MULTI_SYNC when using RX or Scanner protocols 2019-10-16 20:18:24 +02:00
pascallanger
f3b9206d67 Merge branch 'master' into SPort_Send 2019-10-16 18:54:43 +02:00
pascallanger
b76dd4c8ac Update Compiling_STM32.md 2019-10-16 12:18:15 +02:00
pascallanger
3eb507ebe6 Update Compiling_STM32.md 2019-10-16 12:17:40 +02:00
pascallanger
fe0a1f0f94 Create T16-internal-connection.png 2019-10-16 11:30:45 +02:00
pascallanger
fab3339b8d Update Compiling_STM32.md 2019-10-16 10:49:42 +02:00
pascallanger
10604cf820 Create T16-internal-connector.png 2019-10-16 10:45:16 +02:00
pascallanger
e297310a25 Update Scanner_cc2500.ino 2019-10-15 20:00:45 +02:00
pascallanger
d71006f2ae Update Multi_Names.ino 2019-10-15 20:00:41 +02:00
pascallanger
7a8e099a79 Send MULTI NAMES all the time 2019-10-15 11:19:42 +02:00
pascallanger
822aa84fa2 Update Multi_Names.ino 2019-10-15 08:54:02 +02:00
pascallanger
948ce9e8b8 Send current protocol and sub protocol name 2019-10-15 02:04:19 +02:00
goebish
caf145c38a Auto-detect FrSky RX format (#286)
* Calibrate rf channels for D8 too

* Auto-detect D16FCC, D16LBT or D8 format during bind
2019-10-14 00:28:39 +02:00
pascallanger
f964cdec98 Update Multiprotocol.h 2019-10-13 22:23:32 +02:00
pascallanger
6848fab873 FiX AFHDS2A RX LNA switch 2019-10-13 16:46:24 +02:00
pascallanger
72d57cae71 Merge branch 'master' into SPort_Send 2019-10-13 16:37:18 +02:00
pascallanger
a23178e20e Fix ADHDS2A RX LNA switch 2019-10-13 16:35:09 +02:00
pascallanger
5ae4f0288b Global def for the common RX variables 2019-10-13 11:08:20 +02:00
goebish
e0e51eb187 Fix rc channels init (#284) 2019-10-12 20:31:09 +02:00
pascallanger
840944ea94 Merge branch 'SPort_Send' of https://github.com/pascallanger/DIY-Multiprotocol-TX-Module into SPort_Send 2019-10-12 19:50:46 +02:00
pascallanger
31ff27b1d3 PPM mode FrSkyX to FrSkyD
If TELEMETRY_FRSKYX_TO_FRSKYD is defined in PPM mode FrSkyX simple telemetry will be sent using FrSkyD format:
RX_RSSI, RX_Batt, TX_RSSI, TX_LQI
2019-10-12 19:50:41 +02:00
goebish
a234ccbd05 Protocol FrSkyD (D8) receiver (#283)
* Rename FrSkyX Rx to FrSky Rx

* Rename protocol

* Add D8 receiver sub protocol
2019-10-12 19:50:11 +02:00
pascallanger
6dfd54b8be Remove travis test for debug 2019-10-11 10:08:25 +02:00
Ben Lye
edb7729b35 Update README.md 2019-10-11 08:46:19 +01:00
pascallanger
d434e63c22 Multi_sync updates
Only for STM32
Enable bidirectionnal serial
2019-10-11 01:14:04 +02:00
pascallanger
cd7ede006c Sync radio -> module 2019-10-10 23:12:09 +02:00
pascallanger
d4d0dc3dbc Update Compiling_STM32.md 2019-10-10 16:18:15 +02:00
pascallanger
5c7f997e7a Send channel order in MULTI_TELEMETRY 2019-10-09 11:58:50 +02:00
Ben Lye
1623a007a4 Add Channel Order doc page (#281)
* Create Channel_Order.md

* Update Channel_Order.md

* Update README.md
2019-10-08 21:42:48 +02:00
pascallanger
0b19fa0bdf Disable channel mapping + telemetry inversion 2019-10-08 18:52:47 +02:00
pascallanger
897c8b6ec5 Remove "Disable channel mapping" 2019-10-08 00:07:23 +02:00
pascallanger
d427a7fec1 DSM TH_KILL channel 14 2019-10-07 23:31:03 +02:00
pascallanger
b0749a1bee DSM TH_KILL channel 14 2019-10-07 23:30:17 +02:00
pascallanger
2406080515 Update Protocols_Details.md 2019-10-07 23:27:04 +02:00
pascallanger
ff96146b04 Enhanced serial protocol
Protocol 0..255
RX_Num 0..63
Disable channel mapping -> not implemented yet
Disable telemetry
Data 0-9 bytes
2019-10-07 19:06:00 +02:00
pascallanger
e3a5b2825d Merge branch 'master' into SPort_Send 2019-10-07 08:44:51 +02:00
goebish
9fd72b5ad5 Fix scaling for +125% (#280) 2019-10-05 19:02:59 +02:00
goebish
c2bf63991f Fix channel and rssi scaling (#279) 2019-10-05 13:30:50 +02:00
pascallanger
a75ae7b65a Create irx4-lite-cabling.jpg 2019-10-04 19:46:13 +02:00
pascallanger
507e4cb07b Create irx4-lite-boot0.jpg 2019-10-04 19:40:56 +02:00
pascallanger
0f250bb04b Merge branch 'master' into SPort_Send 2019-10-04 19:04:24 +02:00
pascallanger
4a315057a2 Merge branch 'master' of https://github.com/pascallanger/DIY-Multiprotocol-TX-Module 2019-10-04 19:03:37 +02:00
pascallanger
c8f44a0c4b Fix Multi receiver channels 2019-10-04 19:03:19 +02:00
pascallanger
382d853fe2 Update Compiling_STM32.md 2019-10-04 18:52:48 +02:00
pascallanger
a5996c488e Pictures 2019-10-04 18:48:46 +02:00
pascallanger
760642ecb3 Create irx4-lite.jpg 2019-10-04 18:00:41 +02:00
pascallanger
c7a3548df0 Merge branch 'master' into SPort_Send 2019-10-04 10:32:37 +02:00
pascallanger
d8acc6a5e8 New boards with bin signatures 2019-10-04 10:14:52 +02:00
pascallanger
431808286b Data Buffer signaling 2019-10-03 16:38:50 +02:00
Ben Lye
747fa19259 Update package_multi_4in1_board_index.json 2019-10-02 22:11:18 +01:00
pascallanger
bf61295b76 Fix AFHDS2A_RX 2019-10-02 21:24:50 +02:00
pascallanger
49a1ecea00 Merge branch 'master' into SPort_Send 2019-10-02 21:07:08 +02:00
pascallanger
11f0e55bb1 SPort_Send sequencer 2019-10-02 20:09:18 +02:00
Ben Lye
331da37840 Update Binary_Signature.ino (#278)
Clean up the comments, add bitmasks.
2019-10-02 10:15:13 +02:00
goebish
032e0641a5 Fix AFHDS2A receiver packet filter (#276)
* Add skeleton for AFHDS2A receiver protocol

* Bind & data Ok

* Send channels to TX via telemetry

* Add RSSI

* Fix AVR compilation

* Fix channel number

* Fix packet type check
2019-10-02 09:04:13 +02:00
goebish
f3d2ab61e4 Protocol Flysky AFHDS2A receiver (#275)
* Add skeleton for AFHDS2A receiver protocol

* Bind & data Ok

* Send channels to TX via telemetry

* Add RSSI

* Fix AVR compilation

* Fix channel number
2019-10-01 20:44:26 +02:00
Ben Lye
e8b5f071fe Move signature conditionals to separate file, add channel order (#274) 2019-10-01 11:05:37 +02:00
Ben Lye
ada72d6113 Update Travis Configuration (#273)
Various improvements to the Travis CI script:
* Add channel order builds to releases - now building AETR, TAER, and RETA
* Add PPM builds for each channel order with no inversion and PPM banks set to 5
* Log config diff for each build (diff output folded to keep the log readable)
* Colorify the "Building" lines to make parsing the log easier
* Export .bin files instead of .hex files for the AVR modules
* Add Multi.txt to the release files
2019-10-01 07:43:08 +01:00
pascallanger
c2404d4f0d Code cleanup 2019-09-30 20:53:10 +02:00
pascallanger
821732bba9 Initial S.Port send
!!! No retransmit for now !!!
2019-09-30 17:35:12 +02:00
pascallanger
b6df650f50 Update BOM_DIY_ATmega.md 2019-09-29 15:13:47 +02:00
pascallanger
e783ce5788 Failsafe modification
The following protocols are supporting failsafe: FrSkyX, Devo, WK2x01, SFHSS, HISKY/HK310 and AFHDS2A
In Serial mode failsafe is configured on the radio itself.
In PPM mode and only after the module is up and fully operational, press the bind button for at least 5sec to send the current stick positions as failsafe to the RX.
2019-09-27 16:20:43 +02:00
pascallanger
18af4a0724 AVR modules: Fix KF606, GD00X and Potensic 2019-09-26 15:51:28 +02:00
pascallanger
7e6ec1dc8d Update FrSkyX_Rx_cc2500.ino
Remove compilation warnings for AVR
2019-09-26 15:50:38 +02:00
pascallanger
4fbe0859e0 Update comments 2019-09-25 19:10:55 +02:00
pascallanger
b89c23fe7c PPM channel remapping 2019-09-23 18:13:25 +02:00
goebish
e038c49ae9 Protocol FrskyX D16 RX frequency auto-tune (#270)
* Add autotune during bind

* Fix data phase
2019-09-23 08:11:06 +02:00
Ben Lye
bed02c9384 Update .travis.yml (#269) 2019-09-22 14:17:23 -04:00
pascallanger
96bc4f7cdf Revert Fix FrskyX failsafe hold/no pulse inversion 2019-09-22 20:00:04 +02:00
pascallanger
6503469ddd Bump multi board version to the latest 2019-09-22 17:29:43 +02:00
pascallanger
61a1c3742c Fix FrskyX failsafe hold/no pulse inversion 2019-09-22 17:12:00 +02:00
pascallanger
1fb2a38bc1 Hitec additional telemetry 2019-09-22 17:11:23 +02:00
pascallanger
22a0d79315 FrskyX_RX documentation 2019-09-22 17:05:46 +02:00
MRC3742
0cc72772a3 Repair sub protocol column listing errors for two Protocol (#268) 2019-09-19 20:13:13 +02:00
Pascal Langer
11f4e636e3 AFHDS2A telemetry fix
Discard RX config packets
2019-09-19 10:51:24 +02:00
pascallanger
fef1a2e041 Update Advanced_Debug.md 2019-09-19 09:07:14 +02:00
pascallanger
41a9c8e013 Update Advanced_Debug.md 2019-09-19 08:59:40 +02:00
Pascal Langer
c1ad02b792 Create Debug1.png 2019-09-19 08:55:20 +02:00
Pascal Langer
ab2315c951 FrSkyX: few cosmetic and optimization changes 2019-09-18 11:05:46 +02:00
goebish
7948e33cbc Fix start channel (#267) 2019-09-18 08:48:04 +02:00
goebish
2be2dce584 Protocol FrSky D16 receiver (#266)
* Add skeleton for FrSkyX receiver protocol

* Binds & receives data packets

* Store bind information

* Fix compilation

* Bypass LNA since intended usage implies tx & rx are close together

* Bind channel has FS_AUTOCAL

* Add freq fine tune & low power mode (disable lna)

* Add TX ID check

* Retry longer until first packet is catched

* Fix chanskip for first packet

* Fix defines

* Fix bind

* Send channels to TX

* Fix RSSI reading

* Add missing static keyword

* Fix Validate.h

* Fix compilation
2019-09-17 23:35:19 +02:00
Ben Lye
69bdfe3dba Update package_multi_4in1_board_index.json 2019-09-17 20:36:24 +01:00
Pascal Langer
d73d163a58 Update Validate.h 2019-09-17 09:53:18 +02:00
Ben Lye
48a52ae5b2 Update Multiprotocol.ino (#265) 2019-09-17 09:37:18 +02:00
Pascal Langer
078dc2ab17 AFHDS2A telemetry AA and AC 2019-09-14 16:34:19 +02:00
Pascal Langer
6f4522caa6 Revert "AFHDS2A telemetry AA and AC"
This reverts commit 3c76ce9f39.
2019-09-14 16:31:27 +02:00
Pascal Langer
3c76ce9f39 AFHDS2A telemetry AA and AC 2019-09-14 16:27:07 +02:00
goebish
8601149051 Fix scanner telemetry (#262)
* Fix scanner telemetry

* Take several samples per channel, keep maximum value
2019-09-14 16:07:49 +02:00
pascallanger
d7ef15d435 Update Compiling_STM32.md 2019-09-12 16:08:20 +02:00
pascallanger
27e3645b56 Update Compiling_STM32.md 2019-09-12 15:55:08 +02:00
pascallanger
95eb4e1a22 Update Compiling_STM32.md 2019-09-12 15:54:18 +02:00
pascallanger
32ea07bf5a Update Compiling_STM32.md 2019-09-12 15:51:58 +02:00
pascallanger
06272575c5 Flash from TX 2019-09-12 15:50:12 +02:00
Pascal Langer
edd6432d4c Update Validate.h 2019-09-11 15:26:35 +02:00
Pascal Langer
303c4615e9 Fix scanner compilation issue 2019-09-11 12:23:36 +02:00
Pascal Langer
7d327c1622 Scanner 2.4GHz
Thanks to Goebish for this spectrum analyzer.
It will work soon with the OpenTX 2.3 Spectrum Analyser tool.
2019-09-10 23:37:54 +02:00
Ben Lye
6a74b83f98 Update .travis.yml 2019-09-08 14:40:59 +01:00
Ben Lye
c601c2dd98 Update .travis.yml 2019-09-08 14:25:52 +01:00
Ben Lye
c27b60749f Update Travis CI script (#257)
* Use latest STM32 board options
* Use latest Arduino IDE
* Fix build functions to return an error if the build fails
* Modify the files that get exported to releases
2019-09-08 13:33:26 +01:00
Ben Lye
b3cb286088 Update package_multi_4in1_board_index.json 2019-09-07 18:54:27 +01:00
Ben Lye
361903e8ec Doc updates for new board package (#256) 2019-09-07 18:23:08 +01:00
Ben Lye
d72c69242d Update package_multi_4in1_board_index.json
Add AVR board v1.0.8 and STM32 board v1.1.5.
2019-09-06 19:43:10 +01:00
Ben Lye
539819fa0c Accomodate new Debug Option setting in Arduino IDE (#255)
Thanks, that's perfect!
2019-09-06 14:05:57 +02:00
Ben Lye
d80c218744 Add timeout to serial debug (#253)
* Wait 30s for serial debug instead of waiting forever
* Delay of 50ms to allow FTDI debugger to connect at startup
2019-09-05 08:33:01 +02:00
pascallanger
0603d220a9 T16 Flash from TX 2019-09-04 17:39:47 +02:00
pascallanger
e13fe56f47 Include the Jumper T16 2019-09-04 17:38:00 +02:00
pascallanger
acd7694485 Update Protocols_Details.md 2019-09-02 19:23:15 +02:00
pascallanger
7f50edacc8 Update Protocols_Details.md 2019-09-02 19:07:48 +02:00
pascallanger
5a4906c5b5 Update Protocols_Details.md 2019-09-02 19:06:34 +02:00
Pascal Langer
4e906757b9 XN297Dump fix enhanced unscramble mode 2019-08-24 22:39:27 +02:00
Pascal Langer
1f0b21e351 Fix GW008 protocol 2019-08-24 22:14:18 +02:00
Pascal Langer
2f3ea323c7 CHECK_FOR_BOOTLOADER now enabled by default in _config.h 2019-08-24 21:50:36 +02:00
Pascal Langer
d4e77c6499 XN297Dump: added enhanced packet mode 2019-08-24 21:37:26 +02:00
pascallanger
ffc56b049d Update Advanced_Debug.md 2019-08-20 14:07:38 +02:00
pascallanger
ddac89d732 Update Advanced_Debug.md 2019-08-20 14:06:01 +02:00
Pascal Langer
fecf2805c7 WIP: Advanced topics 2019-08-20 14:01:56 +02:00
Pascal Langer
4dcc88ba32 Serial debug documentation 2019-08-18 18:44:36 +02:00
Pascal Langer
084308d8a4 Update Multi.txt 2019-08-18 17:08:27 +02:00
Pascal Langer
1ffb5c405b New protocol: Flyzone
Models compatible with TX FZ-410
Protocol 53
No sub protocol
2019-08-17 22:37:00 +02:00
Pascal Langer
ad29409407 New protocol ZSX
Model JJRC ZSX-280
Protocol number 52 ,no sub protocol
CH3: Throttle
CH4: Rudder
CH5: Light
2019-08-10 21:43:14 +02:00
154 changed files with 18694 additions and 3607 deletions

189
.github/workflows/main.yml vendored Normal file
View File

@@ -0,0 +1,189 @@
# Workflow for testing MULTI-Module firmware builds
name: CI
on:
# Trigger the workflow on pushes, except those that are tagged (avoids double-testing releases)
push:
branches:
- '**'
tags-ignore:
- '**'
paths:
- '.github/workflows/**'
- 'buildroot/bin/**'
- 'Multiprotocol/**'
# Trigger the workflow on pull requests to the master branch
pull_request:
branches:
- master
paths:
- '.github/workflows/**'
- 'buildroot/bin/**'
- 'Multiprotocol/**'
# Triggers the workflow on release creation
release:
types:
- created
# Allows the workflow to be triggered manually from the Actions tab
workflow_dispatch:
jobs:
build:
runs-on: ubuntu-latest
# Configure the board matrix
strategy:
fail-fast: false
matrix:
board: [
"multi4in1:avr:multiatmega328p:bootloader=none",
"multi4in1:avr:multiatmega328p:bootloader=optiboot",
"multi4in1:avr:multixmega32d4",
"multi4in1:STM32F1:multi5in1t18int",
"multi4in1:STM32F1:multistm32f103cb:debug_option=none",
"multi4in1:STM32F1:multistm32f103cb:debug_option=native",
"multi4in1:STM32F1:multistm32f103cb:debug_option=ftdi",
"multi4in1:STM32F1:multistm32f103c8:debug_option=none"
]
# Set the environment variables
env:
BOARD: ${{ matrix.board }}
steps:
- uses: actions/checkout@v2
- name: Install Arduino CLI
uses: arduino/setup-arduino-cli@v1.1.1
- name: Prepare build environment
run: |
echo "Github Ref: $GITHUB_REF"
echo "Event name: ${{ github.event_name }}"
echo "Event action: ${{ github.event.action }}"
echo "Tag name: ${{ github.event.release.tag_name }}"
arduino-cli config init --additional-urls https://raw.githubusercontent.com/pascallanger/DIY-Multiprotocol-TX-Module-Boards/master/package_multi_4in1_board_index.json
arduino-cli core update-index
if [[ "$BOARD" =~ "multi4in1:avr:" ]]; then
arduino-cli core install arduino:avr;
arduino-cli core install multi4in1:avr
fi
if [[ "$BOARD" =~ "multi4in1:STM32F1:" ]]; then
arduino-cli core install multi4in1:STM32F1
fi
chmod +x ${GITHUB_WORKSPACE}/buildroot/bin/*
echo "${GITHUB_WORKSPACE}/buildroot/bin" >> $GITHUB_PATH
mkdir ./build
mkdir ./binaries
- name: Configure MULTI-Module firmware options
run: |
# Load the build functions
source ./buildroot/bin/buildFunctions;
# Get the version
getMultiVersion
echo "MULTI_VERSION=$(echo $MULTI_VERSION)" >> $GITHUB_ENV
# Get all the protocols for this board
getAllProtocols
echo "A7105_PROTOCOLS=$(echo $A7105_PROTOCOLS)" >> $GITHUB_ENV
echo "CC2500_PROTOCOLS=$(echo $CC2500_PROTOCOLS)" >> $GITHUB_ENV
echo "CYRF6936_PROTOCOLS=$(echo $CYRF6936_PROTOCOLS)" >> $GITHUB_ENV
echo "NRF24L01_PROTOCOLS=$(echo $NRF24L01_PROTOCOLS)" >> $GITHUB_ENV
echo "SX1276_PROTOCOLS=$(echo $SX1276_PROTOCOLS)" >> $GITHUB_ENV
echo "ALL_PROTOCOLS=$(echo $ALL_PROTOCOLS)" >> $GITHUB_ENV
# Get all the RF modules for this board
getAllRFModules
echo "ALL_RFMODULES=$(echo $ALL_RFMODULES)" >> $GITHUB_ENV
# Disable CHECK_FOR_BOOTLOADER when not needed
if [[ "$BOARD" == "multi4in1:avr:multiatmega328p:bootloader=none" ]]; then
opt_disable CHECK_FOR_BOOTLOADER;
fi
# Trim the build down for the Atmega328p board
if [[ "$BOARD" =~ "multi4in1:avr:multiatmega328p:" ]]; then
opt_disable $ALL_PROTOCOLS
opt_enable FRSKYX_CC2500_INO AFHDS2A_A7105_INO MJXQ_NRF24L01_INO DSM_CYRF6936_INO;
fi
# Trim the enabled protocols down for the STM32F103CB board with debugging or the STM32F103C8 board in general
if [[ "$BOARD" == "multi4in1:STM32F1:multistm32f103cb:debug_option=ftdi" ]] || [[ "$BOARD" == "multi4in1:STM32F1:multistm32f103cb:debug_option=native" ]] || [[ "$BOARD" =~ "multi4in1:STM32F1:multistm32f103c8" ]]; then
opt_disable $ALL_PROTOCOLS;
opt_enable FRSKYX_CC2500_INO AFHDS2A_A7105_INO MJXQ_NRF24L01_INO DSM_CYRF6936_INO;
fi
- name: Save default firmware configuration
run: |
cat Multiprotocol/_Config.h
cp Multiprotocol/_Config.h ./_Config.h.bak
- name: Build default configuration
run: |
source ./buildroot/bin/buildFunctions;
buildMulti
- name: Build serial only
run: |
source ./buildroot/bin/buildFunctions;
cp ./_Config.h.bak Multiprotocol/_Config.h
opt_disable ENABLE_PPM;
buildMulti;
- name: Build PPM only
run: |
source ./buildroot/bin/buildFunctions;
cp ./_Config.h.bak Multiprotocol/_Config.h
opt_disable ENABLE_SERIAL;
buildMulti;
- name: Build each RF module individually
run: |
source ./buildroot/bin/buildFunctions;
cp ./_Config.h.bak Multiprotocol/_Config.h;
buildEachRFModule;
- name: Build each protocol individually
run: |
source ./buildroot/bin/buildFunctions;
cp ./_Config.h.bak Multiprotocol/_Config.h;
buildEachProtocol;
- name: Build release files
run: |
source ./buildroot/bin/buildFunctions;
cp ./_Config.h.bak Multiprotocol/_Config.h;
buildReleaseFiles;
ls -al ./binaries;
NUM_FILES=$(ls -l ./binaries | grep ^- | wc -l);
if [ $NUM_FILES -gt 0 ]; then
echo "HAVE_FILES=true" >> $GITHUB_ENV
else
echo "HAVE_FILES=false" >> $GITHUB_ENV
fi
- name: Deploy files to release
if: github.event_name == 'release' && github.event.action == 'created' && env.HAVE_FILES == 'true'
uses: AButler/upload-release-assets@v2.0
with:
files: './binaries/*'
repo-token: ${{ secrets.GITHUB_TOKEN }}
- name: 'Upload Artifacts'
if: env.HAVE_FILES == 'true'
uses: actions/upload-artifact@v2
with:
name: multi-test-build
path: ./binaries/

View File

@@ -1,177 +0,0 @@
dist: trusty
sudo: true
#
language: c
#
env:
global:
- IDE_VERSION=1.8.1
matrix:
- BOARD="multi4in1:STM32F1:multistm32f103c:upload_method=serialMethod"
- BOARD="multi4in1:STM32F1:multistm32f103c:upload_method=TxFlashMethod"
- BOARD="multi4in1:avr:multixmega32d4"
- BOARD="multi4in1:avr:multiatmega328p:bootloader=none"
- BOARD="multi4in1:avr:multiatmega328p:bootloader=optiboot"
#
notifications:
email: false
#
before_install:
#
# Fetch the tag information for the current branch
- git fetch origin --tags
#
# Publish the buildroot script folder
- chmod +x ${TRAVIS_BUILD_DIR}/buildroot/bin/*
- export PATH=${TRAVIS_BUILD_DIR}/buildroot/bin/:${PATH}
#
# Install Arduino IDE
- wget http://downloads.arduino.cc/arduino-$IDE_VERSION-linux64.tar.xz
- tar xf arduino-$IDE_VERSION-linux64.tar.xz
- mv arduino-$IDE_VERSION $HOME/arduino-ide
- export PATH=$PATH:$HOME/arduino-ide
# Set the Multi boards package URL
- arduino --pref "boardsmanager.additional.urls=https://raw.githubusercontent.com/pascallanger/DIY-Multiprotocol-TX-Module-Boards/master/package_multi_4in1_board_index.json" --save-prefs
#
- if [[ "$BOARD" =~ "multi4in1:STM32F1:" ]]; then
arduino --install-boards multi4in1:STM32F1;
fi
#
- if [[ "$BOARD" =~ "multi4in1:avr:" ]]; then
arduino --install-boards multi4in1:avr;
fi
#
- buildMulti() { BUILDCMD="arduino --verify --board $BOARD Multiprotocol/Multiprotocol.ino --pref build.path=./build/"; echo $BUILDCMD; $BUILDCMD; echo; }
- buildProtocol() { opt_disable $ALL_PROTOCOLS; opt_enable $1; buildMulti; }
- buildEachProtocol() { exitcode=0; for PROTOCOL in $ALL_PROTOCOLS ; do echo Building $PROTOCOL; buildProtocol $PROTOCOL; if [ $? -ne 0 ]; then exitcode=1; fi; done; return $exitcode; }
#
install: true
before_script:
#
# Change current working directory to the build dir
- cd ${TRAVIS_BUILD_DIR}
# Log the initial Multi config
- cat Multiprotocol/_Config.h
# Back up the configuration
- cp Multiprotocol/_Config.h ./_Config.h.bak
# Derive the Multi protocols from the Multi source
- A7105_PROTOCOLS=$(sed -n 's/[\/\/]*[[:blank:]]*#define[[:blank:]]*\([[:alnum:]_]*_A7105_INO\)\(.*\)/\1/p' Multiprotocol/_Config.h)
- CC2500_PROTOCOLS=$(sed -n 's/[\/\/]*[[:blank:]]*#define[[:blank:]]*\([[:alnum:]_]*_CC2500_INO\)\(.*\)/\1/p' Multiprotocol/_Config.h)
- CYRF6936_PROTOCOLS=$(sed -n 's/[\/\/]*[[:blank:]]*#define[[:blank:]]*\([[:alnum:]_]*_CYRF6936_INO\)\(.*\)/\1/p' Multiprotocol/_Config.h)
- NRF24L01_PROTOCOLS=$(sed -n 's/[\/\/]*[[:blank:]]*#define[[:blank:]]*\([[:alnum:]_]*_NRF24L01_INO\)\(.*\)/\1/p' Multiprotocol/_Config.h)
- if [[ "$BOARD" =~ "multi4in1:avr:multixmega32d4" ]]; then
ALL_PROTOCOLS=$(echo $CYRF6936_PROTOCOLS);
else
ALL_PROTOCOLS=$(echo $A7105_PROTOCOLS $CC2500_PROTOCOLS $CYRF6936_PROTOCOLS $NRF24L01_PROTOCOLS);
fi
- echo $ALL_PROTOCOLS
#
# Enable CHECK_FOR_BOOTLOADER when needed
- if [[ "$BOARD" =~ ":upload_method=TxFlashMethod" ]] || [[ "$BOARD" =~ ":bootloader=optiboot" ]]; then
opt_enable CHECK_FOR_BOOTLOADER;
fi
#
# Trim the build down for the Atmega328p board
- if [[ "$BOARD" =~ "multi4in1:avr:multiatmega328p:" ]]; then
opt_disable $ALL_PROTOCOLS;
opt_enable FRSKYX_CC2500_INO AFHDS2A_A7105_INO MJXQ_NRF24L01_INO DSM_CYRF6936_INO;
fi
#
script:
# Build with all protocols enabled for STM32; a subset of protocols for Atmega
- buildMulti
#
# Serial only
- opt_disable ENABLE_PPM
- opt_enable ENABLE_SERIAL
- buildMulti
#
# PPM only
- opt_enable ENABLE_PPM
- opt_disable ENABLE_SERIAL
- buildMulti
#
# Re-enable PPM and serial
- opt_enable ENABLE_SERIAL
- opt_enable ENABLE_PPM
#
# Build each protocol individually
- buildEachProtocol
before_deploy:
# Create somwhere to put the binaries
- mkdir ./binaries
# Restore the default configuration
- cp ./_Config.h.bak Multiprotocol/_Config.h
# Build the release files for OrangeRX
- if [[ "$BOARD" =~ "multi4in1:avr:multixmega32d4" ]]; then
opt_enable $ALL_PROTOCOLS;
opt_disable ORANGE_TX_BLUE;
buildMulti;
mv build/Multiprotocol.ino.hex ./binaries/Multi-OrangeRX_Green_INV-$TRAVIS_TAG.hex;
opt_enable ORANGE_TX_BLUE;
buildMulti;
mv build/Multiprotocol.ino.hex ./binaries/Multi-OrangeRX_Blue_INV-$TRAVIS_TAG.hex;
fi
# Build the release files for AVR without bootloader
- if [[ "$BOARD" =~ "multi4in1:avr:multiatmega328p:bootloader=none" ]]; then
opt_disable CHECK_FOR_BOOTLOADER;
opt_disable $ALL_PROTOCOLS;
opt_enable $A7105_PROTOCOLS;
buildMulti;
mv build/Multiprotocol.ino.hex ./binaries/Multi-AVR_USBASP_A7105_INV-$TRAVIS_TAG.hex;
opt_disable $ALL_PROTOCOLS;
opt_enable $CC2500_PROTOCOLS;
buildMulti;
mv build/Multiprotocol.ino.hex ./binaries/Multi-AVR_USBASP_CC2500_INV-$TRAVIS_TAG.hex;
opt_disable $ALL_PROTOCOLS;
opt_enable $CYRF6936_PROTOCOLS;
buildMulti;
mv build/Multiprotocol.ino.hex ./binaries/Multi-AVR_USBASP_CYRF6936_INV-$TRAVIS_TAG.hex;
fi
# Build the release files for AVR with bootloader
- if [[ "$BOARD" =~ "multi4in1:avr:multiatmega328p:bootloader=optiboot" ]]; then
opt_enable CHECK_FOR_BOOTLOADER;
opt_disable $ALL_PROTOCOLS;
opt_enable $A7105_PROTOCOLS;
buildMulti;
mv build/Multiprotocol.ino.hex ./binaries/Multi-AVR_TXFLASH_A7105_INV-$TRAVIS_TAG.hex;
opt_disable $ALL_PROTOCOLS;
opt_enable $CC2500_PROTOCOLS;
buildMulti;
mv build/Multiprotocol.ino.hex ./binaries/Multi-AVR_TXFLASH_CC2500_INV-$TRAVIS_TAG.hex;
opt_disable $ALL_PROTOCOLS;
opt_enable $CYRF6936_PROTOCOLS;
buildMulti;
mv build/Multiprotocol.ino.hex ./binaries/Multi-AVR_TXFLASH_CYRF6936_INV-$TRAVIS_TAG.hex;
fi
# Build the release files for STM32 without bootloader
- if [[ "$BOARD" =~ "multi4in1:STM32F1:multistm32f103c:upload_method=serialMethod" ]]; then
opt_disable CHECK_FOR_BOOTLOADER;
opt_enable $ALL_PROTOCOLS;
buildMulti;
mv build/Multiprotocol.ino.bin ./binaries/Multi-STM_FTDI_INV-$TRAVIS_TAG.bin;
opt_disable MULTI_STATUS;
opt_enable MULTI_TELEMETRY;
buildMulti;
mv build/Multiprotocol.ino.bin ./binaries/Multi-STM_FTDI_INV_OPENTX-$TRAVIS_TAG.bin;
fi
# Build the release files for STM32 with bootloader
- if [[ "$BOARD" =~ "multi4in1:STM32F1:multistm32f103c:upload_method=TxFlashMethod" ]]; then
opt_enable CHECK_FOR_BOOTLOADER;
opt_enable $ALL_PROTOCOLS;
buildMulti;
mv build/Multiprotocol.ino.bin ./binaries/Multi-STM_TXFLASH_INV-$TRAVIS_TAG.bin;
opt_disable MULTI_STATUS;
opt_enable MULTI_TELEMETRY;
buildMulti;
mv build/Multiprotocol.ino.bin ./binaries/Multi-STM_TXFLASH_INV_OPENTX-$TRAVIS_TAG.bin;
fi
deploy:
provider: releases
api_key:
secure: KGXaoqvd8rbZ3AZtL9Rrn1JYiocGsPaihRUyR8gM8vTfvH9WYAE1+h6SzROQOuJSwr89MvTo3SBOTlM/0PDBnEGLec9Irt7cwO0xf9xM2vPuUG8DYcUzmJJzME9dkn/7qHof1JGgRpp1duUAN1triE9NxhKxL1hbs+tUUbDPAejxwoFNfnta/T4PfD6xmkZNJbneIfYFuFgyLpwwFhuUy9JP7s1AFOiT+fCHxPaZrPn5GsXqAi95Cb7Q3w1iVSt3BmrGxL2j3CeNpWzFY1RrMdc8ay+ppOhSPEIl2vyM7VeLRRBL3EVeFWkiS4ywevqw70wOivTczluv3OeuIJAe5o2UU+w5+59c7+i44Nih23PDAZBhAG5JkLUYUN0XUJpXJ5ZlZsb8IS8sI1txlZa5tNVoXO9+soGEY4rKSpZaPptuENm792CzzAjcaUI9pOFJ/0CBoSCbu5MpM/plkJCMd8fY27EE8cNYvolMuRATNlXs7h9mURGR69pmcR1jFShH+A7Kyp1S1sH19sGCEU16rt2aAtf2FadFg/gKACC2y9rB3wBb4Qnapu2AwNRlTYNuU1+G+kb2FXRwMl04q+38S+cIBHH9NHfdftp9MRPf8Ekatojs92be/Ux21S+hcA7sx/DV22Dl45V6l4mXzR7U4x1nQcdn1SGuy5I4lL6IYCk=
skip_cleanup: true
file_glob: true
file: binaries/*
on:
tags: true

View File

@@ -1,11 +1,11 @@
@echo off
echo Installing Maple DFU driver...
"%~dp0wdi-simple" --vid 0x1EAF --pid 0x0003 --type 1 --name "Maple DFU" --dest "%~dp0maple-dfu"
echo Installing MULTI-Module DFU Bootloader Driver...
"%~dp0wdi-simple" --vid 0x1EAF --pid 0x0003 --type 2 --name "MULTI-Module DFU Bootloader" --dest "%~dp0MULTI-DFU-Bootloader" -b
echo.
echo Installing Maple Serial driver...
"%~dp0wdi-simple" --vid 0x1EAF --pid 0x0004 --type 3 --name "Maple Serial" --dest "%~dp0maple-serial"
echo Installing MULTI-Module USB Serial Driver...
"%~dp0wdi-simple" --vid 0x1EAF --pid 0x0004 --type 3 --name "MULTI-Module USB Serial" --dest "%~dp0MULTI-USB-Serial" -b
echo.
pause

View File

@@ -116,6 +116,78 @@
],
"toolsDependencies": []
},
{
"name": "Multi 4-in-1 AVR Boards",
"architecture": "avr",
"version": "1.0.8",
"category": "Contributed",
"help": {
"online": "https://github.com/pascallanger/DIY-Multiprotocol-TX-Module"
},
"url": "https://github.com/pascallanger/DIY-Multiprotocol-TX-Module-Boards/raw/master/archives/package_multi_4in1_avr_board_v1.0.8.tar.gz",
"archiveFileName": "package_multi_4in1_avr_board_v1.0.8.tar.gz",
"checksum": "SHA-256:8e58b8733220d56155e10bf5bec0bfe6bf96f8460b3fd49a4b45c7f9fad776cb",
"size": "293388",
"boards": [
{"name": "Multi 4-in-1 (Atmega328p, 3.3V, 16MHz)"},
{"name": "Multi 4-in-1 (OrangeRX)"}
],
"toolsDependencies": []
},
{
"name": "Multi 4-in-1 AVR Boards",
"architecture": "avr",
"version": "1.0.9",
"category": "Contributed",
"help": {
"online": "https://github.com/pascallanger/DIY-Multiprotocol-TX-Module"
},
"url": "https://github.com/pascallanger/DIY-Multiprotocol-TX-Module-Boards/raw/master/archives/package_multi_4in1_avr_board_v1.0.9.tar.gz",
"archiveFileName": "package_multi_4in1_avr_board_v1.0.9.tar.gz",
"checksum": "SHA-256:269c4ddcb8018be2b31f5c9e9f0814d120af492e894b8d5098a814486d56faa5",
"size": "318437",
"boards": [
{"name": "Multi 4-in-1 (Atmega328p, 3.3V, 16MHz)"},
{"name": "Multi 4-in-1 (OrangeRX)"}
],
"toolsDependencies": []
},
{
"name": "Multi 4-in-1 AVR Boards",
"architecture": "avr",
"version": "1.1.0",
"category": "Contributed",
"help": {
"online": "https://github.com/pascallanger/DIY-Multiprotocol-TX-Module"
},
"url": "https://github.com/pascallanger/DIY-Multiprotocol-TX-Module-Boards/raw/master/archives/package_multi_4in1_avr_board_v1.1.0.tar.gz",
"archiveFileName": "package_multi_4in1_avr_board_v1.1.0.tar.gz",
"checksum": "SHA-256:7bacf2db754ceb890a203de5ce89d97aa787a9e6462debeb44cf04830859687a",
"size": "326431",
"boards": [
{"name": "Multi 4-in-1 (Atmega328p, 3.3V, 16MHz)"},
{"name": "Multi 4-in-1 (OrangeRX)"}
],
"toolsDependencies": []
},
{
"name": "MULTI-Module AVR Boards",
"architecture": "avr",
"version": "1.1.1",
"category": "Contributed",
"help": {
"online": "https://github.com/pascallanger/DIY-Multiprotocol-TX-Module"
},
"url": "https://github.com/pascallanger/DIY-Multiprotocol-TX-Module-Boards/raw/master/archives/package_multi_4in1_avr_board_v1.1.1.tar.gz",
"archiveFileName": "package_multi_4in1_avr_board_v1.1.1.tar.gz",
"checksum": "SHA-256:02158258b4dbaca61bedbb6933336200d13b02ad0db981e2dda253682c482e99",
"size": "324512",
"boards": [
{"name": "Multi 4-in-1 (Atmega328p, 3.3V, 16MHz)"},
{"name": "Multi 4-in-1 (OrangeRX)"}
],
"toolsDependencies": []
},
{
"name": "Multi 4-in-1 STM32 Board",
"architecture": "STM32F1",
@@ -410,6 +482,158 @@
"version": "4.8.3-2014q1"
}]
},
{
"name": "Multi 4-in-1 STM32 Board",
"architecture": "STM32F1",
"version": "1.1.5",
"category": "Contributed",
"help": {
"online": "https://github.com/pascallanger/DIY-Multiprotocol-TX-Module"
},
"url": "https://github.com/pascallanger/DIY-Multiprotocol-TX-Module-Boards/raw/master/archives/package_multi_4in1_stm32_board_v1.1.5.tar.gz",
"archiveFileName": "package_multi_4in1_stm32_board_v1.1.5.tar.gz",
"checksum": "SHA-256:2d45c95f59b4fb9fc7f7bf8caca2dd8c13b4258141c20db6169e0c7faf72e5e4",
"size": "7930904",
"boards": [{
"name": "Multi 4-in-1 (STM32F103C)"
}],
"toolsDependencies": [{
"packager": "arduino",
"name": "arm-none-eabi-gcc",
"version": "4.8.3-2014q1"
}]
},
{
"name": "Multi 4-in-1 STM32 Board",
"architecture": "STM32F1",
"version": "1.1.6",
"category": "Contributed",
"help": {
"online": "https://github.com/pascallanger/DIY-Multiprotocol-TX-Module"
},
"url": "https://github.com/pascallanger/DIY-Multiprotocol-TX-Module-Boards/raw/master/archives/package_multi_4in1_stm32_board_v1.1.6.tar.gz",
"archiveFileName": "package_multi_4in1_stm32_board_v1.1.6.tar.gz",
"checksum": "SHA-256:d2d1ef721bbcdc3c680c6f98b4b8ab394478ac0f82d67af2f6c389a4a30789f4",
"size": "7962942",
"boards": [{
"name": "Multi 4-in-1 (STM32F103C)"
}],
"toolsDependencies": [{
"packager": "arduino",
"name": "arm-none-eabi-gcc",
"version": "4.8.3-2014q1"
}]
},
{
"name": "Multi 4-in-1 STM32 Board",
"architecture": "STM32F1",
"version": "1.1.7",
"category": "Contributed",
"help": {
"online": "https://github.com/pascallanger/DIY-Multiprotocol-TX-Module"
},
"url": "https://github.com/pascallanger/DIY-Multiprotocol-TX-Module-Boards/raw/master/archives/package_multi_4in1_stm32_board_v1.1.7.tar.gz",
"archiveFileName": "package_multi_4in1_stm32_board_v1.1.7.tar.gz",
"checksum": "SHA-256:37cccde7eafad3d0587d28d13d5f8b2b3244bf7c83e6819b6cb08f4f468815e2",
"size": "7966348",
"boards": [{
"name": "Multi 4-in-1 (STM32F103C)"
}],
"toolsDependencies": [{
"packager": "arduino",
"name": "arm-none-eabi-gcc",
"version": "4.8.3-2014q1"
}]
},
{
"name": "Multi X-in-1 STM32 Boards",
"architecture": "STM32F1",
"version": "1.1.8",
"category": "Contributed",
"help": {
"online": "https://github.com/pascallanger/DIY-Multiprotocol-TX-Module"
},
"url": "https://github.com/pascallanger/DIY-Multiprotocol-TX-Module-Boards/raw/master/archives/package_multi_4in1_stm32_board_v1.1.8.tar.gz",
"archiveFileName": "package_multi_4in1_stm32_board_v1.1.8.tar.gz",
"checksum": "SHA-256:e9ed8055ebf72abf37e60e1b8d1c6ee5472132ea7c0a3c4a63fbb8442613e4c2",
"size": "7481800",
"boards": [
{"name": "Multi 4-in-1 (STM32F103C)"},
{"name": "Multi 5-in-1 (Jumper T18 Internal)"}
],
"toolsDependencies": [{
"packager": "arduino",
"name": "arm-none-eabi-gcc",
"version": "4.8.3-2014q1"
}]
},
{
"name": "Multi X-in-1 STM32 Boards",
"architecture": "STM32F1",
"version": "1.2.0",
"category": "Contributed",
"help": {
"online": "https://github.com/pascallanger/DIY-Multiprotocol-TX-Module"
},
"url": "https://github.com/pascallanger/DIY-Multiprotocol-TX-Module-Boards/raw/master/archives/package_multi_4in1_stm32_board_v1.2.0.tar.gz",
"archiveFileName": "package_multi_4in1_stm32_board_v1.2.0.tar.gz",
"checksum": "SHA-256:754f08ca2a553701cc9112b645c079b6041107f1bf863648305e560c136a6ac5",
"size": "7496214",
"boards": [
{"name": "Multi 4-in-1 (STM32F103C)"},
{"name": "Multi 5-in-1 (Jumper T18 Internal)"}
],
"toolsDependencies": [{
"packager": "arduino",
"name": "arm-none-eabi-gcc",
"version": "4.8.3-2014q1"
}]
},
{
"name": "Multi X-in-1 STM32 Boards",
"architecture": "STM32F1",
"version": "1.2.1",
"category": "Contributed",
"help": {
"online": "https://github.com/pascallanger/DIY-Multiprotocol-TX-Module"
},
"url": "https://github.com/pascallanger/DIY-Multiprotocol-TX-Module-Boards/raw/master/archives/package_multi_4in1_stm32_board_v1.2.1.tar.gz",
"archiveFileName": "package_multi_4in1_stm32_board_v1.2.1.tar.gz",
"checksum": "SHA-256:c66d34afadc5b21e9e28c4d477fa03a6d55db0b74b59ff2dcb07b4d6ef06da1a",
"size": "7496448",
"boards": [
{"name": "Multi 4-in-1 (STM32F103C)"},
{"name": "Multi 5-in-1 (Jumper T18 Internal)"}
],
"toolsDependencies": [{
"packager": "arduino",
"name": "arm-none-eabi-gcc",
"version": "4.8.3-2014q1"
}]
},
{
"name": "MULTI-Module STM32 Boards",
"architecture": "STM32F1",
"version": "1.2.2",
"category": "Contributed",
"help": {
"online": "https://github.com/pascallanger/DIY-Multiprotocol-TX-Module"
},
"url": "https://github.com/pascallanger/DIY-Multiprotocol-TX-Module-Boards/raw/master/archives/package_multi_4in1_stm32_board_v1.2.2.tar.gz",
"archiveFileName": "package_multi_4in1_stm32_board_v1.2.2.tar.gz",
"checksum": "SHA-256:0fe4a8899438bbc31dc37714acca13968e43d75a47e59143343d83b634d2e47d",
"size": "7485662",
"boards": [
{"name": "Multi X-in-1 STM32F103CB (128KB)"},
{"name": "Multi X-in-1 STM32F103C8 (64KB)"},
{"name": "Multi 5-in-1 (Jumper T18 Internal)"}
],
"toolsDependencies": [{
"packager": "arduino",
"name": "arm-none-eabi-gcc",
"version": "4.8.3-2014q1"
}]
},
{
"name": "Multi 4-in-1 OrangeRX Board - DEPRECATED, USE MULTI 4-IN-1 AVR BOARDS PACKAGE INSTEAD",
"architecture": "orangerx",

601
Lua_scripts/DSM FwdPrg.lua Normal file
View File

@@ -0,0 +1,601 @@
local toolName = "TNS|DSM Forward Programming|TNE"
---- #########################################################################
---- # #
---- # Copyright (C) OpenTX #
-----# #
---- # License GPLv2: http://www.gnu.org/licenses/gpl-2.0.html #
---- # #
---- # This program is free software; you can redistribute it and/or modify #
---- # it under the terms of the GNU General Public License version 2 as #
---- # published by the Free Software Foundation. #
---- # #
---- # This program is distributed in the hope that it will be useful #
---- # but WITHOUT ANY WARRANTY; without even the implied warranty of #
---- # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
---- # GNU General Public License for more details. #
---- # #
---- #########################################################################
--###############################################################################
-- Multi buffer for DSM description
-- Multi_Buffer[0..2]=="DSM" -> Lua script is running
-- Multi_Buffer[3]==0x70+len -> TX to RX data ready to be sent
-- Multi_Buffer[4..9]=6 bytes of TX to RX data
-- Multi_Buffer[10..25]=16 bytes of RX to TX data
--
-- To start operation:
-- Write 0x00 at address 3
-- Write 0x00 at address 10
-- Write "DSM" at address 0..2
--###############################################################################
local RX_VERSION, WAIT_CMD, MENU_TITLE, MENU_LINES, MENU_VALUES, VALUE_CHANGING, VALUE_CHANGING_WAIT, VALUE_CHANGED = 0, 1, 2, 3, 4, 5, 6, 7
local MENU, LIST_MENU_NOCHANGING, LIST_MENU2, PERCENTAGE_VALUE = 0x1C, 0x6C, 0x4C, 0xC0
local Phase = RX_VERSION
local Waiting_RX = 0
local Text = {}
local Retry=100
local Blink = 0
local Value_Changed=0
local Menu = { Cur=nil, Id=nil, Title="", Prev=nil, PrevId=nil, Next=nil, NextId=nil, Back=nil, BackId=nil, CurLine=nil, SelLine=nil, EditLine=nil }
local Line = {}
local RX = { Name="", Version="" }
local function conv_int16(number)
if number >= 0x8000 then
return number - 0x10000
end
return number
end
local function Get_Text(index)
out = Text[index]
if out == nil then -- unknown...
out = "Unknown_"..string.format("%X",index)
end
return out
end
local function DSM_Release()
multiBuffer( 0, 0 )
end
local function DSM_Send(...)
local arg = {...}
for i = 1 , #arg do
multiBuffer( 3+i, arg[i])
end
multiBuffer( 3, 0x70+#arg)
end
local function Value_Add(dir)
local line=Line[Menu.SelLine]
Speed = getRotEncSpeed()
if Speed == ROTENC_MIDSPEED then
line.Val = line.Val + (5 * dir)
elseif Speed == ROTENC_HIGHSPEED then
line.Val = line.Val + (15 * dir)
else
line.Val = line.Val + dir
end
if line.Val > line.Max then
line.Val = line.Max
elseif line.Val < line.Min then
line.Val = line.Min
end
if Line[Menu.SelLine].Type ~= LIST_MENU_NOCHANGING then
Phase = VALUE_CHANGING
Waiting_RX = 0
end
end
local function DSM_Menu(event)
local Speed = 0
if event == EVT_VIRTUAL_NEXT then
if Menu.EditLine == nil then
-- not changing a value
if Menu.SelLine ~= nil then
if Menu.SelLine < 7 then
local num = Menu.SelLine
for i = Menu.SelLine + 1, 6, 1 do
if Line[i].Type ~= nil and Line[i].Next ~= nil then
Menu.SelLine=i
break
end
end
if num == Menu.SelLine then
if Menu.Next ~= 0 then -- Next
Menu.SelLine = 7
elseif Menu.Prev ~= 0 then -- Prev
Menu.SelLine = 8
end
end
elseif Menu.Prev ~= 0 then -- Prev
Menu.SelLine = 8
end
end
else -- need to inc the value
Value_Add(1)
end
elseif event == EVT_VIRTUAL_PREV then
if Menu.EditLine == nil then
if Menu.SelLine ~= nil then
if Menu.SelLine == 8 and Menu.Next ~= 0 then
Menu.SelLine = 7
elseif Menu.SelLine > 0 then
if Menu.SelLine > 6 then
Menu.SelLine = 7
end
local num = Menu.SelLine
for i = Menu.SelLine-1, 0, -1 do
if Line[i].Type ~= nil and Line[i].Next ~= nil then
Menu.SelLine=i
break
end
end
if num == Menu.SelLine then -- Back
Menu.SelLine = -1
end
else
Menu.SelLine = -1 -- Back
end
end
else -- need to dec the value
Value_Add(-1)
end
elseif event == EVT_VIRTUAL_ENTER then
if Menu.SelLine == -1 then -- Back
Menu.Cur = Menu.Back
Menu.Id = Menu.BackId
Menu.SelLine = 0
Phase = MENU_TITLE
Waiting_RX = 0
elseif Menu.SelLine == 7 then -- Next
Menu.Cur = Menu.Next
Menu.Id = Menu.NextId
Menu.SelLine = 0
Phase = MENU_TITLE
Waiting_RX = 0
elseif Menu.SelLine == 8 then -- Prev
Menu.Cur = Menu.Prev
Menu.Id = Menu.PrevId
Menu.SelLine = 0
Phase = MENU_TITLE
Waiting_RX = 0
elseif Menu.SelLine ~= nil and Line[Menu.SelLine].Next ~= nil then
if Line[Menu.SelLine].Type == MENU then -- Next menu exist
Menu.Cur = Line[Menu.SelLine].Next
Menu.Id = Line[Menu.SelLine].NextId
Phase = MENU_TITLE
Waiting_RX = 0
else
-- value entry
if Menu.EditLine == Menu.SelLine then
Menu.EditLine = nil
Value_Changed = 0
Phase = VALUE_CHANGED
Waiting_RX = 0
else
Menu.EditLine = Menu.SelLine
end
end
end
end
end
local function DSM_Send_Receive()
if Waiting_RX == 0 then
Waiting_RX = 1
-- Need to send a request
if Phase == RX_VERSION then -- request RX version
DSM_Send(0x11,0x06,0x00,0x14,0x00,0x00)
elseif Phase == WAIT_CMD then -- keep connection open
DSM_Send(0x00,0x04,0x00,0x00)
elseif Phase == MENU_TITLE then -- request menu title
if Menu.Cur == nil then
DSM_Send(0x12,0x06,0x00,0x14,0x00,0x00) -- first menu only
Menu.Cur = 0
else
DSM_Send(0x16,0x06,Menu.Id,Menu.Cur,0x00,Menu.SelLine)
end
elseif Phase == MENU_LINES then -- request menu lines
if Menu.CurLine == nil then
DSM_Send(0x13,0x04,Menu.Id,Menu.Cur) -- line 0
elseif Menu.CurLine >= 0x80 then
local last_byte={0x40,0x01,0x02,0x04,0x00,0x00} -- unknown...
DSM_Send(0x20,0x06,Menu.CurLine-0x80,Menu.CurLine-0x80,0x00,last_byte[Menu.CurLine-0x80+1]) -- line X
else
DSM_Send(0x14,0x06,Menu.Id,Menu.Cur,0x00,Menu.CurLine) -- line X
end
elseif Phase == MENU_VALUES then -- request menu values
DSM_Send(0x15,0x06,Menu.Id,Menu.Cur,Line[Menu.CurLine].ValId,Menu.CurLine) -- line X
elseif Phase == VALUE_CHANGING then -- send value
local value=Line[Menu.SelLine].Val
if value < 0 then
value = 0x10000 + value
end
DSM_Send(0x18,0x06,Line[Menu.SelLine].ValId,Menu.SelLine,bit32.rshift(value,8),bit32.band(value,0xFF)) -- send current value
Phase = VALUE_CHANGING_WAIT
elseif Phase == VALUE_CHANGED then -- send value
if Value_Changed == 0 then
local value=Line[Menu.SelLine].Val
if value < 0 then
value = 0x10000 + value
end
DSM_Send(0x18,0x06,Line[Menu.SelLine].ValId,Menu.SelLine,bit32.rshift(value,8),bit32.band(value,0xFF)) -- send current value
Value_Changed = Value_Changed + 1
Waiting_RX = 0
elseif Value_Changed == 1 then
DSM_Send(0x19,0x06,Line[Menu.SelLine].ValId,Menu.SelLine) -- validate
-- Value_Changed = Value_Changed + 1
-- Waiting_RX = 0
--elseif Value_Changed == 2 then
-- DSM_Send(0x1B,0x06,0x10,Menu.SelLine) -- validate again?
-- Value_Changed = Value_Changed + 1
end
elseif Phase == VALUE_CHANGING_WAIT then
DSM_Send(0x1A,0x06,Line[Menu.SelLine].ValId,Menu.SelLine)
end
multiBuffer(10,0x00);
Retry = 50
elseif multiBuffer(10) == 0x09 then
-- Answer received
--if multiBuffer(11) == 0x00 then -- waiting for commands?
if multiBuffer(11) == 0x01 then -- read version
--ex: 0x09 0x01 0x00 0x15 0x02 0x22 0x01 0x00 0x14 0x00 0x00 0x00 0x00 0x00 0x00 0x00
RX.Name = Get_Text(multiBuffer(13))
RX.Version = multiBuffer(14).."."..multiBuffer(15).."."..multiBuffer(16)
Phase = MENU_TITLE
elseif multiBuffer(11) == 0x02 then -- read menu title
--ex: 0x09 0x02 0x4F 0x10 0xA5 0x00 0x00 0x00 0x50 0x10 0x10 0x10 0x00 0x00 0x00 0x00
Menu.Cur = multiBuffer(12)
Menu.Id = multiBuffer(13)
Menu.Title = Get_Text(multiBuffer(14)+multiBuffer(15)*256)
Menu.Prev = multiBuffer(16)
Menu.PrevId = multiBuffer(17)
Menu.Next = multiBuffer(18)
Menu.NextId = multiBuffer(19)
Menu.Back = multiBuffer(20)
Menu.BackId = multiBuffer(21)
for i = 0, 6 do -- clear menu
Line[i] = { Menu = nil, Id = nil, Type = nil, Text="", Next = nil, NextId = nil, ValLine = nil, ValId = nil, Min, Max, Def, Val, Unit, Step }
end
Menu.CurLine = nil
if Menu.Next ~= 0 then
Menu.SelLine = 7 -- highlight Next
else
Menu.SelLine = -1 -- highlight Back
end
Blink = 0
Phase = MENU_LINES
elseif multiBuffer(11) == 0x03 then -- read menu lines
--ex: 0x09 0x03 0x00 0x10 0x00 0x1C 0xF9 0x00 0x10 0x10 0x00 0x00 0x00 0x00 0x03 0x00
-- Menu Id line Type Text_idx Next V_Id Val_Min Val_Max Val_Def
--ex: 0x09 0x03 0x61 0x10 0x00 0x6C 0x50 0x00 0x00 0x10 0x36 0x00 0x49 0x00 0x36 0x00
Menu.CurLine = multiBuffer(14)
local line = Line[Menu.CurLine]
line.Menu = multiBuffer(12)
line.Id = multiBuffer(13) -- not quite sure yet
line.Type = multiBuffer(15) -- not quite sure yet: 1C is text menu only, 4C/6C is text followed by text list, C0 is text followed by percentage value
line.Text = Get_Text(multiBuffer(16)+multiBuffer(17)*256)
if multiBuffer(18) == Menu.Cur then
line.Next = nil
else
line.Next = multiBuffer(18) -- not quite sure yet: 1C=text menu=>next menu, others=>line number of the value
end
if Menu.SelLine == -1 and line.Next ~= nil then -- Auto select first line of the menu
Menu.SelLine = Menu.CurLine
end
line.NextId = multiBuffer(19) -- not quite sure yet
line.ValLine = multiBuffer(18) -- not quite sure yet
line.ValId = multiBuffer(19) -- not quite sure yet
line.Min = conv_int16(multiBuffer(20)+multiBuffer(21)*256)
line.Max = conv_int16(multiBuffer(22)+multiBuffer(23)*256)
line.Def = conv_int16(multiBuffer(24)+multiBuffer(25)*256)
if line.Type == MENU then
-- nothing to do on menu entries
elseif line.Type == LIST_MENU_NOCHANGING or line.Type == LIST_MENU2 then
line.Val = nil --line.Def - line.Min -- use default value not sure if needed
line.Def = line.Min -- pointer to the start of the list in Text
line.Max = line.Max - line.Min -- max index
line.Min = 0 -- min index
else -- default to numerical value
line.Val = nil --line.Def -- use default value not sure if needed
end
if line.Type ~= 0x1C then -- value to follow
line.Text = line.Text..":"
end
Phase = MENU_LINES
elseif multiBuffer(11) == 0x04 then -- read menu values
--ex: 0x09 0x04 0x53 0x10 0x00 0x10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
-- Menu MeId line VaId Value
--ex: 0x09 0x04 0x61 0x10 0x02 0x10 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
Menu.CurLine = multiBuffer(14)
Line[Menu.CurLine].Val = conv_int16(multiBuffer(16)+multiBuffer(17)*256)
Phase = MENU_VALUES
elseif multiBuffer(11) == 0x05 then -- unknown... need to get through the lines...
Menu.CurLine = 0x80 + multiBuffer(12)
Phase = MENU_LINES
elseif multiBuffer(11) == 0x00 and Phase == VALUE_CHANGING then
Phase = VALUE_CHANGING_WAIT
end
-- Data processed
Waiting_RX = 0
multiBuffer(10,0x00)
Retry = 50
else
Retry = Retry - 1
if Retry <= 0 then
-- Retry the RX request
Retry = 50
Waiting_RX = 0
if Phase ~= RX_VERSION and Phase ~= VALUE_CHANGING_WAIT then
Phase = WAIT_CMD
end
end
end
end
local function DSM_Display()
lcd.clear()
if LCD_W == 480 then
--Draw title
lcd.drawFilledRectangle(0, 0, LCD_W, 30, TITLE_BGCOLOR)
lcd.drawText(1, 5, "DSM Forward Programming", MENU_TITLE_COLOR)
--Draw RX Menu
if Phase == RX_VERSION then
lcd.drawText(10,50,"No compatible DSM RX...", BLINK)
else
if Menu.Title ~= nil then
local attrib=0;
lcd.drawText(80,32,Menu.Title,MIDSIZE)
for i = 0, 6 do
if i == Menu.SelLine then
attrib = INVERS
else
attrib = 0
end
if Line[i] ~= nil and Line[i].Type ~= nil then
if Line[i].Type ~= MENU then -- list/value
if Line[i].Val ~= nil then
local text=""
if Line[i].Type == LIST_MENU_NOCHANGING or Line[i].Type == LIST_MENU2 then
text = Get_Text(Line[i].Val+Line[i].Def)
elseif Line[i].Type == PERCENTAGE_VALUE then
text = Line[i].Val.." %"
else
text = Line[i].Val
end
if Menu.EditLine == Menu.SelLine then -- blink edited entry
Blink = Blink + 1
if Blink > 25 then
attrib = 0
if Blink > 50 then
Blink = 0
end
end
end
lcd.drawText(240,32+20*(i+2), text, attrib) -- display value
end
attrib = 0
end
lcd.drawText(10,32+20*(i+2), Line[i].Text, attrib) -- display text
end
end
if Menu.SelLine == -1 then
lcd.drawText(437,32, "Back", INVERS)
else
lcd.drawText(437,32, "Back", 0)
end
lcd.drawRectangle(437-5, 32-2, 47, 25)
if Menu.Next ~= 0 then
if Menu.SelLine == 7 then
lcd.drawText(437,220, "Next",INVERS)
else
lcd.drawText(437,220, "Next")
end
lcd.drawRectangle(437-5, 220-2, 47, 25)
end
if Menu.Prev ~= 0 then
if Menu.SelLine == 8 then
lcd.drawText(5,220, "Prev",INVERS)
else
lcd.drawText(5,220, "Prev")
end
lcd.drawRectangle(5-5, 220-2, 47, 25)
end
end
lcd.drawText(170,252, "RX "..RX.Name.." v"..RX.Version) -- display RX info
end
else
-- --Draw RX Menu on LCD_W=128
-- if multiBuffer( 4 ) == 0xFF then
-- lcd.drawText(2,17,"No compatible DSM RX...",SMLSIZE)
-- else
-- if Retry_128 ~= 0 then
-- --Intro page
-- Retry_128 = Retry_128 - 1
-- lcd.drawScreenTitle("DSM Forward Programming",0,0)
-- lcd.drawText(2,17,"Press Prev Page for previous Menu" ,SMLSIZE)
-- else
-- --Menu page
-- for line = 0, 7, 1 do
-- for i = 0, 21-1, 1 do
-- value=multiBuffer( line*21+6+i )
-- if value > 0x80 then
-- value = value - 0x80
-- lcd.drawText(2+i*6,1+8*line,string.char(value).." ",SMLSIZE+INVERS)
-- else
-- lcd.drawText(2+i*6,1+8*line,string.char(value),SMLSIZE)
-- end
-- end
-- end
-- end
-- end
end
end
-- Init
local function DSM_Init()
--Set protocol to talk to
multiBuffer( 0, string.byte('D') )
--test if value has been written
if multiBuffer( 0 ) ~= string.byte('D') then
error("Not enough memory!")
return 2
end
--Init TX buffer
multiBuffer( 3, 0x00 )
--Init RX buffer
multiBuffer( 10, 0x00 )
--Init telemetry
multiBuffer( 0, string.byte('D') )
multiBuffer( 1, string.byte('S') )
multiBuffer( 2, string.byte('M') )
--Text to be displayed -> need to use a file instead?
--RX names--
Text[0x0014]="SPM4651T"
Text[0x0015]="AR637T"
--Lists--
Text[0x0036]="Throttle"
Text[0x0037]="Aileron"
Text[0x0038]="Elevator"
Text[0x0039]="Rudder"
Text[0x003A]="Gear"
--******
--This part is strange since the AR637T needs
for i=1,7 do -- 3B..41
Text[0x003A+i]="Aux"..i
end
for i=1,8 do -- 41..49
Text[0x0041+i]="XPlus-"..i
end
--But FOTO-PETE reports that it should be:
Text[0x0040]="Roll"
Text[0x0041]="Pitch"
Text[0x0042]="Yaw"
Text[0x0046]="Priority"
--******
Text[0x004A]="Failsafe"
Text[0x004B]="Main Menu"
Text[0x004E]="Position"
Text[0x0050]="Outputs"
Text[0x0051]="Output Channel 1"
Text[0x0052]="Output Channel 2"
Text[0x0053]="Output Channel 3"
Text[0x0054]="Output Channel 4"
Text[0x0055]="Output Channel 5"
Text[0x0056]="Output Channel 6"
--Text[0x005E]="Inhibit"
Text[0x005F]="Hold Last"
Text[0x0060]="Preset"
--Text[0x0061]="Custom"
--Messages--
Text[0x0078]="FM Channel"
Text[0x0080]="Orientation"
Text[0x0085]="Frame Rate"
Text[0x0086]="System Setup"
Text[0x0087]="F-Mode Setup"
Text[0x0088]="Enabled F-Modes"
Text[0x008A]="Gain Sensitivity"
Text[0x0090]="Apply"
Text[0x0093]="Complete"
Text[0x0094]="Done"
Text[0x0097]="Factory Reset"
Text[0x009A]="Capture Failsafe Positions"
Text[0x009C]="Custom Failsafe"
Text[0x00A5]="First Time Setup"
Text[0x00AD]="Gain Channel Select"
Text[0x00B6]="FM1"
Text[0x00B7]="FM2"
Text[0x00B8]="FM3"
Text[0x00B9]="FM4"
Text[0x00BA]="FM5"
Text[0x00BB]="FM6"
Text[0x00BC]="FM7"
Text[0x00BD]="FM8"
Text[0x00BE]="FM9"
Text[0x00BF]="FM10"
Text[0x00F9]="Gyro settings"
Text[0x00FE]="Stick Priority"
Text[0x0100]="Make sure the model has been"
Text[0x0101]="configured, including wing type,"
Text[0x0102]="reversing, travel, trimmed, etc."
Text[0x0103]="before continuing setup."
Text[0x0104]="0104"
Text[0x0105]="0105"
Text[0x0106]="Any wing type, channel assignment,"
Text[0x0107]="subtrim, or servo reversing changes"
Text[0x0108]="require running through initial"
Text[0x0109]="setup again."
Text[0x010A]="010A"
Text[0x010B]="010B"
Text[0x0190]="Relearn Servo Settings"
Text[0x019C]="Enter Receiver Bind Mode"
Text[0x01DC]="AS3X"
Text[0x01DD]="AS3X Settings"
Text[0x01DE]="AS3X Gains"
Text[0x01E0]="Rate Gains"
Text[0x020A]="Restore from Backup"
Text[0x0209]="Save to Backup"
Text[0x020D]="First Time SAFE Setup"
Text[0x021A]="Set the model level,"
Text[0x021B]="and press Continue."
Text[0x021C]="021C"
Text[0x021D]="021D"
Text[0x021F]="Set the model on its nose,"
Text[0x0220]="and press Continue. If the"
Text[0x0221]="orientation on the next"
Text[0x0222]="screen is wrong go back"
Text[0x0223]="and try again."
Text[0x0224]="Continue"
Text[0x0229]="Set Orientation Manually"
Text[0x0227]="Other settings"
Text[0x022B]="WARNING!"
Text[0x022C]="This will reset the"
Text[0x022D]="configuration to factory"
Text[0x022E]="defaults. This does not"
Text[0x022F]="affect the backup config."
Text[0x0230]="0230"
Text[0x0231]="This will overwrite the"
Text[0x0232]="backup memory with your"
Text[0x0233]="current configuartion."
Text[0x0234]="0234"
Text[0x0235]="0235"
Text[0x0236]="This will overwrite the"
Text[0x0237]="current config with"
Text[0x0238]="that which is in"
Text[0x0239]="the backup memory."
Text[0x023A]="023A"
Text[0x023D]="Copy Flight Mode Settings"
Text[0x0240]="Utilities"
Text[0x8001]="Flight Mode 1"
Text[0x8002]="Flight Mode 2"
Text[0x8003]="Flight Mode 3"
end
-- Main
local function DSM_Run(event)
if event == nil then
error("Cannot be run as a model script!")
return 2
elseif event == EVT_VIRTUAL_EXIT then
DSM_Release()
return 2
else
DSM_Menu(event)
DSM_Send_Receive()
DSM_Display()
return 0
end
end
return { init=DSM_Init, run=DSM_Run }

View File

@@ -0,0 +1,171 @@
---- #########################################################################
---- # #
---- # Copyright (C) OpenTX #
-----# #
---- # License GPLv2: http://www.gnu.org/licenses/gpl-2.0.html #
---- # #
---- # This program is free software; you can redistribute it and/or modify #
---- # it under the terms of the GNU General Public License version 2 as #
---- # published by the Free Software Foundation. #
---- # #
---- # This program is distributed in the hope that it will be useful #
---- # but WITHOUT ANY WARRANTY; without even the implied warranty of #
---- # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
---- # GNU General Public License for more details. #
---- # #
---- #########################################################################
--###############################################################################
-- Multi buffer for HoTT description
-- To start operation:
-- Write "HoTT" at address 0..3
-- Write 0xFF at address 4 will request the buffer to be cleared
-- Write 0x0F at address 5
-- Read buffer from address 6 access the RX text for 168 bytes, 21 caracters
-- by 8 lines
-- Write at address 5 sends an order to the RX: 0xXF=start, 0xX7=prev page,
-- 0xXE=next page, 0xX9=enter, 0xXD=next or 0xXB=prev with X being the sensor
-- to request data from 8=RX only, 9=Vario, A=GPS, B=Cust, C=ESC, D=GAM, E=EAM
-- Write at address 4 the value 0xFF will request the buffer to be cleared
-- !! Before exiting the script must write 0 at address 0 for normal operation !!
--###############################################################################
HoTT_Sensor = 0
Timer_128 = 100
local function HoTT_Release()
multiBuffer( 0, 0 )
end
local function HoTT_Send(button)
multiBuffer( 5, 0x80+(HoTT_Sensor*16) + button)
end
local function HoTT_Sensor_Inc()
local detected_sensors=multiBuffer( 4 )
local a
if detected_sensors ~= 0xFF then
repeat
HoTT_Sensor=(HoTT_Sensor+1)%7 -- Switch to next sensor
if HoTT_Sensor ~= 0 then
a = math.floor(detected_sensors/ (2^(HoTT_Sensor-1))) -- shift right
end
until HoTT_Sensor==0 or a % 2 == 1
HoTT_Send( 0x0F )
end
end
local function HoTT_Draw_LCD()
local i
local value
local line
local result
local offset=0
local sensor_name = { "", "+Vario", "+GPS", "+Cust", "+ESC", "+GAM", "+EAM" }
lcd.clear()
if LCD_W == 480 then
--Draw title
lcd.drawFilledRectangle(0, 0, LCD_W, 30, TITLE_BGCOLOR)
lcd.drawText(1, 5, "Graupner HoTT: config RX" .. sensor_name[HoTT_Sensor+1] .. " - Menu cycle Sensors", MENU_TITLE_COLOR)
--Draw RX Menu
if multiBuffer( 4 ) == 0xFF then
lcd.drawText(10,50,"No HoTT telemetry...", BLINK)
else
for line = 0, 7, 1 do
for i = 0, 21-1, 1 do
value=multiBuffer( line*21+6+i )
if value > 0x80 then
value = value - 0x80
lcd.drawText(10+i*16,32+20*line,string.char(value).." ",INVERS)
else
lcd.drawText(10+i*16,32+20*line,string.char(value))
end
end
end
end
else
--Draw RX Menu on LCD_W=128
if multiBuffer( 4 ) == 0xFF then
lcd.drawText(2,17,"No HoTT telemetry...",SMLSIZE)
else
if Timer_128 ~= 0 then
--Intro page
Timer_128 = Timer_128 - 1
lcd.drawScreenTitle("Graupner Hott",0,0)
lcd.drawText(2,17,"Configuration of RX" .. sensor_name[HoTT_Sensor+1] ,SMLSIZE)
lcd.drawText(2,37,"Press menu to cycle Sensors" ,SMLSIZE)
else
--Menu page
for line = 0, 7, 1 do
for i = 0, 21-1, 1 do
value=multiBuffer( line*21+6+i )
if value > 0x80 then
value = value - 0x80
lcd.drawText(2+i*6,1+8*line,string.char(value).." ",SMLSIZE+INVERS)
else
lcd.drawText(2+i*6,1+8*line,string.char(value),SMLSIZE)
end
end
end
end
end
end
end
-- Init
local function HoTT_Init()
--Set protocol to talk to
multiBuffer( 0, string.byte('H') )
--test if value has been written
if multiBuffer( 0 ) ~= string.byte('H') then
error("Not enough memory!")
return 2
end
multiBuffer( 1, string.byte('o') )
multiBuffer( 2, string.byte('T') )
multiBuffer( 3, string.byte('T') )
--Request init of the RX buffer
multiBuffer( 4, 0xFF )
--Request RX to send the config menu
HoTT_Send( 0x0F )
HoTT_Sensor = 0;
HoTT_Detected_Sensors=0;
Timer_128 = 100
end
-- Main
local function HoTT_Run(event)
if event == nil then
error("Cannot be run as a model script!")
return 2
elseif event == EVT_VIRTUAL_EXIT then
HoTT_Release()
return 2
else
if event == EVT_VIRTUAL_PREV_PAGE then
killEvents(event)
HoTT_Send( 0x07 )
elseif event == EVT_VIRTUAL_ENTER then
HoTT_Send( 0x09 )
elseif event == EVT_VIRTUAL_PREV then
HoTT_Send( 0x0B )
elseif event == EVT_VIRTUAL_NEXT then
HoTT_Send( 0x0D )
elseif event == EVT_VIRTUAL_NEXT_PAGE then
HoTT_Send( 0x0E )
elseif event == EVT_VIRTUAL_MENU then
Timer_128 = 100
HoTT_Sensor_Inc()
else
HoTT_Send( 0x0F )
end
HoTT_Draw_LCD()
return 0
end
end
return { init=HoTT_Init, run=HoTT_Run }

184
Lua_scripts/MultiChan.txt Normal file
View File

@@ -0,0 +1,184 @@
24,0,Assan,Std,0,CH5,CH6,CH7,CH8
14,0,Bayang,Std,1,Flip,RTH,Pict,Video,HLess,Invert,Rates,n-a,n-a,AnAux1,AnAux2
14,1,Bayang,H8S3D,1,Flip,RTH,Pict,Video,HLess,Invert,Rates
14,2,Bayang,X16_AH,1,Flip,RTH,Pict,Video,HLess,Invert,Rates,TakeOf
14,3,Bayang,IRDRONE,1,Flip,RTH,Pict,Video,HLess,Invert,Rates,TakeOf,EmStop
14,4,Bayang,DHD_D4,1,Flip,RTH,Pict,Video,HLess,Invert,Rates,TakeOf,EmStop
14,5,Bayang,QX100,1,Flip,RTH,Pict,Video,HLess,Invert,Rates,TakeOf,EmStop
59,0,BayangRX,RX,1,AnAux1,AnAux2,Flip,RTH,Pict,Video
41,0,Bugs,3-6-8,0,Arm,Angle,Flip,Pict,Video,LED
42,0,BugsMini,Mini,0,Arm,Angle,Flip,Pict,Video,LED
42,1,BugsMini,3H,0,Arm,Angle,Flip,Pict,Video,LED,AltHol
34,0,Cabell,V3,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14,CH15,CH16
34,1,Cabell,V3Telem,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14,CH15,CH16
13,0,CG023,Std,1,Flip,Light,Pict,Video,HLess
13,1,CG023,YD829,1,Flip,n-a,Pict,Video,HLess
37,0,Corona,COR_V1,0,CH5,CH6,CH7,CH8
37,1,Corona,COR_V2,0,CH5,CH6,CH7,CH8
37,2,Corona,FD_V3,0,CH5,CH6,CH7,CH8
12,0,CX10,Green,1,Flip,Rate
12,1,CX10,Blue,1,Flip,Rate,Pict,Video
12,2,CX10,DM007,1,Flip,Mode,Pict,Video,HLess
12,4,CX10,JC3015_1,1,Flip,Mode,Pict,Video
12,5,CX10,JC3015_2,1,Flip,Mode,LED,DFlip
12,6,CX10,MK33041,1,Flip,Mode,Pict,Video,HLess,RTH
7,0,Devo,8CH,0,CH5,CH6,CH7,CH8
7,1,Devo,10CH,0,CH5,CH6,CH7,CH8,CH9,CH10
7,2,Devo,12CH,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12
7,3,Devo,6CH,0,CH5,CH6
7,4,Devo,7CH,0,CH5,CH6,CH7
33,0,DM022,Std,1,Flip,LED,Cam1,Cam2,HLess,RTH,RLow
6,0,DSM,2_22,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,n-a,ThKill
6,1,DSM,2_11,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,n-a,ThKill
6,2,DSM,X_22,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,n-a,ThKill
6,3,DSM,X_11,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,n-a,ThKill
6,4,DSM,AUTO,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,n-a,ThKill
70,0,DSM_RX,RX,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12
45,0,E01X,E012,1,n-a,Flip,n-a,HLess,RTH
45,1,E01X,E015,1,Arm,Flip,LED,HLess,RTH
45,2,E01X,E016H,1,Stop,Flip,n-a,HLess,RTH
16,0,ESKY,Std,0,Gyro,Pitch
16,1,ESKY,ET4,0,Gyro,Pitch
35,0,ESKY150,4CH,0
35,1,ESKY150,7CH,0,FMode,Aux6,Aux7
69,0,ESKY150V2,Std,0,CH5_RA,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14,CH15,CH16
1,0,Flysky,Flysky,0,CH5,CH6,CH7,CH8
1,1,Flysky,V9x9,1,Flip,Light,Pict,Video
1,2,Flysky,V6x6,1,Flip,Light,Pict,Video,HLess,RTH,XCAL,YCAL
1,3,Flysky,V912,1,BtmBtn,TopBtn
1,4,Flysky,CX20,0,CH5,CH6,CH7
28,0,Flysky_AFHDS2A,PWM_IBUS,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14
28,1,Flysky_AFHDS2A,PPM_IBUS,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14
28,2,Flysky_AFHDS2A,PWM_SBUS,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14
28,3,Flysky_AFHDS2A,PPM_SBUS,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14
28,4,Flysky_AFHDS2A,PWM_IB16,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14,CH15,CH16
28,5,Flysky_AFHDS2A,PPM_IB16,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14,CH15,CH16
56,0,Flysky2A_RX,RX,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14
53,0,Height,5ch,0,Gear
53,1,Height,8ch,0,Gear,Gyro,Flap,Light
25,0,FrSkyV,V8,0,CH5,CH6,CH7,CH8
3,0,FrSkyD,D8,0,CH5,CH6,CH7,CH8
3,0,FrSkyD,D8Cloned,0,CH5,CH6,CH7,CH8
67,0,FrSkyL,LR12,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12
67,1,FrSkyL,LR12_6CH,0,CH5,CH6
15,0,FrSkyX,D16_FCC,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14,CH15,CH16
15,1,FrSkyX,D16_8CH_FCC,0,CH5,CH6,CH7,CH8
15,2,FrSkyX,D16_LBT,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14,CH15,CH16
15,3,FrSkyX,D16_8CH_LBT,0,CH5,CH6,CH7,CH8
15,4,FrSkyX,D16Cloned,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14,CH15,CH16
15,5,FrSkyX,D16Cloned_8CH,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14,CH15,CH16
64,0,FrSkyX2,D16_FCC,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14,CH15,CH16
64,1,FrSkyX2,D16_8CH_FCC,0,CH5,CH6,CH7,CH8
64,2,FrSkyX2,D16_LBT,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14,CH15,CH16
64,3,FrSkyX2,D16_8CH_LBT,1,CH5,CH6,CH7,CH8
64,4,FrSkyX2,D16Cloned,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14,CH15,CH16
64,5,FrSkyX2,D16Cloned_8CH,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14,CH15,CH16
65,0,FrSkyR9,R9_915,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14,CH15,CH16
65,1,FrSkyR9,R9_868,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14,CH15,CH16
65,2,FrSkyR9,R9_915_8CH,0,CH5,CH6,CH7,CH8
65,3,FrSkyR9,R9_968_8CH,0,CH5,CH6,CH7,CH8
55,0,FrSkyRX,RX,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14,CH15,CH16
55,1,FrSkyRX,CloneTX,0
58,0,FX816,P38,1
20,0,FY326,FY326,1,Flip,RTH,HLess,Expert,Calib
20,1,FY326,FY319,1,Flip,RTH,HLess,Expert,Calib
23,0,FY326,FY326,1,Flip,RTH,HLess,Expert
47,0,GD00x,V1,1,Trim,LED,Rate
47,1,GD00x,V2,1,Trim,LED,Rate
32,0,GW008,FY326,1,Flip
36,0,H8_3D,Std,1,Flip,Light,Pict,Video,RTH,FlMode,Cal1
36,1,H8_3D,H20H,1,Flip,Light,Pict,Video,Opt1,Opt2,Cal1,Cal2,Gimbal
36,2,H8_3D,H20,1,Flip,Light,Pict,Video,Opt1,Opt2,Cal1,Cal2,Gimbal
36,3,H8_3D,H30,1,Flip,Light,Pict,Video,Opt1,Opt2,Cal1,Cal2,Gimbal
4,0,Hisky,Std,0,Gear,Pitch,Gyro,CH8
4,1,Hisky,HK310,0,Aux
39,0,Hitec,Opt_Fw,0,CH5,CH6,CH7,CH8,CH9
39,1,Hitec,Opt_Hub,0,CH5,CH6,CH7,CH8,CH9
39,2,Hitec,Minima,0,CH5,CH6,CH7,CH8,CH9
26,0,Hontai,Std,1,Flip,LED,Pict,Video,HLess,RTH,Calib
26,1,Hontai,JJRCX1,1,Flip,Arm,Pict,Video,HLess,RTH,Calib
26,2,Hontai,X5C1,1,Flip,Arm,Pict,Video,HLess,RTH,Calib
26,3,Hontai,FQ777_951,1,Flip,Arm,Pict,Video,HLess,RTH,Calib
57,0,HoTT,Sync,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14,CH15,CH16
57,1,HoTT,No_Sync,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14,CH15,CH16
2,0,Hubsan,H107,1,Flip,Light,Pict,Video,HLess
2,1,Hubsan,H301,0,RTH,Light,Stab,Video
2,2,Hubsan,H501,0,RTH,Light,Pict,Video,HLess,GPS_H,ALT_H,Flip,FModes
22,0,J6Pro,Std,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12
71,0,JJRC345,JJRC345,1,Flip,HLess,RTH,LED,UNK1,UNK2,UNK3
71,1,JJRC345,SkyTmblr,1,Flip,HLess,RTH,LED,UNK1,UNK2,UNK3
49,0,KF606,Std,1,Trim
9,0,KN,WLToys,0,DRate,THold,IdleUp,Gyro,Ttrim,Atrim,Etrim
9,1,KN,Feilun,0,DRate,THold,IdleUp,Gyro,Ttrim,Atrim,Etrim
73,0,Kyosho,Std,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14
18,0,MJXQ,WHL08,1,Flip,LED,Pict,Video,HLess,RTH,AuFlip,Pan,Tilt,Rate
18,1,MJXQ,X600,1,Flip,LED,Pict,Video,HLess,RTH,AuFlip,Pan,Tilt,Rate
18,2,MJXQ,X800,1,Flip,LED,Pict,Video,HLess,RTH,AuFlip,Pan,Tilt,Rate
18,3,MJXQ,H26D,1,Flip,LED,Pict,Video,HLess,RTH,AuFlip,Pan,Tilt,Rate
18,4,MJXQ,E010,1,Flip,LED,Pict,Video,HLess,RTH,AuFlip,Pan,Tilt,Rate
18,5,MJXQ,H26WH,1,Flip,Arm,Pict,Video,HLess,RTH,AuFlip,Pan,Tilt,Rate
18,6,MJXQ,Phoenix,1,Flip,Arm,Pict,Video,HLess,RTH,AuFlip,Pan,Tilt,Rate
17,0,MT99XX,Std,1,Flip,LED,Pict,Video,HLess
17,1,MT99XX,H7,1,Flip,LED,Pict,Video,HLess
17,2,MT99XX,YZ,1,Flip,LED,Pict,Video,HLess
17,3,MT99XX,LS,1,Flip,Invert,Pict,Video,HLess
17,4,MT99XX,FY805,1,Flip,n-a,n-a,n-a,HLess
44,0,NCC1701,Std,1,Warp
77,0,OMP,M2,0,THold,IdleUp,6G_3D
60,0,Pelikan,PRO_V4,0,CH5,CH6,CH7,CH8
60,1,Pelikan,LITE_V4,0,CH5,CH6,CH7,CH8
51,0,Potensic,A20,1,TakLan,Emerg,Mode,HLess
66,0,Propel,74-Z,1,LEDs,RollCW,RolCCW,Fire,Weapon,Calib,AltHol,TakeOf,Land,Train
29,0,Q2x2,Q222,1,Flip,LED,Mod2,Mod1,HLess,RTH,XCal,YCal
29,1,Q2x2,Q242,1,Flip,LED,Pict,Video,HLess,RTH,XCal,YCal
29,2,Q2x2,Q282,1,Flip,LED,Pict,Video,HLess,RTH,XCal,YCal
31,0,Q303,Q303,1,AltHol,Flip,Pict,Video,HLess,RTH,Gimbal
31,1,Q303,C35,1,Arm,VTX,Pict,Video,n-a,RTH,Gimbal
31,2,Q303,CX10D,1,Arm,Flip
31,3,Q303,CX10WD,1,Arm,Flip
72,0,Q90C,Std,0,FMode,VTX+
74,0,RadioLink,Surface,0,CH5,CH6,CH7,CH8,FS_CH1,FS_CH2,FS_CH3,FS_CH4,FS_CH5,FS_CH6,FS_CH7,FS_CH8
74,1,RadioLink,Air,0,CH5,CH6,CH7,CH8,FS_CH1,FS_CH2,FS_CH3,FS_CH4,FS_CH5,FS_CH6,FS_CH7,FS_CH8
74,2,RadioLink,DumboRC,0,CH5,CH6,CH7,CH8,FS_CH1,FS_CH2,FS_CH3,FS_CH4,FS_CH5,FS_CH6,FS_CH7,FS_CH8
76,0,Realacc,R11,1,Flip,Light,Calib,HLess,RTH,UNK
50,0,Redpine,Fast,0,sCH5,sCH6,sCH7,sCH8,sCH9,sCH10,sCH11,sCH12,sCH13,sCH14,sCH15,sCH16
50,1,Redpine,Slow,0,sCH5,sCH6,sCH7,sCH8,sCH9,sCH10,sCH11,sCH12,sCH13,sCH14,sCH15,sCH16
21,0,Futaba,SFHSS,0,CH5,CH6,CH7,CH8
19,0,Shenqi,Cycle,1
68,0,Skyartec,Std,0,CH5,CH6,CH7
11,0,SLT,V1,0,Gear,Pitch
11,1,SLT,V2,0,CH5,CH6,CH7,CH8
11,2,SLT,Q100,0,Rates,n-a,CH7,CH8,Mode,Flip,n-a,n-a,Calib
11,3,SLT,Q200,0,Rates,n-a,CH7,CH8,Mode,VidOn,VidOff,Calib
11,4,SLT,MR100,0,Rates,n-a,CH7,CH8,Mode,Flip,Video,Pict
10,0,Symax,Std,1,Flip,Rates,Pict,Video,HLess
10,1,Symax,X5C,1,Flip,Rates,Pict,Video,HLess
61,0,Tiger,Std,1,Flip,Light
43,0,Traxxas,6519,0
5,0,V2x2,Std,1,Flip,Light,Pict,Video,HLess,CalX,CalY
5,1,V2x2,JXD506,1,Flip,Light,Pict,Video,HLess,StaSto,Emerg,Cam_UD
48,0,V761,3CH,0,Gyro,Calib,Flip,RtnAct,Rtn
48,1,V761,4CH,0,Gyro,Calib,Flip,RtnAct,Rtn
46,0,V911s,V911s,1,Calib
46,1,V911s,E119,1,Calib
22,0,WFLY,WFR0xS,0,CH5,CH6,CH7,CH8,CH9
30,0,WK2x01,WK2801,0,CH5,CH6,CH7,CH8
30,1,WK2x01,WK2401,0
30,2,WK2x01,W6_5_1,0,Gear,Dis,Gyro
30,3,WK2x01,W6_6_1,0,Gear,Col,Gyro
30,4,WK2x01,W6HEL,0,Gear,Col,Gyro
30,5,WK2x01,W6HEL_I,0,Gear,Col,Gyro
62,0,XK,X450,1,FMode,TakeOf,Emerg,3D_6G,Pict,Video
62,1,XK,X420,1,FMode,TakeOf,Emerg,3D_6G,Pict,Video
8,0,YD717,Std,1,Flip,Light,Pict,Video,HLess
8,1,YD717,SkyWlkr,1,Flip,Light,Pict,Video,HLess
8,2,YD717,Simax4,1,Flip,Light,Pict,Video,HLess
8,3,YD717,XinXun,1,Flip,Light,Pict,Video,HLess
8,4,YD717,NiHui,1,Flip,Light,Pict,Video,HLess
52,0,ZSX,280,1,Light
78,0,M-Link,Std,0,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14,CH15,CH16
79,0,WFLY2,RF20x,0,CH5,CH6,CH7,CH8,CH9,CH10
80,0,E016Hv2,E016Hv2,1,TakLan,EmStop,Flip,Calib,HLess,RTH
81,0,E010r5,E010r5,1,Flip,LED,CALIB,HLess,RTH,GLIDE
82,0,LOLI,LOLI,0,CH5,CH6,CH7,CH8,1SwSePpPw,2SwSePw,3SwSe,4SwSe,5SwSeSb,6SwSe,7SwSePw,8SwSe
83,0,E129,E129,1,TakLan,EmStop,TrimA,TrimE,TrimR

View File

@@ -0,0 +1,311 @@
local toolName = "TNS|Multi chan namer|TNE"
---- #########################################################################
---- # #
---- # Copyright (C) OpenTX #
-----# #
---- # License GPLv2: http://www.gnu.org/licenses/gpl-2.0.html #
---- # #
---- # This program is free software; you can redistribute it and/or modify #
---- # it under the terms of the GNU General Public License version 2 as #
---- # published by the Free Software Foundation. #
---- # #
---- # This program is distributed in the hope that it will be useful #
---- # but WITHOUT ANY WARRANTY; without even the implied warranty of #
---- # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
---- # GNU General Public License for more details. #
---- # #
---- #########################################################################
local protocol_name = ""
local sub_protocol_name = ""
local bind_ch = 0
local module_conf = {}
local module_pos = "Internal"
local file_ok = 0
local done = 0
local protocol = 0
local sub_protocol = 0
local f_seek = 0
local channel_names={}
local num_search = "Searching"
local function drawScreenTitle(title)
if LCD_W == 480 then
lcd.drawFilledRectangle(0, 0, LCD_W, 30, TITLE_BGCOLOR)
lcd.drawText(1, 5, title, MENU_TITLE_COLOR)
else
lcd.drawScreenTitle(title, 0, 0)
end
end
function bitand(a, b)
local result = 0
local bitval = 1
while a > 0 and b > 0 do
if a % 2 == 1 and b % 2 == 1 then -- test the rightmost bits
result = result + bitval -- set the current bit
end
bitval = bitval * 2 -- shift left
a = math.floor(a/2) -- shift right
b = math.floor(b/2)
end
return result
end
local function Multi_Draw_LCD(event)
local line = 0
lcd.clear()
drawScreenTitle("Multi channels namer")
--Display settings
local lcd_opt = 0
if LCD_W == 480 then
x_pos = 10
y_pos = 32
y_inc = 20
else
x_pos = 0
y_pos = 9
y_inc = 8
lcd_opt = SMLSIZE
end
--Multi Module detection
if module_conf["Type"] ~= 6 then
if LCD_W == 480 then
lcd.drawText(10,50,"No Multi module configured...", BLINK)
else
--Draw on LCD_W=128
lcd.drawText(2,17,"No Multi module configured...",SMLSIZE)
end
return
else
lcd.drawText(x_pos, y_pos+y_inc*line,module_pos .. " Multi detected.", lcd_opt)
line = line + 1
end
--Channel order
if (ch_order == -1) then
lcd.drawText(x_pos, y_pos+y_inc*line,"Channels order can't be read from Multi...", lcd_opt)
line = line + 1
end
--Can't open file MultiChan.txt
if file_ok == 0 then
lcd.drawText(x_pos, y_pos+y_inc*line,"Can't read MultiChan.txt file...", lcd_opt)
return
end
if ( protocol_name == "" or sub_protocol_name == "" ) and f_seek ~=-1 then
local f = io.open("/SCRIPTS/TOOLS/MultiChan.txt", "r")
if f == nil then return end
lcd.drawText(x_pos, y_pos+y_inc*line,num_search, lcd_opt)
num_search = num_search .. "."
if #num_search > 15 then
num_search = string.sub(num_search,1,9)
end
local proto = 0
local sub_proto = 0
local proto_name = ""
local sub_proto_name = ""
local channels = ""
local nbr_try = 0
local nbr_car = 0
repeat
io.seek(f, f_seek)
local data = io.read(f, 100) -- read 100 characters
if #data ==0 then
f_seek = -1 -- end of file
break
end
proto, sub_proto, proto_name, sub_proto_name, bind_ch, channels = string.match(data,'(%d+),(%d),([%w-_ ]+),([%w-_ ]+),(%d)(.+)')
if proto ~= nil and sub_proto ~= nil and protocol_name ~= nil and sub_protocol_name ~= nil and bind_ch ~= nil then
if tonumber(proto) == protocol and tonumber(sub_proto) == sub_protocol then
protocol_name = proto_name
sub_protocol_name = sub_proto_name
bind_ch = tonumber(bind_ch)
if channels ~= nil then
--extract channel names
nbr_car = string.find(channels, "\r")
if nbr_car == nil then nbr_car = string.find(channels, "\n") end
if nbr_car ~= nil then
channels = string.sub(channels,1,nbr_car-1)
end
local i = 5
for k in string.gmatch(channels, ",([%w-_ ]+)") do
channel_names[i] = k
i = i + 1
end
end
f_seek = -1 -- protocol found
break
end
end
if f_seek ~= -1 then
nbr_car = string.find(data, "\n")
if nbr_car == nil then nbr_car = string.find(data, "\r") end
if nbr_car == nil then
f_seek = -1 -- end of file
break
end
f_seek = f_seek + nbr_car -- seek to next line
nbr_try = nbr_try + 1
end
until nbr_try > 20 or f_seek == -1
io.close(f)
end
if f_seek ~= -1 then
return -- continue searching...
end
--Protocol & Sub_protocol
if protocol_name == "" or sub_protocol_name == "" then
lcd.drawText(x_pos, y_pos+y_inc*line,"Unknown protocol "..tostring(protocol).."/"..tostring(sub_protocol).." ...", lcd_opt)
return
elseif LCD_W > 128 then
lcd.drawText(x_pos, y_pos+y_inc*line,"Protocol: " .. protocol_name .. " / SubProtocol: " .. sub_protocol_name, lcd_opt)
line = line + 1
else
lcd.drawText(x_pos, y_pos+y_inc*line,"Protocol: " .. protocol_name, lcd_opt)
line = line + 1
lcd.drawText(x_pos, y_pos+y_inc*line,"SubProtocol: " .. sub_protocol_name, lcd_opt)
line = line + 1
end
text1=""
text2=""
for i,v in ipairs(channel_names) do
if i<=8 then
if i==1 then
text1 = v
else
text1=text1 .. "," .. v
end
else
if i==9 then
text2 = v
else
text2=text2 .. "," .. v
end
end
end
if LCD_W > 128 then
lcd.drawText(x_pos, y_pos+y_inc*line,"Channels: " .. text1, lcd_opt)
line = line + 1
if text2 ~= "" then
lcd.drawText(x_pos*9, y_pos+y_inc*line,text2, lcd_opt)
line = line + 1
end
end
if event ~= EVT_VIRTUAL_ENTER and done == 0 then
lcd.drawText(x_pos, y_pos+y_inc*line,"<ENT> Save", lcd_opt + INVERS + BLINK)
return
end
lcd.drawText(x_pos, y_pos+y_inc*line,"Setting channel names.", lcd_opt)
line = line + 1
local output, nbr
if done == 0 then
for i,v in ipairs(channel_names) do
output = model.getOutput(i-1)
output["name"] = v
model.setOutput(i-1,output)
nbr = i
end
for i = nbr, 15 do
output = model.getOutput(i)
output["name"] = "n-a"
model.setOutput(i,output)
end
if bind_ch == 1 then
output = model.getOutput(15)
output["name"] = "BindCH"
model.setOutput(15,output)
end
done = 1
end
lcd.drawText(x_pos, y_pos+y_inc*line,"Done!", lcd_opt)
line = line + 1
end
-- Init
local function Multi_Init()
module_conf = model.getModule(0)
if module_conf["Type"] ~= 6 then
module_pos = "External"
module_conf = model.getModule(1)
if module_conf["Type"] ~= 6 then
return
end
end
protocol = module_conf["protocol"]
sub_protocol = module_conf["subProtocol"]
--Exceptions on first 4 channels...
local stick_names = { "Rud", "Ele", "Thr", "Ail" }
if ( protocol == 4 and sub_protocol == 1 ) or protocol == 19 or protocol == 52 then -- Hisky/HK310, Shenqi, ZSX
stick_names[2] = "n-a"
stick_names[4] = "n-a"
elseif protocol == 43 then -- Traxxas
stick_names[2] = "Aux4"
stick_names[4] = "Aux3"
elseif ( protocol == 48 and sub_protocol == 0 ) then -- V761 3CH
stick_names[4] = "n-a"
elseif protocol == 47 or protocol == 49 or protocol == 58 then -- GD00x, KF606, FX816
stick_names[1] = "n-a"
stick_names[2] = "n-a"
end
--Determine fist 4 channels order
local ch_order=module_conf["channelsOrder"]
if (ch_order == -1) then
channel_names[1] = stick_names[defaultChannel(0)+1]
channel_names[2] = stick_names[defaultChannel(1)+1]
channel_names[3] = stick_names[defaultChannel(2)+1]
channel_names[4] = stick_names[defaultChannel(3)+1]
else
channel_names[bitand(ch_order,3)+1] = stick_names[4]
ch_order = math.floor(ch_order/4)
channel_names[bitand(ch_order,3)+1] = stick_names[2]
ch_order = math.floor(ch_order/4)
channel_names[bitand(ch_order,3)+1] = stick_names[3]
ch_order = math.floor(ch_order/4)
channel_names[bitand(ch_order,3)+1] = stick_names[1]
end
--Exceptions on first 4 channels...
if ( protocol == 73 or (protocol == 74 and sub_protocol == 0) ) then -- Kyosho or RadioLink Surface
channel_names[1] = "ST"
channel_names[2] = "THR"
channel_names[3] = "CH3"
channel_names[4] = "CH4"
end
--Check MultiChan.txt
local f = io.open("/SCRIPTS/TOOLS/MultiChan.txt", "r")
if f == nil then return end
file_ok = 1
io.close(f)
end
-- Main
local function Multi_Run(event)
if event == nil then
error("Cannot be run as a model script!")
return 2
else
Multi_Draw_LCD(event)
if event == EVT_VIRTUAL_EXIT then
return 2
end
end
return 0
end
return { init=Multi_Init, run=Multi_Run }

221
Lua_scripts/MultiLOLI.lua Normal file
View File

@@ -0,0 +1,221 @@
local toolName = "TNS|Multi LOLI RX config|TNE"
---- #########################################################################
---- # #
---- # Copyright (C) OpenTX #
-----# #
---- # License GPLv2: http://www.gnu.org/licenses/gpl-2.0.html #
---- # #
---- # This program is free software; you can redistribute it and/or modify #
---- # it under the terms of the GNU General Public License version 2 as #
---- # published by the Free Software Foundation. #
---- # #
---- # This program is distributed in the hope that it will be useful #
---- # but WITHOUT ANY WARRANTY; without even the implied warranty of #
---- # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
---- # GNU General Public License for more details. #
---- # #
---- #########################################################################
local loli_nok = false
local channels={ { 768, "PWM", 100, 102, "PPM", 50, -768, "Servo", 0, -2048, "Switch", -100 }, -- CH1
{ 768, "PWM", 100, -768, "Servo", 0, -2048, "Switch", -100 }, -- CH2
{ -768, "Servo", 0, -2048, "Switch", -100 }, -- CH3
{ -768, "Servo", 0, -2048, "Switch", -100 }, -- CH4
{ 102, "SBUS", 50, -768, "Servo", 0, -2048, "Switch", -100 }, -- CH5
{ -768, "Servo", 0, -2048, "Switch", -100 }, -- CH6
{ 768, "PWM", 100, -768, "Servo", 0, -2048, "Switch", -100 }, -- CH7
{ -768, "Servo", 0, -2048, "Switch", -100 } } -- CH8
local sel = 1
local edit = false
local blink = 0
local BLINK_SPEED = 15
local function drawScreenTitle(title)
if LCD_W == 480 then
lcd.drawFilledRectangle(0, 0, LCD_W, 30, TITLE_BGCOLOR)
lcd.drawText(1, 5, title, MENU_TITLE_COLOR)
else
lcd.drawScreenTitle(title, 0, 0)
end
end
local function LOLI_Draw_LCD(event)
local line = 0
lcd.clear()
--Display settings
local lcd_opt = 0
if LCD_W == 480 then
drawScreenTitle("Multi - LOLI RX configuration tool")
x_pos = 152
x_inc = 90
y_pos = 40
y_inc = 20
else
x_pos = 5
x_inc = 30
y_pos = 1
y_inc = 8
lcd_opt = SMLSIZE
end
--Multi Module detection
if loli_nok then
if LCD_W == 480 then
lcd.drawText(10,50,"The LOLI protocol is not selected...", lcd_opt)
else
--Draw on LCD_W=128
lcd.drawText(2,17,"LOLI protocol not selected...",SMLSIZE)
end
return
end
--Display current config
if LCD_W == 480 then
line = line + 1
lcd.drawText(x_pos, y_pos+y_inc*line -2, "Channel", lcd_opt)
lcd.drawText(x_pos+x_inc, y_pos+y_inc*line -2, "Function", lcd_opt)
lcd.drawRectangle(x_pos-4, y_pos+y_inc*line -4 , 2*x_inc +2, 188)
lcd.drawLine(x_pos-4, y_pos+y_inc*line +18, x_pos-4 +2*x_inc +1, y_pos+y_inc*line +18, SOLID, 0)
lcd.drawLine(x_pos+x_inc -5, y_pos+y_inc*line -4, x_pos+x_inc -5, y_pos+y_inc*line -5 +188, SOLID, 0)
line = line + 1
end
local out
for i = 1, 8 do
out = getValue("ch"..(i+8))
lcd.drawText(x_pos, y_pos+y_inc*line, "CH"..i, lcd_opt)
for j = 1, #channels[i], 3 do
if out > channels[i][j] then
if sel == i then
invert = INVERS
if edit == true then
blink = blink + 1
if blink > BLINK_SPEED then
invert = 0
if blink > BLINK_SPEED * 2 then
blink = 0
end
end
end
else
invert = 0
end
lcd.drawText(x_pos+x_inc, y_pos+y_inc*line, channels[i][j+1], lcd_opt + invert)
break
end
end
line = line + 1
end
end
local function LOLI_Change_Value(dir)
local pos = 0
local out
--look for the current position
out = getValue("ch"..(sel+8))
for j = 1, #channels[sel], 3 do
if out > channels[sel][j] then
pos = j
break
end
end
--decrement or increment
if dir < 0 and pos > 1 then
pos = pos - 3
elseif dir > 0 and pos + 3 < #channels[sel] then
pos = pos + 3
else
return
end
--delete all mixers for the selected channel
local num_mix = model.getMixesCount(sel-1 +8)
for i = 1, num_mix do
model.deleteMix(sel-1 +8, 0);
end
--create new mixer
local source_max = getFieldInfo("cyc1")
local val = { name = channels[sel][pos+1],
source = source_max.id - 1, -- MAX=100 on TX16S
weight = channels[sel][pos+2],
offset = 0,
switch = 0,
multiplex = 0,
curveType = 0,
curveValue = 0,
flightModes = 0,
carryTrim = false,
mixWarn = 0,
delayUp = 0,
delayDown = 0,
speedUp = 0,
speedDown = 0 }
model.insertMix(sel-1 +8, 0, val)
end
local function LOLI_Menu(event)
if event == EVT_VIRTUAL_NEXT then
if edit == false then
-- not changing a value
if sel < 8 then
sel = sel + 1
end
else
-- need to inc the value
LOLI_Change_Value(1)
end
elseif event == EVT_VIRTUAL_PREV then
if edit == false then
-- not changing a value
if sel > 1 then
sel = sel - 1
end
else
-- need to dec the value
LOLI_Change_Value(-1)
end
elseif event == EVT_VIRTUAL_ENTER then
if edit == false then
edit = true
blink = BLINK_SPEED
else
edit = false
end
end
end
-- Init
local function LOLI_Init()
local module_conf = model.getModule(0)
if module_conf["Type"] ~= 6 or module_conf["protocol"] ~= 82 then
module_conf = model.getModule(1)
if module_conf["Type"] ~= 6 or module_conf["protocol"] ~= 82 then
loli_nok = true
end
end
end
-- Main
local function LOLI_Run(event)
if event == nil then
error("Cannot be run as a model script!")
return 2
elseif event == EVT_VIRTUAL_EXIT then
return 2
else
LOLI_Menu(event)
LOLI_Draw_LCD(event)
return 0
end
end
return { init=LOLI_Init, run=LOLI_Run }

56
Lua_scripts/README.md Normal file
View File

@@ -0,0 +1,56 @@
# Multiprotocol TX Module OpenTX LUA scripts
<img align="right" width=300 src="../docs/images/multi.png" />
If you like this project and want to support further development please consider making a [donation](../docs/Donations.md).
<table cellspacing=0>
<tr>
<td align=center width=200><a href="https://www.paypal.com/cgi-bin/webscr?cmd=_donations&business=VF2K9T23DRY56&lc=US&item_name=DIY%20Multiprotocol&currency_code=EUR&amount=5&bn=PP%2dDonationsBF%3abtn_donate_SM%2egif%3aNonHosted"><img src="../docs/images/donate_button.png" border="0" name="submit" title="PayPal - Donate €5" alt="Donate €5"/></a><br><b>€5</b></td>
<td align=center width=200><a href="https://www.paypal.com/cgi-bin/webscr?cmd=_donations&business=VF2K9T23DRY56&lc=US&item_name=DIY%20Multiprotocol&currency_code=EUR&amount=10&bn=PP%2dDonationsBF%3abtn_donate_SM%2egif%3aNonHosted"><img src="../docs/images/donate_button.png" border="0" name="submit" title="PayPal - Donate €10" alt="Donate €10"/></a><br><b>€10</b></td>
<td align=center width=200><a href="https://www.paypal.com/cgi-bin/webscr?cmd=_donations&business=VF2K9T23DRY56&lc=US&item_name=DIY%20Multiprotocol&currency_code=EUR&amount=15&bn=PP%2dDonationsBF%3abtn_donate_SM%2egif%3aNonHosted"><img src="../docs/images/donate_button.png" border="0" name="submit" title="PayPal - Donate €15" alt="Donate €10"/></a><br><b>€15</b></td>
<td align=center width=200><a href="https://www.paypal.com/cgi-bin/webscr?cmd=_donations&business=VF2K9T23DRY56&lc=US&item_name=DIY%20Multiprotocol&currency_code=EUR&amount=25&bn=PP%2dDonationsBF%3abtn_donate_SM%2egif%3aNonHosted"><img src="../docs/images/donate_button.png" border="0" name="submit" title="PayPal - Donate €25" alt="Donate €25"/></a><br><b>€25</b></td>
<td align=center width=200><a href="https://www.paypal.com/cgi-bin/webscr?cmd=_donations&business=VF2K9T23DRY56&lc=US&item_name=DIY%20Multiprotocol&currency_code=EUR&bn=PP%2dDonationsBF%3abtn_donate_SM%2egif%3aNonHosted"><img src="../docs/images/donate_button.png" border="0" name="submit" title="PayPal - Donate" alt="Donate"/></a><br><b>Other</b></td>
</tr>
</table>
## MultiChannelsUpdater
Automatically name the channels based on the loaded Multi protocol and sub protocol including the module channel order convention.
Need OpenTX 2.3.9 or above. Located on the radio SD card under \SCRIPTS\TOOLS. This script needs MultiChan.txt to be present in the same folder.
[![MultiChannelsUpdater](https://img.youtube.com/vi/L58ayXuewyA/0.jpg)](https://www.youtube.com/watch?v=L58ayXuewyA)
## MultiLOLI
Script to set the channels function (switch, servo, pwm, ppm, sbus) on a [LOLI RX](https://github.com/pascallanger/DIY-Multiprotocol-TX-Module/blob/master/Protocols_Details.md#loli---82)
[![MultiLOLIconfig](https://img.youtube.com/vi/e698pQxfv-A/0.jpg)](https://www.youtube.com/watch?v=e698pQxfv-A)
## Graupner HoTT
Enable text configuration of the HoTT RX and sensors: Vario, GPS, ESC, GAM and EAM.
Need OpenTX 2.3.9 or above. Located on the radio SD card under \SCRIPTS\TOOLS.
Notes:
- Menu/MDL/Model is used to cycle through the detected sensors.
- It's normal to lose the telemetry feed while using the text mode configuration. Telemetry will resume properly if the script is exited by doing a short press on the exit button.
[![Text mode video](https://img.youtube.com/vi/81wd8NlF3Qw/0.jpg)](https://www.youtube.com/watch?v=81wd8NlF3Qw)
## DSM Forward Programming
This is a work in progress. It's only available for color screens (Horus, TX16S, T16, T18...).
If some text appears as Unknown_xxx, please report xxx and what the exact text display should be.
Need OpenTX 2.3.10 nightly or above. Located on the radio SD card under \SCRIPTS\TOOLS.
[![DSM Forward Programming](https://img.youtube.com/vi/sjIaDw5j9nE/0.jpg)](https://www.youtube.com/watch?v=sjIaDw5j9nE)
## DSM PID Flight log gain parameters for Blade micros
Lua telemetry script from [feathering on RCGroups](https://www.rcgroups.com/forums/showpost.php?p=46033341&postcount=20728) to facilitate setting the Gain Parameters on the Blade 150S FBL. It doesn't use Forward Programming but instead it just reads telemetry data from the Multi-module and displays it on a telemetry display.
It is very similar to the Telemetry Based Text Generator functionality on Spektrum transmitters where one doesn't need to rely on the angle of the swashplate to determine selection/value.

127
Lua_scripts/pidDsm.lua Normal file
View File

@@ -0,0 +1,127 @@
--
-- This telemetry script displays the Flight Log Gain
-- Parameters streamed from the Blade 150S Spektrum AR6335A
-- Flybarless Controller.
-- The script facilitates the setting of the FBL's
-- Gain Parameters including PID for both
-- cyclic and tail. It is similar to the Telemetry Based
-- Text Generator available on Spektrum transmitters.
-- Supporting similar Blade micros such as the Fusion 180
-- would possibly require minor modifications to this script.
-- This script reads telemetry data from the Spektrum
-- receiver and thus functionality relies on data being
-- captured by the OpenTX transmitter. A DSM
-- telemetry-ready module is required. Please see the
-- MULTI-Module project at https://www.multi-module.org/.
-- The only supported display is the Taranis'. It may work
-- with higher res screens.
--
-- Sensor names
local PSensor = "FdeA"
local ISensor = "FdeB"
local DSensor = "FdeL"
local RSensor = "FdeR"
local ActiveParamSensor = "Hold"
local tags = {"P", "I", "D"}
local function getPage(iParam)
-- get page from 0-based index
-- {0,1,2,3}: cyclic (1), {4,5,6,7}: tail (2)
local res = (math.floor(iParam/4)==0) and 1 or 2
return res
end
function round(v)
-- round float
local factor = 100
return math.floor(v * factor + 0.5) / factor
end
local function readValue(sensor)
-- read from sensor, round and return
local v = getValue(sensor)
v = round(v)
return v
end
local function readActiveParamValue(sensor)
-- read and return a validated active parameter value
local v = getValue(sensor)
if (v<1 or v>8) then
return nil
end
return v
end
local function readParameters()
-- read and return parameters
local p = readValue(PSensor)
local i = readValue(ISensor)
local d = readValue(DSensor)
local r = readValue(RSensor)
local a = readActiveParamValue(ActiveParamSensor)
return {p,i,d,r,a}
end
local function drawParameters()
-- draw labels and params on screen
local params = readParameters()
local activeParam = params[5]
-- if active gain does not validate then assume
-- Gain Adjustment Mode is disabled
if not activeParam then
lcd.clear()
lcd.drawText(20,30,"Please enter Gain Adjustment Mode")
return
end
local activePage = getPage(activeParam-1)
for iParam=0,7 do
-- highlight selected parameter
local attr = (activeParam==iParam+1) and 2 or 0
-- circular index (per page)
local perPageIndx = iParam % 4 + 1
-- check if displaying cyclic params.
local isCyclicPage = (getPage(iParam)==1)
-- set y draw coord
local y = perPageIndx*10+2
-- labels
local x = isCyclicPage and 6 or 120
-- labels are P,I,D for both pages except for last param
local val = iParam==3 and "Response" or
(iParam==7 and "Filtering" or tags[perPageIndx])
lcd.drawText (x, y, val, attr)
-- gains
-- set all params for non-active page to '--' rather than 'last value'
val = (getPage(iParam)==activePage) and params[perPageIndx] or '--'
x = isCyclicPage and 70 or 180
lcd.drawText (x, y, val, attr)
end
end
local function run_func(event)
-- TODO: calling clear() on every function call redrawing all labels is not ideal
lcd.clear()
lcd.drawText (8, 2, "Cyclic (0...200)")
lcd.drawText (114, 2, "Tail (0...200)")
drawParameters()
end
local function init_func() end
local function bg_func() end
return { run=run_func, background=bg_func, init=init_func }

View File

@@ -27,13 +27,16 @@ void A7105_WriteData(uint8_t len, uint8_t channel)
for (i = 0; i < len; i++)
SPI_Write(packet[i]);
A7105_CSN_on;
if(protocol!=PROTO_FLYSKY)
if(protocol!=PROTO_WFLY2)
{
A7105_Strobe(A7105_STANDBY); //Force standby mode, ie cancel any TX or RX...
A7105_SetTxRxMode(TX_EN); //Switch to PA
if(!(protocol==PROTO_FLYSKY || protocol==PROTO_KYOSHO))
{
A7105_Strobe(A7105_STANDBY); //Force standby mode, ie cancel any TX or RX...
A7105_SetTxRxMode(TX_EN); //Switch to PA
}
A7105_WriteReg(A7105_0F_PLL_I, channel);
A7105_Strobe(A7105_TX);
}
A7105_WriteReg(A7105_0F_PLL_I, channel);
A7105_Strobe(A7105_TX);
}
void A7105_ReadData(uint8_t len)
@@ -107,7 +110,7 @@ void A7105_WriteID(uint32_t ida)
{
A7105_CSN_off;
SPI_Write(A7105_06_ID_DATA); //ex id=0x5475c52a ;txid3txid2txid1txid0
SPI_Write((ida>>24)&0xff); //53
SPI_Write((ida>>24)&0xff); //54
SPI_Write((ida>>16)&0xff); //75
SPI_Write((ida>>8)&0xff); //c5
SPI_Write((ida>>0)&0xff); //2a
@@ -183,8 +186,8 @@ void A7105_AdjustLOBaseFreq(uint8_t cmd)
#endif
break;
case PROTO_BUGS:
#ifdef FORCE_HUBSAN_TUNING
offset=(int16_t)FORCE_HUBSAN_TUNING;
#ifdef FORCE_BUGS_TUNING
offset=(int16_t)FORCE_BUGS_TUNING;
#endif
break;
case PROTO_FLYSKY:
@@ -192,7 +195,28 @@ void A7105_AdjustLOBaseFreq(uint8_t cmd)
offset=(int16_t)FORCE_FLYSKY_TUNING;
#endif
break;
case PROTO_HEIGHT:
#ifdef FORCE_HEIGHT_TUNING
offset=(int16_t)FORCE_HEIGHT_TUNING;
#endif
break;
case PROTO_PELIKAN:
#ifdef FORCE_PELIKAN_TUNING
offset=(int16_t)FORCE_PELIKAN_TUNING;
#endif
break;
case PROTO_KYOSHO:
#ifdef FORCE_KYOSHO_TUNING
offset=(int16_t)FORCE_KYOSHO_TUNING;
#endif
break;
case PROTO_WFLY2:
#ifdef FORCE_WFLY2_TUNING
offset=(int16_t)FORCE_WFLY2_TUNING;
#endif
break;
case PROTO_AFHDS2A:
case PROTO_AFHDS2A_RX:
#ifdef FORCE_AFHDS2A_TUNING
offset=(int16_t)FORCE_AFHDS2A_TUNING;
#endif
@@ -200,7 +224,7 @@ void A7105_AdjustLOBaseFreq(uint8_t cmd)
}
}
if(offset==1024) // Use channel 15 as an input
offset=convert_channel_16b_nolimit(CH15,-300,300);
offset=convert_channel_16b_nolimit(CH15,-300,300,false);
if(old_offset==offset) // offset is the same as before...
return;
@@ -247,23 +271,7 @@ static void __attribute__((unused)) A7105_SetVCOBand(uint8_t vb1, uint8_t vb2)
A7105_WriteReg(A7105_25_VCO_SBCAL_I, vb2 | 0x08);
}
#ifdef HUBSAN_A7105_INO
const uint8_t PROGMEM HUBSAN_A7105_regs[] = {
0xFF, 0x63, 0xFF, 0x0F, 0xFF, 0xFF, 0xFF ,0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x05, 0x04, 0xFF, // 00 - 0f
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2B, 0xFF, 0xFF, 0x62, 0x80, 0xFF, 0xFF, 0x0A, 0xFF, 0xFF, 0x07, // 10 - 1f
0x17, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x47, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, // 20 - 2f
0xFF, 0xFF // 30 - 31
};
#endif
#ifdef FLYSKY_A7105_INO
const uint8_t PROGMEM FLYSKY_A7105_regs[] = {
0xff, 0x42, 0x00, 0x14, 0x00, 0xff, 0xff ,0x00, 0x00, 0x00, 0x00, 0x01, 0x21, 0x05, 0x00, 0x50, // 00 - 0f
0x9e, 0x4b, 0x00, 0x02, 0x16, 0x2b, 0x12, 0x00, 0x62, 0x80, 0x80, 0x00, 0x0a, 0x32, 0xc3, 0x0f, // 10 - 1f
0x13, 0xc3, 0x00, 0xff, 0x00, 0x00, 0x3b, 0x00, 0x17, 0x47, 0x80, 0x03, 0x01, 0x45, 0x18, 0x00, // 20 - 2f
0x01, 0x0f // 30 - 31
};
#endif
#ifdef AFHDS2A_A7105_INO
#if defined(AFHDS2A_A7105_INO) || defined(AFHDS2A_RX_A7105_INO)
const uint8_t PROGMEM AFHDS2A_A7105_regs[] = {
0xFF, 0x42 | (1<<5), 0x00, 0x25, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x01, 0x3c, 0x05, 0x00, 0x50, // 00 - 0f
0x9e, 0x4b, 0x00, 0x02, 0x16, 0x2b, 0x12, 0x4f, 0x62, 0x80, 0xFF, 0xFF, 0x2a, 0x32, 0xc3, 0x1f, // 10 - 1f
@@ -279,6 +287,60 @@ const uint8_t PROGMEM BUGS_A7105_regs[] = {
0x01, 0x0f // 30 - 31
};
#endif
#ifdef FLYSKY_A7105_INO
const uint8_t PROGMEM FLYSKY_A7105_regs[] = {
0xff, 0x42, 0x00, 0x14, 0x00, 0xff, 0xff ,0x00, 0x00, 0x00, 0x00, 0x01, 0x21, 0x05, 0x00, 0x50, // 00 - 0f
0x9e, 0x4b, 0x00, 0x02, 0x16, 0x2b, 0x12, 0x00, 0x62, 0x80, 0x80, 0x00, 0x0a, 0x32, 0xc3, 0x0f, // 10 - 1f
0x13, 0xc3, 0x00, 0xff, 0x00, 0x00, 0x3b, 0x00, 0x17, 0x47, 0x80, 0x03, 0x01, 0x45, 0x18, 0x00, // 20 - 2f
0x01, 0x0f // 30 - 31
};
#endif
#ifdef HEIGHT_A7105_INO
const uint8_t PROGMEM HEIGHT_A7105_regs[] = {
0xff, 0x42, 0x00, 0x07, 0x00, 0xff, 0xff ,0x00, 0x00, 0x00, 0x00, 0x01, 0x21, 0x05, 0x01, 0x50, // 00 - 0f
0x9e, 0x4b, 0x00, 0x02, 0x16, 0x2b, 0x12, 0x00, 0x62, 0x80, 0x80, 0x00, 0x0a, 0x32, 0xc3, 0x1f, // 10 - 1f
0x12, 0x00, 0x00, 0xff, 0x00, 0x00, 0x3a, 0x00, 0x3f, 0x47, 0x80, 0x03, 0x01, 0x45, 0x18, 0x00, // 20 - 2f
0x01, 0x0f // 30 - 31
};
#endif
#ifdef HUBSAN_A7105_INO
const uint8_t PROGMEM HUBSAN_A7105_regs[] = {
0xFF, 0x63, 0xFF, 0x0F, 0xFF, 0xFF, 0xFF ,0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x05, 0x04, 0xFF, // 00 - 0f
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2B, 0xFF, 0xFF, 0x62, 0x80, 0xFF, 0xFF, 0x0A, 0xFF, 0xFF, 0x07, // 10 - 1f
0x17, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x47, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, // 20 - 2f
0xFF, 0xFF // 30 - 31
};
#endif
#ifdef PELIKAN_A7105_INO
const uint8_t PROGMEM PELIKAN_A7105_regs[] = {
0xff, 0x42, 0x00, 0x0F, 0x00, 0xff, 0xff ,0x00, 0x00, 0x00, 0x00, 0x01, 0x21, 0x05, 0x01, 0x50, // 00 - 0f
0x9e, 0x4b, 0x00, 0x02, 0x16, 0x2b, 0x12, 0x00, 0x62, 0x80, 0x80, 0x00, 0x0a, 0x32, 0xc3, 0x07, // 10 - 1f
0x16, 0x00, 0x00, 0xff, 0x00, 0x00, 0x3b, 0x00, 0x1f, 0x47, 0x80, 0x03, 0x01, 0x45, 0x18, 0x00, // 20 - 2f
0x01, 0x0f // 30 - 31
};
#endif
#ifdef KYOSHO_A7105_INO
const uint8_t PROGMEM KYOSHO_A7105_regs[] = {
0xff, 0x42, 0xff, 0x25, 0x00, 0xff, 0xff ,0x00, 0x00, 0x00, 0x00, 0x01, 0x21, 0x05, 0x00, 0x50, // 00 - 0f
0x9e, 0x4b, 0x00, 0x02, 0x16, 0x2b, 0x12, 0x40, 0x62, 0x80, 0x80, 0x00, 0x0a, 0x32, 0x03, 0x1f, // 10 - 1f
0x1e, 0x00, 0x00, 0xff, 0x00, 0x00, 0x23, 0x70, 0x1F, 0x47, 0x80, 0x57, 0x01, 0x45, 0x19, 0x00, // 20 - 2f
0x01, 0x0f // 30 - 31
};
const uint8_t PROGMEM KYOSHO_HYPE_A7105_regs[] = {
0xff, 0x42, 0x00, 0x10, 0xC0, 0xff, 0xff ,0x00, 0x00, 0x00, 0x00, 0x01, 0x09, 0x05, 0x01, 0x04, // 00 - 0f
0x9e, 0x4b, 0x00, 0x02, 0x16, 0x2b, 0x12, 0x00, 0x62, 0x80, 0x80, 0x00, 0x0a, 0x96, 0xc2, 0x1f, // 10 - 1f
0x12, 0x00, 0x00, 0xff, 0x00, 0x00, 0x3a, 0x00, 0x17, 0x47, 0x80, 0x03, 0x01, 0x45, 0x18, 0x00, // 20 - 2f
0x01, 0x0f // 30 - 31
};
#endif
#ifdef WFLY2_A7105_INO //A7106 values
const uint8_t PROGMEM WFLY2_A7105_regs[] = {
0xff, 0x62, 0xff, 0x1F, 0x40, 0xff, 0xff ,0x00, 0x00, 0x00, 0x00, 0x33, 0x33, 0x05, 0x00, 0x64, // 00 - 0f Changes: 0B:19->33, 0C:01,33
0x9e, 0x4b, 0x00, 0x02, 0x16, 0x2b, 0x12, 0x40, 0x62, 0x80, 0x80, 0x00, 0x0a, 0x32, 0x03, 0x0f, // 10 - 1f 1C:4A->0A
0x12, 0x00, 0x00, 0xff, 0x00, 0x00, 0x23, 0x70, 0x15, 0x47, 0x80, 0x03, 0x01, 0x45, 0x18, 0x00, // 20 - 2f 2B:77->03, 2E:19->18
0x01, 0x0f // 30 - 31
};
#endif
#define ID_NORMAL 0x55201041
#define ID_PLUS 0xAA201041
@@ -287,6 +349,29 @@ void A7105_Init(void)
uint8_t *A7105_Regs=0;
uint8_t vco_calibration0, vco_calibration1;
#ifdef WFLY2_A7105_INO
if(protocol==PROTO_WFLY2)
{
A7105_Regs=(uint8_t*)WFLY2_A7105_regs;
}
else
#endif
#ifdef HEIGHT_A7105_INO
if(protocol==PROTO_HEIGHT)
{
A7105_Regs=(uint8_t*)HEIGHT_A7105_regs;
A7105_WriteID(0x25A53C45);
}
else
#endif
#ifdef PELIKAN_A7105_INO
if(protocol==PROTO_PELIKAN)
{
A7105_Regs=(uint8_t*)PELIKAN_A7105_regs;
A7105_WriteID(0x06230623);
}
else
#endif
#ifdef BUGS_A7105_INO
if(protocol==PROTO_BUGS)
A7105_Regs=(uint8_t*)BUGS_A7105_regs;
@@ -305,13 +390,20 @@ void A7105_Init(void)
#ifdef FLYSKY_A7105_INO
if(protocol==PROTO_FLYSKY)
A7105_Regs=(uint8_t*)FLYSKY_A7105_regs;
else
#endif
#if defined(AFHDS2A_A7105_INO) || defined(AFHDS2A_RX_A7105_INO)
if(protocol==PROTO_AFHDS2A || protocol==PROTO_AFHDS2A_RX)
A7105_Regs=(uint8_t*)AFHDS2A_A7105_regs;
#endif
#ifdef KYOSHO_A7105_INO
if(protocol==PROTO_KYOSHO)
{
#ifdef AFHDS2A_A7105_INO
A7105_Regs=(uint8_t*)AFHDS2A_A7105_regs;
#endif
if(sub_protocol==KYOSHO_FHSS)
A7105_Regs=(uint8_t*)KYOSHO_A7105_regs;
else
A7105_Regs=(uint8_t*)KYOSHO_HYPE_A7105_regs;
}
#endif
}
for (uint8_t i = 0; i < 0x32; i++)
@@ -325,47 +417,84 @@ void A7105_Init(void)
if(i==0x20) val=0x1E;
}
#endif
if( val != 0xFF)
#ifdef HEIGHT_A7105_INO
if(protocol==PROTO_HEIGHT && sub_protocol==HEIGHT_8CH)
if(i==0x03) val=0x0A;
#endif
if( val != 0xff)
A7105_WriteReg(i, val);
}
A7105_Strobe(A7105_STANDBY);
//IF Filter Bank Calibration
A7105_WriteReg(A7105_02_CALC,1);
while(A7105_ReadReg(A7105_02_CALC)); // Wait for calibration to end
// A7105_ReadReg(A7105_22_IF_CALIB_I);
// A7105_ReadReg(A7105_24_VCO_CURCAL);
if(protocol!=PROTO_HUBSAN)
{
//VCO Current Calibration
A7105_WriteReg(A7105_24_VCO_CURCAL,0x13); //Recommended calibration from A7105 Datasheet
//VCO Bank Calibration
A7105_WriteReg(A7105_26_VCO_SBCAL_II,0x3b); //Recommended calibration from A7105 Datasheet
if(protocol==PROTO_KYOSHO && sub_protocol==KYOSHO_FHSS)
{//strange calibration...
//IF Filter Bank Calibration
A7105_WriteReg(A7105_02_CALC,0x0F);
while(A7105_ReadReg(A7105_02_CALC)); // Wait for calibration to end
// A7105_ReadReg(A7105_22_IF_CALIB_I);
// A7105_ReadReg(A7105_24_VCO_CURCAL);
// A7105_ReadReg(25_VCO_SBCAL_I);
// A7105_ReadReg(1A_RX_GAIN_II);
// A7105_ReadReg(1B_RX_GAIN_III);
}
//VCO Bank Calibrate channel 0
A7105_WriteReg(A7105_0F_CHANNEL, 0);
A7105_WriteReg(A7105_02_CALC,2);
while(A7105_ReadReg(A7105_02_CALC)); // Wait for calibration to end
vco_calibration0 = A7105_ReadReg(A7105_25_VCO_SBCAL_I);
//VCO Bank Calibrate channel A0
A7105_WriteReg(A7105_0F_CHANNEL, 0xa0);
A7105_WriteReg(A7105_02_CALC, 2);
while(A7105_ReadReg(A7105_02_CALC)); // Wait for calibration to end
vco_calibration1 = A7105_ReadReg(A7105_25_VCO_SBCAL_I);
if(protocol==PROTO_BUGS)
A7105_SetVCOBand(vco_calibration0 & 0x07, vco_calibration1 & 0x07); // Set calibration band value to best match
else
if(protocol!=PROTO_HUBSAN)
A7105_WriteReg(A7105_25_VCO_SBCAL_I,protocol==PROTO_FLYSKY?0x08:0x0A); //Reset VCO Band calibration
{
//IF Filter Bank Calibration
A7105_WriteReg(A7105_02_CALC,1);
while(A7105_ReadReg(A7105_02_CALC)); // Wait for calibration to end
// A7105_ReadReg(A7105_22_IF_CALIB_I);
// A7105_ReadReg(A7105_24_VCO_CURCAL);
if(protocol!=PROTO_HUBSAN)
{
//VCO Current Calibration
A7105_WriteReg(A7105_24_VCO_CURCAL,0x13); //Recommended calibration from A7105 Datasheet
//VCO Bank Calibration
A7105_WriteReg(A7105_26_VCO_SBCAL_II,0x3b); //Recommended calibration from A7105 Datasheet
}
//VCO Bank Calibrate channel 0
A7105_WriteReg(A7105_0F_CHANNEL, 0);
A7105_WriteReg(A7105_02_CALC,2);
while(A7105_ReadReg(A7105_02_CALC)); // Wait for calibration to end
vco_calibration0 = A7105_ReadReg(A7105_25_VCO_SBCAL_I);
//VCO Bank Calibrate channel A0
A7105_WriteReg(A7105_0F_CHANNEL, 0xa0);
A7105_WriteReg(A7105_02_CALC, 2);
while(A7105_ReadReg(A7105_02_CALC)); // Wait for calibration to end
vco_calibration1 = A7105_ReadReg(A7105_25_VCO_SBCAL_I);
if(protocol==PROTO_BUGS || protocol==PROTO_WFLY2)
A7105_SetVCOBand(vco_calibration0 & 0x07, vco_calibration1 & 0x07); // Set calibration band value to best match
else
if(protocol!=PROTO_HUBSAN)
{
switch(protocol)
{
case PROTO_FLYSKY:
vco_calibration1=0x08;
break;
case PROTO_HEIGHT:
vco_calibration1=0x02;
break;
case PROTO_PELIKAN:
case PROTO_KYOSHO: //sub_protocol Hype
vco_calibration1=0x0C;
break;
default:
vco_calibration1=0x0A;
break;
}
A7105_WriteReg(A7105_25_VCO_SBCAL_I,vco_calibration1); //Reset VCO Band calibration
}
}
A7105_SetTxRxMode(TX_EN);
A7105_SetPower();
A7105_AdjustLOBaseFreq(0);
#ifdef USE_A7105_CH15_TUNING
A7105_AdjustLOBaseFreq(0);
#endif
A7105_Strobe(A7105_STANDBY);
}

View File

@@ -0,0 +1,216 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(AFHDS2A_RX_A7105_INO)
#include "iface_a7105.h"
#define AFHDS2A_RX_TXPACKET_SIZE 38
#define AFHDS2A_RX_RXPACKET_SIZE 37
#define AFHDS2A_RX_NUMFREQ 16
enum {
AFHDS2A_RX_BIND1,
AFHDS2A_RX_BIND2,
AFHDS2A_RX_BIND3,
AFHDS2A_RX_DATA
};
static void __attribute__((unused)) AFHDS2A_Rx_build_telemetry_packet()
{
uint32_t bits = 0;
uint8_t bitsavailable = 0;
uint8_t idx = 0;
packet_in[idx++] = RX_LQI; // 0 - 130
packet_in[idx++] = RX_RSSI;
packet_in[idx++] = 0; // start channel
packet_in[idx++] = 14; // number of channels in packet
// pack channels
for (uint8_t i = 0; i < 14; i++) {
uint32_t val = packet[9+i*2] | (((packet[10+i*2])&0x0F) << 8);
if (val < 860)
val = 860;
// convert ppm (860-2140) to Multi (0-2047)
val = min(((val-860)<<3)/5, 2047);
bits |= val << bitsavailable;
bitsavailable += 11;
while (bitsavailable >= 8) {
packet_in[idx++] = bits & 0xff;
bits >>= 8;
bitsavailable -= 8;
}
}
}
static uint8_t __attribute__((unused)) AFHDS2A_Rx_data_ready()
{
// check if FECF+CRCF Ok
return !(A7105_ReadReg(A7105_00_MODE) & (1 << 5 | 1 << 6 | 1 << 0));
}
uint16_t initAFHDS2A_Rx()
{
uint8_t i;
A7105_Init();
hopping_frequency_no = 0;
packet_count = 0;
rx_data_started = false;
rx_disable_lna = IS_POWER_FLAG_on;
A7105_SetTxRxMode(rx_disable_lna ? TXRX_OFF : RX_EN);
A7105_Strobe(A7105_RX);
if (IS_BIND_IN_PROGRESS) {
phase = AFHDS2A_RX_BIND1;
}
else {
uint16_t temp = AFHDS2A_RX_EEPROM_OFFSET;
for (i = 0; i < 4; i++)
rx_id[i] = eeprom_read_byte((EE_ADDR)temp++);
for (i = 0; i < AFHDS2A_RX_NUMFREQ; i++)
hopping_frequency[i] = eeprom_read_byte((EE_ADDR)temp++);
phase = AFHDS2A_RX_DATA;
}
return 1000;
}
#define AFHDS2A_RX_WAIT_WRITE 0x80
uint16_t AFHDS2A_Rx_callback()
{
static int8_t read_retry;
int16_t temp;
uint8_t i;
#ifndef FORCE_AFHDS2A_TUNING
A7105_AdjustLOBaseFreq(1);
#endif
if (rx_disable_lna != IS_POWER_FLAG_on) {
rx_disable_lna = IS_POWER_FLAG_on;
A7105_SetTxRxMode(rx_disable_lna ? TXRX_OFF : RX_EN);
}
switch(phase) {
case AFHDS2A_RX_BIND1:
if(IS_BIND_DONE) return initAFHDS2A_Rx(); // Abort bind
debugln("bind p=%d", phase+1);
if (AFHDS2A_Rx_data_ready()) {
A7105_ReadData(AFHDS2A_RX_TXPACKET_SIZE);
if ((packet[0] == 0xbb && packet[9] == 0x01) || (packet[0] == 0xbc && packet[9] <= 0x02)) {
memcpy(rx_id, &packet[1], 4); // TX id actually
memcpy(hopping_frequency, &packet[11], AFHDS2A_RX_NUMFREQ);
phase = AFHDS2A_RX_BIND2;
debugln("phase bind2");
}
}
A7105_WriteReg(A7105_0F_PLL_I, (packet_count++ & 1) ? 0x0D : 0x8C); // bind channels
A7105_Strobe(A7105_RX);
return 10000;
case AFHDS2A_RX_BIND2:
if(IS_BIND_DONE) return initAFHDS2A_Rx(); // Abort bind
// got 2nd bind packet from tx ?
if (AFHDS2A_Rx_data_ready()) {
A7105_ReadData(AFHDS2A_RX_TXPACKET_SIZE);
if ((packet[0] == 0xBC && packet[9] == 0x02 && packet[10] == 0x00) &&
(memcmp(rx_id, &packet[1], 4) == 0) &&
(memcmp(rx_tx_addr, &packet[5], 4) == 0)) {
// save tx info to eeprom
temp = AFHDS2A_RX_EEPROM_OFFSET;
for (i = 0; i < 4; i++)
eeprom_write_byte((EE_ADDR)temp++, rx_id[i]);
for (i = 0; i < AFHDS2A_RX_NUMFREQ; i++)
eeprom_write_byte((EE_ADDR)temp++, hopping_frequency[i]);
phase = AFHDS2A_RX_BIND3;
debugln("phase bind3");
packet_count = 0;
}
}
case AFHDS2A_RX_BIND3:
debugln("bind p=%d", phase+1);
// transmit response packet
packet[0] = 0xBC;
memcpy(&packet[1], rx_id, 4);
memcpy(&packet[5], rx_tx_addr, 4);
//packet[9] = 0x01;
packet[10] = 0x00;
memset(&packet[11], 0xFF, 26);
A7105_SetTxRxMode(TX_EN);
rx_disable_lna = !IS_POWER_FLAG_on;
A7105_WriteData(AFHDS2A_RX_RXPACKET_SIZE, packet_count++ & 1 ? 0x0D : 0x8C);
if(phase == AFHDS2A_RX_BIND3 && packet_count > 20)
{
debugln("done");
BIND_DONE;
return initAFHDS2A_Rx(); // Restart protocol
}
phase |= AFHDS2A_RX_WAIT_WRITE;
return 1700;
case AFHDS2A_RX_BIND2 | AFHDS2A_RX_WAIT_WRITE:
//Wait for TX completion
pps_timer = micros();
while ((uint32_t)(micros() - pps_timer) < 700) // Wait max 700µs, using serial+telemetry exit in about 120µs
if (!(A7105_ReadReg(A7105_00_MODE) & 0x01))
break;
A7105_Strobe(A7105_RX);
case AFHDS2A_RX_BIND3 | AFHDS2A_RX_WAIT_WRITE:
phase &= ~AFHDS2A_RX_WAIT_WRITE;
return 10000;
case AFHDS2A_RX_DATA:
if (AFHDS2A_Rx_data_ready()) {
A7105_ReadData(AFHDS2A_RX_TXPACKET_SIZE);
if (memcmp(&packet[1], rx_id, 4) == 0 && memcmp(&packet[5], rx_tx_addr, 4) == 0) {
if (packet[0] == 0x58 && packet[37] == 0x00 && telemetry_link == 0) { // standard packet, send channels to TX
int rssi = min(A7105_ReadReg(A7105_1D_RSSI_THOLD),160);
RX_RSSI = map16b(rssi, 160, 8, 0, 128);
AFHDS2A_Rx_build_telemetry_packet();
telemetry_link = 1;
}
rx_data_started = true;
read_retry = 10; // hop to next channel
pps_counter++;
}
}
// packets per second
if (millis() - pps_timer >= 1000) {
pps_timer = millis();
debugln("%d pps", pps_counter);
RX_LQI = pps_counter / 2;
pps_counter = 0;
}
// frequency hopping
if (read_retry++ >= 10) {
hopping_frequency_no++;
if(hopping_frequency_no >= AFHDS2A_RX_NUMFREQ)
hopping_frequency_no = 0;
A7105_WriteReg(A7105_0F_PLL_I, hopping_frequency[hopping_frequency_no]);
A7105_Strobe(A7105_RX);
if (rx_data_started)
read_retry = 0;
else
read_retry = -127; // retry longer until first packet is catched
}
return 385;
}
return 3850; // never reached
}
#endif

View File

@@ -20,6 +20,10 @@
#define AFHDS2A_RXPACKET_SIZE 37
#define AFHDS2A_NUMFREQ 16
#if not defined TELEMETRY
uint8_t RX_LQI=0;
#endif
enum{
AFHDS2A_PACKET_STICKS,
AFHDS2A_PACKET_SETTINGS,
@@ -65,7 +69,6 @@ static void AFHDS2A_calc_channels()
}
}
#if defined(AFHDS2A_FW_TELEMETRY) || defined(AFHDS2A_HUB_TELEMETRY)
// telemetry sensors ID
enum{
AFHDS2A_SENSOR_RX_VOLTAGE = 0x00,
@@ -76,6 +79,7 @@ enum{
AFHDS2A_SENSOR_A3_VOLTAGE = 0x03,
};
#if defined(AFHDS2A_FW_TELEMETRY) || defined(AFHDS2A_HUB_TELEMETRY)
static void AFHDS2A_update_telemetry()
{
// Read TX RSSI
@@ -84,17 +88,18 @@ static void AFHDS2A_update_telemetry()
else if(temp>255) temp=255;
TX_RSSI=temp;
// AA | TXID | rx_id | sensor id | sensor # | value 16 bit big endian | sensor id ......
// max 7 sensors per packet
// AC | TXID | rx_id | sensor id | sensor # | length | bytes | sensor id ......
#ifdef AFHDS2A_FW_TELEMETRY
if (option & 0x80)
{// forward 0xAA and 0xAC telemetry to TX, skip rx and tx id to save space
pkt[0]= TX_RSSI;
debug("T=");
for(int i=9;i < AFHDS2A_RXPACKET_SIZE; i++)
packet_in[0]= TX_RSSI;
debug("T(%02X)=",packet[0]);
for(uint8_t i=9;i < AFHDS2A_RXPACKET_SIZE; i++)
{
pkt[i-8]=packet[i];
packet_in[i-8]=packet[i];
debug(" %02X",packet[i]);
}
packet_in[29]=packet[0]; // 0xAA Normal telemetry, 0xAC Extended telemetry
telemetry_link=2;
debugln("");
return;
@@ -119,7 +124,8 @@ static void AFHDS2A_update_telemetry()
telemetry_link=1;
break;
case AFHDS2A_SENSOR_RX_ERR_RATE:
RX_LQI=packet[index+2];
if(packet[index+2]<=100)
RX_LQI=packet[index+2];
break;
case AFHDS2A_SENSOR_RX_RSSI:
RX_RSSI = -packet[index+2];
@@ -179,37 +185,64 @@ static void AFHDS2A_build_packet(uint8_t type)
{
case AFHDS2A_PACKET_STICKS:
packet[0] = 0x58;
for(uint8_t ch=0; ch<14; ch++)
//16 channels + RX_LQI on channel 17
for(uint8_t ch=0; ch<num_ch; ch++)
{
uint16_t channelMicros = convert_channel_ppm(CH_AETR[ch]);
packet[9 + ch*2] = channelMicros&0xFF;
packet[10 + ch*2] = (channelMicros>>8)&0xFF;
if(ch == 16 // CH17=RX_LQI
#ifdef AFHDS2A_LQI_CH
|| ch == (AFHDS2A_LQI_CH-1) // override channel with LQI
#endif
)
val = 2000 - 10*RX_LQI;
else
val = convert_channel_ppm(CH_AETR[ch]);
if(ch<14)
{
packet[9 + ch*2] = val;
packet[10 + ch*2] = (val>>8)&0x0F;
}
else
{
packet[10 + (ch-14)*6] |= (val)<<4;
packet[12 + (ch-14)*6] |= (val)&0xF0;
packet[14 + (ch-14)*6] |= (val>>4)&0xF0;
}
}
#ifdef AFHDS2A_LQI_CH
// override channel with LQI
val = 2000 - 10*RX_LQI;
packet[9+((AFHDS2A_LQI_CH-1)*2)] = val & 0xff;
packet[10+((AFHDS2A_LQI_CH-1)*2)] = (val >> 8) & 0xff;
#endif
break;
case AFHDS2A_PACKET_FAILSAFE:
packet[0] = 0x56;
for(uint8_t ch=0; ch<14; ch++)
for(uint8_t ch=0; ch<num_ch; ch++)
{
#ifdef FAILSAFE_ENABLE
uint16_t failsafeMicros = Failsafe_data[CH_AETR[ch]];
if( failsafeMicros!=FAILSAFE_CHANNEL_HOLD && failsafeMicros!=FAILSAFE_CHANNEL_NOPULSES)
if(ch<16)
val = Failsafe_data[CH_AETR[ch]];
else
val = FAILSAFE_CHANNEL_NOPULSES;
if(val!=FAILSAFE_CHANNEL_HOLD && val!=FAILSAFE_CHANNEL_NOPULSES)
{ // Failsafe values
failsafeMicros = (((failsafeMicros<<2)+failsafeMicros)>>3)+860;
packet[9 + ch*2] = failsafeMicros & 0xff;
packet[10+ ch*2] = ( failsafeMicros >> 8) & 0xff;
val = (((val<<2)+val)>>3)+860;
if(ch<14)
{
packet[9 + ch*2] = val;
packet[10 + ch*2] = (val>>8)&0x0F;
}
else
{
packet[10 + (ch-14)*6] &= 0x0F;
packet[10 + (ch-14)*6] |= (val)<<4;
packet[12 + (ch-14)*6] &= 0x0F;
packet[12 + (ch-14)*6] |= (val)&0xF0;
packet[14 + (ch-14)*6] &= 0x0F;
packet[14 + (ch-14)*6] |= (val>>4)&0xF0;
}
}
else
#endif
{ // no values
packet[9 + ch*2] = 0xff;
packet[10+ ch*2] = 0xff;
}
if(ch<14)
{ // no values
packet[9 + ch*2] = 0xff;
packet[10+ ch*2] = 0xff;
}
}
break;
case AFHDS2A_PACKET_SETTINGS:
@@ -220,17 +253,14 @@ static void AFHDS2A_build_packet(uint8_t type)
if(val<50 || val>400) val=50; // default is 50Hz
packet[11]= val;
packet[12]= val >> 8;
if(sub_protocol == PPM_IBUS || sub_protocol == PPM_SBUS)
packet[13] = 0x01; // PPM output enabled
else
packet[13] = 0x00;
packet[13] = sub_protocol & 0x01; // 1 -> PPM output enabled
packet[14]= 0x00;
for(uint8_t i=15; i<37; i++)
packet[i] = 0xff;
packet[18] = 0x05; // ?
packet[19] = 0xdc; // ?
packet[20] = 0x05; // ?
if(sub_protocol == PWM_SBUS || sub_protocol == PPM_SBUS)
if(sub_protocol&2)
packet[21] = 0xdd; // SBUS output enabled
else
packet[21] = 0xde; // IBUS
@@ -240,11 +270,18 @@ static void AFHDS2A_build_packet(uint8_t type)
}
#define AFHDS2A_WAIT_WRITE 0x80
#ifdef STM32_BOARD
#define AFHDS2A_WRITE_TIME 1550
#else
#define AFHDS2A_WRITE_TIME 1700
#endif
uint16_t ReadAFHDS2A()
{
static uint8_t packet_type;
static uint16_t packet_counter;
uint8_t data_rx;
uint8_t data_rx=0;
uint16_t start;
#ifndef FORCE_AFHDS2A_TUNING
A7105_AdjustLOBaseFreq(1);
@@ -261,11 +298,15 @@ uint16_t ReadAFHDS2A()
A7105_ReadData(AFHDS2A_RXPACKET_SIZE);
if(packet[0] == 0xbc && packet[9] == 0x01)
{
uint8_t temp=AFHDS2A_EEPROM_OFFSET+RX_num*4;
uint16_t addr;
if(RX_num<16)
addr=AFHDS2A_EEPROM_OFFSET+RX_num*4;
else
addr=AFHDS2A_EEPROM_OFFSET2+(RX_num-16)*4;
for(uint8_t i=0; i<4; i++)
{
rx_id[i] = packet[5+i];
eeprom_write_byte((EE_ADDR)(temp+i),rx_id[i]);
eeprom_write_byte((EE_ADDR)(addr+i),rx_id[i]);
}
phase = AFHDS2A_BIND4;
packet_count++;
@@ -285,7 +326,7 @@ uint16_t ReadAFHDS2A()
case AFHDS2A_BIND3|AFHDS2A_WAIT_WRITE:
//Wait for TX completion
start=micros();
while ((uint16_t)micros()-start < 700) // Wait max 700µs, using serial+telemetry exit in about 120µs
while ((uint16_t)((uint16_t)micros()-start) < 700) // Wait max 700µs, using serial+telemetry exit in about 120µs
if(!(A7105_ReadReg(A7105_00_MODE) & 0x01))
break;
A7105_SetPower();
@@ -313,11 +354,12 @@ uint16_t ReadAFHDS2A()
packet_type = AFHDS2A_PACKET_STICKS;
phase = AFHDS2A_DATA;
case AFHDS2A_DATA:
#ifdef MULTI_SYNC
telemetry_set_input_sync(3850);
#endif
AFHDS2A_build_packet(packet_type);
if((A7105_ReadReg(A7105_00_MODE) & 0x01)) // Check if something has been received...
data_rx=0;
else
data_rx=1; // Yes
if((A7105_ReadReg(A7105_00_MODE) & 0x01)==0) // Check if something has been received...
data_rx=1; // Yes
A7105_WriteData(AFHDS2A_TXPACKET_SIZE, hopping_frequency[hopping_frequency_no++]);
if(hopping_frequency_no >= AFHDS2A_NUMFREQ)
hopping_frequency_no = 0;
@@ -327,29 +369,33 @@ uint16_t ReadAFHDS2A()
{
#ifdef FAILSAFE_ENABLE
if(!(packet_counter % 1569) && IS_FAILSAFE_VALUES_on)
{
packet_type = AFHDS2A_PACKET_FAILSAFE;
FAILSAFE_VALUES_off;
}
else
#endif
packet_type = AFHDS2A_PACKET_STICKS; // todo : check for settings changes
packet_type = AFHDS2A_PACKET_STICKS; // todo : check for settings changes
}
if(!(A7105_ReadReg(A7105_00_MODE) & (1<<5 | 1<<6)) && data_rx==1)
{ // RX+FECF+CRCF Ok
A7105_ReadData(AFHDS2A_RXPACKET_SIZE);
if(packet[0] == 0xAA && packet[9] == 0xFC)
packet_type=AFHDS2A_PACKET_SETTINGS; // RX is asking for settings
packet_type=AFHDS2A_PACKET_SETTINGS; // RX is asking for settings
else
if(packet[0] == 0xAA || packet[0] == 0xAC)
{
if((packet[0] == 0xAA && packet[9]!=0xFD) || packet[0] == 0xAC)
{// Normal telemetry packet, ignore packets which contain the RX configuration: AA FD FF 32 00 01 00 FF FF FF 05 DC 05 DE FA FF FF FF FF FF FF FF FF FF FF FF FF FF FF
if(!memcmp(&packet[1], rx_tx_addr, 4))
{ // Validate TX address
#ifdef AFHDS2A_LQI_CH
for(uint8_t sensor=0; sensor<7; sensor++)
{//read LQI value for RX output
uint8_t index = 9+(4*sensor);
if(packet[index]==AFHDS2A_SENSOR_RX_ERR_RATE)
RX_LQI=packet[index+2];
{ // TX address validated
for(uint8_t sensor=0; sensor<7; sensor++)
{//read LQI value for RX output
uint8_t index = 9+(4*sensor);
if(packet[index]==AFHDS2A_SENSOR_RX_ERR_RATE && packet[index+2]<=100)
{
RX_LQI=packet[index+2];
break;
}
#endif
}
#if defined(AFHDS2A_FW_TELEMETRY) || defined(AFHDS2A_HUB_TELEMETRY)
AFHDS2A_update_telemetry();
#endif
@@ -358,18 +404,18 @@ uint16_t ReadAFHDS2A()
}
packet_counter++;
phase |= AFHDS2A_WAIT_WRITE;
return 1700;
return AFHDS2A_WRITE_TIME;
case AFHDS2A_DATA|AFHDS2A_WAIT_WRITE:
//Wait for TX completion
start=micros();
while ((uint16_t)micros()-start < 700) // Wait max 700µs, using serial+telemetry exit in about 120µs
while ((uint16_t)((uint16_t)micros()-start) < 700) // Wait max 700µs, using serial+telemetry exit in about 120µs
if(!(A7105_ReadReg(A7105_00_MODE) & 0x01))
break;
A7105_SetPower();
A7105_SetTxRxMode(RX_EN);
A7105_Strobe(A7105_RX);
phase &= ~AFHDS2A_WAIT_WRITE;
return 2150;
return 3850-AFHDS2A_WRITE_TIME;
}
return 3850; // never reached, please the compiler
}
@@ -387,14 +433,19 @@ uint16_t initAFHDS2A()
{
phase = AFHDS2A_DATA_INIT;
//Read RX ID from EEPROM based on RX_num, RX_num must be uniq for each RX
uint8_t temp=AFHDS2A_EEPROM_OFFSET+RX_num*4;
uint16_t addr;
if(RX_num<16)
addr=AFHDS2A_EEPROM_OFFSET+RX_num*4;
else
addr=AFHDS2A_EEPROM_OFFSET2+(RX_num-16)*4;
for(uint8_t i=0;i<4;i++)
rx_id[i]=eeprom_read_byte((EE_ADDR)(temp+i));
rx_id[i]=eeprom_read_byte((EE_ADDR)(addr+i));
}
hopping_frequency_no = 0;
#if defined(AFHDS2A_FW_TELEMETRY) || defined(AFHDS2A_HUB_TELEMETRY)
init_frskyd_link_telemetry();
#endif
if(sub_protocol&0x04)
num_ch=17;
else
num_ch=14;
return 50000;
}
#endif

View File

@@ -127,6 +127,9 @@ uint16_t ASSAN_callback()
phase=ASSAN_DATA2;
return 2000;
case ASSAN_DATA2:
#ifdef MULTI_SYNC
telemetry_set_input_sync(12000);
#endif
case ASSAN_DATA3:
ASSAN_send_packet();
phase++; // DATA 3 or 4

View File

@@ -115,7 +115,7 @@ void delayMilliseconds(unsigned long ms)
uint16_t lms = ms ;
while (lms > 0) {
if (((uint16_t)micros() - start) >= 1000) {
if ((uint16_t)((uint16_t)micros() - start) >= 1000) {
lms--;
start += 1000;
}

View File

@@ -181,7 +181,7 @@ static void __attribute__((unused)) BUGSMINI_make_address()
uint8_t start, length, index;
//read rxid
uint8_t base_adr=BUGSMINI_EEPROM_OFFSET+RX_num*2;
uint8_t base_adr=BUGSMINI_EEPROM_OFFSET+(RX_num&0x0F)*2;
uint8_t rxid_high = eeprom_read_byte((EE_ADDR)(base_adr+0));
uint8_t rxid_low = eeprom_read_byte((EE_ADDR)(base_adr+1));
@@ -272,7 +272,7 @@ uint16_t BUGSMINI_callback()
if( NRF24L01_ReadReg(NRF24L01_07_STATUS) & _BV(NRF24L01_07_RX_DR))
{ // RX fifo data ready
XN297_ReadPayload(packet, BUGSMINI_RX_PAYLOAD_SIZE);
base_adr=BUGSMINI_EEPROM_OFFSET+RX_num*2;
base_adr=BUGSMINI_EEPROM_OFFSET+(RX_num&0x0F)*2;
eeprom_write_byte((EE_ADDR)(base_adr+0),packet[1]); // Save rxid in EEPROM
eeprom_write_byte((EE_ADDR)(base_adr+1),packet[2]); // Save rxid in EEPROM
NRF24L01_SetTxRxMode(TXRX_OFF);
@@ -299,6 +299,9 @@ uint16_t BUGSMINI_callback()
phase = BUGSMINI_BIND1;
return BUGSMINI_PACKET_INTERVAL - BUGSMINI_WRITE_WAIT;
case BUGSMINI_DATA1:
#ifdef MULTI_SYNC
telemetry_set_input_sync(BUGSMINI_PACKET_INTERVAL);
#endif
if( NRF24L01_ReadReg(NRF24L01_07_STATUS) & _BV(NRF24L01_07_RX_DR))
{ // RX fifo data ready => read only 12 bytes to not overwrite channel change flag
XN297_ReadPayload(packet, 12);
@@ -375,9 +378,6 @@ uint16_t initBUGSMINI()
armed = 0;
arm_flags = BUGSMINI_FLAG_DISARM; // initial value from captures
arm_channel_previous = BUGSMINI_CH_SW_ARM;
#ifdef BUGS_HUB_TELEMETRY
init_frskyd_link_telemetry();
#endif
return BUGSMINI_INITIAL_WAIT;
}

View File

@@ -0,0 +1,206 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(BAYANG_RX_NRF24L01_INO)
#include "iface_nrf24l01.h"
#define BAYANG_RX_PACKET_SIZE 15
#define BAYANG_RX_RF_NUM_CHANNELS 4
#define BAYANG_RX_RF_BIND_CHANNEL 0
#define BAYANG_RX_ADDRESS_LENGTH 5
enum {
BAYANG_RX_BIND = 0,
BAYANG_RX_DATA
};
static void __attribute__((unused)) Bayang_Rx_init_nrf24l01()
{
const uint8_t bind_address[BAYANG_RX_ADDRESS_LENGTH] = { 0,0,0,0,0 };
NRF24L01_Initialize();
XN297_SetTXAddr(bind_address, BAYANG_RX_ADDRESS_LENGTH);
XN297_SetRXAddr(bind_address, BAYANG_RX_ADDRESS_LENGTH);
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowldgement on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, BAYANG_RX_PACKET_SIZE + 2); // 2 extra bytes for xn297 crc
NRF24L01_WriteReg(NRF24L01_05_RF_CH, BAYANG_RX_RF_BIND_CHANNEL);
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps
NRF24L01_SetPower();
NRF24L01_Activate(0x73); // Activate feature register
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 0x00); // Disable dynamic payload length on all pipes
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, 0x01);
NRF24L01_Activate(0x73);
NRF24L01_SetTxRxMode(TXRX_OFF);
NRF24L01_FlushRx();
NRF24L01_SetTxRxMode(RX_EN);
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP) | _BV(NRF24L01_00_PRIM_RX));
}
static uint8_t __attribute__((unused)) Bayang_Rx_check_validity() {
uint8_t sum = packet[0];
for (uint8_t i = 1; i < BAYANG_RX_PACKET_SIZE - 1; i++)
sum += packet[i];
return sum == packet[14];
}
static void __attribute__((unused)) Bayang_Rx_build_telemetry_packet()
{
uint32_t bits = 0;
uint8_t bitsavailable = 0;
uint8_t idx = 0;
packet_in[idx++] = RX_LQI;
packet_in[idx++] = RX_LQI>>1; // no RSSI: 125..0
packet_in[idx++] = 0; // start channel
packet_in[idx++] = 10; // number of channels in packet
// convert & pack channels
for (uint8_t i = 0; i < packet_in[3]; i++) {
uint32_t val = CHANNEL_MIN_100;
if (i < 4) {
// AETR
//val = (((packet[4 + i * 2] & ~0x7C) << 8) | packet[5 + i * 2]) << 1;
val=packet[4 + i * 2]&0x03;
val=(val<<8)+packet[5 + i * 2];
val=((val+128)<<3)/5;
} else if (i == 4 || i == 5) {
val=packet[i==4?1:13];
val=((val+32)<<5)/5; // extra analog channel
} else if (((i == 6) && (packet[2] & 0x08)) || // flip
((i == 7) && (packet[2] & 0x01)) || // rth
((i == 8) && (packet[2] & 0x20)) || // picture
((i == 9) && (packet[2] & 0x10))) { // video
// set channel to 100% if feature is enabled
val = CHANNEL_MAX_100;
}
bits |= val << bitsavailable;
bitsavailable += 11;
while (bitsavailable >= 8) {
packet_in[idx++] = bits & 0xff;
bits >>= 8;
bitsavailable -= 8;
}
}
}
uint16_t initBayang_Rx()
{
uint8_t i;
Bayang_Rx_init_nrf24l01();
hopping_frequency_no = 0;
rx_data_started = false;
rx_data_received = false;
if (IS_BIND_IN_PROGRESS) {
phase = BAYANG_RX_BIND;
}
else {
uint16_t temp = BAYANG_RX_EEPROM_OFFSET;
for (i = 0; i < 5; i++)
rx_tx_addr[i] = eeprom_read_byte((EE_ADDR)temp++);
for (i = 0; i < BAYANG_RX_RF_NUM_CHANNELS; i++)
hopping_frequency[i] = eeprom_read_byte((EE_ADDR)temp++);
XN297_SetTXAddr(rx_tx_addr, BAYANG_RX_ADDRESS_LENGTH);
XN297_SetRXAddr(rx_tx_addr, BAYANG_RX_ADDRESS_LENGTH);
phase = BAYANG_RX_DATA;
}
return 1000;
}
uint16_t Bayang_Rx_callback()
{
uint8_t i;
static int8_t read_retry;
switch (phase) {
case BAYANG_RX_BIND:
if(IS_BIND_DONE) return initBayang_Rx(); // Abort bind
if (NRF24L01_ReadReg(NRF24L01_07_STATUS) & _BV(NRF24L01_07_RX_DR)) {
// data received from TX
if (XN297_ReadPayload(packet, BAYANG_RX_PACKET_SIZE) && ( packet[0] == 0xA4 || packet[0] == 0xA2 ) && Bayang_Rx_check_validity()) {
// store tx info into eeprom
uint16_t temp = BAYANG_RX_EEPROM_OFFSET;
for (i = 0; i < 5; i++) {
rx_tx_addr[i] = packet[i + 1];
eeprom_write_byte((EE_ADDR)temp++, rx_tx_addr[i]);
}
for (i = 0; i < 4; i++) {
hopping_frequency[i] = packet[i + 6];
eeprom_write_byte((EE_ADDR)temp++, hopping_frequency[i]);
}
XN297_SetTXAddr(rx_tx_addr, BAYANG_RX_ADDRESS_LENGTH);
XN297_SetRXAddr(rx_tx_addr, BAYANG_RX_ADDRESS_LENGTH);
BIND_DONE;
phase = BAYANG_RX_DATA;
}
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
}
break;
case BAYANG_RX_DATA:
if (NRF24L01_ReadReg(NRF24L01_07_STATUS) & _BV(NRF24L01_07_RX_DR)) {
if (XN297_ReadPayload(packet, BAYANG_RX_PACKET_SIZE) && packet[0] == 0xA5 && Bayang_Rx_check_validity()) {
if (telemetry_link == 0) {
Bayang_Rx_build_telemetry_packet();
telemetry_link = 1;
}
rx_data_started = true;
rx_data_received = true;
read_retry = 8;
pps_counter++;
}
}
// packets per second
if (millis() - pps_timer >= 1000) {
pps_timer = millis();
debugln("%d pps", pps_counter);
RX_LQI = pps_counter >> 1;
pps_counter = 0;
}
// frequency hopping
if (read_retry++ >= 8) {
hopping_frequency_no++;
if (hopping_frequency_no >= BAYANG_RX_RF_NUM_CHANNELS)
hopping_frequency_no = 0;
NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency[hopping_frequency_no]);
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
if (rx_data_started)
{
if(rx_data_received)
{ // In sync
rx_data_received = false;
read_retry = 5;
return 1500;
}
else
{ // packet lost
read_retry = 0;
if(RX_LQI==0) // communication lost
rx_data_started=false;
}
}
else
read_retry = -16; // retry longer until first packet is caught
}
return 250;
}
return 1000;
}
#endif

View File

@@ -20,7 +20,8 @@ Multiprotocol is distributed in the hope that it will be useful,
#include "iface_nrf24l01.h"
#define BAYANG_BIND_COUNT 1000
#define BAYANG_PACKET_PERIOD 1000
#define BAYANG_PACKET_PERIOD 2000
#define BAYANG_PACKET_TELEM_PERIOD 5000
#define BAYANG_INITIAL_WAIT 500
#define BAYANG_PACKET_SIZE 15
#define BAYANG_RF_NUM_CHANNELS 4
@@ -46,10 +47,10 @@ enum BAYANG_OPTION_FLAGS {
BAYANG_OPTION_FLAG_ANALOGAUX = 0x02,
};
static void __attribute__((unused)) BAYANG_send_packet(uint8_t bind)
static void __attribute__((unused)) BAYANG_send_packet()
{
uint8_t i;
if (bind)
if (IS_BIND_IN_PROGRESS)
{
#ifdef BAYANG_HUB_TELEMETRY
if(option & BAYANG_OPTION_FLAG_TELEMETRY)
@@ -66,12 +67,16 @@ static void __attribute__((unused)) BAYANG_send_packet(uint8_t bind)
else
#endif
packet[0]= 0xA4;
if(sub_protocol==QX100)
packet[0] = 0x53;
for(i=0;i<5;i++)
packet[i+1]=rx_tx_addr[i];
for(i=0;i<4;i++)
packet[i+6]=hopping_frequency[i];
switch (sub_protocol)
{
case QX100:
case X16_AH:
packet[10] = 0x00;
packet[11] = 0x00;
@@ -138,19 +143,19 @@ static void __attribute__((unused)) BAYANG_send_packet(uint8_t bind)
if(CH13_SW)
packet[3] |= BAYANG_FLAG_EMG_STOP;
//Aileron
val = convert_channel_10b(AILERON);
val = convert_channel_10b(AILERON, false);
packet[4] = (val>>8) + (dyntrim ? ((val>>2) & 0xFC) : 0x7C);
packet[5] = val & 0xFF;
//Elevator
val = convert_channel_10b(ELEVATOR);
val = convert_channel_10b(ELEVATOR, false);
packet[6] = (val>>8) + (dyntrim ? ((val>>2) & 0xFC) : 0x7C);
packet[7] = val & 0xFF;
//Throttle
val = convert_channel_10b(THROTTLE);
val = convert_channel_10b(THROTTLE, false);
packet[8] = (val>>8) + 0x7C;
packet[9] = val & 0xFF;
//Rudder
val = convert_channel_10b(RUDDER);
val = convert_channel_10b(RUDDER, false);
packet[10] = (val>>8) + (dyntrim ? ((val>>2) & 0xFC) : 0x7C);
packet[11] = val & 0xFF;
}
@@ -160,6 +165,7 @@ static void __attribute__((unused)) BAYANG_send_packet(uint8_t bind)
packet[12] = rx_tx_addr[2]; // txid[2]
packet[13] = 0x34;
break;
case QX100:
case X16_AH:
packet[12] = 0;
packet[13] = 0;
@@ -186,29 +192,15 @@ static void __attribute__((unused)) BAYANG_send_packet(uint8_t bind)
for (uint8_t i=0; i < BAYANG_PACKET_SIZE-1; i++)
packet[14] += packet[i];
NRF24L01_WriteReg(NRF24L01_05_RF_CH, bind ? rf_ch_num:hopping_frequency[hopping_frequency_no++]);
NRF24L01_WriteReg(NRF24L01_05_RF_CH, IS_BIND_IN_PROGRESS ? rf_ch_num:hopping_frequency[hopping_frequency_no++]);
hopping_frequency_no%=BAYANG_RF_NUM_CHANNELS;
// clear packet status bits and TX FIFO
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
XN297_WritePayload(packet, BAYANG_PACKET_SIZE);
NRF24L01_SetTxRxMode(TXRX_OFF);
NRF24L01_SetTxRxMode(TX_EN);
// Power on, TX mode, 2byte CRC
// Why CRC0? xn297 does not interpret it - either 16-bit CRC or nothing
NRF24L01_FlushTx();
NRF24L01_SetTxRxMode(TX_EN);
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP));
#ifdef BAYANG_HUB_TELEMETRY
if (option & BAYANG_OPTION_FLAG_TELEMETRY)
{ // switch radio to rx as soon as packet is sent
while (!(NRF24L01_ReadReg(NRF24L01_07_STATUS) & _BV(NRF24L01_07_TX_DS)));
NRF24L01_WriteReg(NRF24L01_00_CONFIG, 0x03);
}
#endif
XN297_WritePayload(packet, BAYANG_PACKET_SIZE);
NRF24L01_SetPower(); // Set tx_power
}
@@ -229,11 +221,12 @@ static void __attribute__((unused)) BAYANG_check_rx(void)
if (packet[0] == 0x85 && packet[14] == check)
{
// uncompensated battery volts*100/2
v_lipo1 = (packet[3]<<7) + (packet[4]>>2);
v_lipo1 = (packet[3]<<7) + (packet[4]>>1);
// compensated battery volts*100/2
v_lipo2 = (packet[5]<<7) + (packet[6]>>2);
v_lipo2 = (packet[5]<<7) + (packet[6]>>1);
// reception in packets / sec
RX_RSSI = packet[7];
RX_LQI = packet[7];
RX_RSSI = RX_LQI;
//Flags
//uint8_t flags = packet[3] >> 3;
// battery low: flags & 1
@@ -242,6 +235,7 @@ static void __attribute__((unused)) BAYANG_check_rx(void)
telemetry_link=1;
}
}
NRF24L01_SetTxRxMode(TXRX_OFF);
}
#endif
@@ -278,53 +272,73 @@ static void __attribute__((unused)) BAYANG_init()
}
}
enum {
BAYANG_BIND=0,
BAYANG_WRITE,
BAYANG_CHECK,
BAYANG_READ,
};
#define BAYANG_CHECK_DELAY 1000 // Time after write phase to check write complete
#define BAYANG_READ_DELAY 600 // Time before read phase
uint16_t BAYANG_callback()
{
if(IS_BIND_DONE)
#ifdef BAYANG_HUB_TELEMETRY
uint16_t start;
#endif
switch(phase)
{
if(packet_count==0)
BAYANG_send_packet(0);
packet_count++;
#ifdef BAYANG_HUB_TELEMETRY
if (option & BAYANG_OPTION_FLAG_TELEMETRY)
{ // telemetry is enabled
state++;
if (state > 1000)
{
//calculate telemetry reception packet rate - packets per 1000ms
TX_RSSI = telemetry_counter;
telemetry_counter = 0;
state = 0;
telemetry_lost=0;
}
if (packet_count > 1)
BAYANG_check_rx();
packet_count %= 5;
case BAYANG_BIND:
if (--bind_counter == 0)
{
XN297_SetTXAddr(rx_tx_addr, BAYANG_ADDRESS_LENGTH);
#ifdef BAYANG_HUB_TELEMETRY
XN297_SetRXAddr(rx_tx_addr, BAYANG_ADDRESS_LENGTH);
#endif
BIND_DONE;
phase++; //WRITE
}
else
#endif
packet_count%=2;
}
else
{
if (bind_counter == 0)
{
XN297_SetTXAddr(rx_tx_addr, BAYANG_ADDRESS_LENGTH);
#ifdef BAYANG_HUB_TELEMETRY
XN297_SetRXAddr(rx_tx_addr, BAYANG_ADDRESS_LENGTH);
BAYANG_send_packet();
break;
case BAYANG_WRITE:
#ifdef MULTI_SYNC
telemetry_set_input_sync((option & BAYANG_OPTION_FLAG_TELEMETRY)?BAYANG_PACKET_TELEM_PERIOD:BAYANG_PACKET_PERIOD);
#endif
BIND_DONE;
}
else
{
if(packet_count==0)
BAYANG_send_packet(1);
packet_count++;
packet_count%=4;
bind_counter--;
}
BAYANG_send_packet();
#ifdef BAYANG_HUB_TELEMETRY
if (option & BAYANG_OPTION_FLAG_TELEMETRY)
{ // telemetry is enabled
state++;
if (state > 200)
{
state = 0;
//telemetry reception packet rate - packets per second
TX_LQI = telemetry_counter>>1;
telemetry_counter = 0;
telemetry_lost=0;
}
phase++; //CHECK
return BAYANG_CHECK_DELAY;
}
#endif
break;
#ifdef BAYANG_HUB_TELEMETRY
case BAYANG_CHECK:
// switch radio to rx as soon as packet is sent
start=(uint16_t)micros();
while ((uint16_t)((uint16_t)micros()-(uint16_t)start) < 1000) // Wait max 1ms
if((NRF24L01_ReadReg(NRF24L01_07_STATUS) & _BV(NRF24L01_07_TX_DS)))
break;
NRF24L01_WriteReg(NRF24L01_00_CONFIG, 0x03);
phase++; // READ
return BAYANG_PACKET_TELEM_PERIOD - BAYANG_CHECK_DELAY - BAYANG_READ_DELAY;
case BAYANG_READ:
BAYANG_check_rx();
phase=BAYANG_WRITE;
return BAYANG_READ_DELAY;
#endif
}
return BAYANG_PACKET_PERIOD;
}
@@ -345,14 +359,11 @@ static void __attribute__((unused)) BAYANG_initialize_txid()
uint16_t initBAYANG(void)
{
BIND_IN_PROGRESS; // autobind protocol
phase=BAYANG_BIND;
bind_counter = BAYANG_BIND_COUNT;
BAYANG_initialize_txid();
BAYANG_init();
packet_count=0;
#ifdef BAYANG_HUB_TELEMETRY
init_frskyd_link_telemetry();
telemetry_lost=1; // do not send telemetry to TX right away until we have a TX_RSSI value to prevent warning message...
#endif
return BAYANG_INITIAL_WAIT+BAYANG_PACKET_PERIOD;
}

View File

@@ -0,0 +1,202 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
/************************/
/** Firmware Signature **/
/************************/
/*
The firmware signature is appended to the compiled binary image in order to provide information
about the options used to compile the firmware file. This information is then used by Multi-module
flashing tools to verify that the image is correct / valid.
In order for the build process to determine the options used to build the firmware this file conditionally
declares 'flag' variables for the options we are interested in.
When the pre-compiler parses the source code these variables are either present or not in the parsed cpp file,
typically '$build_dir$/preproc/ctags_target_for_gcc_minus_e.cpp'.
Once the .bin file is created an additional command-line build tool scans the parsed cpp file, detects the
flags, assembles the signature, and finally appends the signature to the end of the binary file.
The signature is 24 bytes long:
multi-x[8-byte hex code]-[8-byte version number]
For example:
multi-x1234abcd-01020199
The 8-byte hex code is a 32-bit bitmask value indicating the configuration options, currently:
Bit(s) Bitmask Option Comment
1-2 0x3 Module type Read as a two-bit value indicating a number from 0-3 which maps to a module type (AVR, STM32, OrangeRX)
3-7 0x7C Channel order Read as a five-bit value indicating a number from 0-23 which maps to as channel order (AETR, TAER, RETA, etc) (right-shift two bits to read)
8 0x80 Bootloader support Indicates whether or not the firmware was built with support for the bootloader
9 0x100 CHECK_FOR_BOOTLOADER Indicates if CHECK_FOR_BOOTLOADER is defined
10 0x200 INVERT_TELEMETRY Indicates if INVERT_TELEMETRY is defined
11 0x400 MULTI_STATUS Indicates if MULTI_STATUS is defined
12 0x800 MULTI_TELEMETRY Indicates if MULTI_TELEMETRY is defined
13 0x1000 DEBUG_SERIAL Indicates if DEBUG_SERIAL is defined
14-16 0xE000 Module sub-type Reads as a three-bit value indicating a number from 0-7 which maps to a module sub-type (right-shift 13 bits to read)
The 8-byte version number is the version number zero-padded to a fixed width of two-bytes per segment and no separator.
E.g. 1.2.3.45 becomes 01020345.
Multi Telemetery Type can be read from bits 11 and 12 using the bitmask 0xC00 and right-shifting ten bits:
Telemetry Type Decimal Value Binary Value
Undefined 0 00
erSkyTX 1 01
OpenTX 2 10
Module types are mapped to the following decimal / binary values:
Module Type Decimal Value Binary Valsue
AVR (Atmega328p) 0 00
STM32 (F103) 1 01
OrangeRX (Xmega) 2 10
Module sub-type is currently used for STM32F103 only and is mapped as follows:
Module Type Sub Type Decimal Value Binary Value
STM32 (F103) STM32F103CB 0 000
STM32 (F103) STM32F103C8 1 001
STM32 (F103) T18 5in1 2 010
Channel orders are mapped to the following decimal / binary values:
Channel Order Decimal Value Binary Value
AETR 0 00000
AERT 1 00001
ARET 2 00010
ARTE 3 00011
ATRE 4 00100
ATER 5 00101
EATR 6 00110
EART 7 00111
ERAT 8 01000
ERTA 9 01001
ETRA 10 01010
ETAR 11 01011
TEAR 12 01100
TERA 13 01101
TREA 14 01110
TRAE 15 01111
TARE 16 10000
TAER 17 10001
RETA 18 10010
REAT 19 10011
RAET 20 10100
RATE 21 10101
RTAE 22 10110
RTEA 23 10111
*/
// Set the flags for detecting and writing the firmware signature
#if defined (CHECK_FOR_BOOTLOADER)
bool firmwareFlag_CHECK_FOR_BOOTLOADER = true;
#endif
#if defined (INVERT_TELEMETRY)
bool firmwareFlag_INVERT_TELEMETRY = true;
#endif
#if defined (MULTI_STATUS)
bool firmwareFlag_MULTI_STATUS = true;
#endif
#if defined (MULTI_TELEMETRY)
bool firmwareFlag_MULTI_TELEMETRY = true;
#endif
#if defined (DEBUG_SERIAL)
bool firmwareFlag_DEBUG_SERIAL = true;
#endif
// STM32 Module sub-type flags
#if defined (MCU_STM32F103CB)
bool firmwareFlag_MCU_STM32F103CB = true;
#endif
#if defined (MCU_STM32F103C8)
bool firmwareFlag_MCU_STM32F103C8 = true;
#endif
#if defined (MULTI_5IN1_INTERNAL)
bool firmwareFlag_MULTI_5IN1_INTERNAL = true;
#endif
// Channel order flags
#if defined (AETR)
bool firmwareFlag_ChannelOrder_AETR = true;
#endif
#if defined (AERT)
bool firmwareFlag_ChannelOrder_AERT = true;
#endif
#if defined (ARET)
bool firmwareFlag_ChannelOrder_ARET = true;
#endif
#if defined (ARTE)
bool firmwareFlag_ChannelOrder_ARTE = true;
#endif
#if defined (ATRE)
bool firmwareFlag_ChannelOrder_ATRE = true;
#endif
#if defined (ATER)
bool firmwareFlag_ChannelOrder_ATER = true;
#endif
#if defined (EATR)
bool firmwareFlag_ChannelOrder_EATR = true;
#endif
#if defined (EART)
bool firmwareFlag_ChannelOrder_EART = true;
#endif
#if defined (ERAT)
bool firmwareFlag_ChannelOrder_ERAT = true;
#endif
#if defined (ERTA)
bool firmwareFlag_ChannelOrder_ERTA = true;
#endif
#if defined (ETRA)
bool firmwareFlag_ChannelOrder_ETRA = true;
#endif
#if defined (ETAR)
bool firmwareFlag_ChannelOrder_ETAR = true;
#endif
#if defined (TEAR)
bool firmwareFlag_ChannelOrder_TEAR = true;
#endif
#if defined (TERA)
bool firmwareFlag_ChannelOrder_TERA = true;
#endif
#if defined (TREA)
bool firmwareFlag_ChannelOrder_TREA = true;
#endif
#if defined (TRAE)
bool firmwareFlag_ChannelOrder_TRAE = true;
#endif
#if defined (TARE)
bool firmwareFlag_ChannelOrder_TARE = true;
#endif
#if defined (TAER)
bool firmwareFlag_ChannelOrder_TAER = true;
#endif
#if defined (RETA)
bool firmwareFlag_ChannelOrder_RETA = true;
#endif
#if defined (REAT)
bool firmwareFlag_ChannelOrder_REAT = true;
#endif
#if defined (RAET)
bool firmwareFlag_ChannelOrder_RAET = true;
#endif
#if defined (RATE)
bool firmwareFlag_ChannelOrder_RATE = true;
#endif
#if defined (RTAE)
bool firmwareFlag_ChannelOrder_RTAE = true;
#endif
#if defined (RTEA)
bool firmwareFlag_ChannelOrder_RTEA = true;
#endif

View File

@@ -284,7 +284,7 @@ static void __attribute__((unused))BUGS_set_radio_data()
{
offset=BUGS_NUM_RFCHAN;
// Read radio_id from EEPROM
uint8_t base_adr=BUGS_EEPROM_OFFSET+RX_num*2;
uint8_t base_adr=BUGS_EEPROM_OFFSET+(RX_num&0x0F)*2;
uint16_t rxid=0;
for(uint8_t i=0; i<2; i++)
rxid|=eeprom_read_byte((EE_ADDR)(base_adr+i))<<(i*8);
@@ -340,7 +340,7 @@ uint16_t ReadBUGS(void)
case BUGS_BIND_2:
//Wait for TX completion
start=micros();
while ((uint16_t)micros()-start < 500) // Wait max 500µs, using serial+telemetry exit in about 60µs
while ((uint16_t)((uint16_t)micros()-start) < 500) // Wait max 500µs, using serial+telemetry exit in about 60µs
if(!(A7105_ReadReg(A7105_00_MODE) & 0x01))
break;
A7105_SetTxRxMode(RX_EN);
@@ -374,7 +374,7 @@ uint16_t ReadBUGS(void)
BIND_DONE;
// set radio_id
rxid = (packet[1] << 8) + packet[2];
base_adr=BUGS_EEPROM_OFFSET+RX_num*2;
base_adr=BUGS_EEPROM_OFFSET+(RX_num&0x0F)*2;
for(uint8_t i=0; i<2; i++)
eeprom_write_byte((EE_ADDR)(base_adr+i),rxid>>(i*8)); // Save rxid in EEPROM
BUGS_set_radio_data();
@@ -385,6 +385,9 @@ uint16_t ReadBUGS(void)
break;
case BUGS_DATA_1:
#ifdef MULTI_SYNC
telemetry_set_input_sync(BUGS_PACKET_PERIOD);
#endif
A7105_SetPower();
BUGS_build_packet(0);
A7105_WriteReg(A7105_03_FIFOI, BUGS_FIFO_SIZE_TX);
@@ -396,7 +399,7 @@ uint16_t ReadBUGS(void)
case BUGS_DATA_2:
//Wait for TX completion
start=micros();
while ((uint16_t)micros()-start < 500) // Wait max 500µs, using serial+telemetry exit in about 60µs
while ((uint16_t)((uint16_t)micros()-start) < 500) // Wait max 500µs, using serial+telemetry exit in about 60µs
if(!(A7105_ReadReg(A7105_00_MODE) & 0x01))
break;
A7105_SetTxRxMode(RX_EN);
@@ -437,7 +440,7 @@ uint16_t ReadBUGS(void)
uint16_t initBUGS(void)
{
uint16_t rxid=0;
uint8_t base_adr=BUGS_EEPROM_OFFSET+RX_num*2;
uint8_t base_adr=BUGS_EEPROM_OFFSET+(RX_num&0x0F)*2;
for(uint8_t i=0; i<2; i++)
rxid|=eeprom_read_byte((EE_ADDR)(base_adr+i))<<(i*8);
if(rxid==0xffff)
@@ -456,9 +459,6 @@ uint16_t initBUGS(void)
armed = 0;
arm_flags = BUGS_FLAG_DISARM; // initial value from captures
arm_channel_previous = BUGS_CH_SW_ARM;
#ifdef BUGS_HUB_TELEMETRY
init_frskyd_link_telemetry();
#endif
return 10000;
}

View File

@@ -406,9 +406,12 @@ uint16_t CABELL_callback()
if (IS_BIND_DONE)
{
CABELL_send_packet(0); // packet_period is set/adjusted in CABELL_send_packet
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
return packet_period;
}
if (bind_counter == 0)
else if (bind_counter == 0)
{
BIND_DONE;
CABELL_init(); // non-bind address
@@ -429,10 +432,6 @@ uint16_t initCABELL(void)
else
bind_counter = CABELL_BIND_COUNT;
CABELL_init();
#if defined CABELL_HUB_TELEMETRY
init_frskyd_link_telemetry();
telemetry_lost=1; // do not send telemetry to TX right away until we have a TX_RSSI value to prevent warning message...
#endif
packet_period = CABELL_PACKET_PERIOD;

View File

@@ -150,6 +150,11 @@ void CC2500_SetPower()
#else
power=CC2500_HIGH_POWER;
#endif
if(IS_LBT_POWER_on)
{
power=CC2500_LBT_POWER;
LBT_POWER_off; // Only accept once
}
if(IS_RANGE_FLAG_on)
power=CC2500_RANGE_POWER;
if(prev_power != power)
@@ -158,4 +163,174 @@ void CC2500_SetPower()
prev_power=power;
}
}
void __attribute__((unused)) CC2500_SetFreqOffset()
{
if(prev_option != option)
{
prev_option = option;
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
}
}
void __attribute__((unused)) CC2500_250K_Init()
{
CC2500_Strobe(CC2500_SIDLE);
// Address Config = No address check
// Base Frequency = 2400
// CRC Autoflush = false
// CRC Enable = false
// Channel Spacing = 333.251953
// Data Format = Normal mode
// Data Rate = 249.939
// Deviation = 126.953125
// Device Address = 0
// Manchester Enable = false
// Modulated = true
// Modulation Format = GFSK
// Packet Length Mode = Variable packet length mode. Packet length configured by the first byte after sync word
// RX Filter BW = 203.125000
// Sync Word Qualifier Mode = No preamble/sync
// TX Power = 0
// Whitening = false
// Fast Frequency Hopping - no PLL auto calibration
CC2500_WriteReg(CC2500_08_PKTCTRL0, 0x01); // Packet Automation Control
CC2500_WriteReg(CC2500_0B_FSCTRL1, 0x0A); // Frequency Synthesizer Control
CC2500_WriteReg(CC2500_0C_FSCTRL0, option); // Frequency offset hack
CC2500_WriteReg(CC2500_0D_FREQ2, 0x5C); // Frequency Control Word, High Byte
CC2500_WriteReg(CC2500_0E_FREQ1, 0x4E); // Frequency Control Word, Middle Byte
CC2500_WriteReg(CC2500_0F_FREQ0, 0xC3); // Frequency Control Word, Low Byte
CC2500_WriteReg(CC2500_10_MDMCFG4, 0x8D); // Modem Configuration
CC2500_WriteReg(CC2500_11_MDMCFG3, 0x3B); // Modem Configuration
CC2500_WriteReg(CC2500_12_MDMCFG2, 0x10); // Modem Configuration
CC2500_WriteReg(CC2500_13_MDMCFG1, 0x23); // Modem Configuration
CC2500_WriteReg(CC2500_14_MDMCFG0, 0xA4); // Modem Configuration
CC2500_WriteReg(CC2500_15_DEVIATN, 0x62); // Modem Deviation Setting
CC2500_WriteReg(CC2500_18_MCSM0, 0x08); // Main Radio Control State Machine Configuration
CC2500_WriteReg(CC2500_19_FOCCFG, 0x1D); // Frequency Offset Compensation Configuration
CC2500_WriteReg(CC2500_1A_BSCFG, 0x1C); // Bit Synchronization Configuration
CC2500_WriteReg(CC2500_1B_AGCCTRL2, 0xC7); // AGC Control
CC2500_WriteReg(CC2500_1C_AGCCTRL1, 0x00); // AGC Control
CC2500_WriteReg(CC2500_1D_AGCCTRL0, 0xB0); // AGC Control
CC2500_WriteReg(CC2500_21_FREND1, 0xB6); // Front End RX Configuration
CC2500_WriteReg(CC2500_23_FSCAL3, 0xEA); // Frequency Synthesizer Calibration
CC2500_WriteReg(CC2500_25_FSCAL1, 0x00); // Frequency Synthesizer Calibration
CC2500_WriteReg(CC2500_26_FSCAL0, 0x11); // Frequency Synthesizer Calibration
CC2500_SetTxRxMode(TX_EN);
CC2500_SetPower();
}
void __attribute__((unused)) CC2500_250K_HoppingCalib(uint8_t num_freq)
{
for (uint8_t i = 0; i < num_freq; i++)
{
CC2500_Strobe(CC2500_SIDLE);
// spacing is 333.25 kHz, must multiply channel by 3
CC2500_WriteReg(CC2500_0A_CHANNR, hopping_frequency[i]*3);
// calibrate
CC2500_Strobe(CC2500_SCAL);
delayMicroseconds(900);
calData[i]=CC2500_ReadReg(CC2500_25_FSCAL1);
}
}
void __attribute__((unused)) CC2500_250K_Hopping(uint8_t index)
{
// spacing is 333.25 kHz, must multiply channel by 3
CC2500_WriteReg(CC2500_0A_CHANNR, hopping_frequency[index] * 3);
// set PLL calibration
CC2500_WriteReg(CC2500_25_FSCAL1, calData[index]);
}
void __attribute__((unused)) CC2500_250K_RFChannel(uint8_t number)
{
CC2500_Strobe(CC2500_SIDLE);
// spacing is 333.25 kHz, must multiply channel by 3
CC2500_WriteReg(CC2500_0A_CHANNR, number*3);
// calibrate
CC2500_Strobe(CC2500_SCAL);
delayMicroseconds(900);
}
//NRF emulation layer with CRC16 enabled
uint8_t cc2500_nrf_tx_addr[5], cc2500_nrf_addr_len;
void __attribute__((unused)) CC2500_250K_NRF_SetTXAddr(uint8_t* addr, uint8_t len)
{
cc2500_nrf_addr_len = len;
memcpy(cc2500_nrf_tx_addr, addr, len);
}
void __attribute__((unused)) CC2500_250K_NRF_WritePayload(uint8_t* msg, uint8_t len)
{
#if defined(ESKY150V2_CC2500_INO)
uint8_t buf[158];
#else
uint8_t buf[35];
#endif
uint8_t last = 0;
uint8_t i;
//nrf preamble
if(cc2500_nrf_tx_addr[cc2500_nrf_addr_len - 1] & 0x80)
buf[0]=0xAA;
else
buf[0]=0x55;
last++;
// address
for (i = 0; i < cc2500_nrf_addr_len; ++i)
buf[last++] = cc2500_nrf_tx_addr[cc2500_nrf_addr_len - i - 1];
// payload
for (i = 0; i < len; ++i)
buf[last++] = msg[i];
// crc
crc = 0xffff;
for (uint8_t i = 1; i < last; ++i)
crc16_update( buf[i], 8);
buf[last++] = crc >> 8;
buf[last++] = crc & 0xff;
buf[last++] = 0;
//for(uint8_t i=0;i<last;i++)
// debug("%02X ",buf[i]);
//debugln("");
// stop TX/RX
CC2500_Strobe(CC2500_SIDLE);
// flush tx FIFO
CC2500_Strobe(CC2500_SFTX);
// packet length
CC2500_WriteReg(CC2500_3F_TXFIFO, last);
// transmit nrf packet
uint8_t *buff=buf;
uint8_t status;
if(last>63)
{
CC2500_WriteRegisterMulti(CC2500_3F_TXFIFO, buff, 63);
CC2500_Strobe(CC2500_STX);
last-=63;
buff+=63;
while(last)
{//Loop until all the data is sent
do
{// Wait for the FIFO to become available
status=CC2500_ReadReg(CC2500_3A_TXBYTES | CC2500_READ_BURST);
}
while((status&0x7F)>31 && (status&0x80)==0);
if(last>31)
{//Send 31 bytes
CC2500_WriteRegisterMulti(CC2500_3F_TXFIFO, buff, 31);
last-=31;
buff+=31;
}
else
{//Send last bytes
CC2500_WriteRegisterMulti(CC2500_3F_TXFIFO, buff, last);
last=0;
}
}
}
else
{//Send packet
CC2500_WriteRegisterMulti(CC2500_3F_TXFIFO, buff, last);
CC2500_Strobe(CC2500_STX);
}
}
#endif

View File

@@ -97,7 +97,7 @@ static inline uint8_t crtp_create_header(uint8_t port, uint8_t channel)
#define TX_ADDR_SIZE 5
// Timeout for callback in uSec, 10ms=10000us for Crazyflie
#define PACKET_PERIOD 10000
#define CFLIE_PACKET_PERIOD 10000
#define MAX_PACKET_SIZE 32 // CRTP is 32 bytes
@@ -781,7 +781,10 @@ static uint16_t cflie_callback()
break;
case CFLIE_DATA:
// if (Model.proto_opts[PROTOOPTS_TELEMETRY] == TELEM_ON_CRTPLOG) {
#ifdef MULTI_SYNC
telemetry_set_input_sync(CFLIE_PACKET_PERIOD);
#endif
// if (Model.proto_opts[PROTOOPTS_TELEMETRY] == TELEM_ON_CRTPLOG) {
// update_telemetry_crtplog();
// } else if (Model.proto_opts[PROTOOPTS_TELEMETRY] == TELEM_ON_ACKPKT) {
// update_telemetry_ackpkt();
@@ -792,7 +795,7 @@ static uint16_t cflie_callback()
send_cmd_packet();
break;
}
return PACKET_PERIOD; // Packet at standard protocol interval
return CFLIE_PACKET_PERIOD; // Packet at standard protocol interval
}
// Generate address to use from TX id and manufacturer id (STM32 unique id)

View File

@@ -138,7 +138,12 @@ static void __attribute__((unused)) CG023_init()
uint16_t CG023_callback()
{
if(IS_BIND_DONE)
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
CG023_send_packet(0);
}
else
{
if (bind_counter == 0)

View File

@@ -19,17 +19,17 @@
#include "iface_nrf24l01.h"
#define CX10_BIND_COUNT 4360 // 6 seconds
#define CX10_BIND_COUNT 4360 // 6 seconds
#define CX10_PACKET_SIZE 15
#define CX10A_PACKET_SIZE 19 // CX10 blue board packets have 19-byte payload
#define CX10A_PACKET_SIZE 19 // CX10 blue board packets have 19-byte payload
#define Q2X2_PACKET_SIZE 21
#define CX10_PACKET_PERIOD 1316 // Timeout for callback in uSec
#define CX10_PACKET_PERIOD 1316 // Timeout for callback in uSec
#define CX10A_PACKET_PERIOD 6000
#define CX10_INITIAL_WAIT 500
// flags
#define CX10_FLAG_FLIP 0x10 // goes to rudder channel
#define CX10_FLAG_FLIP 0x10 // goes to rudder channel
#define CX10_FLAG_MODE_MASK 0x03
#define CX10_FLAG_HEADLESS 0x04
// flags2
@@ -181,7 +181,7 @@ static void __attribute__((unused)) CX10_init()
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowledgment on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, packet_length); // rx pipe 0 (used only for blue board)
NRF24L01_WriteReg(NRF24L01_05_RF_CH, CX10_RF_BIND_CHANNEL);
NRF24L01_WriteReg(NRF24L01_05_RF_CH, CX10_RF_BIND_CHANNEL);
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps
NRF24L01_SetPower();
}
@@ -220,7 +220,8 @@ uint16_t CX10_callback()
NRF24L01_FlushTx();
NRF24L01_SetTxRxMode(TX_EN);
CX10_Write_Packet(1);
delayMicroseconds(400);
// wait for packet to be sent
while( (NRF24L01_ReadReg(NRF24L01_07_STATUS) & _BV(NRF24L01_07_TX_DS)) == 0); //delayMicroseconds(400);
// switch to RX mode
NRF24L01_SetTxRxMode(TXRX_OFF);
NRF24L01_FlushRx();
@@ -229,6 +230,9 @@ uint16_t CX10_callback()
}
break;
case CX10_DATA:
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
CX10_Write_Packet(0);
break;
}

View File

@@ -98,14 +98,14 @@ void CYRF_SetTxRxMode(uint8_t mode)
{
if(mode==TXRX_OFF)
{
if(protocol!=PROTO_WFLY)
if( protocol!=PROTO_WFLY && protocol!=PROTO_MLINK )
CYRF_WriteRegister(CYRF_0F_XACT_CFG, 0x24); // 4=IDLE, 8=TX, C=RX
CYRF_WriteRegister(CYRF_0E_GPIO_CTRL,0x00); // XOUT=0 PACTL=0
}
else
{
//Set the post tx/rx state
if(protocol!=PROTO_WFLY)
if( protocol!=PROTO_WFLY && protocol!=PROTO_MLINK )
CYRF_WriteRegister(CYRF_0F_XACT_CFG, mode == TX_EN ? 0x28 : 0x2C); // 4=IDLE, 8=TX, C=RX
if(mode == TX_EN)
#ifdef ORANGE_TX_BLUE
@@ -168,10 +168,10 @@ void CYRF_SetPower(uint8_t val)
/*
*
*/
void CYRF_ConfigCRCSeed(uint16_t crc)
void CYRF_ConfigCRCSeed(uint16_t crc_seed)
{
CYRF_WriteRegister(CYRF_15_CRC_SEED_LSB,crc & 0xff);
CYRF_WriteRegister(CYRF_16_CRC_SEED_MSB,crc >> 8);
CYRF_WriteRegister(CYRF_15_CRC_SEED_LSB,crc_seed & 0xff);
CYRF_WriteRegister(CYRF_16_CRC_SEED_MSB,crc_seed >> 8);
}
/*
* these are the recommended sop codes from Cyrpress
@@ -284,7 +284,7 @@ void CYRF_FindBestChannels(uint8_t *channels, uint8_t len, uint8_t minspace, uin
}
CYRF_WriteRegister(CYRF_29_RX_ABORT, 0x20); // Abort RX operation
CYRF_SetTxRxMode(TX_EN);
CYRF_WriteRegister(CYRF_29_RX_ABORT, 0x20); // Clear abort RX
CYRF_WriteRegister(CYRF_29_RX_ABORT, 0x00); // Clear abort RX
}
#if defined(DEVO_CYRF6936_INO) || defined(J6PRO_CYRF6936_INO)
@@ -313,6 +313,7 @@ const uint8_t PROGMEM DEVO_j6pro_sopcodes[][8] = {
#endif
};
#endif
static void __attribute__((unused)) CYRF_PROGMEM_ConfigSOPCode(const uint8_t *data)
{
uint8_t code[8];
@@ -320,4 +321,69 @@ static void __attribute__((unused)) CYRF_PROGMEM_ConfigSOPCode(const uint8_t *da
code[i]=pgm_read_byte_near(&data[i]);
CYRF_ConfigSOPCode(code);
}
//CYRF GFSK 1Mb functions
const uint8_t PROGMEM CYRF_GFSK1M_init_vals[][2] = {
{CYRF_02_TX_CTRL, 0x00}, // transmit err & complete interrupts disabled
{CYRF_05_RX_CTRL, 0x00}, // receive err & complete interrupts disabled
{CYRF_28_CLK_EN, 0x02}, // Force Receive Clock Enable, MUST be set
{CYRF_32_AUTO_CAL_TIME, 0x3c}, // must be set to 3C
{CYRF_35_AUTOCAL_OFFSET, 0x14}, // must be set to 14
{CYRF_06_RX_CFG, 0x48}, // LNA manual control, Rx Fast Turn Mode Enable
{CYRF_1B_TX_OFFSET_LSB, 0x00}, // Tx frequency offset LSB
{CYRF_1C_TX_OFFSET_MSB, 0x00}, // Tx frequency offset MSB
{CYRF_0F_XACT_CFG, 0x24}, // Force End State, transaction end state = idle
{CYRF_03_TX_CFG, 0x00}, // GFSK mode
{CYRF_12_DATA64_THOLD, 0x0a}, // 64 Chip Data PN Code Correlator Threshold = 10
{CYRF_0F_XACT_CFG, 0x04}, // Transaction End State = idle
{CYRF_39_ANALOG_CTRL, 0x01}, // synth setting time for all channels is the same as for slow channels
{CYRF_0F_XACT_CFG, 0x24}, //Force IDLE
{CYRF_29_RX_ABORT, 0x00}, //Clear RX abort
{CYRF_12_DATA64_THOLD, 0x0a}, //set pn correlation threshold
{CYRF_10_FRAMING_CFG, 0x4a}, //set sop len and threshold
{CYRF_29_RX_ABORT, 0x0f}, //Clear RX abort?
{CYRF_03_TX_CFG, 0x00}, // GFSK mode
{CYRF_10_FRAMING_CFG, 0x4a}, // 0b11000000 //set sop len and threshold
{CYRF_1F_TX_OVERRIDE, 0x04}, //disable tx CRC
{CYRF_1E_RX_OVERRIDE, 0x14}, //disable rx crc
{CYRF_14_EOP_CTRL, 0x00}, //set EOP sync == 0
};
static void __attribute__((unused)) CYRF_GFSK1M_Init(uint8_t payload_length, uint8_t preamble_len)
{
for(uint8_t i = 0; i < sizeof(CYRF_GFSK1M_init_vals) / 2; i++)
CYRF_WriteRegister(pgm_read_byte_near(&CYRF_GFSK1M_init_vals[i][0]), pgm_read_byte_near(&CYRF_GFSK1M_init_vals[i][1]));
CYRF_WriteRegister(CYRF_01_TX_LENGTH, payload_length);
CYRF_WritePreamble(0xAAAA00 | preamble_len);
CYRF_SetPower(0x00);
CYRF_SetTxRxMode(TX_EN);
}
static void __attribute__((unused)) CYRF_GFSK1M_SendPayload(uint8_t *buffer, uint8_t len)
{
uint8_t send=len>16 ? 16 : len;
CYRF_WriteRegister(CYRF_02_TX_CTRL, 0x40);
CYRF_WriteRegisterMulti(CYRF_20_TX_BUFFER, buffer, send); // Fill the buffer with 16 bytes max
CYRF_WriteRegister(CYRF_02_TX_CTRL, 0x80); // Start send
buffer += send;
len -= send;
while(len>8)
{
while((CYRF_ReadRegister(CYRF_04_TX_IRQ_STATUS)&0x10) == 0); // Wait that half of the buffer is empty
CYRF_WriteRegisterMulti(CYRF_20_TX_BUFFER, buffer, 8); // Add 8 bytes to the buffer
buffer+=8;
len-=8;
}
if(len)
{
while((CYRF_ReadRegister(CYRF_04_TX_IRQ_STATUS)&0x10) == 0); // Wait that half of the buffer is empty
CYRF_WriteRegisterMulti(CYRF_20_TX_BUFFER, buffer, len); // Add the remaining bytes to the buffer
}
}
#define CYRF_GFSK1M_SetPower() CYRF_SetPower(0x00)
#endif

View File

@@ -1,353 +0,0 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef FAILSAFE_ENABLE
//Convert from percentage to failsafe value
#define FAILSAFE_THROTTLE_LOW_VAL (((FAILSAFE_THROTTLE_LOW+125)*1024)/125)
#if FAILSAFE_THROTTLE_LOW_VAL <= 0
#undef FAILSAFE_THROTTLE_LOW_VAL
#define FAILSAFE_THROTTLE_LOW_VAL 1
#elif (FAILSAFE_THROTTLE_LOW_VAL) >= 2046
#undef FAILSAFE_THROTTLE_LOW_VAL
#define FAILSAFE_THROTTLE_LOW_VAL 2046
#endif
void InitFailsafe()
{
for(uint8_t i=0;i<NUM_CHN;i++)
Failsafe_data[i]=1024;
Failsafe_data[THROTTLE]=(uint16_t)FAILSAFE_THROTTLE_LOW_VAL; //1=-125%, 204=-100%
FAILSAFE_VALUES_on;
#ifdef FAILSAFE_SERIAL_ONLY
if(mode_select == MODE_SERIAL)
FAILSAFE_VALUES_off;
#endif
}
#endif
#ifdef ENABLE_PPM
void InitPPM()
{
for(uint8_t i=0;i<NUM_CHN;i++)
PPM_data[i]=PPM_MAX_100+PPM_MIN_100;
PPM_data[THROTTLE]=PPM_MIN_100*2;
}
#endif
void InitChannel()
{
for(uint8_t i=0;i<NUM_CHN;i++)
Channel_data[i]=1024;
#ifdef FAILSAFE_THROTTLE_LOW_VAL
Channel_data[THROTTLE]=(uint16_t)FAILSAFE_THROTTLE_LOW_VAL; //0=-125%, 204=-100%
#else
Channel_data[THROTTLE]=204;
#endif
}
/************************/
/** Convert routines **/
/************************/
// Convert channel 8b with limit and deadband
uint8_t convert_channel_8b_limit_deadband(uint8_t num,uint8_t min,uint8_t mid, uint8_t max, uint8_t deadband)
{
uint16_t val=limit_channel_100(num); // 204<->1844
uint16_t db_low=CHANNEL_MID-deadband, db_high=CHANNEL_MID+deadband; // 1024+-deadband
if(val>=db_low && val<=db_high)
return mid;
else if(val<db_low)
val=min+(val-CHANNEL_MIN_100)*(mid-min)/(db_low-CHANNEL_MIN_100);
else
val=mid+(val-db_high)*(max-mid)/(CHANNEL_MAX_100-1-db_high);
return val;
}
// Reverse a channel and store it
void reverse_channel(uint8_t num)
{
uint16_t val=2048-Channel_data[num];
if(val>=2048) val=2047;
Channel_data[num]=val;
}
// Channel value is converted to ppm 860<->2140 -125%<->+125% and 988<->2012 -100%<->+100%
uint16_t convert_channel_ppm(uint8_t num)
{
uint16_t val=Channel_data[num];
return (((val<<2)+val)>>3)+860; //value range 860<->2140 -125%<->+125%
}
// Channel value 100% is converted to 10bit values 0<->1023
uint16_t convert_channel_10b(uint8_t num)
{
uint16_t val=Channel_data[num];
val=((val<<2)+val)>>3;
if(val<=128) return 0;
if(val>=1152) return 1023;
return val-128;
}
// Channel value 100% is converted to 8bit values 0<->255
uint8_t convert_channel_8b(uint8_t num)
{
uint16_t val=Channel_data[num];
val=((val<<2)+val)>>5;
if(val<=32) return 0;
if(val>=288) return 255;
return val-32;
}
// Channel value 100% is converted to value scaled
int16_t convert_channel_16b_limit(uint8_t num,int16_t min,int16_t max)
{
int32_t val=limit_channel_100(num); // 204<->1844
val=(val-CHANNEL_MIN_100)*(max-min)/(CHANNEL_MAX_100-CHANNEL_MIN_100)+min;
return (uint16_t)val;
}
// Channel value -125%<->125% is scaled to 16bit value with no limit
int16_t convert_channel_16b_nolimit(uint8_t num, int16_t min, int16_t max)
{
int32_t val=Channel_data[num]; // 0<->2047
val=(val-CHANNEL_MIN_100)*(max-min)/(CHANNEL_MAX_100-CHANNEL_MIN_100)+min;
return (uint16_t)val;
}
// Channel value is converted sign + magnitude 8bit values
uint8_t convert_channel_s8b(uint8_t num)
{
uint8_t ch;
ch = convert_channel_8b(num);
return (ch < 128 ? 127-ch : ch);
}
// Channel value is limited to 100%
uint16_t limit_channel_100(uint8_t num)
{
if(Channel_data[num]>=CHANNEL_MAX_100)
return CHANNEL_MAX_100;
if (Channel_data[num]<=CHANNEL_MIN_100)
return CHANNEL_MIN_100;
return Channel_data[num];
}
// Channel value is converted for HK310
void convert_channel_HK310(uint8_t num, uint8_t *low, uint8_t *high)
{
uint16_t temp=0xFFFF-(3440+((Channel_data[num]*5)>>1))/3;
*low=(uint8_t)(temp&0xFF);
*high=(uint8_t)(temp>>8);
}
#ifdef FAILSAFE_ENABLE
// Failsafe value is converted for HK310
void convert_failsafe_HK310(uint8_t num, uint8_t *low, uint8_t *high)
{
uint16_t temp=0xFFFF-(3440+((Failsafe_data[num]*5)>>1))/3;
*low=(uint8_t)(temp&0xFF);
*high=(uint8_t)(temp>>8);
}
#endif
// Channel value for FrSky (PPM is multiplied by 1.5)
uint16_t convert_channel_frsky(uint8_t num)
{
uint16_t val=Channel_data[num];
return ((val*15)>>4)+1290;
}
/******************************/
/** FrSky D and X routines **/
/******************************/
#if defined(FRSKYD_CC2500_INO) || defined(FRSKYX_CC2500_INO)
enum {
FRSKY_BIND = 0,
FRSKY_BIND_DONE = 1000,
FRSKY_DATA1,
FRSKY_DATA2,
FRSKY_DATA3,
FRSKY_DATA4,
FRSKY_DATA5
};
void Frsky_init_hop(void)
{
uint8_t val;
uint8_t channel = rx_tx_addr[0]&0x07;
uint8_t channel_spacing = rx_tx_addr[1];
//Filter bad tables
if(channel_spacing<0x02) channel_spacing+=0x02;
if(channel_spacing>0xE9) channel_spacing-=0xE7;
if(channel_spacing%0x2F==0) channel_spacing++;
hopping_frequency[0]=channel;
for(uint8_t i=1;i<50;i++)
{
channel=(channel+channel_spacing) % 0xEB;
val=channel;
if((val==0x00) || (val==0x5A) || (val==0xDC))
val++;
hopping_frequency[i]=i>46?0:val;
}
}
#endif
/******************************/
/** FrSky V, D and X routines **/
/******************************/
#if defined(FRSKYV_CC2500_INO) || defined(FRSKYD_CC2500_INO) || defined(FRSKYX_CC2500_INO)
const PROGMEM uint8_t FRSKY_common_startreg_cc2500_conf[]= {
CC2500_02_IOCFG0 ,
CC2500_00_IOCFG2 ,
CC2500_17_MCSM1 ,
CC2500_18_MCSM0 ,
CC2500_06_PKTLEN ,
CC2500_07_PKTCTRL1 ,
CC2500_08_PKTCTRL0 ,
CC2500_3E_PATABLE ,
CC2500_0B_FSCTRL1 ,
CC2500_0C_FSCTRL0 , // replaced by option value
CC2500_0D_FREQ2 ,
CC2500_0E_FREQ1 ,
CC2500_0F_FREQ0 ,
CC2500_10_MDMCFG4 ,
CC2500_11_MDMCFG3 ,
CC2500_12_MDMCFG2 ,
CC2500_13_MDMCFG1 ,
CC2500_14_MDMCFG0 ,
CC2500_15_DEVIATN };
#if defined(FRSKYV_CC2500_INO)
const PROGMEM uint8_t FRSKYV_cc2500_conf[]= {
/*02_IOCFG0*/ 0x06 ,
/*00_IOCFG2*/ 0x06 ,
/*17_MCSM1*/ 0x0c ,
/*18_MCSM0*/ 0x18 ,
/*06_PKTLEN*/ 0xff ,
/*07_PKTCTRL1*/ 0x04 ,
/*08_PKTCTRL0*/ 0x05 ,
/*3E_PATABLE*/ 0xfe ,
/*0B_FSCTRL1*/ 0x08 ,
/*0C_FSCTRL0*/ 0x00 ,
/*0D_FREQ2*/ 0x5c ,
/*0E_FREQ1*/ 0x58 ,
/*0F_FREQ0*/ 0x9d ,
/*10_MDMCFG4*/ 0xAA ,
/*11_MDMCFG3*/ 0x10 ,
/*12_MDMCFG2*/ 0x93 ,
/*13_MDMCFG1*/ 0x23 ,
/*14_MDMCFG0*/ 0x7a ,
/*15_DEVIATN*/ 0x41 };
#endif
#if defined(FRSKYD_CC2500_INO)
const PROGMEM uint8_t FRSKYD_cc2500_conf[]= {
/*02_IOCFG0*/ 0x06 ,
/*00_IOCFG2*/ 0x06 ,
/*17_MCSM1*/ 0x0c ,
/*18_MCSM0*/ 0x18 ,
/*06_PKTLEN*/ 0x19 ,
/*07_PKTCTRL1*/ 0x04 ,
/*08_PKTCTRL0*/ 0x05 ,
/*3E_PATABLE*/ 0xff ,
/*0B_FSCTRL1*/ 0x08 ,
/*0C_FSCTRL0*/ 0x00 ,
/*0D_FREQ2*/ 0x5c ,
/*0E_FREQ1*/ 0x76 ,
/*0F_FREQ0*/ 0x27 ,
/*10_MDMCFG4*/ 0xAA ,
/*11_MDMCFG3*/ 0x39 ,
/*12_MDMCFG2*/ 0x11 ,
/*13_MDMCFG1*/ 0x23 ,
/*14_MDMCFG0*/ 0x7a ,
/*15_DEVIATN*/ 0x42 };
#endif
#if defined(FRSKYX_CC2500_INO)
const PROGMEM uint8_t FRSKYX_cc2500_conf[]= {
//FRSKYX
/*02_IOCFG0*/ 0x06 ,
/*00_IOCFG2*/ 0x06 ,
/*17_MCSM1*/ 0x0c ,
/*18_MCSM0*/ 0x18 ,
/*06_PKTLEN*/ 0x1E ,
/*07_PKTCTRL1*/ 0x04 ,
/*08_PKTCTRL0*/ 0x01 ,
/*3E_PATABLE*/ 0xff ,
/*0B_FSCTRL1*/ 0x0A ,
/*0C_FSCTRL0*/ 0x00 ,
/*0D_FREQ2*/ 0x5c ,
/*0E_FREQ1*/ 0x76 ,
/*0F_FREQ0*/ 0x27 ,
/*10_MDMCFG4*/ 0x7B ,
/*11_MDMCFG3*/ 0x61 ,
/*12_MDMCFG2*/ 0x13 ,
/*13_MDMCFG1*/ 0x23 ,
/*14_MDMCFG0*/ 0x7a ,
/*15_DEVIATN*/ 0x51 };
const PROGMEM uint8_t FRSKYXEU_cc2500_conf[]= {
/*02_IOCFG0*/ 0x06 ,
/*00_IOCFG2*/ 0x06 ,
/*17_MCSM1*/ 0x0E ,
/*18_MCSM0*/ 0x18 ,
/*06_PKTLEN*/ 0x23 ,
/*07_PKTCTRL1*/ 0x04 ,
/*08_PKTCTRL0*/ 0x01 ,
/*3E_PATABLE*/ 0xff ,
/*0B_FSCTRL1*/ 0x08 ,
/*0C_FSCTRL0*/ 0x00 ,
/*0D_FREQ2*/ 0x5c ,
/*0E_FREQ1*/ 0x80 ,
/*0F_FREQ0*/ 0x00 ,
/*10_MDMCFG4*/ 0x7B ,
/*11_MDMCFG3*/ 0xF8 ,
/*12_MDMCFG2*/ 0x03 ,
/*13_MDMCFG1*/ 0x23 ,
/*14_MDMCFG0*/ 0x7a ,
/*15_DEVIATN*/ 0x53 };
#endif
const PROGMEM uint8_t FRSKY_common_end_cc2500_conf[][2]= {
{ CC2500_19_FOCCFG, 0x16 },
{ CC2500_1A_BSCFG, 0x6c },
{ CC2500_1B_AGCCTRL2, 0x43 },
{ CC2500_1C_AGCCTRL1, 0x40 },
{ CC2500_1D_AGCCTRL0, 0x91 },
{ CC2500_21_FREND1, 0x56 },
{ CC2500_22_FREND0, 0x10 },
{ CC2500_23_FSCAL3, 0xa9 },
{ CC2500_24_FSCAL2, 0x0A },
{ CC2500_25_FSCAL1, 0x00 },
{ CC2500_26_FSCAL0, 0x11 },
{ CC2500_29_FSTEST, 0x59 },
{ CC2500_2C_TEST2, 0x88 },
{ CC2500_2D_TEST1, 0x31 },
{ CC2500_2E_TEST0, 0x0B },
{ CC2500_03_FIFOTHR, 0x07 },
{ CC2500_09_ADDR, 0x00 } };
void FRSKY_init_cc2500(const uint8_t *ptr)
{
for(uint8_t i=0;i<19;i++)
{
uint8_t reg=pgm_read_byte_near(&FRSKY_common_startreg_cc2500_conf[i]);
uint8_t val=pgm_read_byte_near(&ptr[i]);
if(reg==CC2500_0C_FSCTRL0)
val=option;
CC2500_WriteReg(reg,val);
}
prev_option = option ; // Save option to monitor FSCTRL0 change
for(uint8_t i=0;i<17;i++)
{
uint8_t reg=pgm_read_byte_near(&FRSKY_common_end_cc2500_conf[i][0]);
uint8_t val=pgm_read_byte_near(&FRSKY_common_end_cc2500_conf[i][1]);
CC2500_WriteReg(reg,val);
}
CC2500_SetTxRxMode(TX_EN);
CC2500_SetPower();
CC2500_Strobe(CC2500_SIDLE); // Go to idle...
}
#endif

176
Multiprotocol/Convert.ino Normal file
View File

@@ -0,0 +1,176 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
/************************/
/** Convert routines **/
/************************/
// Reverse a channel and store it
void reverse_channel(uint8_t num)
{
uint16_t val=2048-Channel_data[num];
if(val>=2048) val=2047;
Channel_data[num]=val;
}
// Channel value is converted to ppm 860<->2140 -125%<->+125% and 988<->2012 -100%<->+100%
uint16_t convert_channel_ppm(uint8_t num)
{
uint16_t val=Channel_data[num];
return (((val<<2)+val)>>3)+860; //value range 860<->2140 -125%<->+125%
}
// Channel value 100% is converted to 10bit values 0<->1023
uint16_t convert_channel_10b(uint8_t num, bool failsafe)
{
uint16_t val;
#ifdef FAILSAFE_ENABLE
if(failsafe)
val=Failsafe_data[num]; // 0<->2047
else
#endif
val=Channel_data[num];
val=((val<<2)+val)>>3;
if(val<=128) return 0;
if(val>=1152) return 1023;
return val-128;
}
// Channel value 100% is converted to 8bit values 0<->255
uint8_t convert_channel_8b(uint8_t num)
{
uint16_t val=Channel_data[num];
val=((val<<2)+val)>>5;
if(val<=32) return 0;
if(val>=288) return 255;
return val-32;
}
// Channel value 100% is converted to 8b with deadband
uint8_t convert_channel_8b_limit_deadband(uint8_t num,uint8_t min,uint8_t mid, uint8_t max, uint8_t deadband)
{
uint16_t val=limit_channel_100(num); // 204<->1844
uint16_t db_low=CHANNEL_MID-deadband, db_high=CHANNEL_MID+deadband; // 1024+-deadband
int32_t calc;
uint8_t out;
if(val>=db_low && val<=db_high)
return mid;
else if(val<db_low)
{
val-=CHANNEL_MIN_100;
calc=mid-min;
calc*=val;
calc/=(db_low-CHANNEL_MIN_100);
out=calc;
out+=min;
}
else
{
val-=db_high;
calc=max-mid;
calc*=val;
calc/=(CHANNEL_MAX_100-db_high+1);
out=calc;
out+=mid;
if(max>min) out++; else out--;
}
return out;
}
// Channel value 100% is converted to value scaled
int16_t convert_channel_16b_limit(uint8_t num,int16_t min,int16_t max)
{
int32_t val=limit_channel_100(num); // 204<->1844
val=(val-CHANNEL_MIN_100)*(max-min)/(CHANNEL_MAX_100-CHANNEL_MIN_100)+min;
return (uint16_t)val;
}
// Channel value -125%<->125% is scaled to 16bit value with no limit
int16_t convert_channel_16b_nolimit(uint8_t num, int16_t min, int16_t max, bool failsafe)
{
int32_t val;
#ifdef FAILSAFE_ENABLE
if(failsafe)
val=Failsafe_data[num]; // 0<->2047
else
#endif
val=Channel_data[num]; // 0<->2047
val=(val-CHANNEL_MIN_100)*(max-min)/(CHANNEL_MAX_100-CHANNEL_MIN_100)+min;
return (uint16_t)val;
}
// Channel value is converted sign + magnitude 8bit values
uint8_t convert_channel_s8b(uint8_t num)
{
uint8_t ch;
ch = convert_channel_8b(num);
return (ch < 128 ? 127-ch : ch);
}
// Channel value is limited to 100%
uint16_t limit_channel_100(uint8_t num)
{
if(Channel_data[num]>=CHANNEL_MAX_100)
return CHANNEL_MAX_100;
if (Channel_data[num]<=CHANNEL_MIN_100)
return CHANNEL_MIN_100;
return Channel_data[num];
}
// Channel value is converted for HK310
void convert_channel_HK310(uint8_t num, uint8_t *low, uint8_t *high)
{
uint16_t temp=0xFFFF-(3440+((Channel_data[num]*5)>>1))/3;
*low=(uint8_t)(temp&0xFF);
*high=(uint8_t)(temp>>8);
}
#ifdef FAILSAFE_ENABLE
// Failsafe value is converted for HK310
void convert_failsafe_HK310(uint8_t num, uint8_t *low, uint8_t *high)
{
uint16_t temp=0xFFFF-(3440+((Failsafe_data[num]*5)>>1))/3;
*low=(uint8_t)(temp&0xFF);
*high=(uint8_t)(temp>>8);
}
#endif
// Channel value for FrSky (PPM is multiplied by 1.5)
uint16_t convert_channel_frsky(uint8_t num)
{
uint16_t val=Channel_data[num];
return ((val*15)>>4)+1290;
}
// 0-2047, 0 = 817, 1024 = 1500, 2047 = 2182
//64=860,1024=1500,1984=2140//Taranis 125%
static uint16_t __attribute__((unused)) FrSkyX_scaleForPXX( uint8_t i, uint8_t num_chan=8)
{ //mapped 860,2140(125%) range to 64,1984(PXX values);
uint16_t chan_val=convert_channel_frsky(i)-1226;
if(i>=num_chan) chan_val|=2048; // upper channels offset
return chan_val;
}
#ifdef FAILSAFE_ENABLE
static uint16_t __attribute__((unused)) FrSkyX_scaleForPXX_FS( uint8_t i, uint8_t num_chan=8)
{ //mapped 1,2046(125%) range to 64,1984(PXX values);
uint16_t chan_val=((Failsafe_data[i]*15)>>4)+64;
if(Failsafe_data[i]==FAILSAFE_CHANNEL_NOPULSES)
chan_val=FAILSAFE_CHANNEL_NOPULSES;
else if(Failsafe_data[i]==FAILSAFE_CHANNEL_HOLD)
chan_val=FAILSAFE_CHANNEL_HOLD;
if(i>=num_chan) chan_val|=2048; // upper channels offset
return chan_val;
}
#endif

View File

@@ -61,7 +61,6 @@ static void __attribute__((unused)) CORONA_rf_init()
CC2500_WriteReg(CC2500_15_DEVIATN, 0x50);
}
prev_option = option;
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
//not sure what they are doing to the PATABLE since basically only the first byte is used and it's only 8 bytes long. So I think they end up filling the PATABLE fully with 0xFF
@@ -258,12 +257,11 @@ static uint16_t __attribute__((unused)) CORONA_build_packet()
uint16_t ReadCORONA()
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(22000);
#endif
// Tune frequency if it has been changed
if ( prev_option != option )
{
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
prev_option = option ;
}
CC2500_SetFreqOffset();
if(IS_BIND_IN_PROGRESS)
{

View File

@@ -113,7 +113,12 @@ static void __attribute__((unused)) DM002_init()
uint16_t DM002_callback()
{
if(IS_BIND_DONE)
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(DM002_PACKET_PERIOD);
#endif
DM002_send_packet(0);
}
else
{
if (bind_counter == 0)

182
Multiprotocol/DSM.ino Normal file
View File

@@ -0,0 +1,182 @@
#if defined(DSM_CYRF6936_INO) || defined(DSM_RX_CYRF6936_INO)
#include "iface_cyrf6936.h"
uint8_t sop_col;
const uint8_t PROGMEM DSM_pncodes[5][9][8] = {
/* Note these are in order transmitted (LSB 1st) */
{ /* Row 0 */
/* Col 0 */ {0x03, 0xBC, 0x6E, 0x8A, 0xEF, 0xBD, 0xFE, 0xF8},
/* Col 1 */ {0x88, 0x17, 0x13, 0x3B, 0x2D, 0xBF, 0x06, 0xD6},
/* Col 2 */ {0xF1, 0x94, 0x30, 0x21, 0xA1, 0x1C, 0x88, 0xA9},
/* Col 3 */ {0xD0, 0xD2, 0x8E, 0xBC, 0x82, 0x2F, 0xE3, 0xB4},
/* Col 4 */ {0x8C, 0xFA, 0x47, 0x9B, 0x83, 0xA5, 0x66, 0xD0},
/* Col 5 */ {0x07, 0xBD, 0x9F, 0x26, 0xC8, 0x31, 0x0F, 0xB8},
/* Col 6 */ {0xEF, 0x03, 0x95, 0x89, 0xB4, 0x71, 0x61, 0x9D},
/* Col 7 */ {0x40, 0xBA, 0x97, 0xD5, 0x86, 0x4F, 0xCC, 0xD1},
/* Col 8 */ {0xD7, 0xA1, 0x54, 0xB1, 0x5E, 0x89, 0xAE, 0x86}
},
{ /* Row 1 */
/* Col 0 */ {0x83, 0xF7, 0xA8, 0x2D, 0x7A, 0x44, 0x64, 0xD3},
/* Col 1 */ {0x3F, 0x2C, 0x4E, 0xAA, 0x71, 0x48, 0x7A, 0xC9},
/* Col 2 */ {0x17, 0xFF, 0x9E, 0x21, 0x36, 0x90, 0xC7, 0x82},
/* Col 3 */ {0xBC, 0x5D, 0x9A, 0x5B, 0xEE, 0x7F, 0x42, 0xEB},
/* Col 4 */ {0x24, 0xF5, 0xDD, 0xF8, 0x7A, 0x77, 0x74, 0xE7},
/* Col 5 */ {0x3D, 0x70, 0x7C, 0x94, 0xDC, 0x84, 0xAD, 0x95},
/* Col 6 */ {0x1E, 0x6A, 0xF0, 0x37, 0x52, 0x7B, 0x11, 0xD4},
/* Col 7 */ {0x62, 0xF5, 0x2B, 0xAA, 0xFC, 0x33, 0xBF, 0xAF},
/* Col 8 */ {0x40, 0x56, 0x32, 0xD9, 0x0F, 0xD9, 0x5D, 0x97}
},
{ /* Row 2 */
/* Col 0 */ {0x40, 0x56, 0x32, 0xD9, 0x0F, 0xD9, 0x5D, 0x97},
/* Col 1 */ {0x8E, 0x4A, 0xD0, 0xA9, 0xA7, 0xFF, 0x20, 0xCA},
/* Col 2 */ {0x4C, 0x97, 0x9D, 0xBF, 0xB8, 0x3D, 0xB5, 0xBE},
/* Col 3 */ {0x0C, 0x5D, 0x24, 0x30, 0x9F, 0xCA, 0x6D, 0xBD},
/* Col 4 */ {0x50, 0x14, 0x33, 0xDE, 0xF1, 0x78, 0x95, 0xAD},
/* Col 5 */ {0x0C, 0x3C, 0xFA, 0xF9, 0xF0, 0xF2, 0x10, 0xC9},
/* Col 6 */ {0xF4, 0xDA, 0x06, 0xDB, 0xBF, 0x4E, 0x6F, 0xB3},
/* Col 7 */ {0x9E, 0x08, 0xD1, 0xAE, 0x59, 0x5E, 0xE8, 0xF0},
/* Col 8 */ {0xC0, 0x90, 0x8F, 0xBB, 0x7C, 0x8E, 0x2B, 0x8E}
},
{ /* Row 3 */
/* Col 0 */ {0xC0, 0x90, 0x8F, 0xBB, 0x7C, 0x8E, 0x2B, 0x8E},
/* Col 1 */ {0x80, 0x69, 0x26, 0x80, 0x08, 0xF8, 0x49, 0xE7},
/* Col 2 */ {0x7D, 0x2D, 0x49, 0x54, 0xD0, 0x80, 0x40, 0xC1},
/* Col 3 */ {0xB6, 0xF2, 0xE6, 0x1B, 0x80, 0x5A, 0x36, 0xB4},
/* Col 4 */ {0x42, 0xAE, 0x9C, 0x1C, 0xDA, 0x67, 0x05, 0xF6},
/* Col 5 */ {0x9B, 0x75, 0xF7, 0xE0, 0x14, 0x8D, 0xB5, 0x80},
/* Col 6 */ {0xBF, 0x54, 0x98, 0xB9, 0xB7, 0x30, 0x5A, 0x88},
/* Col 7 */ {0x35, 0xD1, 0xFC, 0x97, 0x23, 0xD4, 0xC9, 0x88},
/* Col 8 */ {0xE1, 0xD6, 0x31, 0x26, 0x5F, 0xBD, 0x40, 0x93}
// Wrong values used by Orange TX/RX
// /* Col 8 */ {0x88, 0xE1, 0xD6, 0x31, 0x26, 0x5F, 0xBD, 0x40}
},
{ /* Row 4 */
/* Col 0 */ {0xE1, 0xD6, 0x31, 0x26, 0x5F, 0xBD, 0x40, 0x93},
/* Col 1 */ {0xDC, 0x68, 0x08, 0x99, 0x97, 0xAE, 0xAF, 0x8C},
/* Col 2 */ {0xC3, 0x0E, 0x01, 0x16, 0x0E, 0x32, 0x06, 0xBA},
/* Col 3 */ {0xE0, 0x83, 0x01, 0xFA, 0xAB, 0x3E, 0x8F, 0xAC},
/* Col 4 */ {0x5C, 0xD5, 0x9C, 0xB8, 0x46, 0x9C, 0x7D, 0x84},
/* Col 5 */ {0xF1, 0xC6, 0xFE, 0x5C, 0x9D, 0xA5, 0x4F, 0xB7},
/* Col 6 */ {0x58, 0xB5, 0xB3, 0xDD, 0x0E, 0x28, 0xF1, 0xB0},
/* Col 7 */ {0x5F, 0x30, 0x3B, 0x56, 0x96, 0x45, 0xF4, 0xA1},
/* Col 8 */ {0x03, 0xBC, 0x6E, 0x8A, 0xEF, 0xBD, 0xFE, 0xF8}
},
};
static void __attribute__((unused)) DSM_read_code(uint8_t *buf, uint8_t row, uint8_t col, uint8_t len)
{
for(uint8_t i=0;i<len;i++)
buf[i]=pgm_read_byte_near( &DSM_pncodes[row][col][i] );
}
const uint8_t PROGMEM DSM_init_vals[][2] = {
{CYRF_02_TX_CTRL, 0x00}, // All TX interrupt disabled
{CYRF_05_RX_CTRL, 0x00}, // All RX interrupt disabled
{CYRF_28_CLK_EN, 0x02}, // Force receive clock enable
{CYRF_32_AUTO_CAL_TIME, 0x3c}, // Default init value
{CYRF_35_AUTOCAL_OFFSET, 0x14}, // Default init value
{CYRF_26_XTAL_CFG, 0x08}, // Start delay
{CYRF_06_RX_CFG, 0x4A}, // LNA enabled, RX override enabled, Fast turn mode enabled, RX is 1MHz below TX
{CYRF_1B_TX_OFFSET_LSB, 0x55}, // Default init value
{CYRF_1C_TX_OFFSET_MSB, 0x05}, // Default init value
{CYRF_39_ANALOG_CTRL, 0x01}, // All slow for synth setting time
{CYRF_01_TX_LENGTH, 0x10}, // 16 bytes packet
{CYRF_14_EOP_CTRL, 0x02}, // Set EOP Symbol Count to 2
{CYRF_12_DATA64_THOLD, 0x0a}, // 64 Chip Data PN corelator threshold, default datasheet value is 0x0E
//Below is for bind only
{CYRF_03_TX_CFG, 0x38 | CYRF_BIND_POWER}, //64 chip codes, SDR mode
{CYRF_10_FRAMING_CFG, 0x4a}, // SOP disabled, no LEN field and SOP correlator of 0x0a but since SOP is disabled...
{CYRF_1F_TX_OVERRIDE, 0x04}, // Disable TX CRC, no ACK, use TX synthesizer
{CYRF_1E_RX_OVERRIDE, 0x14}, // Disable RX CRC, Force receive data rate, use RX synthesizer
};
const uint8_t PROGMEM DSM_data_vals[][2] = {
{CYRF_29_RX_ABORT, 0x20}, // Abort RX operation in case we are coming from bind
{CYRF_0F_XACT_CFG, 0x24}, // Force Idle
{CYRF_29_RX_ABORT, 0x00}, // Clear abort RX
{CYRF_03_TX_CFG, 0x28 | CYRF_HIGH_POWER}, // 64 chip codes, 8DR mode
{CYRF_10_FRAMING_CFG, 0xea}, // SOP enabled, SOP_CODE_ADR 64 chips, Packet len enabled, SOP correlator 0x0A
{CYRF_1F_TX_OVERRIDE, 0x00}, // CRC16 enabled, no ACK
{CYRF_1E_RX_OVERRIDE, 0x00}, // CRC16 enabled, no ACK
};
static void __attribute__((unused)) DSM_cyrf_config()
{
for(uint8_t i = 0; i < sizeof(DSM_init_vals) / 2; i++)
CYRF_WriteRegister(pgm_read_byte_near(&DSM_init_vals[i][0]), pgm_read_byte_near(&DSM_init_vals[i][1]));
CYRF_WritePreamble(0x333304);
}
static void __attribute__((unused)) DSM_cyrf_configdata()
{
for(uint8_t i = 0; i < sizeof(DSM_data_vals) / 2; i++)
CYRF_WriteRegister(pgm_read_byte_near(&DSM_data_vals[i][0]), pgm_read_byte_near(&DSM_data_vals[i][1]));
}
static uint8_t __attribute__((unused)) DSM_get_pn_row(uint8_t channel, bool dsmx)
{
return (dsmx ? (channel - 2) % 5 : channel % 5);
}
static void __attribute__((unused)) DSM_set_sop_data_crc(bool ch2, bool dsmx)
{
//The crc for channel '1' is NOT(mfgid[0] << 8 + mfgid[1])
//The crc for channel '2' is (mfgid[0] << 8 + mfgid[1])
if(ch2)
CYRF_ConfigCRCSeed(seed); //CH2
else
CYRF_ConfigCRCSeed(~seed); //CH1
uint8_t pn_row = DSM_get_pn_row(hopping_frequency[hopping_frequency_no], dsmx);
uint8_t code[16];
DSM_read_code(code,pn_row,sop_col,8); // pn_row between 0 and 4, sop_col between 1 and 7
CYRF_ConfigSOPCode(code);
DSM_read_code(code,pn_row,7 - sop_col,8); // 7-sop_col between 0 and 6
DSM_read_code(code+8,pn_row,7 - sop_col + 1,8); // 7-sop_col+1 between 1 and 7
CYRF_ConfigDataCode(code, 16);
CYRF_ConfigRFChannel(hopping_frequency[hopping_frequency_no]);
hopping_frequency_no++;
if(dsmx)
hopping_frequency_no %=23;
else
hopping_frequency_no %=2;
}
static void __attribute__((unused)) DSM_calc_dsmx_channel()
{
uint8_t idx = 0;
uint32_t id = ~(((uint32_t)cyrfmfg_id[0] << 24) | ((uint32_t)cyrfmfg_id[1] << 16) | ((uint32_t)cyrfmfg_id[2] << 8) | (cyrfmfg_id[3] << 0));
uint32_t id_tmp = id;
while(idx < 23)
{
uint8_t i;
uint8_t count_3_27 = 0, count_28_51 = 0, count_52_76 = 0;
id_tmp = id_tmp * 0x0019660D + 0x3C6EF35F; // Randomization
uint8_t next_ch = ((id_tmp >> 8) % 0x49) + 3; // Use least-significant byte and must be larger than 3
if ( (next_ch ^ cyrfmfg_id[3]) & 0x01 )
continue;
for (i = 0; i < idx; i++)
{
if(hopping_frequency[i] == next_ch)
break;
if(hopping_frequency[i] <= 27)
count_3_27++;
else
if (hopping_frequency[i] <= 51)
count_28_51++;
else
count_52_76++;
}
if (i != idx)
continue;
if ((next_ch < 28 && count_3_27 < 8)
||(next_ch >= 28 && next_ch < 52 && count_28_51 < 7)
||(next_ch >= 52 && count_52_76 < 8))
hopping_frequency[idx++] = next_ch;
}
}
#endif

View File

@@ -0,0 +1,505 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(DSM_RX_CYRF6936_INO)
#include "iface_cyrf6936.h"
//#define DSM_DEBUG_RF
//#define DSM_DEBUG_CH
uint8_t DSM_rx_type;
enum {
DSM_RX_BIND1 = 0,
DSM_RX_BIND2,
DSM_RX_DATA_PREP,
DSM2_RX_SCAN,
DSM_RX_DATA_CH1,
DSM_RX_DATA_CH2,
};
static void __attribute__((unused)) DSM_Rx_init()
{
DSM_cyrf_config();
rx_disable_lna = IS_POWER_FLAG_on;
if(IS_BIND_IN_PROGRESS)
{
//64 SDR Mode is configured so only the 8 first values are needed but need to write 16 values...
uint8_t code[16];
DSM_read_code(code,0,8,8);
CYRF_ConfigDataCode(code, 16);
CYRF_ConfigRFChannel(1);
CYRF_SetTxRxMode(RX_EN); // Force end state read
CYRF_WriteRegister(CYRF_05_RX_CTRL, 0x83); // Prepare to receive
}
else
{
DSM_cyrf_configdata();
CYRF_WriteRegister(CYRF_06_RX_CFG, rx_disable_lna ? 0x0A:0x4A); // AGC disabled, LNA disabled/enabled, Attenuator disabled, RX override enabled, Fast turn mode enabled, RX is 1MHz below TX
}
}
uint16_t convert_channel_DSM_nolimit(int32_t val)
{
val=(val-0x150)*(CHANNEL_MAX_100-CHANNEL_MIN_100)/(0x6B0-0x150)+CHANNEL_MIN_100;
if(val<0)
val=0;
else
if(val>2047)
val=2047;
return (uint16_t)val;
}
static uint8_t __attribute__((unused)) DSM_Rx_check_packet()
{
uint8_t rx_status=CYRF_ReadRegister(CYRF_07_RX_IRQ_STATUS);
if((rx_status & 0x03) == 0x02) // RXC=1, RXE=0 then 2nd check is required (debouncing)
rx_status |= CYRF_ReadRegister(CYRF_07_RX_IRQ_STATUS);
if((rx_status & 0x07) == 0x02)
{ // data received with no errors
len=CYRF_ReadRegister(CYRF_09_RX_COUNT);
#ifdef DSM_DEBUG_RF
debugln("l=%d",len);
#endif
if(len>=2 && len<=16)
{
// Read packet
CYRF_WriteRegister(CYRF_07_RX_IRQ_STATUS, 0x80); // Need to set RXOW before data read
CYRF_ReadDataPacketLen(packet, len);
// Check packet ID
if ((DSM_rx_type&0x80) == 0)
{//DSM2
packet[0] ^= 0xff;
packet[1] ^= 0xff;
}
#ifdef DSM_DEBUG_CH
for(uint8_t i=0;i<len;i++)
debug("%02X ",packet[i]);
debugln("");
#endif
if(packet[0] == cyrfmfg_id[2] && packet[1] == cyrfmfg_id[3])
return 0x02; // Packet ok
}
return 0x00; // Wrong size or ID -> nothing received
}
return rx_status; // Return error code
}
static void __attribute__((unused)) DSM_Rx_build_telemetry_packet()
{
uint8_t nbr_bits = 11;
if((DSM_rx_type&0xF0) == 0x00)
nbr_bits=10; // Only DSM_22 is using a resolution of 1024
// Use packet length to calculate the number of channels
len -= 2; // Remove header length
len >>= 1; // Channels are on 2 bytes
if(len==0) return; // No channels...
// Extract channels
uint8_t idx;
for (uint8_t i = 0; i < len; i++)
{
uint16_t value=(packet[i*2+2]<<8) | packet[i*2+3];
if(value!=0xFFFF)
{
idx=(value&0x7FFF)>>nbr_bits; // retrieve channel index
#ifdef DSM_DEBUG_CH
debugln("i=%d,v=%d,u=%X",idx,value&0x7FF,value&0x8000);
#endif
if(idx<13)
{
if(nbr_bits==10) value <<= 1; // switch to 11 bits
value &= 0x7FF;
rx_rc_chan[CH_TAER[idx]]=convert_channel_DSM_nolimit(value);
}
}
}
// Buid telemetry packet
idx=0;
packet_in[idx++] = RX_LQI;
packet_in[idx++] = RX_LQI;
packet_in[idx++] = 0; // start channel
packet_in[idx++] = 12; // number of channels in packet
// Pack channels
uint32_t bits = 0;
uint8_t bitsavailable = 0;
for (uint8_t i = 0; i < 12; i++)
{
bits |= ((uint32_t)rx_rc_chan[i]) << bitsavailable;
bitsavailable += 11;
while (bitsavailable >= 8)
{
packet_in[idx++] = bits & 0xff;
bits >>= 8;
bitsavailable -= 8;
}
}
if(bitsavailable)
packet_in[idx++] = bits & 0xff;
// Send telemetry
telemetry_link = 1;
}
static bool __attribute__((unused)) DSM_Rx_bind_check_validity()
{
uint16_t sum = 384 - 0x10;//
for(uint8_t i = 0; i < 8; i++)
sum += packet_in[i];
if( packet_in[8] != (sum>>8) || packet_in[9] != (sum&0xFF)) //Checksum
return false;
for(uint8_t i = 8; i < 14; i++)
sum += packet_in[i];
if( packet_in[14] != (sum>>8) || packet_in[15] != (sum&0xFF)) //Checksum
return false;
if(memcmp(packet_in,packet_in+4,4)) //Check ID
return false;
return true;
}
static void __attribute__((unused)) DSM_Rx_build_bind_packet()
{
uint16_t sum = 384 - 0x10;//
packet[0] = 0xff ^ cyrfmfg_id[0]; // ID
packet[1] = 0xff ^ cyrfmfg_id[1];
packet[2] = 0xff ^ cyrfmfg_id[2];
packet[3] = 0xff ^ cyrfmfg_id[3];
packet[4] = 0x01; // RX version
packet[5] = num_ch; // Number of channels
packet[6] = DSM_rx_type; // DSM type, let's just send back whatever the TX gave us...
packet[7] = 0x00; // Unknown
for(uint8_t i = 0; i < 8; i++)
sum += packet[i];
packet[8] = sum >> 8;
packet[9] = sum & 0xff;
}
static void __attribute__((unused)) DSM_abort_channel_rx(uint8_t ch)
{
CYRF_WriteRegister(CYRF_29_RX_ABORT, 0x20); // Abort RX operation
CYRF_SetTxRxMode(IS_POWER_FLAG_on ? TXRX_OFF:RX_EN); // Force end state read
if (rx_disable_lna != IS_POWER_FLAG_on && IS_BIND_DONE)
{
rx_disable_lna = IS_POWER_FLAG_on;
CYRF_WriteRegister(CYRF_06_RX_CFG, rx_disable_lna ? 0x0A:0x4A); // AGC disabled, LNA disabled/enabled, Attenuator disabled, RX override enabled, Fast turn mode enabled, RX is 1MHz below TX
}
if(ch&0x02) DSM_set_sop_data_crc(true ,DSM_rx_type&0x80); // Set sop data,crc seed and rf channel using CH1, DSM2/X
if(ch&0x01) DSM_set_sop_data_crc(false,DSM_rx_type&0x80); // Set sop data,crc seed and rf channel using CH1, DSM2/X
CYRF_WriteRegister(CYRF_29_RX_ABORT, 0x00); // Clear abort RX operation
CYRF_WriteRegister(CYRF_05_RX_CTRL, 0x83); // Prepare to receive
}
uint16_t DSM_Rx_callback()
{
uint8_t rx_status;
static uint8_t read_retry=0;
switch (phase)
{
case DSM_RX_BIND1:
if(IS_BIND_DONE) // Abort bind
{
phase = DSM_RX_DATA_PREP;
break;
}
if(packet_count==0)
read_retry=0;
//Check received data
rx_status = CYRF_ReadRegister(CYRF_07_RX_IRQ_STATUS);
if((rx_status & 0x03) == 0x02) // RXC=1, RXE=0 then 2nd check is required (debouncing)
rx_status |= CYRF_ReadRegister(CYRF_07_RX_IRQ_STATUS);
if((rx_status & 0x07) == 0x02)
{ // data received with no errors
CYRF_WriteRegister(CYRF_07_RX_IRQ_STATUS, 0x80); // Need to set RXOW before data read
len=CYRF_ReadRegister(CYRF_09_RX_COUNT);
debugln("RX:%d, CH:%d",len,hopping_frequency_no);
if(len==16)
{
CYRF_ReadDataPacketLen(packet_in, 16);
if(DSM_Rx_bind_check_validity())
{
// store tx info into eeprom
uint16_t temp = DSM_RX_EEPROM_OFFSET;
debug("ID=");
for(uint8_t i=0;i<4;i++)
{
cyrfmfg_id[i]=packet_in[i]^0xFF;
eeprom_write_byte((EE_ADDR)temp++, cyrfmfg_id[i]);
debug(" %02X", cyrfmfg_id[i]);
}
// check num_ch
num_ch=packet_in[11];
if(num_ch>12) num_ch=12;
//check DSM_rx_type
/*packet[12] 1 byte -> max DSM type allowed:
0x01 => 22ms 1024 DSM2 1 packet => number of channels is <8
0x02 => 22ms 1024 DSM2 2 packets => either a number of channel >7
0x12 => 11ms 2048 DSM2 2 packets => can be any number of channels
0xA2 => 22ms 2048 DSMX 1 packet => number of channels is <8
0xB2 => 11ms 2048 DSMX => can be any number of channels
(0x01 or 0xA2) and num_ch < 7 => 22ms else 11ms
&0x80 => false=DSM2, true=DSMX
&0xF0 => false=1024, true=2048 */
DSM_rx_type=packet_in[12];
switch(DSM_rx_type)
{
case 0x01:
if(num_ch>7) DSM_rx_type = 0x02; // Can't be 0x01 with this number of channels
break;
case 0xA2:
if(num_ch>7) DSM_rx_type = 0xB2; // Can't be 0xA2 with this number of channels
break;
case 0x02:
case 0x12:
case 0xB2:
break;
default: // Unknown type, default to DSMX 11ms
DSM_rx_type = 0xB2;
break;
}
eeprom_write_byte((EE_ADDR)temp, DSM_rx_type);
debugln(", num_ch=%d, type=%02X",num_ch, DSM_rx_type);
CYRF_WriteRegister(CYRF_29_RX_ABORT, 0x20); // Abort RX operation
CYRF_SetTxRxMode(TX_EN); // Force end state TX
CYRF_ConfigDataCode((const uint8_t *)"\x98\x88\x1B\xE4\x30\x79\x03\x84", 16);
CYRF_WriteRegister(CYRF_29_RX_ABORT, 0x00); // Clear abort RX
DSM_Rx_build_bind_packet();
bind_counter=500;
phase++; // DSM_RX_BIND2;
return 1000;
}
}
DSM_abort_channel_rx(0); // Abort RX operation and receive
if(read_retry==0)
read_retry=8;
}
else
if(rx_status & 0x02) // RX error
DSM_abort_channel_rx(0); // Abort RX operation and receive
packet_count++;
if(packet_count>12)
{
packet_count=1;
if(read_retry)
read_retry--;
if(read_retry==0)
{
packet_count=0;
hopping_frequency_no++; // Change channel
hopping_frequency_no %= 0x50;
hopping_frequency_no |= 0x01; // Odd channels only
CYRF_ConfigRFChannel(hopping_frequency_no);
DSM_abort_channel_rx(0); // Abort RX operation and receive
}
}
return 1000;
case DSM_RX_BIND2:
//Transmit settings back
CYRF_WriteDataPacketLen(packet,10); // Send packet
if(bind_counter--==0)
{
BIND_DONE;
phase++; // DSM_RX_DATA_PREP
}
break;
case DSM_RX_DATA_PREP:
hopping_frequency_no = 0;
read_retry=0;
rx_data_started = false;
pps_counter = 0;
RX_LQI = 100;
DSM_cyrf_configdata();
pps_timer=millis();
sop_col = (cyrfmfg_id[0] + cyrfmfg_id[1] + cyrfmfg_id[2] + 2) & 0x07;
seed = (cyrfmfg_id[0] << 8) + cyrfmfg_id[1];
if(DSM_rx_type&0x80)
{ // DSMX
DSM_calc_dsmx_channel(); // Build hop table
DSM_abort_channel_rx(1); // Abort RX operation, set sop&data&seed&rf using CH1, DSM2/X and receive
phase=DSM_RX_DATA_CH1;
}
else
{ // DSM2
rf_ch_num=0;
hopping_frequency_no = 0;
hopping_frequency[0] = 3;
hopping_frequency[1] = 0;
DSM_abort_channel_rx(1); // Abort RX operation, set sop&data&seed&rf using CH1, DSM2/X and receive
phase=DSM2_RX_SCAN;
}
break;
case DSM2_RX_SCAN: // Scan for DSM2 frequencies
//Received something ?
rx_status = DSM_Rx_check_packet();
if(rx_status == 0x02)
{ // data received with no errors
debugln("CH%d:Found %d",rf_ch_num+1,hopping_frequency[rf_ch_num]);
read_retry=0;
if(rf_ch_num)
{ // Both CH1 and CH2 found
read_retry=0;
hopping_frequency_no=0;
DSM_abort_channel_rx(1); // Abort RX operation, set sop&data&seed&rf using CH1, DSM2/X and receive
pps_timer=millis();
phase++; // DSM_RX_DATA_CH1
}
else
{
rf_ch_num++; // CH1 found, scan for CH2
hopping_frequency_no = 1;
if(hopping_frequency[1] < 3) // If no CH2 keep then restart from current
hopping_frequency[1]=hopping_frequency[0]+1;
DSM_abort_channel_rx(2); // Abort RX operation, set sop&data&seed&rf using CH2, DSM2/X and receive
}
}
else
{
read_retry++;
if(read_retry>50) // After 50ms
{ // Try next channel
debugln("CH%d:Next channel",rf_ch_num+1);
read_retry=0;
hopping_frequency_no = rf_ch_num;
hopping_frequency[rf_ch_num]++;
if(hopping_frequency[rf_ch_num] > 73) hopping_frequency[rf_ch_num] = 3;
DSM_abort_channel_rx(rf_ch_num+1); // Abort RX operation, set sop&data&seed&rf using CH1/2, DSM2/X and receive
}
else if(rx_status & 0x02)
{ // data received with errors
if((rx_status & 0x01) && rf_ch_num==0)
hopping_frequency[1] = hopping_frequency[0];// Might be CH2 since it's a CRC error so keep it
debugln("CH%d:RX error",rf_ch_num+1);
DSM_abort_channel_rx(0); // Abort RX operation and receive
}
}
return 1000;
case DSM_RX_DATA_CH1:
//Packets per second
if (millis() - pps_timer >= 1000)
{//182pps @11ms, 91pps @22ms
pps_timer = millis();
if(DSM_rx_type!=0xA2 && DSM_rx_type!=0x01) // if 11ms
pps_counter >>=1; // then /2
debugln("%d pps", pps_counter);
RX_LQI = pps_counter; // max=91pps
pps_counter = 0;
}
//Received something ?
rx_status = DSM_Rx_check_packet();
if(rx_status == 0x02)
{ // data received with no errors
#ifdef DSM_DEBUG_RF
debugln("CH1:RX");
#endif
DSM_Rx_build_telemetry_packet();
rx_data_started = true;
pps_counter++;
DSM_abort_channel_rx(2); // Abort RX operation, set sop&data&seed&rf using CH2, DSM2/X and receive
phase++;
return 5000;
}
else
{
read_retry++;
if(rx_data_started && read_retry>6) // After 6*500=3ms
{ // skip to CH2
#ifdef DSM_DEBUG_RF
debugln("CH1:Skip to CH2");
#endif
DSM_abort_channel_rx(2); // Abort RX operation, set sop&data&seed&rf using CH2, DSM2/X and receive
phase++;
return 4000;
}
if(rx_data_started && RX_LQI==0)
{ // communication lost
#ifdef DSM_DEBUG_RF
debugln("CH1:Restart...");
#endif
phase=DSM_RX_DATA_PREP;
return 1000;
}
if(read_retry>250)
{ // move to next RF channel
#ifdef DSM_DEBUG_RF
debugln("CH1:Scan");
#endif
DSM_abort_channel_rx(3); // Abort RX operation, set sop&data&seed&rf using CH2 then CH1, DSM2/X and receive
read_retry=0;
}
else if(rx_status & 0x02)
{ // data received with errors
#ifdef DSM_DEBUG_RF
debugln("CH1:RX error %02X",rx_status);
#endif
DSM_abort_channel_rx(0); // Abort RX operation and receive
}
}
return 500;
case DSM_RX_DATA_CH2:
rx_status = DSM_Rx_check_packet();
if(rx_status == 0x02)
{ // data received with no errors
#ifdef DSM_DEBUG_RF
debugln("CH2:RX");
#endif
DSM_Rx_build_telemetry_packet();
pps_counter++;
}
#ifdef DSM_DEBUG_RF
else
debugln("CH2:No RX");
#endif
DSM_abort_channel_rx(1); // Abort RX operation, set sop&data&seed&rf using CH1, DSM2/X and receive
read_retry=0;
phase=DSM_RX_DATA_CH1;
if(DSM_rx_type==0xA2) //|| DSM_rx_type==0x01 -> not needed for DSM2 since we are ok to listen even if there will be nothing
return 15000; //22ms
else
return 4000; //11ms
}
return 10000;
}
uint16_t initDSM_Rx()
{
DSM_Rx_init();
hopping_frequency_no = 0;
if (IS_BIND_IN_PROGRESS)
{
packet_count=0;
phase = DSM_RX_BIND1;
}
else
{
uint16_t temp = DSM_RX_EEPROM_OFFSET;
debug("ID=");
for(uint8_t i=0;i<4;i++)
{
cyrfmfg_id[i]=eeprom_read_byte((EE_ADDR)temp++);
debug(" %02X", cyrfmfg_id[i]);
}
DSM_rx_type=eeprom_read_byte((EE_ADDR)temp);
debugln(", type=%02X", DSM_rx_type);
phase = DSM_RX_DATA_PREP;
}
return 15000;
}
#endif

View File

@@ -17,6 +17,10 @@
#include "iface_cyrf6936.h"
//#define DSM_DEBUG_FWD_PGM
//#define DSM_GR300
#define DSM_BIND_CHANNEL 0x0d //13 This can be any odd channel
//During binding we will send BIND_COUNT/2 packets
@@ -41,10 +45,10 @@ enum {
};
//
uint8_t sop_col;
uint8_t ch_map[14];
const uint8_t PROGMEM DSM_ch_map_progmem[][14] = {
//22+11ms for 4..7 channels
//22+11ms for 3..7 channels
{1, 0, 2, 0xff, 0xff, 0xff, 0xff, 1, 0, 2, 0xff, 0xff, 0xff, 0xff}, //3ch - Guess
{1, 0, 2, 3, 0xff, 0xff, 0xff, 1, 0, 2, 3, 0xff, 0xff, 0xff}, //4ch - Guess
{1, 0, 2, 3, 4, 0xff, 0xff, 1, 0, 2, 3, 4, 0xff, 0xff}, //5ch - Guess
{1, 5, 2, 3, 0, 4, 0xff, 1, 5, 2, 3, 0, 4, 0xff}, //6ch - HP6DSM
@@ -54,123 +58,14 @@ const uint8_t PROGMEM DSM_ch_map_progmem[][14] = {
{1, 5, 2, 3, 6, 0xff, 0xff, 4, 0, 7, 8, 0xff, 0xff, 0xff}, //9ch - Guess
{1, 5, 2, 3, 6, 0xff, 0xff, 4, 0, 7, 8, 9, 0xff, 0xff}, //10ch - Guess
{1, 5, 2, 3, 6, 10, 0xff, 4, 0, 7, 8, 9, 0xff, 0xff}, //11ch - Guess
{1, 5, 2, 4, 6, 10, 0xff, 0, 7, 3, 8, 9 , 11 , 0xff}, //12ch - DX18
//11ms for 8..12 channels
{1, 5, 2, 4, 6, 10, 0xff, 0, 7, 3, 8, 9 , 11 , 0xff}, //12ch - DX18/DX8G2
//11ms for 8..11 channels
{1, 5, 2, 3, 6, 7, 0xff, 1, 5, 2, 4, 0, 0xff, 0xff}, //8ch - DX7
{1, 5, 2, 3, 6, 7, 0xff, 1, 5, 2, 4, 0, 8, 0xff}, //9ch - Guess
{1, 5, 2, 3, 4, 8, 9, 1, 5, 2, 3, 0, 7, 6 }, //10ch - DX18
{1, 5, 2, 3, 4, 8, 9, 1, 5, 2, 3, 0, 7, 6 }, //10ch - DX18
{1, 5, 2, 3, 4, 8, 9, 1, 10, 2, 3, 0, 7, 6 }, //11ch - Guess
};
const uint8_t PROGMEM DSM_pncodes[5][8][8] = {
/* Note these are in order transmitted (LSB 1st) */
{ /* Row 0 */
/* Col 0 */ {0x03, 0xBC, 0x6E, 0x8A, 0xEF, 0xBD, 0xFE, 0xF8},
/* Col 1 */ {0x88, 0x17, 0x13, 0x3B, 0x2D, 0xBF, 0x06, 0xD6},
/* Col 2 */ {0xF1, 0x94, 0x30, 0x21, 0xA1, 0x1C, 0x88, 0xA9},
/* Col 3 */ {0xD0, 0xD2, 0x8E, 0xBC, 0x82, 0x2F, 0xE3, 0xB4},
/* Col 4 */ {0x8C, 0xFA, 0x47, 0x9B, 0x83, 0xA5, 0x66, 0xD0},
/* Col 5 */ {0x07, 0xBD, 0x9F, 0x26, 0xC8, 0x31, 0x0F, 0xB8},
/* Col 6 */ {0xEF, 0x03, 0x95, 0x89, 0xB4, 0x71, 0x61, 0x9D},
/* Col 7 */ {0x40, 0xBA, 0x97, 0xD5, 0x86, 0x4F, 0xCC, 0xD1},
/* Col 8 {0xD7, 0xA1, 0x54, 0xB1, 0x5E, 0x89, 0xAE, 0x86}*/
},
{ /* Row 1 */
/* Col 0 */ {0x83, 0xF7, 0xA8, 0x2D, 0x7A, 0x44, 0x64, 0xD3},
/* Col 1 */ {0x3F, 0x2C, 0x4E, 0xAA, 0x71, 0x48, 0x7A, 0xC9},
/* Col 2 */ {0x17, 0xFF, 0x9E, 0x21, 0x36, 0x90, 0xC7, 0x82},
/* Col 3 */ {0xBC, 0x5D, 0x9A, 0x5B, 0xEE, 0x7F, 0x42, 0xEB},
/* Col 4 */ {0x24, 0xF5, 0xDD, 0xF8, 0x7A, 0x77, 0x74, 0xE7},
/* Col 5 */ {0x3D, 0x70, 0x7C, 0x94, 0xDC, 0x84, 0xAD, 0x95},
/* Col 6 */ {0x1E, 0x6A, 0xF0, 0x37, 0x52, 0x7B, 0x11, 0xD4},
/* Col 7 */ {0x62, 0xF5, 0x2B, 0xAA, 0xFC, 0x33, 0xBF, 0xAF},
/* Col 8 {0x40, 0x56, 0x32, 0xD9, 0x0F, 0xD9, 0x5D, 0x97} */
},
{ /* Row 2 */
/* Col 0 */ {0x40, 0x56, 0x32, 0xD9, 0x0F, 0xD9, 0x5D, 0x97},
/* Col 1 */ {0x8E, 0x4A, 0xD0, 0xA9, 0xA7, 0xFF, 0x20, 0xCA},
/* Col 2 */ {0x4C, 0x97, 0x9D, 0xBF, 0xB8, 0x3D, 0xB5, 0xBE},
/* Col 3 */ {0x0C, 0x5D, 0x24, 0x30, 0x9F, 0xCA, 0x6D, 0xBD},
/* Col 4 */ {0x50, 0x14, 0x33, 0xDE, 0xF1, 0x78, 0x95, 0xAD},
/* Col 5 */ {0x0C, 0x3C, 0xFA, 0xF9, 0xF0, 0xF2, 0x10, 0xC9},
/* Col 6 */ {0xF4, 0xDA, 0x06, 0xDB, 0xBF, 0x4E, 0x6F, 0xB3},
/* Col 7 */ {0x9E, 0x08, 0xD1, 0xAE, 0x59, 0x5E, 0xE8, 0xF0},
/* Col 8 {0xC0, 0x90, 0x8F, 0xBB, 0x7C, 0x8E, 0x2B, 0x8E} */
},
{ /* Row 3 */
/* Col 0 */ {0xC0, 0x90, 0x8F, 0xBB, 0x7C, 0x8E, 0x2B, 0x8E},
/* Col 1 */ {0x80, 0x69, 0x26, 0x80, 0x08, 0xF8, 0x49, 0xE7},
/* Col 2 */ {0x7D, 0x2D, 0x49, 0x54, 0xD0, 0x80, 0x40, 0xC1},
/* Col 3 */ {0xB6, 0xF2, 0xE6, 0x1B, 0x80, 0x5A, 0x36, 0xB4},
/* Col 4 */ {0x42, 0xAE, 0x9C, 0x1C, 0xDA, 0x67, 0x05, 0xF6},
/* Col 5 */ {0x9B, 0x75, 0xF7, 0xE0, 0x14, 0x8D, 0xB5, 0x80},
/* Col 6 */ {0xBF, 0x54, 0x98, 0xB9, 0xB7, 0x30, 0x5A, 0x88},
/* Col 7 */ {0x35, 0xD1, 0xFC, 0x97, 0x23, 0xD4, 0xC9, 0x88},
/* Col 8 {0xE1, 0xD6, 0x31, 0x26, 0x5F, 0xBD, 0x40, 0x93} */
// Wrong values used by Orange TX/RX
// /* Col 8 */ {0x88, 0xE1, 0xD6, 0x31, 0x26, 0x5F, 0xBD, 0x40}
},
{ /* Row 4 */
/* Col 0 */ {0xE1, 0xD6, 0x31, 0x26, 0x5F, 0xBD, 0x40, 0x93},
/* Col 1 */ {0xDC, 0x68, 0x08, 0x99, 0x97, 0xAE, 0xAF, 0x8C},
/* Col 2 */ {0xC3, 0x0E, 0x01, 0x16, 0x0E, 0x32, 0x06, 0xBA},
/* Col 3 */ {0xE0, 0x83, 0x01, 0xFA, 0xAB, 0x3E, 0x8F, 0xAC},
/* Col 4 */ {0x5C, 0xD5, 0x9C, 0xB8, 0x46, 0x9C, 0x7D, 0x84},
/* Col 5 */ {0xF1, 0xC6, 0xFE, 0x5C, 0x9D, 0xA5, 0x4F, 0xB7},
/* Col 6 */ {0x58, 0xB5, 0xB3, 0xDD, 0x0E, 0x28, 0xF1, 0xB0},
/* Col 7 */ {0x5F, 0x30, 0x3B, 0x56, 0x96, 0x45, 0xF4, 0xA1},
/* Col 8 {0x03, 0xBC, 0x6E, 0x8A, 0xEF, 0xBD, 0xFE, 0xF8} */
},
};
static void __attribute__((unused)) DSM_read_code(uint8_t *buf, uint8_t row, uint8_t col, uint8_t len)
{
for(uint8_t i=0;i<len;i++)
buf[i]=pgm_read_byte_near( &DSM_pncodes[row][col][i] );
}
static uint8_t __attribute__((unused)) DSM_get_pn_row(uint8_t channel)
{
return ((sub_protocol == DSMX_11 || sub_protocol == DSMX_22 )? (channel - 2) % 5 : channel % 5);
}
const uint8_t PROGMEM DSM_init_vals[][2] = {
{CYRF_02_TX_CTRL, 0x00}, // All TX interrupt disabled
{CYRF_05_RX_CTRL, 0x00}, // All RX interrupt disabled
{CYRF_28_CLK_EN, 0x02}, // Force receive clock enable
{CYRF_32_AUTO_CAL_TIME, 0x3c}, // Default init value
{CYRF_35_AUTOCAL_OFFSET, 0x14}, // Default init value
{CYRF_06_RX_CFG, 0x4A}, // LNA enabled, RX override enabled, Fast turn mode enabled, RX is 1MHz below TX
{CYRF_1B_TX_OFFSET_LSB, 0x55}, // Default init value
{CYRF_1C_TX_OFFSET_MSB, 0x05}, // Default init value
{CYRF_39_ANALOG_CTRL, 0x01}, // All slow for synth setting time
{CYRF_01_TX_LENGTH, 0x10}, // 16 bytes packet
{CYRF_14_EOP_CTRL, 0x02}, // Set EOP Symbol Count to 2
{CYRF_12_DATA64_THOLD, 0x0a}, // 64 Chip Data PN corelator threshold, default datasheet value is 0x0E
//Below is for bind only
{CYRF_03_TX_CFG, 0x38 | CYRF_BIND_POWER}, //64 chip codes, SDR mode
{CYRF_10_FRAMING_CFG, 0x4a}, // SOP disabled, no LEN field and SOP correlator of 0x0a but since SOP is disabled...
{CYRF_1F_TX_OVERRIDE, 0x04}, // Disable TX CRC, no ACK, use TX synthesizer
{CYRF_1E_RX_OVERRIDE, 0x14}, // Disable RX CRC, Force receive data rate, use RX synthesizer
};
const uint8_t PROGMEM DSM_data_vals[][2] = {
{CYRF_29_RX_ABORT, 0x20}, // Abort RX operation in case we are coming from bind
{CYRF_0F_XACT_CFG, 0x24}, // Force Idle
{CYRF_29_RX_ABORT, 0x00}, // Clear abort RX
{CYRF_03_TX_CFG, 0x28 | CYRF_HIGH_POWER}, // 64 chip codes, 8DR mode
{CYRF_10_FRAMING_CFG, 0xea}, // SOP enabled, SOP_CODE_ADR 64 chips, Packet len enabled, SOP correlator 0x0A
{CYRF_1F_TX_OVERRIDE, 0x00}, // CRC16 enabled, no ACK
{CYRF_1E_RX_OVERRIDE, 0x00}, // CRC16 enabled, no ACK
};
static void __attribute__((unused)) DSM_cyrf_config()
{
for(uint8_t i = 0; i < sizeof(DSM_init_vals) / 2; i++)
CYRF_WriteRegister(pgm_read_byte_near(&DSM_init_vals[i][0]), pgm_read_byte_near(&DSM_init_vals[i][1]));
CYRF_WritePreamble(0x333304);
CYRF_ConfigRFChannel(0x61);
}
static void __attribute__((unused)) DSM_build_bind_packet()
{
uint8_t i;
@@ -187,23 +82,26 @@ static void __attribute__((unused)) DSM_build_bind_packet()
sum += packet[i];
packet[8] = sum >> 8;
packet[9] = sum & 0xff;
packet[10] = 0x01; //???
packet[11] = num_ch;
packet[10] = 0x01; // ???
if(sub_protocol==DSM_AUTO)
packet[11] = 12;
else
packet[11] = num_ch;
if (sub_protocol==DSM2_22)
packet[12]=num_ch<8?0x01:0x02; // DSM2/1024 1 or 2 packets depending on the number of channels
if(sub_protocol==DSM2_11)
packet[12]=num_ch<8?0x01:0x02; // DSM2/1024 1 or 2 packets depending on the number of channels
else if(sub_protocol==DSM2_11)
packet[12]=0x12; // DSM2/2048 2 packets
if(sub_protocol==DSMX_22)
else if(sub_protocol==DSMX_22)
#if defined DSM_TELEMETRY
packet[12] = 0xb2; // DSMX/2048 2 packets
#else
packet[12] = num_ch<8? 0xa2 : 0xb2; // DSMX/2048 1 or 2 packets depending on the number of channels
#endif
if(sub_protocol==DSMX_11 || sub_protocol==DSM_AUTO) // Force DSMX/1024 in mode Auto
packet[12]=0xb2; // DSMX/1024 2 packets
else // DSMX_11 && DSM_AUTO
packet[12]=0xb2; // DSMX/2048 2 packets
packet[13] = 0x00; //???
packet[13] = 0x00; //???
for(i = 8; i < 14; i++)
sum += packet[i];
packet[14] = sum >> 8;
@@ -214,30 +112,24 @@ static void __attribute__((unused)) DSM_initialize_bind_phase()
{
CYRF_ConfigRFChannel(DSM_BIND_CHANNEL); //This seems to be random?
//64 SDR Mode is configured so only the 8 first values are needed but need to write 16 values...
CYRF_ConfigDataCode((const uint8_t*)"\xD7\xA1\x54\xB1\x5E\x89\xAE\x86\xc6\x94\x22\xfe\x48\xe6\x57\x4e", 16);
uint8_t code[16];
DSM_read_code(code,0,8,8);
CYRF_ConfigDataCode(code, 16);
DSM_build_bind_packet();
}
static void __attribute__((unused)) DSM_cyrf_configdata()
{
for(uint8_t i = 0; i < sizeof(DSM_data_vals) / 2; i++)
CYRF_WriteRegister(pgm_read_byte_near(&DSM_data_vals[i][0]), pgm_read_byte_near(&DSM_data_vals[i][1]));
}
static void __attribute__((unused)) DSM_update_channels()
{
prev_option=option;
if(sub_protocol==DSM_AUTO)
num_ch=12; // Force 12 channels in mode Auto
else
num_ch=option;
if(num_ch<4 || num_ch>12)
num_ch=option & 0x0F; // Remove flags 0x80=max_throw, 0x40=11ms
if(num_ch<3 || num_ch>12)
num_ch=6; // Default to 6 channels if invalid choice...
// Create channel map based on number of channels and refresh rate
uint8_t idx=num_ch-4;
if(num_ch>7 && num_ch<11 && (sub_protocol==DSM2_11 || sub_protocol==DSMX_11))
idx+=5; // In 11ms mode change index only for channels 8..10
uint8_t idx=num_ch-3;
if((option & 0x40) && num_ch>7 && num_ch<12)
idx+=5; // In 11ms mode change index only for channels 8..11
for(uint8_t i=0;i<14;i++)
ch_map[i]=pgm_read_byte_near(&DSM_ch_map_progmem[idx][i]);
}
@@ -250,32 +142,35 @@ static void __attribute__((unused)) DSM_build_data_packet(uint8_t upper)
DSM_update_channels();
if (sub_protocol==DSMX_11 || sub_protocol==DSMX_22 )
{
{//DSMX
packet[0] = cyrfmfg_id[2];
packet[1] = cyrfmfg_id[3];
}
else
{
{//DSM2
packet[0] = (0xff ^ cyrfmfg_id[2]);
packet[1] = (0xff ^ cyrfmfg_id[3]);
if(sub_protocol==DSM2_22)
bits=10; // Only DSM_22 is using a resolution of 1024
bits=10; // Only DSM2_22 is using a resolution of 1024
}
#ifdef DSM_THROTTLE_KILL_CH
uint16_t kill_ch=Channel_data[DSM_THROTTLE_KILL_CH-1];
#endif
for (uint8_t i = 0; i < 7; i++)
{
uint8_t idx = ch_map[(upper?7:0) + i];//1,5,2,3,0,4
uint16_t value = 0xffff;;
uint8_t idx = ch_map[(upper?7:0) + i]; // 1,5,2,3,0,4
uint16_t value = 0xffff;
if((option&0x40) == 0 && num_ch < 8 && upper)
idx=0xff; // in 22ms do not transmit upper channels if <8, is it the right method???
if (idx != 0xff)
{
/* Spektrum own remotes transmit normal values during bind and actually use this (e.g. Nano CP X) to
select the transmitter mode (e.g. computer vs non-computer radio), so always send normal output */
#ifdef DSM_THROTTLE_KILL_CH
if(CH_TAER[idx]==THROTTLE && kill_ch<=604)
{//Activate throttle kill only if DSM_THROTTLE_KILL_CH below -50%
if(kill_ch<CHANNEL_MIN_100) // restrict val to 0...400
if(idx==CH1 && kill_ch<=604)
{//Activate throttle kill only if channel is throttle and DSM_THROTTLE_KILL_CH below -50%
if(kill_ch<CHANNEL_MIN_100) // restrict val to 0...400
kill_ch=0;
else
kill_ch-=CHANNEL_MIN_100;
@@ -284,9 +179,12 @@ static void __attribute__((unused)) DSM_build_data_packet(uint8_t upper)
else
#endif
#ifdef DSM_MAX_THROW
value=Channel_data[CH_TAER[idx]]; // -100%..+100% => 1024..1976us and -125%..+125% => 904..2096us based on Redcon 6 channel DSM2 RX
value=Channel_data[CH_TAER[idx]]; // -100%..+100% => 1024..1976us and -125%..+125% => 904..2096us based on Redcon 6 channel DSM2 RX
#else
value=convert_channel_16b_nolimit(CH_TAER[idx],0x150,0x6B0); // -100%..+100% => 1100..1900us and -125%..+125% => 1000..2000us based on Redcon 6 channel DSM2 RX
if(option & 0x80)
value=Channel_data[CH_TAER[idx]]; // -100%..+100% => 1024..1976us and -125%..+125% => 904..2096us based on Redcon 6 channel DSM2 RX
else
value=convert_channel_16b_nolimit(CH_TAER[idx],0x156,0x6AA,false); // -100%..+100% => 1100..1900us and -125%..+125% => 1000..2000us based on a DX8 G2 dump
#endif
if(bits==10) value>>=1;
value |= (upper && i==0 ? 0x8000 : 0) | (idx << bits);
@@ -294,81 +192,38 @@ static void __attribute__((unused)) DSM_build_data_packet(uint8_t upper)
packet[i*2+2] = (value >> 8) & 0xff;
packet[i*2+3] = (value >> 0) & 0xff;
}
}
static void __attribute__((unused)) DSM_set_sop_data_crc()
{
//The crc for channel '1' is NOT(mfgid[0] << 8 + mfgid[1])
//The crc for channel '2' is (mfgid[0] << 8 + mfgid[1])
uint16_t crc = (cyrfmfg_id[0] << 8) + cyrfmfg_id[1];
if(phase==DSM_CH1_CHECK_A||phase==DSM_CH1_CHECK_B)
CYRF_ConfigCRCSeed(crc); //CH2
else
CYRF_ConfigCRCSeed(~crc); //CH1
uint8_t pn_row = DSM_get_pn_row(hopping_frequency[hopping_frequency_no]);
uint8_t code[16];
DSM_read_code(code,pn_row,sop_col,8); // pn_row between 0 and 4, sop_col between 1 and 7
CYRF_ConfigSOPCode(code);
DSM_read_code(code,pn_row,7 - sop_col,8); // 7-sop_col between 0 and 6
DSM_read_code(code+8,pn_row,7 - sop_col + 1,8); // 7-sop_col+1 between 1 and 7
CYRF_ConfigDataCode(code, 16);
CYRF_ConfigRFChannel(hopping_frequency[hopping_frequency_no]);
hopping_frequency_no++;
if(sub_protocol == DSMX_11 || sub_protocol == DSMX_22)
hopping_frequency_no %=23;
else
hopping_frequency_no %=2;
}
static void __attribute__((unused)) DSM_calc_dsmx_channel()
{
uint8_t idx = 0;
uint32_t id = ~(((uint32_t)cyrfmfg_id[0] << 24) | ((uint32_t)cyrfmfg_id[1] << 16) | ((uint32_t)cyrfmfg_id[2] << 8) | (cyrfmfg_id[3] << 0));
uint32_t id_tmp = id;
while(idx < 23)
{
uint8_t i;
uint8_t count_3_27 = 0, count_28_51 = 0, count_52_76 = 0;
id_tmp = id_tmp * 0x0019660D + 0x3C6EF35F; // Randomization
uint8_t next_ch = ((id_tmp >> 8) % 0x49) + 3; // Use least-significant byte and must be larger than 3
if ( (next_ch ^ cyrfmfg_id[3]) & 0x01 )
continue;
for (i = 0; i < idx; i++)
{
if(hopping_frequency[i] == next_ch)
break;
if(hopping_frequency[i] <= 27)
count_3_27++;
else
if (hopping_frequency[i] <= 51)
count_28_51++;
else
count_52_76++;
#ifdef DSM_FWD_PGM
if(upper==0 && DSM_SerialRX && (DSM_SerialRX_val[0]&0xF8)==0x70 )
{ // Send forward programming data if available
for(uint8_t i=0; i<(DSM_SerialRX_val[0]&0x07);i++)
{
packet[i*2+4]=0x70+i;
packet[i*2+5]=DSM_SerialRX_val[i+1];
}
DSM_SerialRX=false;
#ifdef DSM_DEBUG_FWD_PGM
debug("FWD=");
for(uint8_t i=4; i<16;i++)
debug(" %02X",packet[i]);
debugln("");
#endif
}
if (i != idx)
continue;
if ((next_ch < 28 && count_3_27 < 8)
||(next_ch >= 28 && next_ch < 52 && count_28_51 < 7)
||(next_ch >= 52 && count_52_76 < 8))
hopping_frequency[idx++] = next_ch;
}
#endif
}
static uint8_t __attribute__((unused)) DSM_Check_RX_packet()
{
uint8_t result=1; // assume good packet
uint8_t result=1; // assume good packet
uint16_t sum = 384 - 0x10;
for(uint8_t i = 1; i < 9; i++)
{
sum += pkt[i];
sum += packet_in[i];
if(i<5)
if(pkt[i] != (0xff ^ cyrfmfg_id[i-1]))
result=0; // bad packet
if(packet_in[i] != (0xff ^ cyrfmfg_id[i-1]))
result=0; // bad packet
}
if( pkt[9] != (sum>>8) && pkt[10] != (uint8_t)sum )
if( packet_in[9] != (sum>>8) && packet_in[10] != (uint8_t)sum )
result=0;
return result;
}
@@ -377,7 +232,7 @@ uint16_t ReadDsm()
{
#define DSM_CH1_CH2_DELAY 4010 // Time between write of channel 1 and channel 2
#ifdef STM32_BOARD
#define DSM_WRITE_DELAY 1500 // Time after write to verify write complete
#define DSM_WRITE_DELAY 1600 // Time after write to verify write complete
#else
#define DSM_WRITE_DELAY 1950 // Time after write to verify write complete
#endif
@@ -387,46 +242,62 @@ uint16_t ReadDsm()
uint8_t len;
#endif
uint8_t start;
#ifdef DSM_GR300
uint16_t timing=5000+(convert_channel_8b(CH13)*100);
debugln("T=%u",timing);
#endif
switch(phase)
{
case DSM_BIND_WRITE:
if(bind_counter--==0)
#if defined DSM_TELEMETRY
phase=DSM_BIND_CHECK; //Check RX answer
phase=DSM_BIND_CHECK; //Check RX answer
#else
phase=DSM_CHANSEL; //Switch to normal mode
phase=DSM_CHANSEL; //Switch to normal mode
#endif
CYRF_WriteDataPacket(packet);
return 10000;
#if defined DSM_TELEMETRY
case DSM_BIND_CHECK:
//64 SDR Mode is configured so only the 8 first values are needed but we need to write 16 values...
CYRF_ConfigDataCode((const uint8_t *)"\x98\x88\x1B\xE4\x30\x79\x03\x84\xC9\x2C\x06\x93\x86\xB9\x9E\xD7", 16);
CYRF_SetTxRxMode(RX_EN); //Receive mode
CYRF_WriteRegister(CYRF_05_RX_CTRL, 0x87); //Prepare to receive
bind_counter=2*DSM_BIND_COUNT; //Timeout of 4.2s if no packet received
phase++; // change from BIND_CHECK to BIND_READ
CYRF_ConfigDataCode((const uint8_t *)"\x98\x88\x1B\xE4\x30\x79\x03\x84", 16);
CYRF_SetTxRxMode(RX_EN); //Receive mode
CYRF_WriteRegister(CYRF_05_RX_CTRL, 0x87); //Prepare to receive
bind_counter=2*DSM_BIND_COUNT; //Timeout of 4.2s if no packet received
phase++; // change from BIND_CHECK to BIND_READ
return 2000;
case DSM_BIND_READ:
//Read data from RX
rx_phase = CYRF_ReadRegister(CYRF_07_RX_IRQ_STATUS);
if((rx_phase & 0x03) == 0x02) // RXC=1, RXE=0 then 2nd check is required (debouncing)
if((rx_phase & 0x03) == 0x02) // RXC=1, RXE=0 then 2nd check is required (debouncing)
rx_phase |= CYRF_ReadRegister(CYRF_07_RX_IRQ_STATUS);
if((rx_phase & 0x07) == 0x02)
{ // data received with no errors
CYRF_WriteRegister(CYRF_07_RX_IRQ_STATUS, 0x80); // need to set RXOW before data read
len=CYRF_ReadRegister(CYRF_09_RX_COUNT);
if(len>MAX_PKT-2)
len=MAX_PKT-2;
CYRF_ReadDataPacketLen(pkt+1, len);
if(len==10 && DSM_Check_RX_packet())
CYRF_WriteRegister(CYRF_07_RX_IRQ_STATUS, 0x80);// Need to set RXOW before data read
if(CYRF_ReadRegister(CYRF_09_RX_COUNT)==10) // Len
{
pkt[0]=0x80;
telemetry_link=1; // send received data on serial
phase++;
return 2000;
CYRF_ReadDataPacketLen(packet_in+1, 10);
if(DSM_Check_RX_packet())
{
debug("Bind");
for(uint8_t i=0;i<10;i++)
debug(" %02X",packet_in[i+1]);
debugln("");
packet_in[0]=0x80;
packet_in[6]&=0x0F; // It looks like there is a flag 0x40 being added by some receivers
if(packet_in[6]>12) packet_in[6]=12;
else if(packet_in[6]<3) packet_in[6]=6;
telemetry_link=1; // Send received data on serial
phase++;
return 2000;
}
}
CYRF_WriteRegister(CYRF_29_RX_ABORT, 0x20); // Abort RX operation
CYRF_SetTxRxMode(RX_EN); // Force end state read
CYRF_WriteRegister(CYRF_29_RX_ABORT, 0x00); // Clear abort RX operation
CYRF_WriteRegister(CYRF_05_RX_CTRL, 0x83); // Prepare to receive
}
else
if((rx_phase & 0x02) != 0x02)
@@ -438,7 +309,7 @@ uint16_t ReadDsm()
}
if( --bind_counter == 0 )
{ // Exit if no answer has been received for some time
phase++; // DSM_CHANSEL
phase++; // DSM_CHANSEL
return 7000 ;
}
return 7000;
@@ -449,15 +320,23 @@ uint16_t ReadDsm()
CYRF_SetTxRxMode(TX_EN);
hopping_frequency_no = 0;
phase = DSM_CH1_WRITE_A; // in fact phase++
DSM_set_sop_data_crc();
DSM_set_sop_data_crc(phase==DSM_CH1_CHECK_A||phase==DSM_CH1_CHECK_B, sub_protocol==DSMX_11||sub_protocol==DSMX_22);
return 10000;
case DSM_CH1_WRITE_A:
#ifdef MULTI_SYNC
telemetry_set_input_sync(11000); // Always request 11ms spacing even if we don't use half of it in 22ms mode
#endif
case DSM_CH1_WRITE_B:
DSM_build_data_packet(phase == DSM_CH1_WRITE_B); // build lower or upper channels
case DSM_CH2_WRITE_A:
case DSM_CH2_WRITE_B:
DSM_build_data_packet(phase == DSM_CH1_WRITE_B||phase == DSM_CH2_WRITE_B); // build lower or upper channels
CYRF_ReadRegister(CYRF_04_TX_IRQ_STATUS); // clear IRQ flags
CYRF_WriteDataPacket(packet);
#if 0
for(uint8_t i=0;i<16;i++)
debug(" %02X", packet[i]);
debugln("");
#endif
phase++; // change from WRITE to CHECK mode
return DSM_WRITE_DELAY;
case DSM_CH1_CHECK_A:
@@ -481,7 +360,7 @@ uint16_t ReadDsm()
CYRF_SetTxRxMode(TX_EN);
}
#endif
DSM_set_sop_data_crc();
DSM_set_sop_data_crc(phase==DSM_CH1_CHECK_A||phase==DSM_CH1_CHECK_B, sub_protocol==DSMX_11 || sub_protocol==DSMX_22);
phase++; // change from CH1_CHECK to CH2_WRITE
return DSM_CH1_CH2_DELAY - DSM_WRITE_DELAY;
}
@@ -491,6 +370,10 @@ uint16_t ReadDsm()
phase++; // change from CH2_CHECK to CH2_READ
CYRF_SetTxRxMode(RX_EN); //Receive mode
CYRF_WriteRegister(CYRF_05_RX_CTRL, 0x87); //0x80??? //Prepare to receive
#ifdef DSM_GR300
if(num_ch==3)
return timing - DSM_CH1_CH2_DELAY - DSM_WRITE_DELAY - DSM_READ_DELAY;
#endif
return 11000 - DSM_CH1_CH2_DELAY - DSM_WRITE_DELAY - DSM_READ_DELAY;
case DSM_CH2_READ_A:
case DSM_CH2_READ_B:
@@ -502,10 +385,19 @@ uint16_t ReadDsm()
{ // good data (complete with no errors)
CYRF_WriteRegister(CYRF_07_RX_IRQ_STATUS, 0x80); // need to set RXOW before data read
len=CYRF_ReadRegister(CYRF_09_RX_COUNT);
if(len>MAX_PKT-2)
len=MAX_PKT-2;
CYRF_ReadDataPacketLen(pkt+1, len);
pkt[0]=CYRF_ReadRegister(CYRF_13_RSSI)&0x1F;// store RSSI of the received telemetry signal
if(len>TELEMETRY_BUFFER_SIZE-2)
len=TELEMETRY_BUFFER_SIZE-2;
CYRF_ReadDataPacketLen(packet_in+1, len);
#ifdef DSM_DEBUG_FWD_PGM
//debug(" %02X", packet_in[1]);
if(packet_in[1]==9)
{
for(uint8_t i=0;i<len;i++)
debug(" %02X", packet_in[i+1]);
debugln("");
}
#endif
packet_in[0]=CYRF_ReadRegister(CYRF_13_RSSI)&0x1F;// store RSSI of the received telemetry signal
telemetry_link=1;
}
CYRF_WriteRegister(CYRF_29_RX_ABORT, 0x20); // Abort RX operation
@@ -515,6 +407,10 @@ uint16_t ReadDsm()
CYRF_WriteRegister(CYRF_29_RX_ABORT, 0x00); // Clear abort RX operation
CYRF_WriteRegister(CYRF_05_RX_CTRL, 0x87); //0x80??? //Prepare to receive
phase = DSM_CH2_READ_B;
#ifdef DSM_GR300
if(num_ch==3)
return timing;
#endif
return 11000;
}
if (phase == DSM_CH2_READ_A)
@@ -523,11 +419,11 @@ uint16_t ReadDsm()
phase = DSM_CH1_WRITE_A; //Transmit lower
CYRF_SetTxRxMode(TX_EN); //TX mode
CYRF_WriteRegister(CYRF_29_RX_ABORT, 0x00); //Clear abort RX operation
DSM_set_sop_data_crc();
DSM_set_sop_data_crc(phase==DSM_CH1_CHECK_A||phase==DSM_CH1_CHECK_B, sub_protocol==DSMX_11||sub_protocol==DSMX_22);
return DSM_READ_DELAY;
#else
// No telemetry
DSM_set_sop_data_crc();
DSM_set_sop_data_crc(phase==DSM_CH1_CHECK_A||phase==DSM_CH1_CHECK_B, sub_protocol==DSMX_11||sub_protocol==DSMX_22);
if (phase == DSM_CH2_CHECK_A)
{
if(num_ch > 7 || sub_protocol==DSM2_11 || sub_protocol==DSMX_11)
@@ -535,11 +431,19 @@ uint16_t ReadDsm()
else
{ //Normal mode 22ms
phase = DSM_CH1_WRITE_A; // change from CH2_CHECK_A to CH1_WRITE_A (ie no upper)
#ifdef DSM_GR300
if(num_ch==3)
return timing - DSM_CH1_CH2_DELAY - DSM_WRITE_DELAY ;
#endif
return 22000 - DSM_CH1_CH2_DELAY - DSM_WRITE_DELAY ;
}
}
else
phase = DSM_CH1_WRITE_A; // change from CH2_CHECK_B to CH1_WRITE_A (upper already transmitted so transmit lower)
#ifdef DSM_GR300
if(num_ch==3)
return timing - DSM_CH1_CH2_DELAY - DSM_WRITE_DELAY ;
#endif
return 11000 - DSM_CH1_CH2_DELAY - DSM_WRITE_DELAY;
#endif
}
@@ -559,6 +463,8 @@ uint16_t initDsm()
cyrfmfg_id[rx_tx_addr[0]%3]^=0x01; //Change a bit so sop_col will be different from 0
sop_col = (cyrfmfg_id[0] + cyrfmfg_id[1] + cyrfmfg_id[2] + 2) & 0x07;
}
//Calc CRC seed
seed = (cyrfmfg_id[0] << 8) + cyrfmfg_id[1];
//Hopping frequencies
if (sub_protocol == DSMX_11 || sub_protocol == DSMX_22)
DSM_calc_dsmx_channel();

View File

@@ -146,7 +146,7 @@ static void __attribute__((unused)) DEVO_build_data_pkt()
uint8_t sign = 0x0b;
for (uint8_t i = 0; i < 4; i++)
{
int16_t value=convert_channel_16b_nolimit(CH_EATR[ch_idx * 4 + i],-1600,1600);//range -1600..+1600
int16_t value=convert_channel_16b_nolimit(CH_EATR[ch_idx * 4 + i],-1600,1600,false);//range -1600..+1600
if(value < 0)
{
value = -value;
@@ -162,6 +162,33 @@ static void __attribute__((unused)) DEVO_build_data_pkt()
DEVO_add_pkt_suffix();
}
#if defined DEVO_HUB_TELEMETRY
static void __attribute__((unused)) DEVO_parse_telemetry_packet()
{
DEVO_scramble_pkt(); //This will unscramble the packet
debugln("RX");
if ((((uint32_t)packet[15] << 16) | ((uint32_t)packet[14] << 8) | packet[13]) != (MProtocol_id & 0x00ffffff))
return; // ID does not match
//RSSI
TX_RSSI = CYRF_ReadRegister(CYRF_13_RSSI) & 0x1F;
TX_RSSI = (TX_RSSI << 1) + TX_RSSI;
RX_RSSI = TX_RSSI;
telemetry_link = 1;
//TODO: FW telemetry https://github.com/DeviationTX/deviation/blob/5efb6a28bea697af9a61b5a0ed2528cc8d203f90/src/protocol/devo_cyrf6936.c#L232
debug("P[0]=%02X",packet[0]);
if (packet[0] == 0x30) // Volt packet
{
v_lipo1 = packet[1] << 1;
v_lipo2 = packet[3] << 1;
}
}
#endif
static void __attribute__((unused)) DEVO_cyrf_set_bound_sop_code()
{
/* crc == 0 isn't allowed, so use 1 if the math results in 0 */
@@ -270,8 +297,87 @@ static void __attribute__((unused)) DEVO_BuildPacket()
uint16_t devo_callback()
{
static uint8_t txState=0;
#if defined DEVO_HUB_TELEMETRY
int delay;
if (txState == 0)
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(2400);
#endif
DEVO_BuildPacket();
CYRF_WriteDataPacket(packet);
txState = 1;
return 900;
}
if (txState == 1)
{
int i = 0;
uint8_t reg;
while (! ((reg = CYRF_ReadRegister(CYRF_04_TX_IRQ_STATUS)) & 0x02))
{
if (++i >= DEVO_NUM_WAIT_LOOPS)
break;
}
if (((reg & 0x22) == 0x20) || (CYRF_ReadRegister(CYRF_02_TX_CTRL) & 0x80))
{
CYRF_Reset();
DEVO_cyrf_init();
DEVO_cyrf_set_bound_sop_code();
CYRF_ConfigRFChannel(*hopping_frequency_ptr);
//printf("Rst CYRF\n");
delay = 1500;
txState = 15;
}
else
{
if (phase == DEVO_BOUND)
{
/* exit binding state */
phase = DEVO_BOUND_3;
DEVO_cyrf_set_bound_sop_code();
}
if((packet_count != 0) && (bind_counter == 0))
{
CYRF_SetTxRxMode(RX_EN); //Receive mode
CYRF_WriteRegister(CYRF_05_RX_CTRL, 0x87); //0x80??? //Prepare to receive
txState = 2;
return 1300;
}
}
if(packet_count == 0)
{
CYRF_SetPower(0x08); //Keep tx power updated
hopping_frequency_ptr = hopping_frequency_ptr == &hopping_frequency[2] ? hopping_frequency : hopping_frequency_ptr + 1;
CYRF_ConfigRFChannel(*hopping_frequency_ptr);
}
delay = 1500;
}
if(txState == 2)
{
uint8_t rx_state = CYRF_ReadRegister(CYRF_07_RX_IRQ_STATUS);
if((rx_state & 0x03) == 0x02)
{ // RXC=1, RXE=0 then 2nd check is required (debouncing)
rx_state |= CYRF_ReadRegister(CYRF_07_RX_IRQ_STATUS);
}
if((rx_state & 0x07) == 0x02)
{ // good data (complete with no errors)
CYRF_WriteRegister(CYRF_07_RX_IRQ_STATUS, 0x80); // need to set RXOW before data read
CYRF_ReadDataPacketLen(packet, CYRF_ReadRegister(CYRF_09_RX_COUNT));
DEVO_parse_telemetry_packet();
}
CYRF_SetTxRxMode(TX_EN); //Write mode
delay = 200;
}
txState = 0;
return delay;
#else
if (txState == 0)
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(2400);
#endif
txState = 1;
DEVO_BuildPacket();
CYRF_WriteDataPacket(packet);
@@ -295,6 +401,7 @@ uint16_t devo_callback()
CYRF_ConfigRFChannel(*hopping_frequency_ptr);
}
return 1200;
#endif
}
uint16_t DevoInit()

View File

@@ -0,0 +1,141 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(E010R5_CYRF6936_INO)
#include "iface_rf2500.h"
#define E010R5_FORCE_ID
#define E010R5_BIND_CH 0x2D //45
#define E010R5_PAYLOAD_SIZE 14
static void __attribute__((unused)) E010R5_build_data_packet()
{
packet[ 0] = 0x0D; // Packet length
packet[ 1] = convert_channel_8b(THROTTLE);
packet[ 2] = convert_channel_s8b(RUDDER);
packet[ 3] = convert_channel_s8b(ELEVATOR);
packet[ 4] = convert_channel_s8b(AILERON);
packet[ 5] = 0x20; // Trim Rudder
packet[ 6] = 0x20; // Trim Elevator
packet[ 7] = 0x20; // Trim Aileron
packet[ 8] = 0x01 // Flags: high=0x01, low=0x00
| GET_FLAG(CH5_SW, 0x04) // flip=0x04
| GET_FLAG(CH6_SW, 0x08) // led=0x08
| GET_FLAG(CH8_SW, 0x10) // headless=0x10
| GET_FLAG(CH9_SW, 0x20); // one key return=0x20
packet[ 9] = IS_BIND_IN_PROGRESS ? 0x80 : 0x00 // Flags: bind=0x80
| GET_FLAG(CH7_SW, 0x20) // calib=0x20
| GET_FLAG(CH10_SW, 0x01); // strange effect=0x01=long press on right button
packet[10] = rx_tx_addr[0];
packet[11] = rx_tx_addr[1];
packet[12] = rx_tx_addr[2];
packet[13] = 0x9D; // Check
for(uint8_t i=0;i<13;i++)
packet[13] += packet[i];
RF2500_BuildPayload(packet);
}
uint16_t ReadE010R5()
{
//Bind
if(bind_counter)
{
bind_counter--;
if(bind_counter==0)
BIND_DONE;
}
//Send packet
RF2500_SendPayload();
//Timing and hopping
packet_count++;
switch(packet_count)
{
case 1:
case 2:
case 4:
case 5:
return 1183;
default:
hopping_frequency_no++;
hopping_frequency_no &= 3;
if(IS_BIND_IN_PROGRESS)
rf_ch_num = 0x30 + (hopping_frequency_no<<3);
else
rf_ch_num = hopping_frequency[hopping_frequency_no];
RF2500_RFChannel(rf_ch_num);
RF2500_SetPower();
packet_count = 0;
case 3:
E010R5_build_data_packet();
return 3400;
}
return 0;
}
uint16_t initE010R5()
{
BIND_IN_PROGRESS; // Autobind protocol
bind_counter = 2600;
//RF2500 emu init
RF2500_Init(E010R5_PAYLOAD_SIZE, false); // 14 bytes, not scrambled
RF2500_SetTXAddr((uint8_t*)"\x0E\x54\x96\xEE"); // Same address for bind and normal packets
#ifdef E010R5_FORCE_ID
switch(rx_tx_addr[3]%3)
{
case 0:
//TX1
hopping_frequency[0]=0x35; //53
hopping_frequency[1]=0x30; //48
rx_tx_addr[1]=0x45;
rx_tx_addr[2]=0x46;
break;
case 1:
//TX2
hopping_frequency[0]=0x35; //53
hopping_frequency[1]=0x3C; //60
rx_tx_addr[1]=0x1B;
rx_tx_addr[2]=0x9E;
break;
default:
//TX3
hopping_frequency[0]=0x30; //48
hopping_frequency[1]=0x38; //56
rx_tx_addr[1]=0x17;
rx_tx_addr[2]=0x0D;
break;
}
#endif
rx_tx_addr[0]=0x00;
// This is the same as the E010 v1...
hopping_frequency[2]=hopping_frequency[0]+0x10;
hopping_frequency[3]=hopping_frequency[1]+0x10;
E010R5_build_data_packet();
RF2500_RFChannel(hopping_frequency[0]);
hopping_frequency_no=0;
packet_count=0;
return 3400;
}
#endif

View File

@@ -0,0 +1,158 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(E016HV2_CC2500_INO)
#include "iface_cc2500.h"
//#define FORCE_E016HV2_ORIGINAL_ID
#define E016HV2_INITIAL_WAIT 500
#define E016HV2_PACKET_PERIOD 10000
#define E016HV2_RF_BIND_CHANNEL 5
#define E016HV2_PAYLOAD_SIZE 11
#define E016HV2_BIND_COUNT 300 //3sec
static void __attribute__((unused)) E016HV2_send_packet()
{
//payload length (after this byte)
packet[0 ] = 0x0A;
//bind indicator
if(IS_BIND_IN_PROGRESS)
{
packet[1 ] = 0x02;
if(bind_counter)
bind_counter--;
else
{
BIND_DONE;
CC2500_250K_RFChannel(rf_ch_num); // Set main channel
}
}
else
packet[1 ] = 0x20;
//ID
packet[2 ] = rx_tx_addr[2];
packet[3 ] = rx_tx_addr[3];
//channels TREA
uint8_t channel;
if(IS_BIND_IN_PROGRESS)
channel=0x64; // Throttle must be centered during bind
else
channel=convert_channel_8b_limit_deadband(THROTTLE,0x00,0x64,0xC8, 20);
packet[4 ] = channel;
channel=convert_channel_16b_limit(RUDDER,0x00,0xC8);
packet[5 ] = channel;
channel=convert_channel_16b_limit(ELEVATOR,0x00,0xC8);
packet[6 ] = channel;
channel=convert_channel_16b_limit(AILERON,0x00,0xC8);
packet[7 ] = channel;
//flags
if(CH8_SW && !phase) //toggle calib flag
flags ^= 0x40;
phase=CH8_SW;
packet[8 ] = GET_FLAG(CH7_SW, 0x01) // 0x01=Flip
| GET_FLAG(CH9_SW, 0x02) // 0x02=Headless
| GET_FLAG(CH10_SW, 0x04) // 0x04=One Key Return
| flags; // 0x40=Calib
packet[9 ] = 0x02; // Speed control 0x00:low, 0x01:medium, 0x02:high
packet[10] = GET_FLAG(CH5_SW, 0x01) // 0x01=TakeOff/Land (momentary switch)
| GET_FLAG(CH6_SW, 0x04); // 0x04=Emergeny Stop (momentary switch)
CC2500_SetPower(); // Set tx_power
CC2500_SetFreqOffset(); // Set frequency offset
//Build real packet and send it
static uint8_t pid=0;
crc=0;
// stop TX/RX
CC2500_Strobe(CC2500_SIDLE);
// flush tx FIFO
CC2500_Strobe(CC2500_SFTX);
// packet length
CC2500_WriteReg(CC2500_3F_TXFIFO, 6 + 4 + 1 + 11 + 2); // preamble + address + packet_control + payload + crc
// preamble+address
CC2500_WriteRegisterMulti(CC2500_3F_TXFIFO, (uint8_t*)"\xAA\xAA\xAA\xAA\xAA\xAA\xE7\xE7\xE7\xE7", 10);
// packet control
CC2500_WriteReg(CC2500_3F_TXFIFO, 0x50+(pid<<2));
pid++;
// payload
//debug("P:")
for (uint8_t i = 0; i < E016HV2_PAYLOAD_SIZE; ++i)
{
uint8_t byte = (bit_reverse(packet[i])<<1) | (packet[i+1]&0x01);
//debug(" %02X",byte)
CC2500_WriteReg(CC2500_3F_TXFIFO,byte);
crc16_update(byte, 8);
}
// crc
CC2500_WriteReg(CC2500_3F_TXFIFO,crc >> 8);
CC2500_WriteReg(CC2500_3F_TXFIFO,crc);
//debugln(" %04X",crc)
// transmit
CC2500_Strobe(CC2500_STX);
}
uint16_t E016HV2_callback()
{
E016HV2_send_packet();
return E016HV2_PACKET_PERIOD;
}
uint16_t initE016HV2()
{
//Config CC2500
CC2500_250K_Init();
CC2500_250K_RFChannel(E016HV2_RF_BIND_CHANNEL); // Set bind channel
#ifdef FORCE_E016HV2_ORIGINAL_ID
rx_tx_addr[2]=0x27;
rx_tx_addr[3]=0x1B;
//rf_ch_num = 44;
#endif
//General ID
//3F1B -> 68,2C1B -> 49,2B1B -> 48,2A1B -> 47,291B -> 46,281B -> 45,271B -> 44,261B -> 43,251B -> 42
//241B -> no bind,231B -> no bind,221B -> 71,211B -> 70,201B -> 69,1F1B -> 68,1E1B -> 67,1D1B -> 66,1C1B -> 65,1B1B -> 64,1A1B -> 63,191B -> 62,181B -> 61,171B -> 60,161B -> 59
//0C1B -> 49,051B -> 42,041B -> no bind,031B -> no bind,021B -> 71,011B -> 70,001B -> no bind
if(rx_tx_addr[2]<3) rx_tx_addr[2]+=3; // rx_tx_addr[2]=0 is invalid
if(rx_tx_addr[3]==0) rx_tx_addr[3]+=64; // rx_tx_addr[3]=0 is invalid
rf_ch_num = (rx_tx_addr[2] + rx_tx_addr[3]) % 32 + 42;
if(rf_ch_num>71) // channels 72 and 73 are invalid
{
rx_tx_addr[2]-=2;
rf_ch_num-=2;
}
phase=CH8_SW;
flags=0;
bind_counter = E016HV2_BIND_COUNT;
BIND_IN_PROGRESS; // Autobind protocol
return E016HV2_INITIAL_WAIT;
}
#endif

View File

@@ -287,7 +287,12 @@ uint16_t E01X_callback()
}
}
else
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
E01X_send_packet(0);
}
return packet_period;
}

View File

@@ -0,0 +1,152 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(E129_CYRF6936_INO)
#include "iface_rf2500.h"
//#define E129_FORCE_ID
#define E129_BIND_CH 0x2D //45
#define E129_PAYLOAD_SIZE 16
static void __attribute__((unused)) E129_build_data_packet()
{
//Build the packet
memset(packet,0,E129_PAYLOAD_SIZE);
packet[ 0] = 0x0F; // Packet length
if(IS_BIND_IN_PROGRESS)
{
packet[ 1] = 0xA4;
packet[ 2] = bit_reverse(rx_tx_addr[2]);
packet[ 3] = bit_reverse(rx_tx_addr[3]);
packet[ 4] = bit_reverse(rx_tx_addr[0]);
packet[ 5] = bit_reverse(rx_tx_addr[1]);
for(uint8_t i=0; i<4; i++)
packet[6+i]=hopping_frequency[i]-2;
}
else
{
packet[ 1] = 0xA6;
packet[ 2] = 0xF7; // High rate 0xF7, low rate 0xF4
//packet[ 3] = 0x00; // Mode: short press=0x20->0x00->0x20->..., long press=0x10->0x30->0x10->...
packet[ 4] = GET_FLAG(CH5_SW, 0x20) // Take off/Land 0x20
| GET_FLAG(CH6_SW, 0x04); // Emergency stop 0x04
uint16_t val = convert_channel_10b(AILERON,false);
uint8_t trim = convert_channel_8b(CH7) & 0xFC;
packet[ 5] = trim | (val >>8); // Trim (0x00..0x1F..0x3E) << 2 | channel >> 8
packet[ 6] = val; // channel (0x000...0x200...0x3FF)
val = convert_channel_10b(ELEVATOR,false);
trim = convert_channel_8b(CH8) & 0xFC;
packet[ 7] = trim | (val >>8); // Trim (0x00..0x1F..0x3E) << 2 | channel >> 8
packet[ 8] = val; // channel (0x000...0x200...0x3FF)
if(packet_count>200)
val = convert_channel_10b(THROTTLE,false);
else
{//Allow bind to complete with throttle not centered
packet_count++;
val=0x200;
}
packet[ 9] = (0x1F<<2) | (val >>8); // Trim (0x00..0x1F..0x3E) << 2 | channel >> 8
packet[10] = val; // channel (0x000...0x200...0x3FF)
val = convert_channel_10b(RUDDER,false);
trim = convert_channel_8b(CH9) & 0xFC;
packet[11] = trim | (val >>8); // Trim (0x00..0x1F..0x3E) << 2 | channel >> 8
packet[12] = val; // channel (0x000...0x200...0x3FF)
}
packet[14] = 0x00; // Check
for(uint8_t i=0;i<14;i++)
packet[14] += packet[i];
RF2500_BuildPayload(packet);
}
uint16_t ReadE129()
{
//Set RF channel
if(phase==0)
RF2500_RFChannel(IS_BIND_IN_PROGRESS ? E129_BIND_CH : hopping_frequency[hopping_frequency_no]);
//Send packet
RF2500_SendPayload();
//Send twice on same channel
if(phase==0)
{
phase++;
return 1260;
}
//Bind
if(bind_counter)
{
bind_counter--;
if(bind_counter==0)
{
BIND_DONE;
RF2500_SetTXAddr(rx_tx_addr); // 4 bytes of address
}
}
//Build packet
E129_build_data_packet();
//Set power
RF2500_SetPower();
//Hopp
hopping_frequency_no++;
hopping_frequency_no &= 3;
phase=0;
return 5200-1260;
}
uint16_t initE129()
{
BIND_IN_PROGRESS; // Autobind protocol
bind_counter = 384; // ~2sec
//RF2500 emu init
RF2500_Init(E129_PAYLOAD_SIZE, true); // 16 bytes, Scrambled
//Freq hopping
calc_fh_channels(4);
for(uint8_t i=0; i<4; i++)
if(hopping_frequency[i]==E129_BIND_CH)
hopping_frequency[i]++;
#ifdef E129_FORCE_ID
rx_tx_addr[0]=0xC1;
rx_tx_addr[1]=0x22;
rx_tx_addr[2]=0x05;
rx_tx_addr[3]=0xA3;
hopping_frequency[0]=0x3C; //60
hopping_frequency[1]=0x49; //73
hopping_frequency[2]=0x4B; //75
hopping_frequency[3]=0x41; //65
#endif
RF2500_SetTXAddr((uint8_t*)"\xE2\x32\xE0\xC8"); // 4 bytes of bind address
E129_build_data_packet();
hopping_frequency_no=0;
packet_count=0;
phase=0;
return 1260;
}
#endif

View File

@@ -92,8 +92,8 @@ static void __attribute__((unused)) ESKY150_send_packet()
uint8_t flight_mode=0;
uint16_t aux_ch6=0;
uint8_t aux_ch7=0;
if(option==1)
{
if(sub_protocol)
{ // 7 channels
flight_mode=ESKY150_convert_2bit_channel(CH5);
aux_ch6=convert_channel_16b_limit(CH6,1000,2000);
aux_ch7=ESKY150_convert_2bit_channel(CH7);
@@ -151,7 +151,12 @@ uint8_t ESKY150_convert_2bit_channel(uint8_t num)
uint16_t ESKY150_callback()
{
if(IS_BIND_DONE)
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(ESKY150_SENDING_PACKET_PERIOD);
#endif
ESKY150_send_packet();
}
else
{
NRF24L01_WritePayload(packet, ESKY150_PAYLOADSIZE);

View File

@@ -0,0 +1,139 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(ESKY150V2_CC2500_INO)
#include "iface_cc2500.h"
//#define ESKY150V2_FORCE_ID
#define ESKY150V2_PAYLOADSIZE 40
#define ESKY150V2_BINDPAYLOADSIZE 150
#define ESKY150V2_NFREQCHANNELS 70
#define ESKY150V2_TXID_SIZE 4
#define ESKY150V2_BIND_CHANNEL 0x00
#define ESKY150V2_PACKET_PERIOD 10000
#define ESKY150V2_BINDING_PACKET_PERIOD 57000
#ifdef ESKY150V2_FORCE_ID
const uint8_t PROGMEM ESKY150V2_hop[ESKY150V2_NFREQCHANNELS]= {
0x07, 0x47, 0x09, 0x27, 0x0B, 0x42, 0x0D, 0x35, 0x17, 0x40, 0x26, 0x3D, 0x16, 0x43, 0x06, 0x2A, 0x24, 0x44,
0x0E, 0x38, 0x20, 0x48, 0x22, 0x2D, 0x2B, 0x39, 0x0F, 0x36, 0x23, 0x46, 0x14, 0x3B, 0x1A, 0x41, 0x10, 0x2E,
0x1E, 0x28, 0x0C, 0x49, 0x1D, 0x3E, 0x29, 0x2C, 0x25, 0x30, 0x1C, 0x2F, 0x1B, 0x33, 0x13, 0x31, 0x0A, 0x37,
0x12, 0x3C, 0x18, 0x4B, 0x11, 0x45, 0x21, 0x4A, 0x1F, 0x3F, 0x15, 0x32, 0x08, 0x3A, 0x19, 0x34 };
/*const uint8_t PROGMEM ESKY150V2_hop2[40]= {
0x19, 0x23, 0x13, 0x1B, 0x09, 0x22, 0x14, 0x27, 0x06, 0x26, 0x16, 0x24, 0x0B, 0x2A, 0x0E, 0x1C, 0x11, 0x1E,
0x08, 0x29, 0x0D, 0x28, 0x18, 0x2D, 0x12, 0x20, 0x0C, 0x1A, 0x10, 0x1D, 0x07, 0x2C, 0x0A, 0x2B, 0x0F, 0x25,
0x15, 0x1F, 0x17, 0x21 };*/
#endif
static void __attribute__((unused)) ESKY150V2_set_freq(void)
{
calc_fh_channels(ESKY150V2_NFREQCHANNELS);
#ifdef ESKY150V2_FORCE_ID
for(uint8_t i=0; i<ESKY150V2_NFREQCHANNELS; i++)
hopping_frequency[i]=pgm_read_byte_near( &ESKY150V2_hop[i] );
#endif
//Bind channel
hopping_frequency[ESKY150V2_NFREQCHANNELS]=ESKY150V2_BIND_CHANNEL;
//Calib all channels
CC2500_SetFreqOffset(); // Set frequency offset
CC2500_250K_HoppingCalib(ESKY150V2_NFREQCHANNELS+1);
}
static void __attribute__((unused)) ESKY150V2_send_packet()
{
CC2500_SetFreqOffset(); // Set frequency offset
CC2500_250K_Hopping(hopping_frequency_no);
if (++hopping_frequency_no >= ESKY150V2_NFREQCHANNELS)
hopping_frequency_no = 0;
CC2500_SetPower(); //Set power level
packet[0] = 0xFA; // Unknown
packet[1] = 0x41; // Unknown
packet[2] = 0x08; // Unknown
packet[3] = 0x00; // Unknown
for(uint8_t i=0;i<16;i++)
{
uint16_t channel=convert_channel_16b_limit(CH_TAER[i],200,1000);
packet[4+2*i] = channel;
packet[5+2*i] = channel>>8;
}
CC2500_250K_NRF_WritePayload(packet, ESKY150V2_PAYLOADSIZE);
}
uint16_t ESKY150V2_callback()
{
if(IS_BIND_DONE)
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(ESKY150V2_PACKET_PERIOD);
#endif
ESKY150V2_send_packet();
}
else
{
BIND_DONE; //Need full power for bind to work...
CC2500_SetPower(); //Set power level
BIND_IN_PROGRESS;
CC2500_250K_NRF_WritePayload(packet, ESKY150V2_BINDPAYLOADSIZE);
if (--bind_counter == 0)
{
BIND_DONE;
// Change TX address from bind to normal mode
CC2500_250K_NRF_SetTXAddr(rx_tx_addr, ESKY150V2_TXID_SIZE);
memset(packet,0x00,ESKY150V2_PAYLOADSIZE);
}
return 30000; //ESKY150V2_BINDING_PACKET_PERIOD;
}
return ESKY150V2_PACKET_PERIOD;
}
uint16_t initESKY150V2()
{
CC2500_250K_Init();
ESKY150V2_set_freq();
hopping_frequency_no = 0;
#ifdef ESKY150V2_FORCE_ID // ID taken from TX dump
rx_tx_addr[0]=0x87;rx_tx_addr[1]=0x5B;rx_tx_addr[2]=0x2C;rx_tx_addr[3]=0x5D;
#endif
memset(packet,0x00,ESKY150V2_BINDPAYLOADSIZE);
if(IS_BIND_IN_PROGRESS)
{
CC2500_250K_NRF_SetTXAddr((uint8_t *)"\x73\x73\x74\x63", ESKY150V2_TXID_SIZE); //Bind address
CC2500_250K_Hopping(ESKY150V2_NFREQCHANNELS); //Bind channel
memcpy(packet,"\x73\x73\x74\x63", ESKY150V2_TXID_SIZE);
memcpy(&packet[ESKY150V2_TXID_SIZE],rx_tx_addr, ESKY150V2_TXID_SIZE);
packet[8]=0x41; //Unknown
packet[9]=0x88; //Unknown
packet[10]=0x41; //Unknown
memset(&packet[11],0xAA,4); //Unknown
memcpy(&packet[15],hopping_frequency,ESKY150V2_NFREQCHANNELS); // hop table
//for(uint8_t i=0; i<40; i++) // Does not seem to be needed
// packet[i+85]=pgm_read_byte_near( &ESKY150V2_hop2[i] );
bind_counter=100;
}
else
CC2500_250K_NRF_SetTXAddr(rx_tx_addr, ESKY150V2_TXID_SIZE);
return 50000;
}
#endif

View File

@@ -18,8 +18,13 @@
#include "iface_nrf24l01.h"
//#define ESKY_ET4_FORCE_ID
#define ESKY_BIND_COUNT 1000
#define ESKY_PACKET_PERIOD 3333
#define ESKY_STD_PACKET_PERIOD 3333
#define ESKY_ET4_PACKET_PERIOD 1190
#define ESKY_ET4_TOTAL_PACKET_PERIOD 20300
#define ESKY_ET4_BIND_PACKET_PERIOD 5000
#define ESKY_PAYLOAD_SIZE 13
#define ESKY_PACKET_CHKTIME 100 // Time to wait for packet to be sent (no ACK, so very short)
@@ -63,28 +68,37 @@ static void __attribute__((unused)) ESKY_init()
static void __attribute__((unused)) ESKY_init2()
{
NRF24L01_FlushTx();
hopping_frequency_no = 0;
uint16_t channel_ord = rx_tx_addr[0] % 74;
hopping_frequency[12] = 10 + (uint8_t)channel_ord; //channel_code
uint8_t channel1, channel2;
channel1 = 10 + (uint8_t)((37 + channel_ord*5) % 74);
channel2 = 10 + (uint8_t)(( channel_ord*5) % 74) ;
if(sub_protocol==ESKY_STD)
{
uint16_t channel_ord = rx_tx_addr[0] % 74;
hopping_frequency[12] = 10 + (uint8_t)channel_ord; //channel_code
uint8_t channel1, channel2;
channel1 = 10 + (uint8_t)((37 + channel_ord*5) % 74);
channel2 = 10 + (uint8_t)(( channel_ord*5) % 74) ;
hopping_frequency[0] = channel1;
hopping_frequency[1] = channel1;
hopping_frequency[2] = channel1;
hopping_frequency[3] = channel2;
hopping_frequency[4] = channel2;
hopping_frequency[5] = channel2;
//end_bytes
hopping_frequency[6] = 6;
hopping_frequency[7] = channel1*2;
hopping_frequency[8] = channel2*2;
hopping_frequency[9] = 6;
hopping_frequency[10] = channel1*2;
hopping_frequency[11] = channel2*2;
hopping_frequency[0] = channel1;
hopping_frequency[1] = channel1;
hopping_frequency[2] = channel1;
hopping_frequency[3] = channel2;
hopping_frequency[4] = channel2;
hopping_frequency[5] = channel2;
//end_bytes
hopping_frequency[6] = 6;
hopping_frequency[7] = channel1*2;
hopping_frequency[8] = channel2*2;
hopping_frequency[9] = 6;
hopping_frequency[10] = channel1*2;
hopping_frequency[11] = channel2*2;
}
else
{ // ESKY_ET4
hopping_frequency[0] = 0x29; //41
hopping_frequency[1] = 0x12; //18
hopping_frequency[6] = 0x87; //135 payload end byte
hopping_frequency[12] = 0x84; //132 indicates which channels to use
}
// Turn radio power on
NRF24L01_SetTxRxMode(TX_EN);
}
@@ -111,20 +125,32 @@ static void __attribute__((unused)) ESKY_send_packet(uint8_t bind)
}
else
{
// Regular packet
// Each data packet is repeated 3 times on one channel, and 3 times on another channel
// For arithmetic simplicity, channels are repeated in rf_channels array
if (hopping_frequency_no == 0)
if (packet_count == 0)
for (uint8_t i = 0; i < 6; i++)
{
uint16_t val=convert_channel_ppm(CH_AETR[i]);
packet[i*2] = val>>8; //high byte of servo timing(1000-2000us)
packet[i*2+1] = val&0xFF; //low byte of servo timing(1000-2000us)
}
rf_ch = hopping_frequency[hopping_frequency_no];
packet[12] = hopping_frequency[hopping_frequency_no+6]; // end_bytes
hopping_frequency_no++;
if (hopping_frequency_no > 6) hopping_frequency_no = 0;
if(sub_protocol==ESKY_STD)
{
// Regular packet
// Each data packet is repeated 3 times on one channel, and 3 times on another channel
// For arithmetic simplicity, channels are repeated in rf_channels array
rf_ch = hopping_frequency[packet_count];
packet[12] = hopping_frequency[packet_count+6]; // end_bytes
packet_count++;
if (packet_count > 6) packet_count = 0;
}
else
{ // ESKY_ET4
// Regular packet
// Each data packet is repeated 14 times alternating between 2 channels
rf_ch = hopping_frequency[packet_count&1];
packet_count++;
if(packet_count>14) packet_count=0;
packet[12] = hopping_frequency[6]; // end_byte
}
}
NRF24L01_WriteReg(NRF24L01_05_RF_CH, rf_ch);
NRF24L01_FlushTx();
@@ -135,7 +161,20 @@ static void __attribute__((unused)) ESKY_send_packet(uint8_t bind)
uint16_t ESKY_callback()
{
if(IS_BIND_DONE)
{
#ifdef MULTI_SYNC
if(packet_count==0)
telemetry_set_input_sync(sub_protocol==ESKY_STD?ESKY_STD_PACKET_PERIOD*6:ESKY_ET4_TOTAL_PACKET_PERIOD);
#endif
ESKY_send_packet(0);
if(sub_protocol==ESKY_ET4)
{
if(packet_count==0)
return ESKY_ET4_TOTAL_PACKET_PERIOD-ESKY_ET4_PACKET_PERIOD*13;
else
return ESKY_ET4_PACKET_PERIOD;
}
}
else
{
ESKY_send_packet(1);
@@ -145,16 +184,25 @@ uint16_t ESKY_callback()
BIND_DONE;
}
}
return ESKY_PACKET_PERIOD;
return ESKY_STD_PACKET_PERIOD;
}
uint16_t initESKY(void)
{
bind_counter = ESKY_BIND_COUNT;
rx_tx_addr[2] = rx_tx_addr[3]; // Model match
#ifdef ESKY_ET4_FORCE_ID
if(sub_protocol==ESKY_ET4)
{
rx_tx_addr[0]=0x72;
rx_tx_addr[1]=0xBB;
rx_tx_addr[2]=0xCC;
}
#endif
rx_tx_addr[3] = 0xBB;
ESKY_init();
ESKY_init2();
packet_count=0;
return 50000;
}

View File

@@ -52,24 +52,18 @@ static void __attribute__((unused)) ssv_pack_dpl(uint8_t addr[], uint8_t pid, ui
header[0] = (addr[4] >> 7);
// calculate the crc
union
{
uint8_t bytes[2];
uint16_t val;
} crc;
crc.val=0x3c18;
crc=0x3c18;
for (i = 0; i < 7; ++i)
crc.val=crc16_update(crc.val,header[i],8);
crc16_update(header[i],8);
for (i = 0; i < *len; ++i)
crc.val=crc16_update(crc.val,payload[i],8);
crc16_update(payload[i],8);
// encode payload and crc
// xor with this:
for (i = 0; i < *len; ++i)
payload[i] ^= ssv_xor[i];
crc.bytes[1] ^= ssv_xor[i++];
crc.bytes[0] ^= ssv_xor[i++];
crc ^= ssv_xor[i++]<<8;
crc ^= ssv_xor[i++];
// pack the pcf, payload, and crc into packed_payload
packed_payload[0] = pcf >> 1;
@@ -78,11 +72,11 @@ static void __attribute__((unused)) ssv_pack_dpl(uint8_t addr[], uint8_t pid, ui
for (i = 0; i < *len - 1; ++i)
packed_payload[i+2] = (payload[i] << 7) | (payload[i+1] >> 1);
packed_payload[i+2] = (payload[i] << 7) | (crc.val >> 9);
packed_payload[i+2] = (payload[i] << 7) | (crc >> 9);
++i;
packed_payload[i+2] = (crc.val >> 1 & 0x80 ) | (crc.val >> 1 & 0x7F);
packed_payload[i+2] = (crc >> 1 & 0x80 ) | (crc >> 1 & 0x7F);
++i;
packed_payload[i+2] = (crc.val << 7);
packed_payload[i+2] = (crc << 7);
*len += 4;
}
@@ -188,7 +182,12 @@ uint16_t FQ777_callback()
}
}
else
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(FQ777_PACKET_PERIOD);
#endif
FQ777_send_packet(0);
}
return FQ777_PACKET_PERIOD;
}

View File

@@ -0,0 +1,113 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// Compatible with FEI XIONG P38 plane.
#if defined(FX816_NRF24L01_INO)
#include "iface_nrf24l01.h"
#define FX816_INITIAL_WAIT 500
#define FX816_PACKET_PERIOD 10000
#define FX816_RF_BIND_CHANNEL 0x28 //40
#define FX816_RF_NUM_CHANNELS 4
#define FX816_PAYLOAD_SIZE 6
#define FX816_BIND_COUNT 300 //3sec
static void __attribute__((unused)) FX816_send_packet()
{
packet[0] = IS_BIND_IN_PROGRESS?0x55:0xAA;
packet[1] = rx_tx_addr[0];
packet[2] = rx_tx_addr[1];
uint8_t val=convert_channel_8b(AILERON);
#define FX816_SWITCH 20
if(val>127+FX816_SWITCH)
packet[3] = 1;
else if(val<127-FX816_SWITCH)
packet[3] = 2;
else
packet[3] = 0;
packet[4] = convert_channel_16b_limit(THROTTLE,0,100);
val=0;
for(uint8_t i=0;i<FX816_PAYLOAD_SIZE-1;i++)
val+=packet[i];
packet[5]=val;
NRF24L01_WriteReg(NRF24L01_05_RF_CH, IS_BIND_IN_PROGRESS ? FX816_RF_BIND_CHANNEL:hopping_frequency[hopping_frequency_no++]);
hopping_frequency_no%=FX816_RF_NUM_CHANNELS;
// clear packet status bits and TX FIFO
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
XN297_WritePayload(packet, FX816_PAYLOAD_SIZE);
// Power on, TX mode, 2byte CRC
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP));
NRF24L01_SetPower(); // Set tx_power
}
static void __attribute__((unused)) FX816_init()
{
NRF24L01_Initialize();
NRF24L01_SetTxRxMode(TX_EN);
XN297_SetTXAddr((uint8_t *)"\xcc\xcc\xcc\xcc\xcc", 5);
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowldgement on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0x00); // No retransmits
NRF24L01_SetPower();
NRF24L01_Activate(0x73); // Activate feature register
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 0x00); // Disable dynamic payload length on all pipes
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, 0x01);
NRF24L01_Activate(0x73);
}
static void __attribute__((unused)) FX816_initialize_txid()
{
//Only 8 IDs: the RX led does not indicate frame loss.
//I didn't open the plane to find out if I could connect there so this is the best I came up with with few trial and errors...
rx_tx_addr[0]=0x35+(rx_tx_addr[3]&0x07); //Original dump=0x35
rx_tx_addr[1]=0x09; //Original dump=0x09
memcpy(hopping_frequency,"\x09\x1B\x30\x42",FX816_RF_NUM_CHANNELS); //Original dump=9=0x09,27=0x1B,48=0x30,66=0x42
for(uint8_t i=0;i<FX816_RF_NUM_CHANNELS;i++)
hopping_frequency[i]+=rx_tx_addr[3]&0x07;
}
uint16_t FX816_callback()
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(FX816_PACKET_PERIOD);
#endif
if(IS_BIND_IN_PROGRESS)
if(--bind_counter==0)
BIND_DONE;
FX816_send_packet();
return FX816_PACKET_PERIOD;
}
uint16_t initFX816()
{
BIND_IN_PROGRESS; // autobind protocol
FX816_initialize_txid();
FX816_init();
hopping_frequency_no = 0;
bind_counter=FX816_BIND_COUNT;
return FX816_INITIAL_WAIT;
}
#endif

View File

@@ -188,6 +188,9 @@ uint16_t FY326_callback()
return FY326_PACKET_CHKTIME;
break;
case FY326_DATA:
#ifdef MULTI_SYNC
telemetry_set_input_sync(FY326_PACKET_PERIOD);
#endif
FY326_send_packet(0);
break;
}

View File

@@ -145,7 +145,7 @@ static void __attribute__((unused)) flysky_build_packet(uint8_t init)
for(i = 0; i < 8; i++)
{
uint16_t temp=convert_channel_ppm(CH_AETR[i]);
if(sub_protocol == CX20 && CH_AETR[i]==ELEVATOR)
if(sub_protocol == CX20 && i==CH2) //ELEVATOR
temp=3000-temp;
packet[5 + i*2]=temp&0xFF; //low byte of servo timing(1000-2000us)
packet[6 + i*2]=(temp>>8)&0xFF; //high byte of servo timing(1000-2000us)
@@ -168,16 +168,15 @@ uint16_t ReadFlySky()
}
else
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
flysky_build_packet(0);
A7105_WriteData(21, hopping_frequency[hopping_frequency_no & 0x0F]);
A7105_SetPower();
}
hopping_frequency_no++;
if(sub_protocol==CX20)
return 3984;
else
return 1510; //1460 on deviation but not working with the latest V911 bricks... Turnigy 9X v2 is 1533, Flysky TX for 9XR/9XR Pro is 1510, V911 TX is 1490.
return packet_period;
}
const uint8_t PROGMEM tx_channels[8][4] = {
@@ -235,6 +234,10 @@ uint16_t initFlySky()
}
hopping_frequency_no=0;
packet_count=0;
if(sub_protocol==CX20)
packet_period=3984;
else
packet_period=1510; //1460 on deviation but not working with the latest V911 bricks... Turnigy 9X v2 is 1533, Flysky TX for 9XR/9XR Pro is 1510, V911 TX is 1490.
if(IS_BIND_IN_PROGRESS)
bind_counter = FLYSKY_BIND_COUNT;
else

View File

@@ -0,0 +1,545 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
/******************************/
/** FrSky D and X routines **/
/******************************/
#if defined(FRSKYD_CC2500_INO) || defined(FRSKYX_CC2500_INO) || defined(FRSKYL_CC2500_INO) || defined(FRSKY_RX_CC2500_INO) || defined(FRSKYR9_SX1276_INO)
uint8_t FrSkyFormat=0;
uint8_t FrSkyX_chanskip;
#endif
#if defined(FRSKYX_CC2500_INO) || defined(FRSKYL_CC2500_INO) || defined(FRSKY_RX_CC2500_INO) || defined(FRSKYR9_SX1276_INO)
//**CRC**
const uint16_t PROGMEM FrSkyX_CRC_Short[]={
0x0000, 0x1189, 0x2312, 0x329B, 0x4624, 0x57AD, 0x6536, 0x74BF,
0x8C48, 0x9DC1, 0xAF5A, 0xBED3, 0xCA6C, 0xDBE5, 0xE97E, 0xF8F7 };
static uint16_t __attribute__((unused)) FrSkyX_CRCTable(uint8_t val)
{
uint16_t word ;
word = pgm_read_word(&FrSkyX_CRC_Short[val&0x0F]) ;
val /= 16 ;
return word ^ (0x1081 * val) ;
}
uint16_t FrSkyX_crc(uint8_t *data, uint8_t len, uint16_t init=0)
{
uint16_t crc = init;
for(uint8_t i=0; i < len; i++)
crc = (crc<<8) ^ FrSkyX_CRCTable((uint8_t)(crc>>8) ^ *data++);
return crc;
}
#endif
#if defined(FRSKYX_CC2500_INO) || defined(FRSKYR9_SX1276_INO)
static void __attribute__((unused)) FrSkyX_channels(uint8_t offset)
{
static uint8_t chan_start=0;
//packet[7] = FLAGS 00 - standard packet
//10, 12, 14, 16, 18, 1A, 1C, 1E - failsafe packet
//20 - range check packet
#ifdef FAILSAFE_ENABLE
#define FRSKYX_FAILSAFE_TIMEOUT 1032
static uint16_t failsafe_count=0;
static uint8_t FS_flag=0,failsafe_chan=0;
if (FS_flag == 0 && failsafe_count > FRSKYX_FAILSAFE_TIMEOUT && chan_start == 0 && IS_FAILSAFE_VALUES_on)
{
FS_flag = 0x10;
failsafe_chan = 0;
} else if (FS_flag & 0x10 && failsafe_chan < (FrSkyFormat & 0x01 ? 8-1:16-1))
{
FS_flag = 0x10 | ((FS_flag + 2) & 0x0F); //10, 12, 14, 16, 18, 1A, 1C, 1E - failsafe packet
failsafe_chan ++;
} else if (FS_flag & 0x10)
{
FS_flag = 0;
failsafe_count = 0;
FAILSAFE_VALUES_off;
}
failsafe_count++;
if(protocol==PROTO_FRSKY_R9)
failsafe_count++; // R9 is 20ms, X is 9ms
packet[offset] = FS_flag;
#else
packet[offset] = 0;
#endif
//
packet[offset+1] = 0; //??
//
uint8_t chan_index = chan_start;
uint16_t ch1,ch2;
for(uint8_t i = offset+2; i < 12+offset+2 ; i+=3)
{//12 bytes of channel data
#ifdef FAILSAFE_ENABLE
if( (FS_flag & 0x10) && ((failsafe_chan & 0x07) == (chan_index & 0x07)) )
ch1 = FrSkyX_scaleForPXX_FS(failsafe_chan);
else
#endif
ch1 = FrSkyX_scaleForPXX(chan_index);
chan_index++;
//
#ifdef FAILSAFE_ENABLE
if( (FS_flag & 0x10) && ((failsafe_chan & 0x07) == (chan_index & 0x07)) )
ch2 = FrSkyX_scaleForPXX_FS(failsafe_chan);
else
#endif
ch2 = FrSkyX_scaleForPXX(chan_index);
chan_index++;
//3 bytes per channel
packet[i] = ch1;
packet[i+1]=(((ch1>>8) & 0x0F)|(ch2 << 4));
packet[i+2]=ch2>>4;
}
if(FrSkyFormat & 0x01) //In X8 mode send only 8ch every 9ms
chan_start = 0 ;
else
chan_start^=0x08;
}
#endif
#if defined(FRSKYD_CC2500_INO) || defined(FRSKYX_CC2500_INO) || defined(FRSKYX_CC2500_INO) || defined(FRSKYL_CC2500_INO) || defined(FRSKY_RX_CC2500_INO)
enum {
FRSKY_BIND = 0,
FRSKY_BIND_DONE = 1000,
FRSKY_DATA1,
FRSKY_DATA2,
FRSKY_DATA3,
FRSKY_DATA4,
FRSKY_DATA5,
};
void Frsky_init_hop(void)
{
uint8_t val;
uint8_t channel = rx_tx_addr[0]&0x07;
uint8_t channel_spacing = rx_tx_addr[1];
//Filter bad tables
if(channel_spacing<0x02) channel_spacing+=0x02;
if(channel_spacing>0xE9) channel_spacing-=0xE7;
if(channel_spacing%0x2F==0) channel_spacing++;
hopping_frequency[0]=channel;
for(uint8_t i=1;i<50;i++)
{
channel=(channel+channel_spacing) % 0xEB;
val=channel;
if((val==0x00) || (val==0x5A) || (val==0xDC))
val++;
hopping_frequency[i]=i>46?0:val;
}
}
void FrSkyX2_init_hop(void)
{
uint16_t id=(rx_tx_addr[2]<<8) + rx_tx_addr[3];
//Increment
uint8_t inc = (id % 46) + 1;
if( inc == 12 || inc ==35 ) inc++; //Exception list from dumps
//Start offset
uint8_t offset = id % 5;
debug("hop: ");
uint8_t channel;
for(uint8_t i=0; i<47; i++)
{
channel = 5 * (uint16_t(inc * i) % 47) + offset;
//Exception list from dumps
if(FrSkyFormat & 2 )// LBT or FCC
{//LBT
if( channel <=1 || channel == 43 || channel == 44 || channel == 87 || channel == 88 || channel == 129 || channel == 130 || channel == 173 || channel == 174)
channel += 2;
else if( channel == 216 || channel == 217 || channel == 218)
channel += 3;
}
else //FCC
if ( channel == 3 || channel == 4 || channel == 46 || channel == 47 || channel == 90 || channel == 91 || channel == 133 || channel == 134 || channel == 176 || channel == 177 || channel == 220 || channel == 221 )
channel += 2;
//Store
hopping_frequency[i] = channel;
debug(" %02X",channel);
}
debugln("");
hopping_frequency[47] = 0; //Bind freq
}
void Frsky_init_clone(void)
{
debugln("Clone mode");
uint16_t temp = FRSKYD_CLONE_EEPROM_OFFSET;
if(protocol==PROTO_FRSKYX)
temp=FRSKYX_CLONE_EEPROM_OFFSET;
else if(protocol==PROTO_FRSKYX2)
temp=FRSKYX2_CLONE_EEPROM_OFFSET;
FrSkyFormat=eeprom_read_byte((EE_ADDR)temp++);
/* FRSKY_RX_D8 =0,
FRSKY_RX_D16FCC =1,
FRSKY_RX_D16LBT =2,
FRSKY_RX_D16v2FCC =3,
FRSKY_RX_D16v2LBT =4,*/
if(protocol==PROTO_FRSKYX)
FrSkyFormat >>= 1;
else
FrSkyFormat >>= 2;
FrSkyFormat <<= 1; //FCC_16/LBT_16
if(sub_protocol==XCLONE_8)
FrSkyFormat++; //FCC_8/LBT_8
rx_tx_addr[3] = eeprom_read_byte((EE_ADDR)temp++);
rx_tx_addr[2] = eeprom_read_byte((EE_ADDR)temp++);
rx_tx_addr[1] = eeprom_read_byte((EE_ADDR)temp++);
memset(hopping_frequency,0x00,50);
if(protocol!=PROTO_FRSKYX2)
{//D8 and D16v1
for (uint8_t ch = 0; ch < 47; ch++)
hopping_frequency[ch] = eeprom_read_byte((EE_ADDR)temp++);
}
else
FrSkyX2_init_hop();
}
#endif
/******************************/
/** FrSky V, D and X routines **/
/******************************/
#if defined(FRSKYV_CC2500_INO) || defined(FRSKYD_CC2500_INO) || defined(FRSKYX_CC2500_INO) || defined(FRSKYL_CC2500_INO)
const PROGMEM uint8_t FRSKY_common_startreg_cc2500_conf[]= {
CC2500_02_IOCFG0 ,
CC2500_00_IOCFG2 ,
CC2500_17_MCSM1 ,
CC2500_18_MCSM0 ,
CC2500_06_PKTLEN ,
CC2500_07_PKTCTRL1 ,
CC2500_08_PKTCTRL0 ,
CC2500_3E_PATABLE ,
CC2500_0B_FSCTRL1 ,
CC2500_0C_FSCTRL0 , // replaced by option value
CC2500_0D_FREQ2 ,
CC2500_0E_FREQ1 ,
CC2500_0F_FREQ0 ,
CC2500_10_MDMCFG4 ,
CC2500_11_MDMCFG3 ,
CC2500_12_MDMCFG2 ,
CC2500_13_MDMCFG1 ,
CC2500_14_MDMCFG0 ,
CC2500_15_DEVIATN };
#if defined(FRSKYV_CC2500_INO)
const PROGMEM uint8_t FRSKYV_cc2500_conf[]= {
/*02_IOCFG0*/ 0x06 ,
/*00_IOCFG2*/ 0x06 ,
/*17_MCSM1*/ 0x0c ,
/*18_MCSM0*/ 0x18 ,
/*06_PKTLEN*/ 0xff ,
/*07_PKTCTRL1*/ 0x04 ,
/*08_PKTCTRL0*/ 0x05 ,
/*3E_PATABLE*/ 0xfe ,
/*0B_FSCTRL1*/ 0x08 ,
/*0C_FSCTRL0*/ 0x00 ,
/*0D_FREQ2*/ 0x5c ,
/*0E_FREQ1*/ 0x58 ,
/*0F_FREQ0*/ 0x9d ,
/*10_MDMCFG4*/ 0xAA ,
/*11_MDMCFG3*/ 0x10 ,
/*12_MDMCFG2*/ 0x93 ,
/*13_MDMCFG1*/ 0x23 ,
/*14_MDMCFG0*/ 0x7a ,
/*15_DEVIATN*/ 0x41 };
#endif
#if defined(FRSKYD_CC2500_INO)
const PROGMEM uint8_t FRSKYD_cc2500_conf[]= {
/*02_IOCFG0*/ 0x06 ,
/*00_IOCFG2*/ 0x06 ,
/*17_MCSM1*/ 0x0c ,
/*18_MCSM0*/ 0x18 ,
/*06_PKTLEN*/ 0x19 ,
/*07_PKTCTRL1*/ 0x04 ,
/*08_PKTCTRL0*/ 0x05 ,
/*3E_PATABLE*/ 0xff ,
/*0B_FSCTRL1*/ 0x08 ,
/*0C_FSCTRL0*/ 0x00 ,
/*0D_FREQ2*/ 0x5c ,
/*0E_FREQ1*/ 0x76 ,
/*0F_FREQ0*/ 0x27 ,
/*10_MDMCFG4*/ 0xAA ,
/*11_MDMCFG3*/ 0x39 ,
/*12_MDMCFG2*/ 0x11 ,
/*13_MDMCFG1*/ 0x23 ,
/*14_MDMCFG0*/ 0x7a ,
/*15_DEVIATN*/ 0x42 };
#endif
#if defined(FRSKYX_CC2500_INO) || defined(FRSKYL_CC2500_INO)
const PROGMEM uint8_t FRSKYX_cc2500_conf[]= {
//FRSKYX
/*02_IOCFG0*/ 0x06 ,
/*00_IOCFG2*/ 0x06 ,
/*17_MCSM1*/ 0x0c , //X2->0x0E -> RX stays in RX and TX stays in TX???
/*18_MCSM0*/ 0x18 ,
/*06_PKTLEN*/ 0x1E ,
/*07_PKTCTRL1*/ 0x04 ,
/*08_PKTCTRL0*/ 0x01 , //X2->0x05 -> CRC enabled
/*3E_PATABLE*/ 0xff ,
/*0B_FSCTRL1*/ 0x0A ,
/*0C_FSCTRL0*/ 0x00 ,
/*0D_FREQ2*/ 0x5c ,
/*0E_FREQ1*/ 0x76 ,
/*0F_FREQ0*/ 0x27 ,
/*10_MDMCFG4*/ 0x7B ,
/*11_MDMCFG3*/ 0x61 , //X2->0x84 -> bitrate 70K->77K
/*12_MDMCFG2*/ 0x13 ,
/*13_MDMCFG1*/ 0x23 ,
/*14_MDMCFG0*/ 0x7a ,
/*15_DEVIATN*/ 0x51 };
const PROGMEM uint8_t FRSKYXEU_cc2500_conf[]= {
/*02_IOCFG0*/ 0x06 ,
/*00_IOCFG2*/ 0x06 ,
/*17_MCSM1*/ 0x0E ,
/*18_MCSM0*/ 0x18 ,
/*06_PKTLEN*/ 0x23 ,
/*07_PKTCTRL1*/ 0x04 ,
/*08_PKTCTRL0*/ 0x01 , //X2->0x05 -> CRC enabled
/*3E_PATABLE*/ 0xff ,
/*0B_FSCTRL1*/ 0x08 ,
/*0C_FSCTRL0*/ 0x00 ,
/*0D_FREQ2*/ 0x5c ,
/*0E_FREQ1*/ 0x80 ,
/*0F_FREQ0*/ 0x00 ,
/*10_MDMCFG4*/ 0x7B ,
/*11_MDMCFG3*/ 0xF8 ,
/*12_MDMCFG2*/ 0x03 ,
/*13_MDMCFG1*/ 0x23 ,
/*14_MDMCFG0*/ 0x7a ,
/*15_DEVIATN*/ 0x53 };
const PROGMEM uint8_t FRSKYL_cc2500_conf[]= {
/*02_IOCFG0*/ 0x02 ,
/*00_IOCFG2*/ 0x02 ,
/*17_MCSM1*/ 0x0C ,
/*18_MCSM0*/ 0x18 ,
/*06_PKTLEN*/ 0xFF ,
/*07_PKTCTRL1*/ 0x00 ,
/*08_PKTCTRL0*/ 0x02 ,
/*3E_PATABLE*/ 0xFE ,
/*0B_FSCTRL1*/ 0x0A ,
/*0C_FSCTRL0*/ 0x00 ,
/*0D_FREQ2*/ 0x5c ,
/*0E_FREQ1*/ 0x76 ,
/*0F_FREQ0*/ 0x27 ,
/*10_MDMCFG4*/ 0x5C ,
/*11_MDMCFG3*/ 0x3B ,
/*12_MDMCFG2*/ 0x00 ,
/*13_MDMCFG1*/ 0x03 ,
/*14_MDMCFG0*/ 0x7A ,
/*15_DEVIATN*/ 0x47 };
#endif
const PROGMEM uint8_t FRSKY_common_end_cc2500_conf[][2]= {
{ CC2500_19_FOCCFG, 0x16 },
{ CC2500_1A_BSCFG, 0x6c },
{ CC2500_1B_AGCCTRL2, 0x43 },
{ CC2500_1C_AGCCTRL1, 0x40 },
{ CC2500_1D_AGCCTRL0, 0x91 },
{ CC2500_21_FREND1, 0x56 },
{ CC2500_22_FREND0, 0x10 },
{ CC2500_23_FSCAL3, 0xa9 },
{ CC2500_24_FSCAL2, 0x0A },
{ CC2500_25_FSCAL1, 0x00 },
{ CC2500_26_FSCAL0, 0x11 },
{ CC2500_29_FSTEST, 0x59 },
{ CC2500_2C_TEST2, 0x88 },
{ CC2500_2D_TEST1, 0x31 },
{ CC2500_2E_TEST0, 0x0B },
{ CC2500_03_FIFOTHR, 0x07 },
{ CC2500_09_ADDR, 0x00 } };
void FRSKY_init_cc2500(const uint8_t *ptr)
{
for(uint8_t i=0;i<19;i++)
{
uint8_t reg=pgm_read_byte_near(&FRSKY_common_startreg_cc2500_conf[i]);
uint8_t val=pgm_read_byte_near(&ptr[i]);
if(reg==CC2500_0C_FSCTRL0)
val=option;
CC2500_WriteReg(reg,val);
}
for(uint8_t i=0;i<17;i++)
{
uint8_t reg=pgm_read_byte_near(&FRSKY_common_end_cc2500_conf[i][0]);
uint8_t val=pgm_read_byte_near(&FRSKY_common_end_cc2500_conf[i][1]);
CC2500_WriteReg(reg,val);
}
CC2500_SetTxRxMode(TX_EN);
CC2500_SetPower();
CC2500_Strobe(CC2500_SIDLE); // Go to idle...
}
#endif
#if defined(FRSKYX_CC2500_INO) || defined(FRSKYR9_SX1276_INO)
uint8_t FrSkyX_TX_Seq, FrSkyX_TX_IN_Seq;
uint8_t FrSkyX_RX_Seq ;
#ifdef SPORT_SEND
struct t_FrSkyX_TX_Frame
{
uint8_t count;
uint8_t payload[8];
} ;
// Store FrskyX telemetry
struct t_FrSkyX_TX_Frame FrSkyX_TX_Frames[4] ;
#endif
static void __attribute__((unused)) FrSkyX_seq_sport(uint8_t start, uint8_t end)
{
for (uint8_t i=start+1;i<=end;i++)
packet[i]=0;
packet[start] = FrSkyX_RX_Seq << 4;
#ifdef SPORT_SEND
if (FrSkyX_TX_IN_Seq!=0xFF)
{//RX has replied at least once
if (FrSkyX_TX_IN_Seq & 0x08)
{//Request init
//debugln("Init");
FrSkyX_TX_Seq = 0 ;
for(uint8_t i=0;i<4;i++)
FrSkyX_TX_Frames[i].count=0; //Discard frames in current output buffer
}
else if (FrSkyX_TX_IN_Seq & 0x04)
{//Retransmit the requested packet
debugln("Retry:%d",FrSkyX_TX_IN_Seq&0x03);
packet[start] |= FrSkyX_TX_IN_Seq&0x03;
packet[start+1] = FrSkyX_TX_Frames[FrSkyX_TX_IN_Seq&0x03].count;
for (uint8_t i=start+2;i<start+2+FrSkyX_TX_Frames[FrSkyX_TX_IN_Seq&0x03].count;i++)
packet[i] = FrSkyX_TX_Frames[FrSkyX_TX_IN_Seq&0x03].payload[i];
}
else if ( FrSkyX_TX_Seq != 0x08 )
{
if(FrSkyX_TX_Seq==FrSkyX_TX_IN_Seq)
{//Send packet from the incoming radio buffer
//debugln("Send:%d",FrSkyX_TX_Seq);
packet[start] |= FrSkyX_TX_Seq;
uint8_t nbr_bytes=0;
for (uint8_t i=start+2;i<=end;i++)
{
if(SportHead==SportTail)
break; //buffer empty
packet[i]=SportData[SportHead];
FrSkyX_TX_Frames[FrSkyX_TX_Seq].payload[i-start+2]=SportData[SportHead];
SportHead=(SportHead+1) & (MAX_SPORT_BUFFER-1);
nbr_bytes++;
}
packet[start+1]=nbr_bytes;
FrSkyX_TX_Frames[FrSkyX_TX_Seq].count=nbr_bytes;
if(nbr_bytes)
{//Check the buffer status
uint8_t used = SportTail;
if ( SportHead > SportTail )
used += MAX_SPORT_BUFFER - SportHead ;
else
used -= SportHead ;
if ( used < (MAX_SPORT_BUFFER>>1) )
{
DATA_BUFFER_LOW_off;
debugln("Ok buf:%d",used);
}
}
FrSkyX_TX_Seq = ( FrSkyX_TX_Seq + 1 ) & 0x03 ; //Next iteration send next packet
}
else
{//Not in sequence somehow, transmit what the receiver wants but why not asking for retransmit...
//debugln("RX_Seq:%d,TX:%d",FrSkyX_TX_IN_Seq,FrSkyX_TX_Seq);
packet[start] |= FrSkyX_TX_IN_Seq;
packet[start+1] = FrSkyX_TX_Frames[FrSkyX_TX_IN_Seq].count;
for (uint8_t i=start+2;i<start+2+FrSkyX_TX_Frames[FrSkyX_TX_IN_Seq].count;i++)
packet[i] = FrSkyX_TX_Frames[FrSkyX_TX_IN_Seq].payload[i-start+2];
}
}
else
packet[start] |= 0x08 ; //FrSkyX_TX_Seq=8 at startup
}
if(packet[start+1])
{//Debug
debug("SP: ");
for(uint8_t i=0;i<packet[start+1];i++)
debug("%02X ",packet[start+2+i]);
debugln("");
}
#else
packet[start] |= FrSkyX_TX_Seq ;//TX=8 at startup
if ( !(FrSkyX_TX_IN_Seq & 0xF8) )
FrSkyX_TX_Seq = ( FrSkyX_TX_Seq + 1 ) & 0x03 ; // Next iteration send next packet
#endif // SPORT_SEND
}
static void __attribute__((unused)) FrSkyX_telem_init(void)
{
FrSkyX_TX_Seq = 0x08 ; // Request init
#ifdef SPORT_SEND
FrSkyX_TX_IN_Seq = 0xFF ; // No sequence received yet
for(uint8_t i=0;i<4;i++)
FrSkyX_TX_Frames[i].count=0;// discard frames in current output buffer
SportHead=SportTail=0; // empty data buffer
#endif
FrSkyX_RX_Seq = 0 ; // Seq 0 to start with
#ifdef TELEMETRY
telemetry_lost=1;
telemetry_link=0; //Stop sending telemetry
#endif
}
#endif
#if defined(FRSKYX_CC2500_INO) || defined(FRSKYL_CC2500_INO)
static void __attribute__((unused)) FrSkyX_set_start(uint8_t ch )
{
CC2500_Strobe(CC2500_SIDLE);
CC2500_WriteReg(CC2500_25_FSCAL1, calData[ch]);
CC2500_WriteReg(CC2500_0A_CHANNR, hopping_frequency[ch]);
}
static void __attribute__((unused)) FrSkyX_init()
{
if(protocol==PROTO_FRSKYL)
FRSKY_init_cc2500(FRSKYL_cc2500_conf);
else
FRSKY_init_cc2500((FrSkyFormat&2)?FRSKYXEU_cc2500_conf:FRSKYX_cc2500_conf); // LBT or FCC
if(protocol==PROTO_FRSKYX2)
{
CC2500_WriteReg(CC2500_08_PKTCTRL0, 0x05); // Enable CRC
if(!(FrSkyFormat&2))
{ // FCC
CC2500_WriteReg(CC2500_17_MCSM1, 0x0E); //0x0E -> RX stays in RX and TX stays in TX???
CC2500_WriteReg(CC2500_11_MDMCFG3, 0x84); // bitrate 70K->77K
}
}
//
for(uint8_t c=0;c < 48;c++)
{//calibrate hop channels
CC2500_Strobe(CC2500_SIDLE);
CC2500_WriteReg(CC2500_0A_CHANNR,hopping_frequency[c]);
CC2500_Strobe(CC2500_SCAL);
delayMicroseconds(900);//
calData[c] = CC2500_ReadReg(CC2500_25_FSCAL1);
}
//#######END INIT########
}
static void __attribute__((unused)) FrSkyX_initialize_data(uint8_t adr)
{
CC2500_WriteReg(CC2500_18_MCSM0, 0x8);
CC2500_WriteReg(CC2500_09_ADDR, adr ? 0x03 : rx_tx_addr[3]);
CC2500_WriteReg(CC2500_07_PKTCTRL1,0x05); // check address
}
#endif

View File

@@ -21,6 +21,7 @@ static void __attribute__((unused)) frsky2way_init(uint8_t bind)
{
FRSKY_init_cc2500(FRSKYD_cc2500_conf);
CC2500_WriteReg(CC2500_1B_AGCCTRL2, bind ? 0x43 : 0x03);
CC2500_WriteReg(CC2500_09_ADDR, bind ? 0x03 : rx_tx_addr[3]);
CC2500_WriteReg(CC2500_07_PKTCTRL1, 0x05);
CC2500_Strobe(CC2500_SIDLE); // Go to idle...
@@ -53,7 +54,7 @@ static void __attribute__((unused)) frsky2way_build_bind_packet()
packet[14] = 0x00;
packet[15] = 0x00;
packet[16] = 0x00;
packet[17] = 0x01;
packet[17] = rx_tx_addr[1];
}
static void __attribute__((unused)) frsky2way_data_frame()
@@ -70,7 +71,7 @@ static void __attribute__((unused)) frsky2way_data_frame()
packet[4] = 0x00;
#endif
packet[5] = 0x01;
packet[5] = rx_tx_addr[1];
//
packet[10] = 0;
packet[11] = 0;
@@ -95,11 +96,24 @@ static void __attribute__((unused)) frsky2way_data_frame()
uint16_t initFrSky_2way()
{
Frsky_init_hop();
//FrskyD init hop
if (sub_protocol==DCLONE)
Frsky_init_clone();
else
{
for(uint8_t i=0;i<50;i++)
{
uint8_t freq = (i * 0x1e) % 0xeb;
if(i == 3 || i == 23 || i == 47)
freq++;
if(i > 47)
freq=0;
hopping_frequency[i]=freq;
}
rx_tx_addr[1]=1; // keep compatibility with already bound RXs
}
packet_count=0;
#if defined TELEMETRY
init_frskyd_link_telemetry();
#endif
if(IS_BIND_IN_PROGRESS)
{
frsky2way_init(1);
@@ -156,15 +170,18 @@ uint16_t ReadFrSky_2way()
{
if (state == FRSKY_DATA1)
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(9000);
#endif
len = CC2500_ReadReg(CC2500_3B_RXBYTES | CC2500_READ_BURST) & 0x7F;
if (len && len<=(0x11+3))// 20bytes
{
CC2500_ReadData(pkt, len); //received telemetry packets
CC2500_ReadData(packet_in, len); //received telemetry packets
#if defined(TELEMETRY)
if(pkt[len-1] & 0x80)
if(packet_in[len-1] & 0x80)
{//with valid crc
packet_count=0;
frsky_check_telemetry(pkt,len); //check if valid telemetry packets and buffer them.
frsky_process_telemetry(packet_in,len); //check if valid telemetry packets and buffer them.
}
#endif
}
@@ -177,7 +194,7 @@ uint16_t ReadFrSky_2way()
packet_count=0;
#if defined TELEMETRY
telemetry_link=0;//no link frames
pkt[6]=0;//no user frames.
packet_in[6]=0;//no user frames.
#endif
}
}
@@ -186,11 +203,7 @@ uint16_t ReadFrSky_2way()
}
CC2500_Strobe(CC2500_SIDLE);
CC2500_WriteReg(CC2500_0A_CHANNR, hopping_frequency[counter % 47]);
if ( prev_option != option )
{
CC2500_WriteReg(CC2500_0C_FSCTRL0,option); // Frequency offset hack
prev_option = option ;
}
CC2500_SetFreqOffset();
CC2500_WriteReg(CC2500_23_FSCAL3, 0x89);
CC2500_Strobe(CC2500_SFRX);
frsky2way_data_frame();

View File

@@ -0,0 +1,258 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(FRSKYL_CC2500_INO)
#include "iface_cc2500.h"
//#define FRSKYL_FORCE_ID
#define FRSKYL_PACKET_LEN 256
#define FRSKYL_PERIOD 18000
uint8_t FrSkyL_buffer[FRSKYL_PACKET_LEN];
static void __attribute__((unused)) FrSkyL_build_bind_packet()
{
//Header
packet[0] = 0x4E; // Unknown but constant
//Bind packet
memset(&packet[1],0x00,3);
//ID
packet[4 ] = rx_tx_addr[3]; // ID
packet[5 ] = rx_tx_addr[2]; // ID
int idx = ((state -FRSKY_BIND) % 10) * 5;
packet[6 ] = idx;
packet[7 ] = hopping_frequency[idx++];
packet[8 ] = hopping_frequency[idx++];
packet[9 ] = hopping_frequency[idx++];
packet[10] = hopping_frequency[idx++];
packet[11] = hopping_frequency[idx++];
packet[12] = rx_tx_addr[1]; // ID or hw ver?
packet[13] = RX_num;
packet[14] = 0x00; // Unknown but constant
//CRC
uint16_t lcrc = FrSkyX_crc(&packet[1], 14);
packet[15] = lcrc >> 8;
packet[16] = lcrc;
//Debug
/* debug("Bind:");
for(uint8_t i=0;i<17;i++)
debug(" %02X",packet[i]);
debugln("");*/
}
static void __attribute__((unused)) FrSkyL_build_packet()
{
static uint8_t chan_offset=0;
uint16_t chan_0,chan_1;
//Header
packet[0 ] = 0x4E; // Unknown but constant
//ID
packet[1 ] = rx_tx_addr[3]; // ID
packet[2 ] = rx_tx_addr[2]; // ID
packet[3 ] = rx_tx_addr[1]; // ID or hw ver?
//skip_hop
packet[4 ] = (FrSkyX_chanskip<<6)|hopping_frequency_no;
packet[5 ] = FrSkyX_chanskip>>2;
//Channels
uint8_t startChan = chan_offset;
for(uint8_t i = 0; i <9 ; i+=3)
{//9 bytes of channel data
chan_0 = FrSkyX_scaleForPXX(startChan,6);
startChan++;
//
chan_1 = FrSkyX_scaleForPXX(startChan,6);
startChan++;
//
packet[6+i] = lowByte(chan_0); //3 bytes*4
packet[6+i+1]=(((chan_0>>8) & 0x0F)|(chan_1 << 4));
packet[6+i+2]=chan_1>>4;
}
if(sub_protocol & 0x01 ) //6ch mode only??
chan_offset = 0 ;
else
chan_offset^=0x06;
//CRC
uint16_t lcrc = FrSkyX_crc(&packet[1], 14, RX_num);
packet[15] = lcrc >> 8;
packet[16] = lcrc;
//Debug
/*debug("Norm:");
for(uint8_t i=0;i<17;i++)
debug(" %02X",packet[i]);
debugln("");*/
}
static void __attribute__((unused)) FrSkyL_encode_packet(bool type)
{
#define FRSKYL_BIT0 0xED
#define FRSKYL_BIT1 0x712
uint32_t bits = 0;
uint8_t bitsavailable = 0;
uint8_t idx = 0,len=6;
if(type)
{//just replace packet content
idx=66;
len=17;
}
//debugln("Encode:");
for (uint8_t i = 0; i < len; i++)
{
uint8_t tmp=packet[i];
//debug("%02X =",tmp);
for(uint8_t j=0;j<8;j++)
{
bits <<= 11;
if(tmp&0x01)
bits |= FRSKYL_BIT1;
else
bits |= FRSKYL_BIT0;
tmp >>=1;
bitsavailable += 11;
while (bitsavailable >= 8) {
uint32_t bits_tmp=bits>>(bitsavailable-8);
bitsavailable -= 8;
FrSkyL_buffer[idx] = bits_tmp;
//debug(" %02X",FrSkyL_buffer[idx]);
idx++;
}
}
//debugln("");
}
}
uint16_t ReadFrSkyL()
{
static uint8_t written=0, send=0;
switch(send)
{
case 1:
CC2500_Strobe(CC2500_SIDLE);
CC2500_Strobe(CC2500_SFTX);
CC2500_WriteRegisterMulti(CC2500_3F_TXFIFO, FrSkyL_buffer, 64);
CC2500_Strobe(CC2500_STX);
CC2500_Strobe(CC2500_SIDLE); // This cancels the current transmission???
CC2500_WriteRegisterMulti(CC2500_3F_TXFIFO, FrSkyL_buffer, 64);
CC2500_Strobe(CC2500_SFTX); // This just clears what we've written???
CC2500_Strobe(CC2500_STX);
CC2500_WriteRegisterMulti(CC2500_3F_TXFIFO, FrSkyL_buffer, 64);
written=64;
send++;
return 2623;
case 2:
len=FRSKYL_PACKET_LEN-written;
if(len>31)
len=31;
CC2500_WriteRegisterMulti(CC2500_3F_TXFIFO, FrSkyL_buffer+written, len);
written+=len;
if(len!=31) //everything has been sent
{
send=0;
return 2936;
}
return 1984;
}
switch(state)
{
default:
//Bind
#ifdef MULTI_SYNC
telemetry_set_input_sync(9000);
#endif
FrSkyX_set_start(47);
CC2500_SetPower();
CC2500_Strobe(CC2500_SFRX);
//
FrSkyL_build_bind_packet();
FrSkyL_encode_packet(true);
CC2500_Strobe(CC2500_SIDLE);
if(IS_BIND_DONE)
state = FRSKY_BIND_DONE;
else
{
state++;
send=1;
}
return 537;
case FRSKY_BIND_DONE:
FrSkyX_initialize_data(0);
hopping_frequency_no=0;
BIND_DONE;
state++; //FRSKY_DATA1
break;
case FRSKY_DATA1:
CC2500_SetFreqOffset();
FrSkyX_set_start(hopping_frequency_no);
FrSkyL_build_packet();
FrSkyL_encode_packet(true);
CC2500_SetPower();
hopping_frequency_no = (hopping_frequency_no+FrSkyX_chanskip)%47;
send=1;
return 537;
}
return 1;
}
uint16_t initFrSkyL()
{
set_rx_tx_addr(MProtocol_id_master);
rx_tx_addr[1]=0x02; // ID related, hw version?
#ifdef FRSKYL_FORCE_ID
rx_tx_addr[3]=0x0E;
rx_tx_addr[2]=0x1C;
rx_tx_addr[1]=0x02;
#endif
FrSkyX2_init_hop();
while(!FrSkyX_chanskip)
FrSkyX_chanskip=random(0xfefefefe)%47;
FrSkyX_init();
//Prepare frame
memset(FrSkyL_buffer,0x00,FRSKYL_PACKET_LEN-3);
memset(&FrSkyL_buffer[FRSKYL_PACKET_LEN-3],0x55,3);
memset(packet,0xAA,6);
FrSkyL_encode_packet(false);
/*debugln("Frame:");
for(uint16_t i=0;i<FRSKYL_PACKET_LEN;i++)
{
debug(" %02X",FrSkyL_buffer[i]);
if(i%11==10)
debugln("");
}
debugln("");*/
if(IS_BIND_IN_PROGRESS)
{
state = FRSKY_BIND;
FrSkyX_initialize_data(1);
}
else
{
state = FRSKY_DATA1;
FrSkyX_initialize_data(0);
}
return 10000;
}
#endif

View File

@@ -0,0 +1,307 @@
#if defined(FRSKYR9_SX1276_INO)
#include "iface_sx1276.h"
#define DISP_FREQ_TABLE
#define FLEX_FREQ 29
#define FCC_FREQ 43
#define EU_FREQ 19
enum {
FRSKYR9_FREQ=0,
FRSKYR9_DATA,
FRSKYR9_RX1,
FRSKYR9_RX2,
};
void FrSkyR9_set_frequency()
{
uint8_t data[3];
uint16_t num=0;
hopping_frequency_no += FrSkyX_chanskip;
switch(sub_protocol & 0xFD)
{
case R9_868:
if(IS_BIND_DONE) // if bind is in progress use R9_915 instead
{
hopping_frequency_no %= FLEX_FREQ;
num=hopping_frequency_no;
if(hopping_frequency_no>=FLEX_FREQ-2)
num+=FrSkyX_chanskip-FLEX_FREQ+2; // the last 2 values are FrSkyX_chanskip and FrSkyX_chanskip+1
num <<= 5;
num += 0xD700;
break;
}//else use R9_915
case R9_915:
hopping_frequency_no %= FLEX_FREQ;
num=hopping_frequency_no;
if(hopping_frequency_no>=FLEX_FREQ-2)
num+=FrSkyX_chanskip-FLEX_FREQ+2; // the last 2 values are FrSkyX_chanskip and FrSkyX_chanskip+1
num <<= 5;
num += 0xE4C0;
break;
case R9_FCC:
hopping_frequency_no %= FCC_FREQ;
num=hopping_frequency_no;
num <<= 5;
num += 0xE200;
break;
case R9_EU:
hopping_frequency_no %= EU_FREQ;
num=hopping_frequency_no;
num <<= 4;
num += 0xD7D0;
break;
}
data[0] = num>>8;
data[1] = num&0xFF;
data[2] = 0x00;
#ifdef DISP_FREQ_TABLE
if(phase==0xFF)
debugln("F%d=%02X%02X%02X=%lu", hopping_frequency_no, data[0], data[1], data[2], (uint32_t)((data[0]<<16)+(data[1]<<8)+data[2])*61);
#endif
SX1276_WriteRegisterMulti(SX1276_06_FRFMSB, data, 3);
}
static void __attribute__((unused)) FrSkyR9_build_packet()
{
//ID
packet[0] = rx_tx_addr[1];
packet[1] = rx_tx_addr[2];
packet[2] = rx_tx_addr[3];
//Hopping
packet[3] = hopping_frequency_no; // current channel index
packet[4] = FrSkyX_chanskip; // step size and last 2 channels start index
//RX number
packet[5] = RX_num; // receiver number from OpenTX
//Channels
FrSkyX_channels(6); // Set packet[6]=failsafe, packet[7]=0?? and packet[8..19]=channels data
//Bind
if(IS_BIND_IN_PROGRESS)
{// 915 0x01=CH1-8_TELEM_ON 0x41=CH1-8_TELEM_OFF 0xC1=CH9-16_TELEM_OFF 0x81=CH9-16_TELEM_ON
packet[6] = 0x01; // bind indicator
if(sub_protocol & 1)
packet[6] |= 0x20; // 868
if(binding_idx&0x01)
packet[6] |= 0x40; // telem OFF
if(binding_idx&0x02)
packet[6] |= 0x80; // ch9-16
}
//Sequence and send SPort
FrSkyX_seq_sport(20,23); //20=RX|TXseq, 21=bytes count, 22&23=data
//CRC
uint16_t crc = FrSkyX_crc(packet, 24);
packet[24] = crc; // low byte
packet[25] = crc >> 8; // high byte
}
static uint8_t __attribute__((unused)) FrSkyR9_CRC8(uint8_t *p, uint8_t l)
{
uint8_t crc = 0xFF;
for (uint8_t i = 0; i < l; i++)
{
crc = crc ^ p[i];
for ( uint8_t j = 0; j < 8; j++ )
if ( crc & 0x80 )
{
crc <<= 1;
crc ^= 0x07;
}
else
crc <<= 1;
}
return crc;
}
static void __attribute__((unused)) FrSkyR9_build_EU_packet()
{
//ID
packet[0] = rx_tx_addr[1];
packet[1] = rx_tx_addr[2];
packet[2] = rx_tx_addr[3];
//Hopping
packet[3] = FrSkyX_chanskip; // step size and last 2 channels start index
//RX number
packet[4] = RX_num; // receiver number from OpenTX
//Channels
//TODO FrSkyX_channels(5,4); // Set packet[5]=failsafe and packet[6..11]=4 channels data
//Bind
if(IS_BIND_IN_PROGRESS)
{
packet[5] = 0x01; // bind indicator
if((sub_protocol & 2) == 0)
packet[5] |= 0x10; // 16CH
// if(sub_protocol & 1)
// packet[5] |= 0x20; // 868
if(binding_idx&0x01)
packet[5] |= 0x40; // telem OFF
if(binding_idx&0x02)
packet[5] |= 0x80; // ch9-16
}
//Sequence and send SPort
packet[12] = (FrSkyX_RX_Seq << 4)|0x08; //TX=8 at startup
//CRC
packet[13] = FrSkyR9_CRC8(packet, 13);
}
uint16_t initFrSkyR9()
{
//Check frequencies
#ifdef DISP_FREQ_TABLE
phase=0xFF;
FrSkyX_chanskip=1;
hopping_frequency_no=0xFF;
for(uint8_t i=0;i<FCC_FREQ;i++)
FrSkyR9_set_frequency();
#endif
//Reset ID
set_rx_tx_addr(MProtocol_id_master);
//FrSkyX_chanskip
FrSkyX_chanskip = 1 + (random(0xfefefefe) % 24);
debugln("chanskip=%d", FrSkyX_chanskip);
//Set FrSkyFormat
if((sub_protocol & 0x02) == 0)
FrSkyFormat=0; // 16 channels
else
FrSkyFormat=1; // 8 channels
debugln("%dCH", FrSkyFormat&1 ? 8:16);
//EU packet length
if( (sub_protocol & 0xFD) == R9_EU )
packet_length=14;
else
packet_length=26;
//SX1276 Init
SX1276_SetMode(true, false, SX1276_OPMODE_SLEEP);
SX1276_SetMode(true, false, SX1276_OPMODE_STDBY);
// uint8_t buffer[2];
// buffer[0] = 0x00;
// buffer[1] = 0x00;
// SX1276_WriteRegisterMulti(SX1276_40_DIOMAPPING1, buffer, 2);
SX1276_SetDetectOptimize(true, SX1276_DETECT_OPTIMIZE_SF6);
SX1276_ConfigModem1(SX1276_MODEM_CONFIG1_BW_500KHZ, SX1276_MODEM_CONFIG1_CODING_RATE_4_5, true);
SX1276_ConfigModem2(6, false, false);
SX1276_ConfigModem3(false, false);
SX1276_SetPreambleLength(9);
SX1276_SetDetectionThreshold(SX1276_MODEM_DETECTION_THRESHOLD_SF6);
SX1276_SetLna(1, true);
SX1276_SetHopPeriod(0); // 0 = disabled, we hop frequencies manually
SX1276_SetPaDac(true);
SX1276_SetTxRxMode(TX_EN); // Set RF switch to TX
//Enable all IRQ flags
SX1276_WriteReg(SX1276_11_IRQFLAGSMASK,0x00);
FrSkyX_telem_init();
hopping_frequency_no=0;
phase=FRSKYR9_FREQ;
return 20000; // Start calling FrSkyR9_callback in 20 milliseconds
}
uint16_t FrSkyR9_callback()
{
switch (phase)
{
case FRSKYR9_FREQ:
//Force standby
SX1276_SetMode(true, false, SX1276_OPMODE_STDBY);
//Set frequency
FrSkyR9_set_frequency(); // Set current center frequency
//Set power
// max power: 15dBm (10.8 + 0.6 * MaxPower [dBm])
// output_power: 2 dBm (17-(15-OutputPower) (if pa_boost_pin == true))
SX1276_SetPaConfig(true, 7, 0); // Lowest power for the T18
//Build packet
if( packet_length == 26 )
FrSkyR9_build_packet();
else
FrSkyR9_build_EU_packet();
phase++;
return 460; // Frequency settle time
case FRSKYR9_DATA:
//Set RF switch to TX
SX1276_SetTxRxMode(TX_EN);
//Send packet
SX1276_WritePayloadToFifo(packet, packet_length);
SX1276_SetMode(true, false, SX1276_OPMODE_TX);
#if not defined TELEMETRY
phase=FRSKYR9_FREQ;
return 20000-460;
#else
phase++;
return 11140; // Packet send time
case FRSKYR9_RX1:
//Force standby
SX1276_SetMode(true, false, SX1276_OPMODE_STDBY);
//RX packet size is 13
SX1276_WriteReg(SX1276_22_PAYLOAD_LENGTH, 13);
//Reset pointer
SX1276_WriteReg(SX1276_0D_FIFOADDRPTR, 0x00);
//Set RF switch to RX
SX1276_SetTxRxMode(RX_EN);
//Clear all IRQ flags
SX1276_WriteReg(SX1276_12_REGIRQFLAGS,0xFF);
//Switch to RX
SX1276_WriteReg(SX1276_01_OPMODE, 0x85);
phase++;
return 7400;
case FRSKYR9_RX2:
if( (SX1276_ReadReg(SX1276_12_REGIRQFLAGS)&0xF0) == (_BV(SX1276_REGIRQFLAGS_RXDONE) | _BV(SX1276_REGIRQFLAGS_VALIDHEADER)) )
{
if(SX1276_ReadReg(SX1276_13_REGRXNBBYTES)==13)
{
SX1276_ReadRegisterMulti(SX1276_00_FIFO,packet_in,13);
if( packet_in[9]==rx_tx_addr[1] && packet_in[10]==rx_tx_addr[2] && FrSkyX_crc(packet_in, 11, rx_tx_addr[1]+(rx_tx_addr[2]<<8))==(packet_in[11]+(packet_in[12]<<8)) )
{
if(packet_in[0]&0x80)
RX_RSSI=packet_in[0]<<1;
else
v_lipo1=(packet_in[0]<<1)+1;
//TX_LQI=~(SX1276_ReadReg(SX1276_19_PACKETSNR)>>2)+1;
TX_RSSI=SX1276_ReadReg(SX1276_1A_PACKETRSSI)-157;
for(uint8_t i=0;i<9;i++)
packet[4+i]=packet_in[i]; // Adjust buffer to match FrSkyX
frsky_process_telemetry(packet,len); // Process telemetry packet
pps_counter++;
if(TX_LQI==0)
TX_LQI++; // Recover telemetry right away
}
}
}
if (millis() - pps_timer >= 1000)
{//1 packet every 20ms
pps_timer = millis();
debugln("%d pps", pps_counter);
TX_LQI = pps_counter<<1; // Max=100%
pps_counter = 0;
}
if(TX_LQI==0)
FrSkyX_telem_init(); // Reset telemetry
else
telemetry_link=1; // Send telemetry out anyway
phase=FRSKYR9_FREQ;
break;
#endif
}
return 1000;
}
#endif

View File

@@ -117,13 +117,12 @@ uint16_t ReadFRSKYV()
{
if(IS_BIND_DONE)
{ // Normal operation
#ifdef MULTI_SYNC
telemetry_set_input_sync(9006);
#endif
uint8_t chan = FRSKYV_calc_channel();
CC2500_Strobe(CC2500_SIDLE);
if (option != prev_option)
{
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
prev_option=option;
}
CC2500_SetFreqOffset();
CC2500_WriteReg(CC2500_0A_CHANNR, chan * 5 + 6);
FRSKYV_build_data_packet();

View File

@@ -1,234 +1,119 @@
/* **************************
* By Midelic on RCGroups *
**************************
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(FRSKYX_CC2500_INO)
#include "iface_cc2500.h"
uint8_t FrX_chanskip;
uint8_t FrX_send_seq ;
uint8_t FrX_receive_seq ;
#define FRX_FAILSAFE_TIMEOUT 1032
static void __attribute__((unused)) frskyX_set_start(uint8_t ch )
static void __attribute__((unused)) FrSkyX_build_bind_packet()
{
CC2500_Strobe(CC2500_SIDLE);
CC2500_WriteReg(CC2500_25_FSCAL1, calData[ch]);
CC2500_WriteReg(CC2500_0A_CHANNR, hopping_frequency[ch]);
}
uint8_t packet_size = 0x1D;
if(protocol==PROTO_FRSKYX && (FrSkyFormat & 2 ))
packet_size=0x20; // FrSkyX V1 LBT
//Header
packet[0] = packet_size; // Number of bytes in the packet (after this one)
packet[1] = 0x03; // Bind packet
packet[2] = 0x01; // Bind packet
static void __attribute__((unused)) frskyX_init()
{
FRSKY_init_cc2500((sub_protocol&2)?FRSKYXEU_cc2500_conf:FRSKYX_cc2500_conf); // LBT or FCC
//
for(uint8_t c=0;c < 48;c++)
{//calibrate hop channels
CC2500_Strobe(CC2500_SIDLE);
CC2500_WriteReg(CC2500_0A_CHANNR,hopping_frequency[c]);
CC2500_Strobe(CC2500_SCAL);
delayMicroseconds(900);//
calData[c] = CC2500_ReadReg(CC2500_25_FSCAL1);
//ID
packet[3] = rx_tx_addr[3]; // ID
packet[4] = rx_tx_addr[2]; // ID
if(protocol==PROTO_FRSKYX)
{
int idx = ((state -FRSKY_BIND) % 10) * 5;
packet[5] = idx;
packet[6] = hopping_frequency[idx++];
packet[7] = hopping_frequency[idx++];
packet[8] = hopping_frequency[idx++];
packet[9] = hopping_frequency[idx++];
packet[10] = hopping_frequency[idx++];
packet[11] = rx_tx_addr[1]; // Unknown but constant ID?
packet[12] = RX_num;
//
memset(&packet[13], 0, packet_size - 14);
if(binding_idx&0x01)
memcpy(&packet[13],(void *)"\x55\xAA\x5A\xA5",4); // Telem off
if(binding_idx&0x02)
memcpy(&packet[17],(void *)"\x55\xAA\x5A\xA5",4); // CH9-16
}
//#######END INIT########
else
{
//packet 1D 03 01 0E 1C 02 00 00 32 0B 00 00 A8 26 28 01 A1 00 00 00 3E F6 87 C7 00 00 00 00 C9 C9
packet[5] = rx_tx_addr[1]; // Unknown but constant ID?
packet[6] = RX_num;
//Bind flags
packet[7]=0;
if(binding_idx&0x01)
packet[7] |= 0x40; // Telem off
if(binding_idx&0x02)
packet[7] |= 0x80; // CH9-16
//Unknown bytes
memcpy(&packet[8],"\x32\x0B\x00\x00\xA8\x26\x28\x01\xA1\x00\x00\x00\x3E\xF6\x87\xC7",16);
packet[20]^= 0x0E ^ rx_tx_addr[3]; // Update the ID
packet[21]^= 0x1C ^ rx_tx_addr[2]; // Update the ID
//Xor
for(uint8_t i=3; i<packet_size-1; i++)
packet[i] ^= 0xA7;
}
//CRC
uint16_t lcrc = FrSkyX_crc(&packet[3], packet_size-4);
packet[packet_size-1] = lcrc >> 8;
packet[packet_size] = lcrc;
/*//Debug
debug("Bind:");
for(uint8_t i=0;i<=packet_size;i++)
debug(" %02X",packet[i]);
debugln("");*/
}
static void __attribute__((unused)) frskyX_initialize_data(uint8_t adr)
{
CC2500_WriteReg(CC2500_0C_FSCTRL0,option); // Frequency offset hack
CC2500_WriteReg(CC2500_18_MCSM0, 0x8);
CC2500_WriteReg(CC2500_09_ADDR, adr ? 0x03 : rx_tx_addr[3]);
CC2500_WriteReg(CC2500_07_PKTCTRL1,0x05);
}
//**CRC**
const uint16_t PROGMEM frskyX_CRC_Short[]={
0x0000, 0x1189, 0x2312, 0x329B, 0x4624, 0x57AD, 0x6536, 0x74BF,
0x8C48, 0x9DC1, 0xAF5A, 0xBED3, 0xCA6C, 0xDBE5, 0xE97E, 0xF8F7 };
static uint16_t __attribute__((unused)) frskyX_CRCTable(uint8_t val)
{
uint16_t word ;
word = pgm_read_word(&frskyX_CRC_Short[val&0x0F]) ;
val /= 16 ;
return word ^ (0x1081 * val) ;
}
static uint16_t __attribute__((unused)) frskyX_crc_x(uint8_t *data, uint8_t len)
{
uint16_t crc = 0;
for(uint8_t i=0; i < len; i++)
crc = (crc<<8) ^ frskyX_CRCTable((uint8_t)(crc>>8) ^ *data++);
return crc;
}
static void __attribute__((unused)) frskyX_build_bind_packet()
{
packet[0] = (sub_protocol & 2 ) ? 0x20 : 0x1D ; // LBT or FCC
packet[1] = 0x03;
packet[2] = 0x01;
//
packet[3] = rx_tx_addr[3];
packet[4] = rx_tx_addr[2];
int idx = ((state -FRSKY_BIND) % 10) * 5;
packet[5] = idx;
packet[6] = hopping_frequency[idx++];
packet[7] = hopping_frequency[idx++];
packet[8] = hopping_frequency[idx++];
packet[9] = hopping_frequency[idx++];
packet[10] = hopping_frequency[idx++];
packet[11] = 0x02;
packet[12] = RX_num;
//
uint8_t limit = (sub_protocol & 2 ) ? 31 : 28 ;
memset(&packet[13], 0, limit - 13);
uint16_t lcrc = frskyX_crc_x(&packet[3], limit-3);
//
packet[limit++] = lcrc >> 8;
packet[limit] = lcrc;
//
}
// 0-2047, 0 = 817, 1024 = 1500, 2047 = 2182
//64=860,1024=1500,1984=2140//Taranis 125%
static uint16_t __attribute__((unused)) frskyX_scaleForPXX( uint8_t i )
{ //mapped 860,2140(125%) range to 64,1984(PXX values);
uint16_t chan_val=convert_channel_frsky(i)-1226;
if(i>7) chan_val|=2048; // upper channels offset
return chan_val;
}
#ifdef FAILSAFE_ENABLE
static uint16_t __attribute__((unused)) frskyX_scaleForPXX_FS( uint8_t i )
{ //mapped 1,2046(125%) range to 64,1984(PXX values);
uint16_t chan_val=((Failsafe_data[i]*15)>>4)+64;
if(Failsafe_data[i]==FAILSAFE_CHANNEL_NOPULSES)
chan_val=FAILSAFE_CHANNEL_NOPULSES;
else if(Failsafe_data[i]==FAILSAFE_CHANNEL_HOLD)
chan_val=FAILSAFE_CHANNEL_HOLD;
if(i>7) chan_val|=2048; // upper channels offset
return chan_val;
}
#endif
#define FRX_FAILSAFE_TIME 1032
static void __attribute__((unused)) frskyX_data_frame()
static void __attribute__((unused)) FrSkyX_build_packet()
{
//0x1D 0xB3 0xFD 0x02 0x56 0x07 0x15 0x00 0x00 0x00 0x04 0x40 0x00 0x04 0x40 0x00 0x04 0x40 0x00 0x04 0x40 0x08 0x00 0x00 0x00 0x00 0x00 0x00 0x96 0x12
//
static uint8_t chan_offset=0;
uint16_t chan_0 ;
uint16_t chan_1 ;
//
// data frames sent every 9ms; failsafe every 9 seconds
#ifdef FAILSAFE_ENABLE
static uint16_t failsafe_count=0;
static uint8_t FS_flag=0,failsafe_chan=0;
if (FS_flag == 0 && failsafe_count > FRX_FAILSAFE_TIME && chan_offset == 0 && IS_FAILSAFE_VALUES_on)
{
FS_flag = 0x10;
failsafe_chan = 0;
} else if (FS_flag & 0x10 && failsafe_chan < (sub_protocol & 0x01 ? 8-1:16-1))
{
FS_flag = 0x10 | ((FS_flag + 2) & 0x0F); //10, 12, 14, 16, 18, 1A, 1C, 1E - failsafe packet
failsafe_chan ++;
} else if (FS_flag & 0x10)
{
FS_flag = 0;
failsafe_count = 0;
}
failsafe_count++;
#endif
packet[0] = (sub_protocol & 0x02 ) ? 0x20 : 0x1D ; // LBT or FCC
packet[1] = rx_tx_addr[3];
packet[2] = rx_tx_addr[2];
packet[3] = 0x02;
//
packet[4] = (FrX_chanskip<<6)|hopping_frequency_no;
packet[5] = FrX_chanskip>>2;
packet[6] = RX_num;
//packet[7] = FLAGS 00 - standard packet
//10, 12, 14, 16, 18, 1A, 1C, 1E - failsafe packet
//20 - range check packet
#ifdef FAILSAFE_ENABLE
packet[7] = FS_flag;
#else
packet[7] = 0;
#endif
packet[8] = 0;
//
uint8_t startChan = chan_offset; for(uint8_t i = 0; i <12 ; i+=3)
{//12 bytes of channel data
#ifdef FAILSAFE_ENABLE
if( (FS_flag & 0x10) && ((failsafe_chan & 0x07) == (startChan & 0x07)) )
chan_0 = frskyX_scaleForPXX_FS(failsafe_chan);
else
#endif
chan_0 = frskyX_scaleForPXX(startChan);
startChan++;
//
#ifdef FAILSAFE_ENABLE
if( (FS_flag & 0x10) && ((failsafe_chan & 0x07) == (startChan & 0x07)) )
chan_1 = frskyX_scaleForPXX_FS(failsafe_chan);
else
#endif
chan_1 = frskyX_scaleForPXX(startChan);
startChan++;
//
packet[9+i] = lowByte(chan_0); //3 bytes*4
packet[9+i+1]=(((chan_0>>8) & 0x0F)|(chan_1 << 4));
packet[9+i+2]=chan_1>>4;
}
packet[21] = (FrX_receive_seq << 4) | FrX_send_seq ;//8 at start
if(sub_protocol & 0x01 ) // in X8 mode send only 8ch every 9ms
chan_offset = 0 ;
else
chan_offset^=0x08;
uint8_t limit = (sub_protocol & 2 ) ? 31 : 28 ;
for (uint8_t i=22;i<limit;i++)
packet[i]=0;
#if defined SPORT_POLLING
uint8_t idxs=0;
if(ok_to_send)
for (uint8_t i=23;i<limit;i++)
{//
if(sport_index==sport_idx)
{//no new data
ok_to_send=false;
break;
}
packet[i]=SportData[sport_index];
sport_index= (sport_index+1)& (MAX_SPORT_BUFFER-1);
idxs++;
}
packet[22]= idxs;
#ifdef DEBUG_SERIAL
for(uint8_t i=0;i<idxs;i++)
{
Serial.print(packet[23+i],HEX);
Serial.print(" ");
}
Serial.println(" ");
#endif
#endif // SPORT_POLLING
uint8_t packet_size = 0x1D;
if(protocol==PROTO_FRSKYX && (FrSkyFormat & 2 ))
packet_size=0x20; // FrSkyX V1 LBT
//Header
packet[0] = packet_size; // Number of bytes in the packet (after this one)
packet[1] = rx_tx_addr[3]; // ID
packet[2] = rx_tx_addr[2]; // ID
packet[3] = rx_tx_addr[1]; // Unknown but constant ID?
//
packet[4] = (FrSkyX_chanskip<<6)|hopping_frequency_no;
packet[5] = FrSkyX_chanskip>>2;
packet[6] = RX_num;
uint16_t lcrc = frskyX_crc_x(&packet[3], limit-3);
packet[limit++]=lcrc>>8;//high byte
packet[limit]=lcrc;//low byte
//Channels
FrSkyX_channels(7); // Set packet[7]=failsafe, packet[8]=0?? and packet[9..20]=channels data
//Sequence and send SPort
FrSkyX_seq_sport(21,packet_size-2); //21=RX|TXseq, 22=bytes count, 23..packet_size-2=data
//CRC
uint16_t lcrc = FrSkyX_crc(&packet[3], packet_size-4);
packet[packet_size-1] = lcrc >> 8;
packet[packet_size] = lcrc;
/*//Debug
debug("Norm:");
for(uint8_t i=0;i<=packet_size;i++)
debug(" %02X",packet[i]);
debugln("");*/
}
uint16_t ReadFrSkyX()
@@ -236,11 +121,11 @@ uint16_t ReadFrSkyX()
switch(state)
{
default:
frskyX_set_start(47);
FrSkyX_set_start(47);
CC2500_SetPower();
CC2500_Strobe(CC2500_SFRX);
//
frskyX_build_bind_packet();
FrSkyX_build_bind_packet();
CC2500_Strobe(CC2500_SIDLE);
CC2500_WriteData(packet, packet[0]+1);
if(IS_BIND_DONE)
@@ -249,110 +134,153 @@ uint16_t ReadFrSkyX()
state++;
return 9000;
case FRSKY_BIND_DONE:
frskyX_initialize_data(0);
FrSkyX_initialize_data(0);
hopping_frequency_no=0;
BIND_DONE;
state++;
break;
state++; //FRSKY_DATA1
break;
case FRSKY_DATA1:
if ( prev_option != option )
{
CC2500_WriteReg(CC2500_0C_FSCTRL0,option); // Frequency offset hack
prev_option = option ;
}
CC2500_SetTxRxMode(TX_EN);
frskyX_set_start(hopping_frequency_no);
CC2500_SetPower();
CC2500_Strobe(CC2500_SFRX);
hopping_frequency_no = (hopping_frequency_no+FrX_chanskip)%47;
CC2500_Strobe(CC2500_SIDLE);
CC2500_WriteData(packet, packet[0]+1);
//
// frskyX_data_frame();
state++;
return 5200;
case FRSKY_DATA2:
CC2500_SetTxRxMode(RX_EN);
CC2500_Strobe(CC2500_SIDLE);
state++;
return 200;
case FRSKY_DATA3:
CC2500_SetFreqOffset();
FrSkyX_set_start(hopping_frequency_no);
FrSkyX_build_packet();
if(FrSkyFormat & 2)
{// LBT
CC2500_Strobe(CC2500_SRX); //Acquire RSSI
state++;
return 400; // LBT
}
case FRSKY_DATA2:
if(FrSkyFormat & 2)
{
uint16_t rssi=0;
for(uint8_t i=0;i<4;i++)
rssi += CC2500_ReadReg(CC2500_34_RSSI | CC2500_READ_BURST); // 0.5 db/count, RSSI value read from the RSSI status register is a 2's complement number
rssi>>=2;
#if 0
uint8_t rssi_level=convert_channel_8b(CH16)>>1; //CH16 0..127
if ( rssi > rssi_level && rssi < 128) //test rssi level dynamically
#else
if ( rssi > 14 && rssi < 128) //if RSSI above -65dBm (12=-70) => ETSI requirement
#endif
{
LBT_POWER_on; //Reduce to low power before transmitting
debugln("Busy %d %d",hopping_frequency_no,rssi);
}
}
CC2500_Strobe(CC2500_SIDLE);
CC2500_Strobe(CC2500_SFTX); //Flush the TXFIFO
CC2500_SetTxRxMode(TX_EN);
CC2500_SetPower();
hopping_frequency_no = (hopping_frequency_no+FrSkyX_chanskip)%47;
CC2500_WriteData(packet, packet[0]+1);
state=FRSKY_DATA3;
if(FrSkyFormat & 2)
return 4000; // LBT
else
return 5200; // FCC
case FRSKY_DATA3:
CC2500_Strobe(CC2500_SIDLE);
CC2500_Strobe(CC2500_SFRX); //Flush the RXFIFO
CC2500_SetTxRxMode(RX_EN);
CC2500_Strobe(CC2500_SRX);
state++;
return 3100;
case FRSKY_DATA4:
len = CC2500_ReadReg(CC2500_3B_RXBYTES | CC2500_READ_BURST) & 0x7F;
if (len && (len<=(0x0E + 3))) //Telemetry frame is 17
{
packet_count=0;
CC2500_ReadData(pkt, len);
#if defined TELEMETRY
frsky_check_telemetry(pkt,len); //check if valid telemetry packets
//parse telemetry packets here
//The same telemetry function used by FrSky(D8).
#endif
}
if(FrSkyFormat & 2)
return 4200; // LBT
else
{
packet_count++;
// restart sequence on missed packet - might need count or timeout instead of one missed
if(packet_count>100)
{//~1sec
// seq_last_sent = 0;
// seq_last_rcvd = 8;
FrX_send_seq = 0x08 ;
// FrX_receive_seq = 0 ;
packet_count=0;
#if defined TELEMETRY
telemetry_lost=1;
#endif
return 3400; // FCC
case FRSKY_DATA4:
#ifdef MULTI_SYNC
telemetry_set_input_sync(9000);
#endif
#if defined TELEMETRY
len = CC2500_ReadReg(CC2500_3B_RXBYTES | CC2500_READ_BURST) & 0x7F;
if (len && len <= 17) //Telemetry frame is 17 bytes
{
//debug("Telem:");
CC2500_ReadData(packet_in, len); //Read what has been received so far
if(len<17)
{//not all bytes were received
uint8_t last_len=CC2500_ReadReg(CC2500_3B_RXBYTES | CC2500_READ_BURST) & 0x7F;
if(last_len==17) //All bytes received
{
CC2500_ReadData(packet_in+len, last_len-len); //Finish to read
len=17;
}
}
if(len==17 && (protocol==PROTO_FRSKYX || (protocol==PROTO_FRSKYX2 && (packet_in[len-1] & 0x80))) )
{//Telemetry received with valid crc for FRSKYX2
//Debug
//for(uint8_t i=0;i<len;i++)
// debug(" %02X",packet_in[i]);
if(frsky_process_telemetry(packet_in,len)) //Check and process telemetry packet
{//good packet received
pps_counter++;
if(TX_LQI==0)
TX_LQI++; //Recover telemetry right away
}
}
//debugln("");
}
CC2500_Strobe(CC2500_SFRX); //flush the RXFIFO
}
frskyX_data_frame();
if ( FrX_send_seq != 0x08 )
{
FrX_send_seq = ( FrX_send_seq + 1 ) & 0x03 ;
}
if (millis() - pps_timer >= 900)
{//1 packet every 9ms
pps_timer = millis();
debugln("%d pps", pps_counter);
TX_LQI = pps_counter; //Max=100%
pps_counter = 0;
}
if(TX_LQI==0)
FrSkyX_telem_init(); //Reset telemetry
else
telemetry_link=1; //Send telemetry out anyway
#endif
state = FRSKY_DATA1;
return 500;
}
return 400; // FCC & LBT
}
return 1;
}
uint16_t initFrSkyX()
{
set_rx_tx_addr(MProtocol_id_master);
Frsky_init_hop();
FrSkyFormat = sub_protocol;
if (sub_protocol==XCLONE_16||sub_protocol==XCLONE_8)
Frsky_init_clone();
else if(protocol==PROTO_FRSKYX)
{
Frsky_init_hop();
rx_tx_addr[1]=0x02; // ID related, hw version?
}
else
{
#ifdef FRSKYX2_FORCE_ID
rx_tx_addr[3]=0x0E;
rx_tx_addr[2]=0x1C;
FrSkyX_chanskip=18;
#endif
rx_tx_addr[1]=0x02; // ID related, hw version?
FrSkyX2_init_hop();
}
packet_count=0;
while(!FrX_chanskip)
FrX_chanskip=random(0xfefefefe)%47;
while(!FrSkyX_chanskip)
FrSkyX_chanskip=random(0xfefefefe)%47;
FrSkyX_init();
//for test***************
//rx_tx_addr[3]=0xB3;
//rx_tx_addr[2]=0xFD;
//************************
frskyX_init();
#if defined SPORT_POLLING
#ifdef INVERT_SERIAL
start_timer4() ;
#endif
#endif
//
if(IS_BIND_IN_PROGRESS)
{
state = FRSKY_BIND;
frskyX_initialize_data(1);
FrSkyX_initialize_data(1);
}
else
{
state = FRSKY_DATA1;
frskyX_initialize_data(0);
FrSkyX_initialize_data(0);
}
// seq_last_sent = 0;
// seq_last_rcvd = 8;
FrX_send_seq = 0x08 ;
FrX_receive_seq = 0 ;
FrSkyX_telem_init();
return 10000;
}
#endif
}
#endif

View File

@@ -0,0 +1,594 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(FRSKY_RX_CC2500_INO)
#include "iface_cc2500.h"
#define FRSKY_RX_D16FCC_LENGTH 0x1D+1
#define FRSKY_RX_D16LBT_LENGTH 0x20+1
#define FRSKY_RX_D16v2_LENGTH 0x1D+1
#define FRSKY_RX_D8_LENGTH 0x11+1
#define FRSKY_RX_FORMATS 5
enum
{
FRSKY_RX_D8 =0,
FRSKY_RX_D16FCC =1,
FRSKY_RX_D16LBT =2,
FRSKY_RX_D16v2FCC =3,
FRSKY_RX_D16v2LBT =4,
};
enum {
FRSKY_RX_TUNE_START,
FRSKY_RX_TUNE_LOW,
FRSKY_RX_TUNE_HIGH,
FRSKY_RX_BIND,
FRSKY_RX_DATA,
};
const PROGMEM uint8_t frsky_rx_common_reg[][2] = {
{CC2500_02_IOCFG0, 0x01},
{CC2500_18_MCSM0, 0x18},
{CC2500_07_PKTCTRL1, 0x05},
{CC2500_3E_PATABLE, 0xFF},
{CC2500_0C_FSCTRL0, 0},
{CC2500_0D_FREQ2, 0x5C},
{CC2500_13_MDMCFG1, 0x23},
{CC2500_14_MDMCFG0, 0x7A},
{CC2500_19_FOCCFG, 0x16},
{CC2500_1A_BSCFG, 0x6C},
{CC2500_1B_AGCCTRL2, 0x03},
{CC2500_1C_AGCCTRL1, 0x40},
{CC2500_1D_AGCCTRL0, 0x91},
{CC2500_21_FREND1, 0x56},
{CC2500_22_FREND0, 0x10},
{CC2500_23_FSCAL3, 0xA9},
{CC2500_24_FSCAL2, 0x0A},
{CC2500_25_FSCAL1, 0x00},
{CC2500_26_FSCAL0, 0x11},
{CC2500_29_FSTEST, 0x59},
{CC2500_2C_TEST2, 0x88},
{CC2500_2D_TEST1, 0x31},
{CC2500_2E_TEST0, 0x0B},
{CC2500_03_FIFOTHR, 0x07},
{CC2500_09_ADDR, 0x03},
};
const PROGMEM uint8_t frsky_rx_d16fcc_reg[][2] = {
{CC2500_17_MCSM1, 0x0C},
{CC2500_0E_FREQ1, 0x76},
{CC2500_0F_FREQ0, 0x27},
{CC2500_06_PKTLEN, 0x1E},
{CC2500_08_PKTCTRL0, 0x01},
{CC2500_0B_FSCTRL1, 0x0A},
{CC2500_10_MDMCFG4, 0x7B},
{CC2500_11_MDMCFG3, 0x61},
{CC2500_12_MDMCFG2, 0x13},
{CC2500_15_DEVIATN, 0x51},
};
const PROGMEM uint8_t frsky_rx_d16lbt_reg[][2] = {
{CC2500_17_MCSM1, 0x0E},
{CC2500_0E_FREQ1, 0x80},
{CC2500_0F_FREQ0, 0x00},
{CC2500_06_PKTLEN, 0x23},
{CC2500_08_PKTCTRL0, 0x01},
{CC2500_0B_FSCTRL1, 0x08},
{CC2500_10_MDMCFG4, 0x7B},
{CC2500_11_MDMCFG3, 0xF8},
{CC2500_12_MDMCFG2, 0x03},
{CC2500_15_DEVIATN, 0x53},
};
const PROGMEM uint8_t frsky_rx_d8_reg[][2] = {
{CC2500_17_MCSM1, 0x0C},
{CC2500_0E_FREQ1, 0x76},
{CC2500_0F_FREQ0, 0x27},
{CC2500_06_PKTLEN, 0x19},
{CC2500_08_PKTCTRL0, 0x05},
{CC2500_0B_FSCTRL1, 0x08},
{CC2500_10_MDMCFG4, 0xAA},
{CC2500_11_MDMCFG3, 0x39},
{CC2500_12_MDMCFG2, 0x11},
{CC2500_15_DEVIATN, 0x42},
};
static uint8_t frsky_rx_chanskip;
static int8_t frsky_rx_finetune;
static uint8_t frsky_rx_format;
static void __attribute__((unused)) frsky_rx_strobe_rx()
{
CC2500_Strobe(CC2500_SIDLE);
CC2500_Strobe(CC2500_SFRX);
CC2500_Strobe(CC2500_SRX);
}
static void __attribute__((unused)) frsky_rx_initialise_cc2500() {
const uint8_t frsky_rx_length[] = { FRSKY_RX_D8_LENGTH, FRSKY_RX_D16FCC_LENGTH, FRSKY_RX_D16LBT_LENGTH, FRSKY_RX_D16v2_LENGTH, FRSKY_RX_D16v2_LENGTH };
packet_length = frsky_rx_length[frsky_rx_format];
CC2500_Reset();
CC2500_Strobe(CC2500_SIDLE);
for (uint8_t i = 0; i < sizeof(frsky_rx_common_reg) / 2; i++)
CC2500_WriteReg(pgm_read_byte_near(&frsky_rx_common_reg[i][0]), pgm_read_byte_near(&frsky_rx_common_reg[i][1]));
switch (frsky_rx_format)
{
case FRSKY_RX_D16v2FCC:
case FRSKY_RX_D16FCC:
for (uint8_t i = 0; i < sizeof(frsky_rx_d16fcc_reg) / 2; i++)
CC2500_WriteReg(pgm_read_byte_near(&frsky_rx_d16fcc_reg[i][0]), pgm_read_byte_near(&frsky_rx_d16fcc_reg[i][1]));
if(frsky_rx_format==FRSKY_RX_D16v2FCC)
{
CC2500_WriteReg(CC2500_08_PKTCTRL0, 0x05); // Enable CRC
CC2500_WriteReg(CC2500_17_MCSM1, 0x0E); // Go/Stay in RX mode
CC2500_WriteReg(CC2500_11_MDMCFG3, 0x84); // bitrate 70K->77K
}
break;
case FRSKY_RX_D16v2LBT:
case FRSKY_RX_D16LBT:
for (uint8_t i = 0; i < sizeof(frsky_rx_d16lbt_reg) / 2; i++)
CC2500_WriteReg(pgm_read_byte_near(&frsky_rx_d16lbt_reg[i][0]), pgm_read_byte_near(&frsky_rx_d16lbt_reg[i][1]));
if(frsky_rx_format==FRSKY_RX_D16v2LBT)
CC2500_WriteReg(CC2500_08_PKTCTRL0, 0x05); // Enable CRC
break;
case FRSKY_RX_D8:
for (uint8_t i = 0; i < sizeof(frsky_rx_d8_reg) / 2; i++)
CC2500_WriteReg(pgm_read_byte_near(&frsky_rx_d8_reg[i][0]), pgm_read_byte_near(&frsky_rx_d8_reg[i][1]));
CC2500_WriteReg(CC2500_23_FSCAL3, 0x89);
break;
}
CC2500_WriteReg(CC2500_0A_CHANNR, 0); // bind channel
rx_disable_lna = IS_POWER_FLAG_on;
CC2500_SetTxRxMode(rx_disable_lna ? TXRX_OFF : RX_EN); // lna disable / enable
frsky_rx_strobe_rx();
delayMicroseconds(1000); // wait for RX to activate
}
static void __attribute__((unused)) frsky_rx_set_channel(uint8_t channel)
{
CC2500_WriteReg(CC2500_0A_CHANNR, hopping_frequency[channel]);
if(frsky_rx_format == FRSKY_RX_D8)
CC2500_WriteReg(CC2500_23_FSCAL3, 0x89);
CC2500_WriteReg(CC2500_25_FSCAL1, calData[channel]);
frsky_rx_strobe_rx();
}
static void __attribute__((unused)) frsky_rx_calibrate()
{
frsky_rx_strobe_rx();
for (unsigned c = 0; c < 47; c++)
{
CC2500_Strobe(CC2500_SIDLE);
CC2500_WriteReg(CC2500_0A_CHANNR, hopping_frequency[c]);
CC2500_Strobe(CC2500_SCAL);
delayMicroseconds(900);
calData[c] = CC2500_ReadReg(CC2500_25_FSCAL1);
}
}
static uint8_t __attribute__((unused)) frskyx_rx_check_crc_id(bool bind,bool init)
{
/*debugln("RX");
for(uint8_t i=0; i<packet_length;i++)
debug(" %02X",packet[i]);
debugln("");*/
if(bind && packet[0]!=packet_length-1 && packet[1] !=0x03 && packet[2] != 0x01)
return false;
uint8_t offset=bind?3:1;
// Check D8 checksum
if (frsky_rx_format == FRSKY_RX_D8)
{
if((packet[packet_length+1] & 0x80) != 0x80) // Check CRC_OK flag in status byte 2
return false; // Bad CRC
if(init)
{//Save TXID
rx_tx_addr[3] = packet[3];
rx_tx_addr[2] = packet[4];
rx_tx_addr[1] = packet[17];
}
else
if(rx_tx_addr[3] != packet[offset] || rx_tx_addr[2] != packet[offset+1] || rx_tx_addr[1] != packet[bind?17:5])
return false; // Bad address
return true; // Full match
}
// Check D16v2 checksum
if (frsky_rx_format == FRSKY_RX_D16v2LBT || frsky_rx_format == FRSKY_RX_D16v2FCC)
if((packet[packet_length+1] & 0x80) != 0x80) // Check CRC_OK flag in status byte 2
return false;
//debugln("HW Checksum ok");
// Check D16 checksum
uint16_t lcrc = FrSkyX_crc(&packet[3], packet_length - 5); // Compute crc
uint16_t rcrc = (packet[packet_length-2] << 8) | (packet[packet_length-1] & 0xff); // Received crc
if(lcrc != rcrc)
return false; // Bad CRC
//debugln("Checksum ok");
if (bind && (frsky_rx_format == FRSKY_RX_D16v2LBT || frsky_rx_format == FRSKY_RX_D16v2FCC))
for(uint8_t i=3; i<packet_length-2; i++) //unXOR bind packet
packet[i] ^= 0xA7;
uint8_t offset2=0;
if (bind && (frsky_rx_format == FRSKY_RX_D16LBT || frsky_rx_format == FRSKY_RX_D16FCC))
offset2=6;
if(init)
{//Save TXID
rx_tx_addr[3] = packet[3];
rx_tx_addr[2] = packet[4];
rx_tx_addr[1] = packet[5+offset2];
rx_tx_addr[0] = packet[6+offset2]; // RXnum
}
else
if(rx_tx_addr[3] != packet[offset] || rx_tx_addr[2] != packet[offset+1] || rx_tx_addr[1] != packet[offset+2+offset2])
return false; // Bad address
//debugln("Address ok");
if(!bind && rx_tx_addr[0] != packet[6])
return false; // Bad RX num
//debugln("Match");
return true; // Full match
}
static void __attribute__((unused)) frsky_rx_build_telemetry_packet()
{
uint16_t raw_channel[8];
uint32_t bits = 0;
uint8_t bitsavailable = 0;
uint8_t idx = 0;
uint8_t i;
if (frsky_rx_format == FRSKY_RX_D8)
{// decode D8 channels
raw_channel[0] = ((packet[10] & 0x0F) << 8 | packet[6]);
raw_channel[1] = ((packet[10] & 0xF0) << 4 | packet[7]);
raw_channel[2] = ((packet[11] & 0x0F) << 8 | packet[8]);
raw_channel[3] = ((packet[11] & 0xF0) << 4 | packet[9]);
raw_channel[4] = ((packet[16] & 0x0F) << 8 | packet[12]);
raw_channel[5] = ((packet[16] & 0xF0) << 4 | packet[13]);
raw_channel[6] = ((packet[17] & 0x0F) << 8 | packet[14]);
raw_channel[7] = ((packet[17] & 0xF0) << 4 | packet[15]);
for (i = 0; i < 8; i++) {
if (raw_channel[i] < 1290)
raw_channel[i] = 1290;
rx_rc_chan[i] = min(((raw_channel[i] - 1290) << 4) / 15, 2047);
}
}
else
{// decode D16 channels
raw_channel[0] = ((packet[10] << 8) & 0xF00) | packet[9];
raw_channel[1] = ((packet[11] << 4) & 0xFF0) | (packet[10] >> 4);
raw_channel[2] = ((packet[13] << 8) & 0xF00) | packet[12];
raw_channel[3] = ((packet[14] << 4) & 0xFF0) | (packet[13] >> 4);
raw_channel[4] = ((packet[16] << 8) & 0xF00) | packet[15];
raw_channel[5] = ((packet[17] << 4) & 0xFF0) | (packet[16] >> 4);
raw_channel[6] = ((packet[19] << 8) & 0xF00) | packet[18];
raw_channel[7] = ((packet[20] << 4) & 0xFF0) | (packet[19] >> 4);
for (i = 0; i < 8; i++) {
// ignore failsafe channels
if(packet[7] != 0x10+(i<<1)) {
uint8_t shifted = (raw_channel[i] & 0x800)>0;
uint16_t channel_value = raw_channel[i] & 0x7FF;
if (channel_value < 64)
rx_rc_chan[shifted ? i + 8 : i] = 0;
else
rx_rc_chan[shifted ? i + 8 : i] = min(((channel_value - 64) << 4) / 15, 2047);
}
}
}
// buid telemetry packet
packet_in[idx++] = RX_LQI;
packet_in[idx++] = RX_RSSI;
packet_in[idx++] = 0; // start channel
packet_in[idx++] = frsky_rx_format == FRSKY_RX_D8 ? 8 : 16; // number of channels in packet
// pack channels
for (i = 0; i < packet_in[3]; i++) {
bits |= ((uint32_t)rx_rc_chan[i]) << bitsavailable;
bitsavailable += 11;
while (bitsavailable >= 8) {
packet_in[idx++] = bits & 0xff;
bits >>= 8;
bitsavailable -= 8;
}
}
}
static void __attribute__((unused)) frsky_rx_data()
{
uint16_t temp = FRSKY_RX_EEPROM_OFFSET;
frsky_rx_format = eeprom_read_byte((EE_ADDR)temp++) % FRSKY_RX_FORMATS;
rx_tx_addr[3] = eeprom_read_byte((EE_ADDR)temp++);
rx_tx_addr[2] = eeprom_read_byte((EE_ADDR)temp++);
rx_tx_addr[1] = eeprom_read_byte((EE_ADDR)temp++);
rx_tx_addr[0] = RX_num;
frsky_rx_finetune = eeprom_read_byte((EE_ADDR)temp++);
debug("format=%d, ", frsky_rx_format);
debug("addr[3]=%02X, ", rx_tx_addr[3]);
debug("addr[2]=%02X, ", rx_tx_addr[2]);
debug("addr[1]=%02X, ", rx_tx_addr[1]);
debug("rx_num=%02X, ", rx_tx_addr[0]);
debugln("tune=%d", (int8_t)frsky_rx_finetune);
if(frsky_rx_format != FRSKY_RX_D16v2LBT && frsky_rx_format != FRSKY_RX_D16v2FCC)
{//D8 & D16v1
for (uint8_t ch = 0; ch < 47; ch++)
hopping_frequency[ch] = eeprom_read_byte((EE_ADDR)temp++);
}
else
{
FrSkyFormat=frsky_rx_format == FRSKY_RX_D16v2FCC?0:2;
FrSkyX2_init_hop();
}
debug("ch:");
for (uint8_t ch = 0; ch < 47; ch++)
debug(" %02X", hopping_frequency[ch]);
debugln("");
frsky_rx_initialise_cc2500();
frsky_rx_calibrate();
CC2500_WriteReg(CC2500_18_MCSM0, 0x08); // FS_AUTOCAL = manual
CC2500_WriteReg(CC2500_09_ADDR, rx_tx_addr[3]); // set address
CC2500_WriteReg(CC2500_07_PKTCTRL1, 0x05); // check address
if (option == 0)
CC2500_WriteReg(CC2500_0C_FSCTRL0, frsky_rx_finetune);
else
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
frsky_rx_set_channel(hopping_frequency_no);
phase = FRSKY_RX_DATA;
}
uint16_t initFrSky_Rx()
{
frsky_rx_chanskip = 1;
hopping_frequency_no = 0;
rx_data_started = false;
frsky_rx_finetune = 0;
telemetry_link = 0;
packet_count = 0;
if (IS_BIND_IN_PROGRESS)
{
frsky_rx_format = FRSKY_RX_D8;
frsky_rx_initialise_cc2500();
phase = FRSKY_RX_TUNE_START;
debugln("FRSKY_RX_TUNE_START");
}
else
frsky_rx_data();
return 1000;
}
uint16_t FrSky_Rx_callback()
{
static int8_t read_retry = 0;
static int8_t tune_low, tune_high;
uint8_t len, ch;
if(IS_BIND_DONE && phase != FRSKY_RX_DATA) return initFrSky_Rx(); // Abort bind
if ((prev_option != option) && (phase >= FRSKY_RX_DATA))
{
if (option == 0)
CC2500_WriteReg(CC2500_0C_FSCTRL0, frsky_rx_finetune);
else
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
prev_option = option;
}
if (rx_disable_lna != IS_POWER_FLAG_on)
{
rx_disable_lna = IS_POWER_FLAG_on;
CC2500_SetTxRxMode(rx_disable_lna ? TXRX_OFF : RX_EN);
}
len = CC2500_ReadReg(CC2500_3B_RXBYTES | CC2500_READ_BURST) & 0x7F;
switch(phase)
{
case FRSKY_RX_TUNE_START:
if (len == packet_length + 2) //+2=RSSI+LQI+CRC
{
CC2500_ReadData(packet, len);
if(frskyx_rx_check_crc_id(true,true))
{
frsky_rx_finetune = -127;
CC2500_WriteReg(CC2500_0C_FSCTRL0, frsky_rx_finetune);
phase = FRSKY_RX_TUNE_LOW;
debugln("FRSKY_RX_TUNE_LOW");
frsky_rx_strobe_rx();
state = 0;
return 1000;
}
}
frsky_rx_format = (frsky_rx_format + 1) % FRSKY_RX_FORMATS; // switch to next format (D8, D16FCC, D16LBT, D16v2FCC, D16v2LBT)
frsky_rx_initialise_cc2500();
frsky_rx_finetune += 10;
CC2500_WriteReg(CC2500_0C_FSCTRL0, frsky_rx_finetune);
frsky_rx_strobe_rx();
return 18000;
case FRSKY_RX_TUNE_LOW:
if (len == packet_length + 2) //+2=RSSI+LQI+CRC
{
CC2500_ReadData(packet, len);
if(frskyx_rx_check_crc_id(true,false)) {
tune_low = frsky_rx_finetune;
frsky_rx_finetune = 127;
CC2500_WriteReg(CC2500_0C_FSCTRL0, frsky_rx_finetune);
phase = FRSKY_RX_TUNE_HIGH;
debugln("FRSKY_RX_TUNE_HIGH");
frsky_rx_strobe_rx();
return 1000;
}
}
frsky_rx_finetune += 1;
CC2500_WriteReg(CC2500_0C_FSCTRL0, frsky_rx_finetune);
frsky_rx_strobe_rx();
return 18000;
case FRSKY_RX_TUNE_HIGH:
if (len == packet_length + 2) //+2=RSSI+LQI+CRC
{
CC2500_ReadData(packet, len);
if(frskyx_rx_check_crc_id(true,false)) {
tune_high = frsky_rx_finetune;
frsky_rx_finetune = (tune_low + tune_high) / 2;
CC2500_WriteReg(CC2500_0C_FSCTRL0, (int8_t)frsky_rx_finetune);
if(tune_low < tune_high)
{
phase = FRSKY_RX_BIND;
debugln("FRSKY_RX_TUNE_HIGH");
}
else
{
phase = FRSKY_RX_TUNE_START;
debugln("FRSKY_RX_TUNE_START");
}
frsky_rx_strobe_rx();
return 1000;
}
}
frsky_rx_finetune -= 1;
CC2500_WriteReg(CC2500_0C_FSCTRL0, frsky_rx_finetune);
frsky_rx_strobe_rx();
return 18000;
case FRSKY_RX_BIND:
if (len == packet_length + 2) //+2=RSSI+LQI+CRC
{
CC2500_ReadData(packet, len);
if(frskyx_rx_check_crc_id(true,false)) {
if(frsky_rx_format != FRSKY_RX_D16v2LBT && frsky_rx_format != FRSKY_RX_D16v2FCC)
{// D8 & D16v1
if(packet[5] <= 0x2D)
{
for (ch = 0; ch < 5; ch++)
hopping_frequency[packet[5]+ch] = packet[6+ch];
state |= 1 << (packet[5] / 5);
}
}
else
state = 0x3FF; //No hop table for D16v2
if (state == 0x3FF)
{
debugln("Bind complete");
BIND_DONE;
// store format, finetune setting, txid, channel list
uint16_t temp = FRSKY_RX_EEPROM_OFFSET;
if(sub_protocol==FRSKY_CLONE)
{
if(frsky_rx_format==FRSKY_RX_D8)
temp=FRSKYD_CLONE_EEPROM_OFFSET;
else if(frsky_rx_format == FRSKY_RX_D16FCC || frsky_rx_format == FRSKY_RX_D16LBT)
temp=FRSKYX_CLONE_EEPROM_OFFSET;
else
temp=FRSKYX2_CLONE_EEPROM_OFFSET;
}
eeprom_write_byte((EE_ADDR)temp++, frsky_rx_format);
eeprom_write_byte((EE_ADDR)temp++, rx_tx_addr[3]);
eeprom_write_byte((EE_ADDR)temp++, rx_tx_addr[2]);
eeprom_write_byte((EE_ADDR)temp++, rx_tx_addr[1]);
if(sub_protocol==FRSKY_RX)
eeprom_write_byte((EE_ADDR)temp++, frsky_rx_finetune);
if(frsky_rx_format != FRSKY_RX_D16v2FCC && frsky_rx_format != FRSKY_RX_D16v2LBT)
for (ch = 0; ch < 47; ch++)
eeprom_write_byte((EE_ADDR)temp++, hopping_frequency[ch]);
frsky_rx_data();
debugln("FRSKY_RX_DATA");
}
}
frsky_rx_strobe_rx();
}
return 1000;
case FRSKY_RX_DATA:
if (len == packet_length + 2) //+2=RSSI+LQI+CRC
{
CC2500_ReadData(packet, len);
if(frskyx_rx_check_crc_id(false,false))
{
RX_RSSI = packet[len-2];
if(RX_RSSI >= 128)
RX_RSSI -= 128;
else
RX_RSSI += 128;
bool chanskip_valid=true;
// hop to next channel
if (frsky_rx_format != FRSKY_RX_D8)
{//D16v1 & D16v2
if(rx_data_started)
{
if(frsky_rx_chanskip != (((packet[4] & 0xC0) >> 6) | ((packet[5] & 0x3F) << 2)))
{
chanskip_valid=false; // chanskip value has changed which surely indicates a bad frame
packet_count++;
if(packet_count>5) // the TX must have changed chanskip...
frsky_rx_chanskip = ((packet[4] & 0xC0) >> 6) | ((packet[5] & 0x3F) << 2); // chanskip init
}
else
packet_count=0;
}
else
frsky_rx_chanskip = ((packet[4] & 0xC0) >> 6) | ((packet[5] & 0x3F) << 2); // chanskip init
}
hopping_frequency_no = (hopping_frequency_no + frsky_rx_chanskip) % 47;
frsky_rx_set_channel(hopping_frequency_no);
if(chanskip_valid)
{
if (telemetry_link == 0)
{ // send channels to TX
frsky_rx_build_telemetry_packet();
telemetry_link = 1;
}
pps_counter++;
}
rx_data_started = true;
read_retry = 0;
}
}
// packets per second
if (millis() - pps_timer >= 1000) {
pps_timer = millis();
debugln("%d pps", pps_counter);
RX_LQI = pps_counter;
if(pps_counter==0) // no packets for 1 sec or more...
{// restart the search
rx_data_started=false;
packet_count=0;
}
pps_counter = 0;
}
// skip channel if no packet received in time
if (read_retry++ >= 9) {
hopping_frequency_no = (hopping_frequency_no + frsky_rx_chanskip) % 47;
frsky_rx_set_channel(hopping_frequency_no);
if(rx_data_started)
read_retry = 0;
else
read_retry = -50; // retry longer until first packet is catched
}
break;
}
return 1000;
}
#endif

View File

@@ -14,7 +14,7 @@
*/
// Last sync with main deviation/sfhss_cc2500.c dated 2016-03-23
#if defined(SFHSS_CC2500_INO)
#if defined(FUTABA_CC2500_INO)
#include "iface_cc2500.h"
@@ -79,7 +79,6 @@ static void __attribute__((unused)) SFHSS_rf_init()
for (uint8_t i = 0; i < 39; ++i)
CC2500_WriteReg(i, pgm_read_byte_near(&SFHSS_init_values[i]));
prev_option = option;
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
CC2500_SetTxRxMode(TX_EN);
@@ -173,8 +172,8 @@ static void __attribute__((unused)) SFHSS_build_data_packet()
else
{ //Use channel value
ch[i]=(ch[i]>>1)+2560;
if(CH_AETR[ch_offset+i]==THROTTLE && ch[i]<3072) // Throttle
ch[i]+=1024;
//if(IS_DISABLE_CH_MAP_off && ch_offset+i==CH3 && ch[i]<3072) // Throttle
// ch[i]+=1024;
}
}
}
@@ -182,7 +181,7 @@ static void __attribute__((unused)) SFHSS_build_data_packet()
#endif
{ //Normal data
for(uint8_t i=0;i<4;i++)
ch[i] = convert_channel_16b_nolimit(CH_AETR[ch_offset+i],2020,1020);
ch[i] = convert_channel_16b_nolimit(CH_AETR[ch_offset+i],2020,1020,false);
}
@@ -235,6 +234,9 @@ uint16_t ReadSFHSS()
#define SFHSS_PACKET_PERIOD 6800
#define SFHSS_DATA2_TIMING 1625 // Adjust this value between 1600 and 1650 if your RX(s) are not operating properly
case SFHSS_DATA1:
#ifdef MULTI_SYNC
telemetry_set_input_sync(6800);
#endif
SFHSS_build_data_packet();
SFHSS_send_packet();
phase = SFHSS_DATA2;

View File

@@ -16,7 +16,7 @@ Multiprotocol is distributed in the hope that it will be useful,
#if defined(GD00X_NRF24L01_INO)
#include "iface_xn297l.h"
#include "iface_nrf250k.h"
//#define FORCE_GD00X_ORIGINAL_ID
@@ -208,6 +208,9 @@ uint16_t GD00X_callback()
if(--bind_counter==0)
BIND_DONE;
GD00X_send_packet();
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
return packet_period;
}

View File

@@ -47,7 +47,7 @@ static void __attribute__((unused)) GW008_send_packet(uint8_t bind)
}
else
{
packet[1] = 0x01 | GET_FLAG(CH5, 0x40); // flip
packet[1] = 0x01 | GET_FLAG(CH5_SW, 0x40); // flip
packet[2] = convert_channel_16b_limit(AILERON , 200, 0); // aileron
packet[3] = convert_channel_16b_limit(ELEVATOR, 0, 200); // elevator
packet[4] = convert_channel_16b_limit(RUDDER , 200, 0); // rudder
@@ -125,7 +125,7 @@ uint16_t GW008_callback()
NRF24L01_SetTxRxMode(TX_EN);
GW008_send_packet(1);
phase = GW008_BIND2;
return 300;
return 850; // minimum value 750 for STM32
}
break;
case GW008_BIND2:
@@ -139,6 +139,9 @@ uint16_t GW008_callback()
return 5000;
break;
case GW008_DATA:
#ifdef MULTI_SYNC
telemetry_set_input_sync(GW008_PACKET_PERIOD);
#endif
GW008_send_packet(0);
break;
}

View File

@@ -177,7 +177,12 @@ static void __attribute__((unused)) H8_3D_init()
uint16_t H8_3D_callback()
{
if(IS_BIND_DONE)
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
H8_3D_send_packet(0);
}
else
{
if (bind_counter == 0)

View File

@@ -0,0 +1,533 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(HOTT_CC2500_INO)
#include "iface_cc2500.h"
//#define HOTT_FORCE_ID // Force ID of original dump
#define HOTT_TX_PACKET_LEN 50
#define HOTT_RX_PACKET_LEN 22
#define HOTT_PACKET_PERIOD 10000
#define HOTT_NUM_RF_CHANNELS 75
#define HOTT_COARSE 0
enum {
HOTT_START = 0x00,
HOTT_CAL = 0x01,
HOTT_DATA1 = 0x02,
HOTT_DATA2 = 0x03,
HOTT_RX1 = 0x04,
HOTT_RX2 = 0x05,
};
#ifdef HOTT_FW_TELEMETRY
#define HOTT_SENSOR_TYPE 6
#define HOTT_SENSOR_SEARCH_PERIOD 2000
uint8_t HOTT_sensor_cur=0;
uint8_t HOTT_sensor_pages=0;
uint8_t HOTT_sensor_valid=false;
uint8_t HOTT_sensor_ok[HOTT_SENSOR_TYPE];
uint8_t HOTT_sensor_seq=0;
#endif
#define HOTT_FREQ0_VAL 0x6E
// Some important initialization parameters, all others are either default,
// or not important in the context of transmitter
// FIFOTHR 00
// SYNC1 D3
// SYNC0 91
// PKTLEN 32 - Packet length, 50 bytes
// PKTCTRL1 04 - APPEND_STATUS on=RSSI+LQI, all other are receive parameters - irrelevant
// PKTCTRL0 44 - whitening, use FIFO, use CRC, fixed packet length
// ADDR 00
// CHANNR 10
// FSCTRL1 09 - IF
// FSCTRL0 00 - zero freq offset
// FREQ2 5C - synthesizer frequencyfor 26MHz crystal
// FREQ1 6C
// FREQ0 B9
// MDMCFG4 2D -
// MDMCFG3 3B -
// MDMCFG2 73 - disable DC blocking, MSK, no Manchester code, 32 bits sync word
// MDMCFG1 A3 - FEC enable, 4 preamble bytes, CHANSPC_E - 03
// MDMCFG0 AA - CHANSPC_M - AA
// DEVIATN 47 -
// MCSM2 07 -
// MCSM1 00 - always use CCA, go to IDLE when done
// MCSM0 08 - disable autocalibration, PO_TIMEOUT - 64, no pin radio control, no forcing XTAL to stay in SLEEP
// FOCCFG 1D
const PROGMEM uint8_t HOTT_init_values[] = {
/* 00 */ 0x2F, 0x2E, 0x2F, 0x00, 0xD3, 0x91, 0x32, 0x04,
/* 08 */ 0x44, 0x00, 0x00, 0x09, 0x00, 0x5C, 0x6C, HOTT_FREQ0_VAL + HOTT_COARSE,
/* 10 */ 0x2D, 0x3B, 0x73, 0xA3, 0xAA, 0x47, 0x07, 0x00,
/* 18 */ 0x08, 0x1D, 0x1C, 0xC7, 0x09, 0xF0, 0x87, 0x6B,
/* 20 */ 0xF0, 0xB6, 0x10, 0xEA, 0x0A, 0x00, 0x11
};
static void __attribute__((unused)) HOTT_rf_init()
{
CC2500_Strobe(CC2500_SIDLE);
for (uint8_t i = 0; i < 39; ++i)
CC2500_WriteReg(i, pgm_read_byte_near(&HOTT_init_values[i]));
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
CC2500_SetTxRxMode(TX_EN);
CC2500_SetPower();
}
static void __attribute__((unused)) HOTT_tune_chan()
{
CC2500_Strobe(CC2500_SIDLE);
CC2500_WriteReg(CC2500_0A_CHANNR, (rf_ch_num+1)*3);
CC2500_Strobe(CC2500_SCAL);
}
static void __attribute__((unused)) HOTT_tune_chan_fast()
{
CC2500_Strobe(CC2500_SIDLE);
CC2500_WriteReg(CC2500_0A_CHANNR, (rf_ch_num+1)*3);
CC2500_WriteReg(CC2500_25_FSCAL1, calData[rf_ch_num]);
}
static void __attribute__((unused)) HOTT_tune_freq()
{
if ( prev_option != option )
{
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
CC2500_WriteReg(CC2500_0F_FREQ0, HOTT_FREQ0_VAL + HOTT_COARSE);
prev_option = option ;
phase = HOTT_START; // Restart the tune process if option is changed to get good tuned values
}
}
const uint8_t PROGMEM HOTT_hop[][HOTT_NUM_RF_CHANNELS]=
{ { 48, 37, 16, 62, 9, 50, 42, 22, 68, 0, 55, 35, 21, 74, 1, 56, 31, 20, 70, 11, 45, 32, 24, 71, 8, 54, 38, 26, 61, 13, 53, 30, 15, 65, 7, 52, 34, 28, 60, 3, 47, 39, 18, 69, 2, 49, 44, 23, 72, 5, 51, 43, 19, 64, 12, 46, 33, 17, 67, 6, 58, 36, 29, 73, 14, 57, 41, 25, 63, 4, 59, 40, 27, 66, 10 },
{ 50, 23, 5, 34, 67, 53, 22, 12, 39, 62, 51, 21, 10, 33, 63, 59, 16, 1, 43, 66, 49, 19, 8, 30, 71, 47, 24, 2, 35, 68, 45, 25, 14, 41, 74, 55, 18, 4, 32, 61, 54, 17, 11, 31, 72, 52, 28, 6, 38, 65, 46, 15, 9, 40, 60, 48, 26, 3, 37, 70, 58, 29, 0, 36, 64, 56, 20, 7, 42, 69, 57, 27, 13, 44, 73 },
{ 73, 51, 39, 18, 9, 64, 56, 34, 16, 12, 66, 58, 36, 25, 11, 61, 47, 40, 15, 8, 71, 50, 43, 20, 6, 62, 54, 42, 19, 3, 63, 46, 44, 29, 14, 72, 49, 33, 22, 5, 69, 57, 30, 21, 10, 70, 45, 35, 26, 7, 65, 59, 31, 28, 1, 67, 48, 32, 24, 0, 60, 55, 41, 17, 2, 74, 52, 38, 27, 4, 68, 53, 37, 23, 13 },
{ 52, 60, 40, 21, 14, 50, 72, 41, 23, 13, 59, 61, 39, 16, 6, 58, 66, 33, 17, 5, 55, 64, 43, 20, 12, 54, 74, 35, 29, 3, 46, 63, 37, 22, 10, 48, 65, 31, 27, 9, 49, 73, 38, 24, 11, 56, 70, 32, 15, 1, 51, 71, 44, 18, 8, 45, 67, 36, 25, 7, 57, 62, 34, 28, 2, 53, 69, 42, 19, 4, 47, 68, 30, 26, 0 },
{ 50, 16, 34, 6, 71, 51, 24, 40, 7, 68, 57, 27, 33, 14, 70, 55, 26, 30, 5, 74, 47, 28, 44, 11, 67, 49, 15, 32, 9, 61, 52, 22, 37, 13, 66, 59, 18, 42, 3, 62, 46, 29, 31, 12, 60, 48, 19, 38, 1, 72, 58, 17, 36, 4, 64, 53, 21, 39, 0, 63, 56, 20, 41, 2, 65, 45, 25, 35, 10, 69, 54, 23, 43, 8, 73 },
{ 55, 38, 12, 62, 23, 52, 44, 3, 66, 18, 54, 36, 10, 74, 16, 56, 42, 9, 70, 17, 58, 33, 5, 69, 20, 50, 40, 1, 63, 24, 53, 37, 13, 65, 15, 48, 34, 4, 61, 22, 57, 31, 6, 64, 26, 46, 35, 11, 72, 21, 47, 30, 7, 68, 29, 45, 32, 8, 60, 19, 49, 43, 2, 67, 27, 51, 39, 0, 71, 28, 59, 41, 14, 73, 25 },
{ 70, 32, 18, 10, 58, 69, 38, 22, 2, 54, 67, 36, 19, 12, 57, 62, 34, 20, 14, 52, 63, 41, 15, 3, 51, 73, 42, 28, 6, 48, 60, 43, 29, 5, 45, 64, 31, 17, 4, 56, 65, 35, 26, 13, 53, 61, 37, 23, 1, 49, 68, 40, 16, 9, 47, 71, 39, 25, 7, 50, 66, 33, 24, 8, 59, 72, 44, 27, 11, 46, 74, 30, 21, 0, 55 },
{ 6, 45, 71, 27, 44, 10, 46, 74, 22, 32, 0, 55, 69, 21, 33, 4, 50, 66, 18, 38, 7, 57, 62, 19, 36, 1, 48, 70, 20, 40, 8, 47, 68, 15, 43, 2, 58, 61, 26, 42, 3, 56, 72, 23, 34, 14, 54, 67, 16, 37, 5, 59, 64, 24, 30, 12, 52, 65, 25, 39, 13, 49, 73, 17, 31, 9, 53, 60, 28, 35, 11, 51, 63, 29, 41 },
{ 31, 65, 50, 20, 13, 37, 66, 45, 23, 5, 32, 69, 54, 19, 7, 39, 74, 52, 27, 1, 42, 64, 53, 22, 4, 43, 70, 58, 16, 3, 40, 71, 57, 17, 0, 35, 63, 56, 18, 9, 44, 72, 51, 21, 6, 33, 67, 46, 25, 11, 30, 73, 55, 15, 8, 36, 62, 48, 24, 10, 41, 60, 49, 29, 14, 34, 61, 47, 26, 2, 38, 68, 59, 28, 12 },
{ 67, 22, 49, 36, 13, 64, 28, 57, 37, 6, 65, 29, 46, 39, 3, 70, 26, 45, 35, 1, 62, 24, 58, 34, 10, 68, 19, 53, 33, 4, 66, 21, 52, 31, 7, 74, 18, 47, 32, 5, 61, 16, 51, 38, 8, 72, 23, 55, 30, 12, 73, 17, 59, 44, 0, 60, 15, 50, 43, 14, 63, 27, 48, 42, 11, 71, 20, 54, 41, 9, 69, 25, 56, 40, 2 },
{ 19, 38, 14, 66, 57, 18, 44, 7, 74, 48, 23, 30, 6, 71, 58, 26, 32, 5, 61, 46, 20, 34, 0, 68, 45, 24, 36, 1, 70, 50, 27, 33, 10, 63, 52, 16, 42, 9, 65, 51, 15, 41, 11, 64, 53, 22, 37, 3, 60, 56, 28, 35, 4, 67, 49, 17, 39, 13, 69, 54, 25, 43, 2, 73, 55, 21, 31, 8, 62, 47, 29, 40, 12, 72, 59 },
{ 4, 52, 64, 28, 44, 14, 46, 74, 16, 32, 11, 50, 68, 27, 36, 0, 47, 70, 26, 34, 13, 57, 61, 18, 38, 6, 56, 62, 19, 40, 5, 58, 67, 17, 31, 12, 54, 63, 22, 33, 3, 53, 72, 21, 41, 10, 48, 66, 15, 35, 7, 45, 60, 20, 37, 9, 51, 69, 25, 42, 2, 59, 71, 24, 39, 1, 55, 65, 23, 30, 8, 49, 73, 29, 43 },
{ 44, 66, 19, 1, 56, 35, 62, 20, 4, 54, 39, 70, 24, 5, 55, 31, 74, 26, 12, 58, 32, 60, 17, 10, 45, 37, 63, 22, 3, 50, 33, 64, 16, 7, 51, 34, 61, 21, 8, 48, 38, 68, 29, 0, 46, 36, 72, 28, 14, 49, 42, 69, 25, 6, 57, 43, 65, 18, 2, 52, 30, 71, 23, 13, 47, 41, 67, 15, 9, 53, 40, 73, 27, 11, 59 },
{ 12, 16, 36, 46, 69, 6, 20, 44, 58, 62, 11, 19, 34, 48, 71, 1, 18, 42, 50, 74, 3, 25, 31, 47, 65, 0, 24, 33, 45, 72, 2, 23, 35, 56, 64, 10, 22, 38, 49, 63, 7, 26, 37, 51, 70, 14, 21, 30, 53, 67, 5, 15, 40, 52, 66, 9, 17, 39, 55, 60, 13, 27, 41, 54, 73, 4, 28, 32, 57, 61, 8, 29, 43, 59, 68 },
{ 63, 42, 18, 2, 57, 71, 34, 22, 10, 48, 67, 36, 25, 4, 46, 60, 31, 28, 6, 47, 74, 37, 15, 0, 55, 65, 32, 24, 12, 56, 66, 40, 27, 14, 52, 62, 38, 19, 3, 50, 73, 33, 29, 11, 53, 61, 35, 16, 7, 58, 72, 41, 26, 5, 59, 69, 30, 20, 9, 51, 68, 44, 23, 1, 49, 70, 39, 17, 8, 54, 64, 43, 21, 13, 45 },
{ 52, 1, 71, 17, 36, 47, 7, 64, 26, 32, 53, 5, 60, 20, 42, 57, 2, 66, 18, 34, 56, 4, 63, 24, 35, 46, 13, 72, 22, 30, 48, 0, 67, 21, 39, 50, 3, 74, 16, 31, 59, 14, 61, 23, 37, 45, 6, 65, 19, 44, 51, 11, 62, 27, 41, 55, 9, 68, 15, 38, 58, 8, 70, 29, 40, 54, 10, 69, 28, 33, 49, 12, 73, 25, 43 }
};
const uint16_t PROGMEM HOTT_hop_val[] = { 0xC06B, 0xC34A, 0xDB24, 0x8E09, 0x272E, 0x217F, 0x155B, 0xEDE8, 0x1D31, 0x0986, 0x56F7, 0x6454, 0xC42D, 0x01D2, 0xC253, 0x1180 };
static void __attribute__((unused)) HOTT_init()
{
packet[0] = pgm_read_word_near( &HOTT_hop_val[num_ch] );
packet[1] = pgm_read_word_near( &HOTT_hop_val[num_ch] )>>8;
for(uint8_t i=0; i<HOTT_NUM_RF_CHANNELS; i++)
hopping_frequency[i]=pgm_read_byte_near( &HOTT_hop[num_ch][i] );
#ifdef HOTT_FORCE_ID
memcpy(rx_tx_addr,"\x7C\x94\x00\x0D\x50",5); //TX1
memcpy(rx_tx_addr,"\xEA\x4D\x00\x01\x50",5); //TX2
#endif
memset(&packet[30],0xFF,9);
packet[39]=0x07; // unknown and constant
if(IS_BIND_IN_PROGRESS)
{
memset(&packet[40],0xFA,5);
memcpy(&packet[45],rx_tx_addr,5);
}
else
{
memcpy(&packet[40],rx_tx_addr,5);
uint16_t addr=HOTT_EEPROM_OFFSET+RX_num*5;
debug("RXID: ");
for(uint8_t i=0;i<5;i++)
{
packet[45+i]=eeprom_read_byte((EE_ADDR)(addr+i));
debug(" %02X",packet[45+i]);
}
debugln("");
}
}
static void __attribute__((unused)) HOTT_prep_data_packet()
{
static uint8_t upper=0;
packet[2] = hopping_frequency_no;
packet[3] = upper; // used for failsafe and upper channels (only supporting 16 channels)
#ifdef FAILSAFE_ENABLE
static uint8_t failsafe_count=0;
if(IS_FAILSAFE_VALUES_on && IS_BIND_DONE)
{
failsafe_count++;
if(failsafe_count>=3)
{
FAILSAFE_VALUES_off;
failsafe_count=0;
}
}
else
failsafe_count=0;
#endif
// Channels value are PPM*2, -100%=1100µs, +100%=1900µs, order TAER
uint16_t val;
for(uint8_t i=4;i<28;i+=2)
{
uint8_t ch=(i-4)>>1;
if(upper && ch >= 8)
ch+=4; // when upper swap CH9..CH12 by CH13..16
val=Channel_data[ch];
val=(((val<<2)+val)>>2)+860*2; // value range 860<->2140 *2 <-> -125%<->+125%
#ifdef FAILSAFE_ENABLE
if(failsafe_count==1)
{ // first failsafe packet
packet[3] |= 0x40;
uint16_t fs=Failsafe_data[ch];
if( fs == FAILSAFE_CHANNEL_HOLD || fs == FAILSAFE_CHANNEL_NOPULSES)
val|=0x8000; // channel hold flag
else
{
val=(((fs<<2)+fs)>>2)+860*2; // value range 860<->2140 *2 <-> -125%<->+125%
val|=0x4000; // channel specific position flag
}
}
else if(failsafe_count==2)
{ // second failsafe packet=timing?
packet[3] |= 0x50;
if(i==4)
val=2;
else
val=0;
}
#endif
packet[i] = val;
packet[i+1] = val>>8;
}
upper ^= 0x01; // toggle between CH9..CH12 and CH13..16
#ifdef HOTT_FW_TELEMETRY
if(IS_BIND_DONE)
{
static uint8_t prev_SerialRX_val=0;
if(HoTT_SerialRX)
{//Text mode
uint8_t sensor=HoTT_SerialRX_val&0xF0;
if((sensor&0x80) && sensor!=0xF0 && (HoTT_SerialRX_val&0x0F) >= 0x07)
{//Valid Text query
if(sensor==0x80) HoTT_SerialRX_val&=0x0F; // RX only
if(prev_SerialRX_val!=HoTT_SerialRX_val)
{
prev_SerialRX_val=HoTT_SerialRX_val;
packet[28] = HoTT_SerialRX_val; // send the button being pressed only once
}
else
packet[28] = HoTT_SerialRX_val | 0x0F; // no button pressed
packet[29] = 0x01; // 0x01->Text config menu
}
}
else
{
packet[28] = 0x89+HOTT_sensor_cur; // 0x89/8A/8B/8C/8D/8E during normal packets
if(sub_protocol == HOTT_SYNC)
packet[29] = ((HOTT_sensor_seq+1)<<3) | 2; // Telemetry packet sequence
else
packet[29] = 0x02;
//debugln("28=%02X,29=%02X",packet[28],packet[29]);
}
}
else
#endif
{
packet[28] = 0x80; // no sensor
packet[29] = 0x02; // unknown 0x02 when bind starts then when RX replies cycle in sequence 0x1A/22/2A/0A/12, 0x02 during normal packets, 0x01->text config menu, 0x0A->no more RX telemetry
}
CC2500_WriteReg(CC2500_06_PKTLEN, HOTT_TX_PACKET_LEN);
CC2500_WriteRegisterMulti(CC2500_3F_TXFIFO, packet, HOTT_TX_PACKET_LEN);
#if 0
debug("RF:%02X P:",rf_ch_num);
for(uint8_t i=0;i<HOTT_TX_PACKET_LEN;i++)
debug(" %02X",packet[i]);
debugln("");
#endif
hopping_frequency_no++;
hopping_frequency_no %= HOTT_NUM_RF_CHANNELS;
rf_ch_num=hopping_frequency[hopping_frequency_no];
}
uint16_t ReadHOTT()
{
switch(phase)
{
case HOTT_START:
rf_ch_num = 0;
HOTT_tune_chan();
phase = HOTT_CAL;
return 2000;
case HOTT_CAL:
calData[rf_ch_num]=CC2500_ReadReg(CC2500_25_FSCAL1);
if (++rf_ch_num < HOTT_NUM_RF_CHANNELS)
HOTT_tune_chan();
else
{
hopping_frequency_no = 0;
rf_ch_num=hopping_frequency[hopping_frequency_no];
counter = 0;
CC2500_SetTxRxMode(RX_EN);
phase = HOTT_DATA1;
}
return 2000;
/* Work cycle: 10ms */
case HOTT_DATA1:
//Set RF freq, setup LBT and prep packet
#ifdef MULTI_SYNC
telemetry_set_input_sync(HOTT_PACKET_PERIOD);
#endif
//Clear all
CC2500_Strobe(CC2500_SIDLE);
CC2500_Strobe(CC2500_SNOP);
CC2500_Strobe(CC2500_SFTX);
CC2500_Strobe(CC2500_SFRX);
CC2500_WriteReg(CC2500_04_SYNC1, 0xD3);
CC2500_WriteReg(CC2500_05_SYNC0, 0x91);
//Set RF freq
HOTT_tune_freq();
HOTT_tune_chan_fast();
//Setup LBT
CC2500_WriteReg(CC2500_1B_AGCCTRL2, 0xFF);
CC2500_WriteReg(CC2500_1C_AGCCTRL1, 0x0C);
CC2500_Strobe(CC2500_SRX);
//Prep packet
HOTT_prep_data_packet();
//Listen
CC2500_WriteReg(CC2500_17_MCSM1, 0x10); //??
CC2500_WriteReg(CC2500_18_MCSM0, 0x18); //??
CC2500_Strobe(CC2500_SRX); //??
phase++; //HOTT_DATA2
return 1095;
case HOTT_DATA2:
//LBT
if((CC2500_ReadReg(CC2500_38_PKTSTATUS | CC2500_READ_BURST)&0x10)==0)
{ //Channel is busy
LBT_POWER_on; // Reduce to low power before transmitting
debugln("Busy %d",rf_ch_num);
}
CC2500_WriteReg(CC2500_17_MCSM1, 0x00); //??
CC2500_WriteReg(CC2500_18_MCSM0, 0x08); //??
CC2500_SetPower();
//Send packet
CC2500_SetTxRxMode(TX_EN);
CC2500_Strobe(CC2500_STX);
phase++; //HOTT_RX1
return 3880;
case HOTT_RX1:
//Clear all
CC2500_Strobe(CC2500_SIDLE);
CC2500_Strobe(CC2500_SFTX);
CC2500_Strobe(CC2500_SFRX);
//RX
if(packet[29] & 0xF8)
{// binary telemetry
CC2500_WriteReg(CC2500_04_SYNC1, 0x2C);
CC2500_WriteReg(CC2500_05_SYNC0, 0x6E);
}
CC2500_SetTxRxMode(RX_EN);
CC2500_WriteReg(CC2500_1B_AGCCTRL2, 0xC7);
CC2500_WriteReg(CC2500_1C_AGCCTRL1, 0x09);
CC2500_WriteReg(CC2500_06_PKTLEN, HOTT_RX_PACKET_LEN);
CC2500_Strobe(CC2500_SRX);
phase++; //HOTT_RX2
return 4025;
case HOTT_RX2:
//Telemetry
len = CC2500_ReadReg(CC2500_3B_RXBYTES | CC2500_READ_BURST) & 0x7F;
if (len==HOTT_RX_PACKET_LEN+2)
{
CC2500_ReadData(packet_in, len);
if((packet_in[HOTT_RX_PACKET_LEN+1]&0x80) && memcmp(rx_tx_addr,packet_in,5)==0)
{ // CRC OK and TX ID matches
if(IS_BIND_IN_PROGRESS)
{
//GR-16: D4 20 F2 E6 F6 31 BD 01 00 90 00 FF 03 00 9E 1B 00 00 00 00 00 00
//GR-12L: D4 20 F2 E6 F6 6E EE 01 00 B1 00 FF 03 00 0E 08 10 00 02 00 00 00
//Vector: D4 20 F2 E6 F6 00 00 3A 01 A1 00 00 1A 24 35 1A 00 24 00 00 00 1A
// -----TXID----- -----RXID----- ---------------Unknown-------------
debug("B:");
for(uint8_t i=0;i<HOTT_RX_PACKET_LEN;i++)
debug(" %02X", packet_in[i]);
debugln("");
uint16_t addr=HOTT_EEPROM_OFFSET+RX_num*5;
for(uint8_t i=0; i<5; i++)
eeprom_write_byte((EE_ADDR)(addr+i),packet_in[5+i]);
BIND_DONE;
HOTT_init();
}
#ifdef HOTT_FW_TELEMETRY
else
{ //Telemetry
// [0..4] = TXID
// [5..9] = RXID
// [10] = 0x40 bind, 0x00 normal, 0x80 config menu
// [11] = telmetry pages. For sensors 0x00 to 0x04, for config mennu 0x00 to 0x12.
// Normal telem page 0 = 0x55, 0x32, 0x38, 0x55, 0x64, 0x32, 0xD0, 0x07, 0x00, 0x55
// Page 0 [12] = [21] = [15]
// Page 0 [13] = RX_Voltage Cur*10 in V
// Page 0 [14] = Temperature-20 in °C
// Page 0 [15] = RX_RSSI CC2500 formated (a<128:a/2-71dBm, a>=128:(a-256)/2-71dBm)
// Page 0 [16] = RX_LQI in %
// Page 0 [17] = RX_Voltage Min*10 in V
// Page 0 [18,19] = [19]<<8+[18]=max lost packet time in ms, max value seems 2s=0x7D0
// Page 0 [20] = 0x00 ??
//
// Config menu consists of the different telem pages put all together
// Page X [12] = seems like all the telem pages with the same value are going together to make the full config menu text. Seen so far 'a', 'b', 'c', 'd'
// Page X [13..21] = 9 ascii chars to be displayed, char is highlighted when ascii|0x80
// Screen display is 21 characters large which means that once the first 21 chars are filled go to the begining of the next line
// Menu commands are sent through TX packets:
// packet[28]= 0xXF=>no key press, 0xXD=>down, 0xXB=>up, 0xX9=>enter, 0xXE=>right, 0xX7=>left with X=0 or D
// packet[29]= 0xX1/0xX9 with X=0 or X counting 0,1,1,2,2,..,9,9
// Reduce telemetry to 14 bytes
packet_in[0]= packet_in[HOTT_RX_PACKET_LEN];
packet_in[1]= TX_LQI;
bool send_telem=true;
if(packet[29]==1)
{ //Text mode
HOTT_sensor_pages = 0;
HOTT_sensor_valid = false;
packet_in[10] = 0x80; // Marking telem Text mode
packet_in[12] = 0;
for(uint8_t i=0; i<HOTT_SENSOR_TYPE;i++)
packet_in[12] |= HOTT_sensor_ok[i]<<i; // Send detected sensors
}
else
{ //Binary sensor
HOTT_sensor_seq++; // Increment RX sequence counter
HOTT_sensor_seq %= 5; // 5 pages in binary mode per sensor
if(state==0 && HOTT_sensor_ok[0]==false && HOTT_sensor_ok[1]==false && HOTT_sensor_ok[2]==false && HOTT_sensor_ok[3]==false && HOTT_sensor_ok[4]==false && HOTT_sensor_ok[5]==false)
HOTT_sensor_seq=0; // No sensors always ask page 0
if(state)
state--;
if( packet_in[11]==1 ) // Page 1
{
if( packet_in[12] == (HOTT_sensor_cur+9)<<4 )
{ //Requested sensor is sending: 0x90/A0/B0/C0/D0/E0
HOTT_sensor_pages = 0; // Sensor first page received
HOTT_sensor_valid = true; // Data from the expected sensor is being received
HOTT_sensor_ok[(packet_in[12]>>4)-9]=true;
}
else
{
HOTT_sensor_valid = false;
HOTT_sensor_pages = 0x1E; // Switch to next sensor
}
}
if(packet_in[11])
{ //Page != 0
if(HOTT_sensor_valid) // Valid
{
packet_in[10] = HOTT_sensor_cur+9; // Mark telem with sensor ID
HOTT_sensor_pages |= 1<<packet_in[11]; // Page received
}
else
send_telem=false; // Do not send
}
else
packet_in[10]=0; // Mark telem with sensor 0=RX
}
debug("T%d=",send_telem);
for(uint8_t i=10;i < HOTT_RX_PACKET_LEN; i++)
{
packet_in[i-8]=packet_in[i];
debug(" %02X",packet_in[i]);
}
debugln("");
if(send_telem)
telemetry_link=2;
if((HOTT_sensor_pages&0x1E) == 0x1E) // All 4 pages received from the sensor
{ //Next sensor
uint8_t loop=0;
do
{
HOTT_sensor_cur++; // Switch to next sensor
HOTT_sensor_cur %= HOTT_SENSOR_TYPE;
loop++;
}
while(HOTT_sensor_ok[HOTT_sensor_cur]==false && loop<HOTT_SENSOR_TYPE+1 && state==0);
HOTT_sensor_valid=false;
HOTT_sensor_pages=0;
HOTT_sensor_seq=0;
debugln("Sensor:%02X",HOTT_sensor_cur+9);
}
}
pps_counter++;
#endif
}
}
#ifdef HOTT_FW_TELEMETRY
packet_count++;
if(packet_count>=100)
{
TX_LQI=pps_counter;
if(pps_counter==0)
{ // lost connection with RX, power cycle? research sensors again.
HOTT_sensor_cur=3;
HOTT_sensor_seq=0;
HOTT_sensor_valid=false;
for(uint8_t i=0; i<HOTT_SENSOR_TYPE;i++)
HOTT_sensor_ok[i]=false; // no sensors detected
state=HOTT_SENSOR_SEARCH_PERIOD;
}
pps_counter=packet_count=0;
}
#endif
phase=HOTT_DATA1;
return 1000;
}
return 0;
}
uint16_t initHOTT()
{
num_ch=random(0xfefefefe)%16;
HOTT_init();
HOTT_rf_init();
#ifdef HOTT_FW_TELEMETRY
HoTT_SerialRX_val=0;
HoTT_SerialRX=false;
HOTT_sensor_cur=3;
HOTT_sensor_pages=0;
HOTT_sensor_valid=false;
HOTT_sensor_seq=0;
for(uint8_t i=0; i<HOTT_SENSOR_TYPE;i++)
HOTT_sensor_ok[i]=false; // no sensors detected
packet_count=0;
state=HOTT_SENSOR_SEARCH_PERIOD;
#endif
phase = HOTT_START;
return 10000;
}
#endif

View File

@@ -0,0 +1,112 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// Compatible with FZ-410 TX
#if defined(HEIGHT_A7105_INO)
#include "iface_a7105.h"
//#define HEIGHT_FORCEID
#define HEIGHT_BIND_COUNT 220 // 5 sec
#define HEIGHT_BIND_CH 0x18 // TX, RX for bind end is 0x17
static void __attribute__((unused)) HEIGHT_build_packet()
{
packet[0] = 0xA5;
packet[1] = rx_tx_addr[2];
packet[2] = rx_tx_addr[3];
packet[3] = convert_channel_8b(AILERON); //00..80..FF
packet[4] = convert_channel_8b(ELEVATOR); //00..80..FF
packet[5] = convert_channel_8b(THROTTLE); //00..FF
packet[6] = convert_channel_8b(RUDDER); //00..80..FF
packet[7] = convert_channel_8b(CH5); //00..80..FF
if(sub_protocol == HEIGHT_8CH)
{
packet[8] = convert_channel_8b(CH6); //00..80..FF
packet[9] = convert_channel_8b(CH7); //00..80..FF
packet[10] = convert_channel_8b(CH8); //00..80..FF
}
}
uint16_t ReadHeight()
{
#ifndef FORCE_HEIGHT_TUNING
A7105_AdjustLOBaseFreq(1);
#endif
if(IS_BIND_IN_PROGRESS)
{
packet[0] = 0x1B;
packet[1] = rx_tx_addr[2];
packet[2] = rx_tx_addr[3];
A7105_WriteData(3, HEIGHT_BIND_CH);
if (bind_counter--==0)
BIND_DONE;
return 22700;
}
else
{
if(phase>19)
{
phase=0;
#ifdef MULTI_SYNC
telemetry_set_input_sync(20*1500);
#endif
HEIGHT_build_packet();
A7105_WriteData(sub_protocol?11:8, hopping_frequency[0]);
A7105_SetPower();
}
else
{
A7105_WriteReg(A7105_0F_PLL_I, hopping_frequency[(phase&0x02)>>1]);
A7105_Strobe(A7105_TX);
}
phase++;
}
return 1500;
}
uint16_t initHeight()
{
A7105_Init();
hopping_frequency[0]=((random(0xfefefefe) & 0x0F)+2)<<2;
hopping_frequency[1]=hopping_frequency[0]+0x50;
#ifdef HEIGHT_FORCEID
rx_tx_addr[2]=0x35;
rx_tx_addr[3]=0xD0;
hopping_frequency[0]=0x18;
hopping_frequency[1]=0x68;
#endif
phase=255;
bind_counter = HEIGHT_BIND_COUNT;
return 2400;
}
#endif
// Normal packet is 8 bytes: 0xA5 0xAF 0x59 0x84 0x7A 0x00 0x80 0xFF
// Protocol is using AETR channel order, 1 byte per channel 00..80..FF including trim. Channels are in packet [3,4,5,6].
// packet[0,1,2,7] values are constant in normal mode.
// packet[0]=0xA5 -> normal mode
// packet[1,2] ->ID
// packet[7]=0xFF -> ???
// Channel values are updated every 30ms which is quite slow, slower than PPM...
// Packets are sent every 1500µs on 2 different channels. 2 times on first channel, 2 times on second channel and restart. The channels are changing between the files 0x08, 0x58 and 0x18, 0x68.
//
// Bind is sending 3 bytes on channel 0x18: 0x1B 0x35 0xD0 every 22.7ms
// packet[0]=0x1B -> bind mode
// packet[1,2] ->ID
// It listens for the model on channel 0x17 and recieves 0x1B 0x35 0xD0 when the plane accepts bind.

View File

@@ -123,8 +123,8 @@ static void __attribute__((unused)) build_ch_data()
for (i = 0; i< 8; i++) {
j=CH_AETR[i];
temp=convert_channel_16b_limit(j,0,1000);
if (j == THROTTLE) // It is clear that hisky's throttle stick is made reversely, so I adjust it here on purpose
temp = 1000 -temp;
if (j == CH3) // It is clear that hisky's throttle stick is made reversely, so I adjust it here on purpose
temp = 1000 - temp;
if (j == CH7)
temp = temp < 400 ? 0 : 3; // Gyro mode, 0 - 6 axis, 3 - 3 axis
packet[i] = (uint8_t)(temp&0xFF);
@@ -151,6 +151,9 @@ uint16_t hisky_cb()
phase=6;
break;
case 7: // build packet
#ifdef MULTI_SYNC
telemetry_set_input_sync(5000);
#endif
#ifdef FAILSAFE_ENABLE
if(IS_FAILSAFE_VALUES_on && hopping_frequency_no==0)
{ // send failsafe every 100ms
@@ -159,6 +162,7 @@ uint16_t hisky_cb()
convert_failsafe_HK310(CH5, &packet[4],&packet[5]);
packet[7]=0xAA;
packet[8]=0x5A;
FAILSAFE_VALUES_off;
}
else
#endif
@@ -216,6 +220,9 @@ uint16_t hisky_cb()
break;
case 7:
//Build normal packet
#ifdef MULTI_SYNC
telemetry_set_input_sync(9000);
#endif
build_ch_data();
break;
case 8:

View File

@@ -54,7 +54,6 @@ static void __attribute__((unused)) HITEC_CC2500_init()
for (uint8_t i = 0; i < 39; ++i)
CC2500_WriteReg(i, pgm_read_byte_near(&HITEC_init_values[i]));
prev_option = option;
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
CC2500_SetTxRxMode(TX_EN);
@@ -146,6 +145,11 @@ static void __attribute__((unused)) HITEC_build_packet()
break;
case 0x7B:
packet[5]=hopping_frequency[13]>>1; // if not there the Optima link is jerky...
packet[14]=0x2A;
packet[15]=0x46; // unknown but if 0x45 then 17=0x46, if 0x46 then 17=0x46 or 0x47, if 0x47 then 0x45 or 0x46
packet[16]=0x2A;
packet[17]=0x47;
packet[18]=0x2A;
break;
}
if(sub_protocol==MINIMA)
@@ -160,7 +164,7 @@ static void __attribute__((unused)) HITEC_build_packet()
packet[0] = 0x1A; // 26 bytes to follow
for(uint8_t i=0;i<9;i++)
{
uint16_t ch = convert_channel_16b_nolimit(i,0x1B87,0x3905);
uint16_t ch = convert_channel_16b_nolimit(i,0x1B87,0x3905,false);
packet[4+2*i] = ch >> 8;
packet[5+2*i] = ch & 0xFF;
}
@@ -259,6 +263,9 @@ uint16_t ReadHITEC()
case HITEC_PREP:
if ( prev_option == option )
{ // No user frequency change
#ifdef MULTI_SYNC
telemetry_set_input_sync(HITEC_PACKET_PERIOD);
#endif
HITEC_change_chan_fast();
hopping_frequency_no++;
if(hopping_frequency_no>=rf_ch_num)
@@ -285,32 +292,32 @@ uint16_t ReadHITEC()
return HITEC_RX1_TIMING;
case HITEC_RX2:
uint8_t len=CC2500_ReadReg(CC2500_3B_RXBYTES | CC2500_READ_BURST) & 0x7F;
if(len && len<MAX_PKT)
if(len && len<TELEMETRY_BUFFER_SIZE)
{ // Something has been received
CC2500_ReadData(pkt, len);
if( (pkt[len-1] & 0x80) && pkt[0]==len-3 && pkt[1]==rx_tx_addr[1] && pkt[2]==rx_tx_addr[2] && pkt[3]==rx_tx_addr[3])
CC2500_ReadData(packet_in, len);
if( (packet_in[len-1] & 0x80) && packet_in[0]==len-3 && packet_in[1]==rx_tx_addr[1] && packet_in[2]==rx_tx_addr[2] && packet_in[3]==rx_tx_addr[3])
{ //valid crc && length ok && tx_id ok
debug("RX:l=%d",len);
for(uint8_t i=0;i<len;i++)
debug(",%02X",pkt[i]);
debug(",%02X",packet_in[i]);
if(IS_BIND_IN_PROGRESS)
{
if(len==13) // Bind packets have a length of 13
{ // bind packet: 0A,00,E5,F2,7X,05,06,07,08,09,00
debug(",bind");
boolean check=true;
for(uint8_t i=5;i<=10;i++)
if(pkt[i]!=i%10) check=false;
if((pkt[4]&0xF0)==0x70 && check)
for(uint8_t i=5;i<10;i++)
if(packet_in[i]!=i) check=false;
if((packet_in[4]&0xF0)==0x70 && check)
{
bind_phase=pkt[4]+1;
bind_phase=packet_in[4]+1;
if(bind_phase==0x7B)
bind_counter=164; // in dumps the RX stops to reply at 0x7B so wait a little and exit
}
}
}
else
if( len==15 && pkt[4]==0 && pkt[12]==0 )
if( len==15 && packet_in[4]==0 && packet_in[12]==0 )
{ // Valid telemetry packets
// no station:
// 0C,1C,A1,2B,00,00,00,00,00,00,00,8D,00,64,8E -> 00 8D=>RX battery voltage 0x008D/28=5.03V
@@ -323,40 +330,42 @@ uint16_t ReadHITEC()
// 0C,1C,A1,2B,00,16,00,00,00,00,00,16,00,2C,8E
// 0C,1C,A1,2B,00,17,00,00,00,42,44,17,00,48,8D -> 42=>temperature3 0x42-0x28=26°C,44=>temperature4 0x44-0x28=28°C
// 0C,1C,A1,2B,00,18,00,00,00,00,00,18,00,50,92
debug(",telem,%02x",pkt[14]&0x7F);
debug(",telem,%02x",packet_in[14]&0x7F);
#if defined(HITEC_FW_TELEMETRY) || defined(HITEC_HUB_TELEMETRY)
TX_RSSI = packet_in[13];
if(TX_RSSI >=128)
TX_RSSI -= 128;
else
TX_RSSI += 128;
TX_LQI = packet_in[14]&0x7F;
#endif
#if defined(HITEC_FW_TELEMETRY)
if(sub_protocol==OPT_FW)
{
// 8 bytes telemetry packets => see at the end of this file how to fully decode it
pkt[0]=pkt[13]; // TX RSSI
pkt[1]=pkt[14]&0x7F; // TX LQI
uint8_t offset=pkt[5]==0?1:0;
packet_in[0]=TX_RSSI; // TX RSSI
packet_in[1]=TX_LQI; // TX LQI
uint8_t offset=packet_in[5]==0?1:0;
for(uint8_t i=5;i < 11; i++)
pkt[i-3]=pkt[i+offset]; // frame number followed by 5 bytes of data
packet_in[i-3]=packet_in[i+offset]; // frame number followed by 5 bytes of data
telemetry_link=2; // telemetry forward available
}
#endif
#if defined(HITEC_HUB_TELEMETRY)
if(sub_protocol==OPT_HUB)
{
switch(pkt[5]) // telemetry frame number
switch(packet_in[5]) // telemetry frame number
{
case 0x00:
v_lipo1 = (pkt[10])<<5 | (pkt[11])>>3; // calculation in float is volt=(pkt[10]<<8+pkt[11])/28
v_lipo1 = (packet_in[10])<<5 | (packet_in[11])>>3; // calculation in float is volt=(packet_in[10]<<8+packet_in[11])/28
break;
case 0x11:
v_lipo1 = (pkt[9])<<5 | (pkt[10])>>3; // calculation in float is volt=(pkt[9]<<8+pkt[10])/28
v_lipo1 = (packet_in[9])<<5 | (packet_in[10])>>3; // calculation in float is volt=(packet_in[9]<<8+packet_in[10])/28
break;
case 0x18:
v_lipo2 = (pkt[6])<<5 | (pkt[7])>>3; // calculation in float is volt=(pkt[6]<<8+pkt[7])/10
v_lipo2 = (packet_in[6])<<5 | (packet_in[7])>>3; // calculation in float is volt=(packet_in[6]<<8+packet_in[7])/10
break;
}
TX_RSSI = pkt[13];
if(TX_RSSI >=128)
TX_RSSI -= 128;
else
TX_RSSI += 128;
TX_LQI = pkt[14]&0x7F;
telemetry_link=1; // telemetry hub available
}
#endif
@@ -389,10 +398,6 @@ uint16_t initHITEC()
rx_tx_addr[3]=0x6A;
memcpy((void *)hopping_frequency,(void *)"\x00\x3A\x4A\x32\x0C\x58\x2A\x10\x26\x20\x08\x60\x68\x70\x78\x80\x88\x56\x5E\x66\x6E",HITEC_NUM_FREQUENCE);
#endif
#if defined(HITEC_HUB_TELEMETRY)
if(sub_protocol==OPT_HUB)
init_frskyd_link_telemetry();
#endif
phase = HITEC_START;
return 10000;
}
@@ -403,7 +408,7 @@ packet[1] = TX LQI value
packet[2] = frame number
packet[3-7] telemetry data
The frame number takes the following values: 0x00, 0x11, 0x12, ..., 0x18. The frames can be present or not, they also do not have to follow each others.
The frame number takes the following values: 0x00, 0x11, 0x12, ..., 0x1C. The frames can be present or not, they also do not have to follow each others.
Here is a description of the telemetry data for each frame number:
- frame 0x00
data byte 0 -> 0x00 unknown
@@ -414,9 +419,9 @@ data byte 4 -> RX Batt Volt_L => RX Batt=(Volt_H*256+Volt_L)/28
- frame 0x11
data byte 0 -> 0xAF start of frame
data byte 1 -> 0x00 unknown
data byte 2 -> 0x2D frame type but constant here
data byte 3 -> Volt1_H
data byte 4 -> Volt1_L RX Batt=(Volt1_H*256+Volt1_L)/28 V
data byte 2 -> 0x2D station type 0x2D=standard station nitro or electric, 0xAC=advanced station
data byte 3 -> RX Batt Volt_H
data byte 4 -> RX Batt Volt_L => RX Batt=(Volt_H*256+Volt_L)/28
- frame 0x12
data byte 0 -> Lat_sec_H GPS : latitude second
data byte 1 -> Lat_sec_L signed int : 1/100 of second
@@ -431,9 +436,9 @@ data byte 3 -> signed int : +=Est, - = west
data byte 4 -> Temp2 Temperature2=Temp2-40°C
- frame 0x14
data byte 0 -> Speed_H
data byte 1 -> Speed_L Speed=Speed_H*256+Speed_L km/h
data byte 1 -> Speed_L GPS Speed=Speed_H*256+Speed_L km/h
data byte 2 -> Alti_sea_H
data byte 3 -> Alti_sea_L Altitude sea=Alti_sea_H*256+Alti_sea_L m
data byte 3 -> Alti_sea_L GPS Altitude=Alti_sea_H*256+Alti_sea_L m
data byte 4 -> Temp1 Temperature1=Temp1-40°C
- frame 0x15
data byte 0 -> FUEL
@@ -448,15 +453,30 @@ data byte 2 -> Date_day
data byte 3 -> Time_hour GPS Time
data byte 4 -> Time_min
- frame 0x17
data byte 0 -> 0x00 COURSEH
data byte 1 -> 0x00 COURSEL GPS Course = COURSEH*256+COURSEL
data byte 2 -> 0x00 GPS count
data byte 0 -> COURSEH
data byte 1 -> COURSEL GPS heading = COURSEH*256+COURSEL in degrees
data byte 2 -> Count GPS satellites
data byte 3 -> Temp3 Temperature3=Temp2-40°C
data byte 4 -> Temp4 Temperature4=Temp3-40°C
- frame 0x18
data byte 1 -> Volt2_H
data byte 2 -> Volt2_L Volt2=(Volt2_H*256+Volt2_L)/10 V
data byte 3 -> AMP1_L
data byte 4 -> AMP1_H Amp=(AMP1_H*256+AMP1_L -180)/14 in signed A
data byte 0 -> Volt_L Volt=(Volt_H*256+Volt_L)/10 V
data byte 1 -> Volt_H
data byte 2 -> AMP_L
data byte 3 -> AMP_H Amp=(AMP1_*256+AMP_L -180)/14 in signed A
- frame 0x19 Servo sensor
data byte 0 -> AMP_Servo1 Amp=AMP_Servo1/10 in A
data byte 1 -> AMP_Servo2 Amp=AMP_Servo2/10 in A
data byte 2 -> AMP_Servo3 Amp=AMP_Servo3/10 in A
data byte 3 -> AMP_Servo4 Amp=AMP_Servo4/10 in A
- frame 0x1A
data byte 2 -> ASpeed_H Air speed=ASpeed_H*256+ASpeed_L km/h
data byte 3 -> ASpeed_L
- frame 0x1B Variometer sensor
data byte 0 -> Alti1H
data byte 1 -> Alti1L Altitude unfiltered
data byte 2 -> Alti2H
data byte 3 -> Alti2L Altitude filtered
- frame 0x1C Unknown
- frame 0x22 Unknown
*/
#endif

View File

@@ -38,7 +38,7 @@ enum{
#define HONTAI_POLY 0x8408
static void __attribute__((unused)) crc16(uint8_t *data_p, uint8_t length)
{
uint16_t crc = 0xffff;
crc = 0xffff;
length -= 2;
do
@@ -242,9 +242,14 @@ uint16_t HONTAI_callback()
}
}
else
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
HONTAI_send_packet(0);
}
return sub_protocol == FQ777_951 ? FQ777_951_PACKET_PERIOD : HONTAI_PACKET_PERIOD;
return packet_period;
}
uint16_t initHONTAI()
@@ -253,6 +258,7 @@ uint16_t initHONTAI()
bind_counter = HONTAI_BIND_COUNT;
HONTAI_initialize_txid();
HONTAI_init();
packet_period = sub_protocol == FQ777_951 ? FQ777_951_PACKET_PERIOD : HONTAI_PACKET_PERIOD;
return HONTAI_INITIAL_WAIT;
}
#endif

View File

@@ -376,6 +376,9 @@ uint16_t ReadHubsan()
case DATA_4:
case DATA_5:
if( txState == 0) { // send packet
#ifdef MULTI_SYNC
telemetry_set_input_sync(10000);
#endif
#ifdef HUBSAN_HUB_TELEMETRY
rfMode = A7105_TX;
#endif
@@ -464,9 +467,6 @@ uint16_t initHubsan()
}
packet_count=0;
bind_phase=0;
#ifdef HUBSAN_HUB_TELEMETRY
init_frskyd_link_telemetry();
#endif
return 10000;
}

View File

@@ -59,7 +59,7 @@ static void __attribute__((unused)) j6pro_build_data_packet()
packet[0] = 0xaa; //FIXME what is this?
for (i = 0; i < 12; i++)
{
value = convert_channel_10b(CH_AETR[i]);
value = convert_channel_10b(CH_AETR[i], false);
packet[i+1] = value & 0xff;
upperbits |= (value >> 8) << (i * 2);
}
@@ -111,8 +111,8 @@ static void __attribute__((unused)) cyrf_datainit()
{
/* Use when already bound */
uint8_t sop_idx = (0xff & (cyrfmfg_id[0] + cyrfmfg_id[1] + cyrfmfg_id[2] + cyrfmfg_id[3] - cyrfmfg_id[5])) % 19;
uint16_t crc = (0xff & (cyrfmfg_id[1] - cyrfmfg_id[4] + cyrfmfg_id[5])) |
((0xff & (cyrfmfg_id[2] + cyrfmfg_id[3] - cyrfmfg_id[4] + cyrfmfg_id[5])) << 8);
crc = (0xff & (cyrfmfg_id[1] - cyrfmfg_id[4] + cyrfmfg_id[5])) |
((0xff & (cyrfmfg_id[2] + cyrfmfg_id[3] - cyrfmfg_id[4] + cyrfmfg_id[5])) << 8);
//CYRF_WriteRegister(CYRF_0F_XACT_CFG, 0x24);
CYRF_PROGMEM_ConfigSOPCode(DEVO_j6pro_sopcodes[sop_idx]);
CYRF_ConfigCRCSeed(crc);
@@ -201,7 +201,10 @@ uint16_t ReadJ6Pro()
cyrf_datainit();
phase = J6PRO_CHAN_1;
case J6PRO_CHAN_1:
//Keep transmit power updated
#ifdef MULTI_SYNC
telemetry_set_input_sync(24550);
#endif
//Keep transmit power updated
CYRF_SetPower(0x28);
j6pro_build_data_packet();
//return 3400;

View File

@@ -0,0 +1,195 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// compatible with JJRC345
#if defined(JJRC345_NRF24L01_INO)
#include "iface_nrf24l01.h"
//#define JJRC345_FORCE_ID
#define JJRC345_PACKET_PERIOD 7450 // Timeout for callback in uSec
#define JJRC345_INITIAL_WAIT 500
#define JJRC345_PACKET_SIZE 16
#define JJRC345_RF_BIND_CHANNEL 5
#define SKYTMBLR_RF_BIND_CHANNEL 40
#define JJRC345_BIND_COUNT 500
#define JJRC345_NUM_CHANNELS 4
enum JJRC345_FLAGS {
// flags going to packet[8]
JJRC345_FLAG_HEADLESS = 0x40,
JJRC345_FLAG_RTH = 0x80,
// flags going to packet[9]
SKYTMBLR_FLAG_UNK1 = 0x40,
SKYTMBLR_FLAG_UNK2 = 0x80,
// flags going to packet[10]
SKYTMBLR_FLAG_LED = 0x40,
SKYTMBLR_FLAG_UNK3 = 0x80,
};
static uint8_t __attribute__((unused)) JJRC345_convert_channel(uint8_t num)
{
uint8_t val=convert_channel_8b(num);
// 7E..60..41..01, 80 center, 81..C1..E0..FE
if(val<0x80)
{
val=0x80-val; // 80..01
if(val>0x7E)
val=0x7E; // 7E..01
}
else if(val>0xFE)
val=0xFE; // 81..FE
return val;
}
static void __attribute__((unused)) JJRC345_send_packet()
{
packet[0] = 0x00;
packet[2] = 0x00;
if (IS_BIND_IN_PROGRESS)
{ //00 05 00 0A 46 4A 41 47 00 00 40 46 A5 4A F1 18
packet[1] = (sub_protocol == JJRC345 ? JJRC345_RF_BIND_CHANNEL:SKYTMBLR_RF_BIND_CHANNEL);
packet[4] = hopping_frequency[0];
packet[5] = hopping_frequency[1];
packet[6] = hopping_frequency[2];
packet[7] = hopping_frequency[3];
packet[12] = 0xa5;
}
else
{ //00 41 00 0A 00 80 80 80 00 00 40 46 00 49 F1 18
NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency[hopping_frequency_no]);
hopping_frequency_no++;
hopping_frequency_no %= JJRC345_NUM_CHANNELS;
packet[1] = hopping_frequency[hopping_frequency_no]; // next packet will be sent on this channel
packet[4] = convert_channel_8b(THROTTLE); // throttle: 00..FF
packet[5] = JJRC345_convert_channel(RUDDER); // rudder: 70..60..41..01, 80 center, 81..C1..E0..F0
packet[6] = JJRC345_convert_channel(ELEVATOR); // elevator: 70..60..41..01, 80 center, 81..C1..E0..F0
packet[7] = JJRC345_convert_channel(AILERON); // aileron: 70..60..41..01, 80 center, 81..C1..E0..F0
if(CH5_SW) //Flip
{
if(packet[6]>0xF0)
packet[6]=0xFF;
else if(packet[6]<0x80 && packet[6]>0x70)
packet[6]=0x7F;
if(packet[7]>0xF0)
packet[7]=0xFF;
else if(packet[7]<0x80 && packet[7]>0x70)
packet[7]=0x7F;
}
packet[12] = 0x02; // Rate: 00-01-02
}
packet[3] = 0x00; // Checksum upper bits
packet[8] = 0x00 // Rudder trim, 00 when not used, 01..1F when trimmed left, 20..3F
| GET_FLAG(CH6_SW ,JJRC345_FLAG_HEADLESS) // 0x40 HeadLess
| GET_FLAG(CH7_SW ,JJRC345_FLAG_RTH); // 0x80 RTH
packet[9] = 0x00 // Elevator trim, 00 when not used, 20..25 when trimmed up, 0..1F when trimmed down
| GET_FLAG(CH9_SW ,SKYTMBLR_FLAG_UNK1) // 0x40 Unknown
| GET_FLAG(CH10_SW,SKYTMBLR_FLAG_UNK2); // 0x80 Unknown
packet[10] = 0x00 // Aileron trim, 00 when not used, 00..1F when trimmed left, 21..3F when trimmed right
| GET_FLAG(!CH8_SW,SKYTMBLR_FLAG_LED) // 0x40 LED
| GET_FLAG(CH11_SW,SKYTMBLR_FLAG_UNK3); // 0x80 Unknown
packet[11] = hopping_frequency[0]; // First hopping frequency
// Checksum
uint16_t sum=2;
for (uint8_t i = 0; i < 13; i++)
sum += packet[i];
packet[13]=sum;
packet[3]=((sum>>8)<<2)+2;
// TX ID
packet[14] = rx_tx_addr[2];
packet[15] = rx_tx_addr[3];
// Power on, TX mode
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP));
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
XN297_WritePayload(packet, JJRC345_PACKET_SIZE);
NRF24L01_SetPower(); // Set tx_power
}
static void __attribute__((unused)) JJRC345_init()
{
NRF24L01_Initialize();
NRF24L01_SetTxRxMode(TX_EN);
XN297_SetTXAddr((uint8_t*)"\xcc\xcc\xcc\xcc\xcc", 5);
NRF24L01_WriteReg(NRF24L01_05_RF_CH, sub_protocol == JJRC345 ? JJRC345_RF_BIND_CHANNEL:SKYTMBLR_RF_BIND_CHANNEL); // Bind channel
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowldgement on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1 Mbps
NRF24L01_SetPower();
}
uint16_t JJRC345_callback()
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(JJRC345_PACKET_PERIOD);
#endif
if(IS_BIND_IN_PROGRESS)
{
if (bind_counter)
bind_counter--;
else
BIND_DONE;
}
JJRC345_send_packet();
return JJRC345_PACKET_PERIOD;
}
static void __attribute__((unused)) JJRC345_initialize_txid()
{
calc_fh_channels(JJRC345_NUM_CHANNELS);
#ifdef JJRC345_FORCE_ID
//TX 1
rx_tx_addr[2]=0x1B;
rx_tx_addr[3]=0x12;
hopping_frequency[0] = 0x3f;
hopping_frequency[1] = 0x49;
hopping_frequency[2] = 0x47;
hopping_frequency[3] = 0x47;
//TX 2
rx_tx_addr[2]=0xF1;
rx_tx_addr[3]=0x18;
hopping_frequency[0] = 0x46;
hopping_frequency[1] = 0x4A;
hopping_frequency[2] = 0x41;
hopping_frequency[3] = 0x47;
#endif
}
uint16_t initJJRC345(void)
{
BIND_IN_PROGRESS; // autobind protocol
bind_counter = JJRC345_BIND_COUNT;
JJRC345_initialize_txid();
JJRC345_init();
return JJRC345_INITIAL_WAIT;
}
#endif

View File

@@ -16,7 +16,7 @@ Multiprotocol is distributed in the hope that it will be useful,
#if defined(KF606_NRF24L01_INO)
#include "iface_xn297l.h"
#include "iface_nrf250k.h"
//#define FORCE_KF606_ORIGINAL_ID
@@ -86,6 +86,9 @@ static void __attribute__((unused)) KF606_init()
uint16_t KF606_callback()
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(KF606_PACKET_PERIOD);
#endif
if(IS_BIND_IN_PROGRESS)
if(--bind_counter==0)
{

View File

@@ -125,16 +125,16 @@ static void __attribute__((unused)) kn_bind_init()
static void __attribute__((unused)) kn_update_packet_control_data()
{
uint16_t value;
value = convert_channel_10b(THROTTLE);
value = convert_channel_10b(THROTTLE, false);
packet[0] = (value >> 8) & 0xFF;
packet[1] = value & 0xFF;
value = convert_channel_10b(AILERON);
value = convert_channel_10b(AILERON, false);
packet[2] = (value >> 8) & 0xFF;
packet[3] = value & 0xFF;
value = convert_channel_10b(ELEVATOR);
value = convert_channel_10b(ELEVATOR, false);
packet[4] = (value >> 8) & 0xFF;
packet[5] = value & 0xFF;
value = convert_channel_10b(RUDDER);
value = convert_channel_10b(RUDDER, false);
packet[6] = (value >> 8) & 0xFF;
packet[7] = value & 0xFF;
// Trims, middle is 0x64 (100) range 0-200
@@ -279,12 +279,14 @@ uint16_t initKN()
packet_period = KN_WL_SENDING_PACKET_PERIOD;
bind_counter = KN_WL_BIND_COUNT;
packet_count = KN_WL_PACKET_SEND_COUNT;
seed = KN_WL_PACKET_SEND_COUNT * KN_WL_SENDING_PACKET_PERIOD;
}
else
{
packet_period = KN_FX_SENDING_PACKET_PERIOD;
bind_counter = KN_FX_BIND_COUNT;
packet_count = KN_FX_PACKET_SEND_COUNT;
seed = KN_FX_PACKET_SEND_COUNT * KN_FX_SENDING_PACKET_PERIOD;
}
kn_init();
phase = IS_BIND_IN_PROGRESS ? KN_PHASE_PRE_BIND : KN_PHASE_PRE_SEND;
@@ -318,6 +320,9 @@ uint16_t kn_callback()
case KN_PHASE_SENDING:
if(packet_sent >= packet_count)
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(seed);
#endif
packet_sent = 0;
hopping_frequency_no++;
if(hopping_frequency_no >= KN_RF_CH_COUNT) hopping_frequency_no = 0;

View File

@@ -0,0 +1,202 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(KYOSHO_A7105_INO)
#include "iface_a7105.h"
//#define KYOSHO_FORCE_ID_FHSS
//#define KYOSHO_FORCE_ID_HYPE
//Kyosho constants & variables
#define KYOSHO_BIND_COUNT 2500
static void __attribute__((unused)) kyosho_send_packet()
{
//ID
packet[1] = rx_tx_addr[0];
packet[2] = rx_tx_addr[1];
packet[3] = rx_tx_addr[2];
packet[4] = rx_tx_addr[3];
//unknown may be RX ID on some other remotes
memset(packet+5,0xFF,4);
if(IS_BIND_IN_PROGRESS)
{
packet[ 0] = 0xBC; // bind indicator
packet[ 9] &= 0x01;
packet[ 9] ^= 0x01; // high/ low part of the RF table
packet[10] = 0x00;
//RF table
for(uint8_t i=0; i<16;i++)
packet[i+11]=hopping_frequency[i+(packet[9]<<4)];
//unknwon
packet[27] = 0x05;
packet[28] = 0x00;
memset(packet+29,0xFF,8);
//frequency hop during bind
if(packet[9])
rf_ch_num=0x8C;
else
rf_ch_num=0x0D;
}
else
{
packet[ 0] = 0x58; // normal packet
//14 channels: steering, throttle, ...
for(uint8_t i = 0; i < 14; i++)
{
uint16_t temp=convert_channel_ppm(i);
packet[9 + i*2]=temp&0xFF; // low byte of servo timing(1000-2000us)
packet[10 + i*2]=(temp>>8)&0xFF; // high byte of servo timing(1000-2000us)
}
rf_ch_num=hopping_frequency[hopping_frequency_no];
hopping_frequency_no++;
packet[34] |= (hopping_frequency_no&0x0F)<<4;
packet[36] |= (hopping_frequency_no&0xF0); // last byte is ending with F on the dumps so let's see
hopping_frequency_no &= 0x1F;
}
#if 0
debug("ch=%02X P=",rf_ch_num);
for(uint8_t i=0; i<37; i++)
debug("%02X ", packet[i]);
debugln("");
#endif
A7105_WriteData(37, rf_ch_num);
}
static void __attribute__((unused)) kyosho_hype_send_packet()
{
if(IS_BIND_IN_PROGRESS)
{
if(packet_sent==0)
{//build the packet and send it
packet[0] = rx_tx_addr[1];
packet[1] = rx_tx_addr[3];
//RF table
for(uint8_t i=0; i<15;i++)
packet[i+2]=hopping_frequency[i];
A7105_WriteData(17, 0x01);
packet_sent++;
packet_period=1421;
#if 0
debug("ch=01 P=");
for(uint8_t i=0; i<17; i++)
debug("%02X ", packet[i]);
debugln("");
#endif
}
else
A7105_Strobe(A7105_TX); //only send
}
else
{
//original TX is only refreshing the packet every 20ms and keep repeating the same packet in between (STROBE_TX)
//build packet=6 channels with order AETR
for(uint8_t i=0;i<6;i++)
packet[i] = convert_channel_8b(CH_AETR[i]);
//set RF channel
rf_ch_num=hopping_frequency[hopping_frequency_no];
hopping_frequency_no++;
if(hopping_frequency_no>14)
hopping_frequency_no = 0;
//send it
A7105_WriteData(6, rf_ch_num);
packet_period=931; //packet period fluctuates a lot on the original TX from one packet to the other but stable if looking over a period of 40ms
#if 0
debug("ch=%02X P=",rf_ch_num);
for(uint8_t i=0; i<6; i++)
debug("%02X ", packet[i]);
debugln("");
#endif
}
}
uint16_t ReadKyosho()
{
#ifndef FORCE_KYOSHO_TUNING
A7105_AdjustLOBaseFreq(1);
#endif
if(IS_BIND_IN_PROGRESS)
{
bind_counter--;
if (bind_counter==0)
{
BIND_DONE;
if(sub_protocol==KYOSHO_HYPE)
{
A7105_WriteID(MProtocol_id);
A7105_WriteReg(A7105_03_FIFOI,0x05);
}
}
}
else
{
if(hopping_frequency_no==0)
A7105_SetPower();
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
}
if(sub_protocol==KYOSHO_FHSS)
kyosho_send_packet();
else//HYPE
kyosho_hype_send_packet();
return packet_period;
}
uint16_t initKyosho()
{
A7105_Init();
// compute channels from ID
calc_fh_channels(sub_protocol==KYOSHO_FHSS?32:15);
hopping_frequency_no=0;
#ifdef KYOSHO_FORCE_ID_FHSS
if(sub_protocol==KYOSHO_FHSS)
{
memcpy(rx_tx_addr,"\x3A\x39\x37\x00",4);
memcpy(hopping_frequency,"\x29\x4C\x67\x92\x31\x1C\x77\x18\x23\x6E\x81\x5C\x8F\x5A\x51\x94\x7A\x12\x45\x6C\x7F\x1E\x0D\x88\x63\x8C\x4F\x37\x26\x61\x2C\x8A",32);
}
#endif
if(sub_protocol==KYOSHO_HYPE)
{
MProtocol_id &= 0x00FF00FF;
rx_tx_addr[0] = 0xAF - (rx_tx_addr[1]&0x0F);
rx_tx_addr[2] = 0xFF - rx_tx_addr[3];
MProtocol_id |= (rx_tx_addr[0]<<24) + (rx_tx_addr[2]<<8);
#ifdef KYOSHO_FORCE_ID_HYPE
MProtocol_id=0xAF90738C;
set_rx_tx_addr(MProtocol_id);
memcpy(hopping_frequency,"\x27\x1B\x63\x75\x03\x39\x57\x69\x87\x0F\x7B\x3F\x33\x51\x6F",15);
#endif
if(IS_BIND_IN_PROGRESS)
A7105_WriteID(0xAF00FF00);
else
{
A7105_WriteID(MProtocol_id);
A7105_WriteReg(A7105_03_FIFOI,0x05);
}
}
if(IS_BIND_IN_PROGRESS)
bind_counter = KYOSHO_BIND_COUNT;
packet_sent=0;
packet_period=3852; //FHSS
return 2000;
}
#endif

View File

@@ -0,0 +1,314 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(LOLI_NRF24L01_INO)
#include "iface_nrf24l01.h"
#define LOLI_BIND_CHANNEL 33
#define LOLI_PACKET_SIZE 11
#define LOLI_NUM_CHANNELS 5
static void __attribute__((unused)) LOLI_init()
{
NRF24L01_Initialize();
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowldgement on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x03); // 5-bytes RX/TX address
NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, (uint8_t*)"LOVE!", 5);
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, (uint8_t*)"LOVE!", 5);
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0x00); // No retransmits
NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, LOLI_PACKET_SIZE); // RX FIFO size
NRF24L01_SetBitrate(NRF24L01_BR_250K); // 250Kbps
NRF24L01_SetPower();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_SetTxRxMode(TX_EN);
}
// flags going to packet[1] for packet type 0xa2 (Rx config)
#define LOLI_FLAG_PWM7 0x02
#define LOLI_FLAG_PWM2 0x04
#define LOLI_FLAG_PWM1 0x08
#define LOLI_FLAG_SBUS 0x40
#define LOLI_FLAG_PPM 0x80
// flags going to packet[2] for packet type 0xa2 (Rx config)
#define LOLI_FLAG_SW8 0x01
#define LOLI_FLAG_SW7 0x02
#define LOLI_FLAG_SW6 0x04
#define LOLI_FLAG_SW5 0x08
#define LOLI_FLAG_SW4 0x10
#define LOLI_FLAG_SW3 0x20
#define LOLI_FLAG_SW2 0x40
#define LOLI_FLAG_SW1 0x80
#ifdef LOLI_NRF24L01_INO
uint8_t LOLI_P1, LOLI_P2;
#endif
static void __attribute__((unused)) LOLI_send_packet()
{
if(IS_BIND_IN_PROGRESS)
{
packet[0] = 0xa0;
memcpy(&packet[1], hopping_frequency, LOLI_NUM_CHANNELS);
memcpy(&packet[6], rx_tx_addr, 5);
rf_ch_num = LOLI_BIND_CHANNEL;
}
else
{
//Check RX config
uint8_t P1=0;
uint8_t P2=0;
//ch1: PWM/PPM
if(Channel_data[CH1+8] > CHANNEL_MAX_COMMAND)
P1|=LOLI_FLAG_PWM1;
else if(Channel_data[CH1+8] > CHANNEL_SWITCH)
P1|=LOLI_FLAG_PPM;
//ch2: PWM
if(Channel_data[CH2+8] > CHANNEL_MAX_COMMAND)
P1|=LOLI_FLAG_PWM2;
//ch5: SBUS
if(Channel_data[CH5+8] > CHANNEL_SWITCH)
P1|=LOLI_FLAG_SBUS;
//ch7: PWM
if(Channel_data[CH7+8] > CHANNEL_MAX_COMMAND)
P1|=LOLI_FLAG_PWM7;
//switches
for(uint8_t i=0;i<8;i++)
if(Channel_data[i+8]<CHANNEL_MIN_COMMAND)
P2 |= 1 << (7-i);
if(LOLI_P1!=P1 || LOLI_P2!=P2)
flags=10;
if(flags)
{// Send RX config since P1 or P2 have changed
LOLI_P1=P1;LOLI_P2=P2;
packet[0] = 0xa2;
packet[1] = LOLI_P1; // CH1:LOLI_FLAG_PPM || LOLI_FLAG_PWM1, CH2:LOLI_FLAG_PWM2, CH5:LOLI_FLAG_SBUS, CH7:LOLI_FLAG_PWM7
packet[2] = LOLI_P2; // CHx switch bit(8-x)=1
flags--;
}
else
{// Normal packet
#ifdef FAILSAFE_ENABLE
packet[0] = IS_FAILSAFE_VALUES_on ? 0xa0 : 0xa1;
#else
packet[0] = 0xa1;
#endif
//Build channels
uint8_t ch=0, offset=1;
uint16_t val;
for(uint8_t i=0;i<2;i++)
{
val = convert_channel_10b(ch++, IS_FAILSAFE_VALUES_on);
packet[offset++] = val >> 2;
packet[offset ] = val << 6;
val = convert_channel_10b(ch++, IS_FAILSAFE_VALUES_on);
packet[offset++]|= val >> 4;
packet[offset ] = val << 4;
val = convert_channel_10b(ch++, IS_FAILSAFE_VALUES_on);
packet[offset++]|= val >> 6;
packet[offset ] = val << 2;
val = convert_channel_10b(ch++, IS_FAILSAFE_VALUES_on);
packet[offset++]|= val >> 8;
packet[offset++] = val & 0xff;
}
FAILSAFE_VALUES_off; // Failsafe values are sent if they were available
}
if (++hopping_frequency_no > LOLI_NUM_CHANNELS-1)
hopping_frequency_no = 0;
rf_ch_num = hopping_frequency[hopping_frequency_no];
}
#if 0
debug("P(%02X):",rf_ch_num);
for(uint8_t i=0; i<LOLI_PACKET_SIZE; i++)
debug(" %02X",packet[i]);
debugln("");
#endif
//Send packet
NRF24L01_WriteReg(NRF24L01_05_RF_CH, rf_ch_num);
NRF24L01_SetPower();
NRF24L01_SetTxRxMode(TXRX_OFF);
NRF24L01_SetTxRxMode(TX_EN);
NRF24L01_WriteReg(NRF24L01_00_CONFIG, 0x0a); // 8bit CRC, TX
NRF24L01_FlushTx();
NRF24L01_WritePayload(packet, LOLI_PACKET_SIZE);
}
enum{
LOLI_BIND1,
LOLI_BIND2,
LOLI_BIND3,
LOLI_PREP_DATA,
LOLI_DATA1,
LOLI_DATA2,
LOLI_SET_RX_CONFIG,
LOLI_SET_FAILSAFE
};
#define LOLI_WRITE_TIME 1000
uint16_t LOLI_callback()
{
switch (phase)
{
case LOLI_BIND1:
if(bind_counter)
{
bind_counter--;
if(bind_counter==0)
{
phase=LOLI_PREP_DATA;
break;
}
}
// send bind packet
NRF24L01_SetTxRxMode(TXRX_OFF);
NRF24L01_SetTxRxMode(TX_EN);
NRF24L01_WriteReg(NRF24L01_00_CONFIG, 0x0a); // 8bit CRC, TX
LOLI_send_packet();
phase++;
return 2000;
case LOLI_BIND2:
// switch to RX mode
NRF24L01_SetTxRxMode(TXRX_OFF);
NRF24L01_FlushRx();
NRF24L01_SetTxRxMode(RX_EN);
NRF24L01_WriteReg(NRF24L01_00_CONFIG, 0x3b); // 8bit CRC, RX
phase++;
packet_count = 0;
return 2000;
case LOLI_BIND3:
// got bind response ?
if (NRF24L01_ReadReg(NRF24L01_07_STATUS) & _BV(NRF24L01_07_RX_DR))
{
NRF24L01_ReadPayload(packet, LOLI_PACKET_SIZE);
if (packet[0] == 'O' && packet[1] == 'K')
{
debugln("Bind OK");
phase++; // LOLI_PREP_DATA
break;
}
}
packet_count++;
if (packet_count > 50)
phase = LOLI_BIND1;
return 1000;
case LOLI_PREP_DATA:
BIND_DONE;
NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, rx_tx_addr, 5);
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, rx_tx_addr, 5);
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushRx();
packet_count = 0;
//defaut RX config with servo outputs
LOLI_P1=0;LOLI_P2=0;flags=10;
phase++;
case LOLI_DATA1:
#ifdef LOLI_HUB_TELEMETRY
// Check telemetry
if (NRF24L01_ReadReg(NRF24L01_07_STATUS) & _BV(NRF24L01_07_RX_DR))
{ // RX fifo data ready
NRF24L01_ReadPayload(packet, LOLI_PACKET_SIZE);
#if 0
debug("T:");
for(uint8_t i=0; i<LOLI_PACKET_SIZE; i++)
debug(" %02X",packet[i]);
debugln("");
#endif
RX_RSSI = packet[0]<<1;
uint16_t val=((packet[1] << 8) | packet[2])/10;
if(val > 255) val=255;
v_lipo1 = val;
val=((packet[3] << 8) | packet[4])/10;
if(val > 255) val=255;
v_lipo2 = val;
telemetry_link = 1;
telemetry_counter++; // TX LQI counter
if(telemetry_lost)
{
telemetry_lost = 0;
packet_count = 100;
telemetry_counter = 100;
}
}
//LQI
packet_count++;
if(packet_count>=100)
{
packet_count=0;
TX_LQI=telemetry_counter;
if(telemetry_counter==0)
telemetry_lost = 1;
telemetry_counter = 0;
}
#endif
// Send data packet
LOLI_send_packet();
#ifdef LOLI_HUB_TELEMETRY
phase ++;
return LOLI_WRITE_TIME;
case LOLI_DATA2:
// Wait for packet to be sent
while( (NRF24L01_ReadReg(NRF24L01_07_STATUS) & _BV(NRF24L01_07_TX_DS)) == 0);
// Switch to RX mode
NRF24L01_SetTxRxMode(TXRX_OFF);
NRF24L01_FlushRx();
NRF24L01_SetTxRxMode(RX_EN);
NRF24L01_WriteReg(NRF24L01_00_CONFIG, 0x3b); // 8bit CRC, RX
phase = LOLI_DATA1;
return 20000 - LOLI_WRITE_TIME;
#else
break;
#endif
}
return 20000;
}
uint16_t initLOLI()
{
rx_tx_addr[1] %= 0x30;
calc_fh_channels(LOLI_NUM_CHANNELS);
for (uint8_t i=0; i < LOLI_NUM_CHANNELS; i++)
if (hopping_frequency[i] == LOLI_BIND_CHANNEL)
hopping_frequency[i]++;
if (IS_BIND_IN_PROGRESS)
{
bind_counter=250;
phase = LOLI_BIND1;
}
else
phase = LOLI_PREP_DATA;
LOLI_init();
return 500;
}
#endif

View File

@@ -18,7 +18,7 @@
#if defined(MJXQ_NRF24L01_INO)
#include "iface_nrf24l01.h"
#include "iface_xn297l.h"
#include "iface_nrf250k.h"
#define MJXQ_BIND_COUNT 150
#define MJXQ_PACKET_PERIOD 4000 // Timeout for callback in uSec
@@ -327,7 +327,12 @@ static void __attribute__((unused)) MJXQ_initialize_txid()
uint16_t MJXQ_callback()
{
if(IS_BIND_DONE)
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(MJXQ_PACKET_PERIOD);
#endif
MJXQ_send_packet(0);
}
else
{
if (bind_counter == 0)

View File

@@ -0,0 +1,513 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(MLINK_CYRF6936_INO)
#include "iface_cyrf6936.h"
#undef MLINK_HUB_TELEMETRY
#define MLINK_FORCE_ID
#define MLINK_BIND_COUNT 696 // around 20s
#define MLINK_NUM_FREQ 78
#define MLINK_BIND_CHANNEL 0x01
#define MLINK_PACKET_SIZE 8
enum {
MLINK_BIND_TX=0,
MLINK_BIND_PREP_RX,
MLINK_BIND_RX,
MLINK_PREP_DATA,
MLINK_SEND1,
MLINK_CHECK1,
MLINK_SEND2,
MLINK_CHECK2,
MLINK_SEND3,
MLINK_CHECK3,
MLINK_RX,
MLINK_CHECK4,
};
uint8_t MLINK_Data_Code[16], MLINK_CRC_Init, MLINK_Unk_6_2;
const uint8_t PROGMEM MLINK_init_vals[][2] = {
//Init from dump
{ CYRF_01_TX_LENGTH, 0x08 }, // Length of packet
{ CYRF_02_TX_CTRL, 0x40 }, // Clear TX Buffer
{ CYRF_03_TX_CFG, 0x3C }, //0x3E in normal mode, 0x3C in bind mode: SDR 64 chip codes (=8 bytes data code used)
{ CYRF_05_RX_CTRL, 0x00 },
{ CYRF_06_RX_CFG, 0x93 }, // AGC enabled, overwrite enable, valid flag enable
{ CYRF_0B_PWR_CTRL, 0x00 },
//{ CYRF_0C_XTAL_CTRL, 0x00 }, // Set to GPIO on reset
//{ CYRF_0D_IO_CFG, 0x00 }, // Set to GPIO on reset
//{ CYRF_0E_GPIO_CTRL, 0x00 }, // Set by the CYRF_SetTxRxMode function
{ CYRF_0F_XACT_CFG, 0x04 }, // end state idle
{ CYRF_10_FRAMING_CFG, 0x00 }, // SOP disabled
{ CYRF_11_DATA32_THOLD, 0x05 }, // not used???
{ CYRF_12_DATA64_THOLD, 0x0F }, // 64 Chip Data PN Code Correlator Threshold
{ CYRF_14_EOP_CTRL, 0x05 }, // 5 consecutive noncorrelations symbol for EOP
{ CYRF_15_CRC_SEED_LSB, 0x00 }, // not used???
{ CYRF_16_CRC_SEED_MSB, 0x00 }, // not used???
{ CYRF_1B_TX_OFFSET_LSB,0x00 },
{ CYRF_1C_TX_OFFSET_MSB,0x00 },
{ CYRF_1D_MODE_OVERRIDE,0x00 },
{ CYRF_1E_RX_OVERRIDE, 0x14 }, // RX CRC16 is disabled and Force Receive Data Rate
{ CYRF_1F_TX_OVERRIDE, 0x04 }, // TX CRC16 is disabled
{ CYRF_26_XTAL_CFG, 0x08 },
{ CYRF_29_RX_ABORT, 0x00 },
{ CYRF_32_AUTO_CAL_TIME,0x3C },
{ CYRF_35_AUTOCAL_OFFSET,0x14 },
{ CYRF_39_ANALOG_CTRL, 0x03 }, // Receive invert and all slow
};
static void __attribute__((unused)) MLINK_cyrf_config()
{
for(uint8_t i = 0; i < sizeof(MLINK_init_vals) / 2; i++)
CYRF_WriteRegister(pgm_read_byte_near(&MLINK_init_vals[i][0]), pgm_read_byte_near(&MLINK_init_vals[i][1]));
CYRF_WritePreamble(0x333304);
CYRF_SetTxRxMode(TX_EN);
}
static void __attribute__((unused)) MLINK_send_bind_data_packet()
{
uint8_t p_c=packet_count>>1;
memset(packet, p_c<0x16?0x00:0xFF, MLINK_PACKET_SIZE-1);
packet[0]=0x0F; // bind
packet[1]=p_c;
switch(p_c)
{
case 0x00:
packet[2]=0x40; //unknown but seems constant
packet[4]=0x01; //unknown but seems constant
packet[5]=0x03; //unknown but seems constant
packet[6]=0xE3; //unknown but seems constant
break;
case 0x05:
packet[6]=MLINK_CRC_Init; //CRC init value
break;
case 0x06:
packet[2]=MLINK_Unk_6_2; //unknown and different
//Start of hopping frequencies
for(uint8_t i=0;i<4;i++)
packet[i+3]=hopping_frequency[i];
break;
case 0x15:
packet[6]=0x51; //unknown but seems constant
break;
case 0x16:
packet[2]=0x51; //unknown but seems constant
packet[3]=0xEC; //unknown but seems constant
packet[4]=0x05; //unknown but seems constant
break;
case 0x1A:
packet[1]=0xFF;
memset(&packet[2],0x00,5);
break;
}
if(p_c>=0x01 && p_c<=0x04)
{//DATA_CODE
uint8_t p_c_5=(p_c-1)*5;
for(uint8_t i=0;i<5;i++)
if(i+p_c_5<16)
packet[i+2]=MLINK_Data_Code[i+p_c_5];
}
else
if(p_c>=0x07 && p_c<=0x15)
{//Hopping frequencies
uint8_t p_c_5=5*(p_c-6)-1;
for(uint8_t i=0;i<5;i++)
if(i+p_c_5<MLINK_NUM_FREQ)
packet[i+2]=hopping_frequency[i+p_c_5];
}
else
if(p_c>0x19)
{
packet[1]=0xFF;
memset(&packet[2], 0x00, MLINK_PACKET_SIZE-3);
}
//Calculate CRC
crc8=0xFF; // Init = 0xFF
for(uint8_t i=0;i<MLINK_PACKET_SIZE-1;i++)
crc8_update(bit_reverse(packet[i]));
packet[7] = bit_reverse(crc8); // CRC reflected out
//Debug
#if 1
debug("P(%02d):",p_c);
for(uint8_t i=0;i<8;i++)
debug(" %02X",packet[i]);
debugln("");
#endif
//Send packet
CYRF_WriteDataPacketLen(packet, MLINK_PACKET_SIZE);
}
static void __attribute__((unused)) MLINK_build_data_packet()
{
static uint8_t tog=0;
if(hopping_frequency_no==0)
tog=1;
//Channels to be sent
if(phase==MLINK_SEND1 || ((hopping_frequency_no%5==0) && (phase==MLINK_SEND2)))
{
if((hopping_frequency_no&1)==0)
packet[0] = 0x09; //10,8,6
else
packet[0] = 0x01; //11,9,7
}
else
if(phase==MLINK_SEND2)
{
if(tog)
packet[0] = 0x02; //x,15,13
else
packet[0] = 0x0A; //x,14,12
tog^=1;
}
else
{//phase==MLINK_SEND3
if((hopping_frequency_no&1)==0)
packet[0] = 0x88; //4,2,0
else
packet[0] = 0x80; //5,3,1
}
//Start channel
uint8_t ch=4+6*(packet[0]&3);
if((packet[0]&0x08)==0)
ch++;
//Channels 426..1937..3448
for(uint8_t i=0;i<3;i++)
{
uint16_t tmp=ch<16 ? convert_channel_16b_nolimit(ch,426,3448,false) : 0x0000;
ch-=2; // switch to next channel
packet[i*2+1]=tmp>>8;
packet[i*2+2]=tmp;
}
//Calculate CRC
crc8=bit_reverse(hopping_frequency_no + MLINK_CRC_Init); // Init = relected freq index + offset
for(uint8_t i=0;i<MLINK_PACKET_SIZE-1;i++)
crc8_update(bit_reverse(packet[i]));
packet[7] = bit_reverse(crc8); // CRC reflected out
//Debug
#if 0
debug("P(%02d):",hopping_frequency_no);
for(uint8_t i=0;i<8;i++)
debug(" %02X",packet[i]);
debugln("");
#endif
}
#ifdef MLINK_HUB_TELEMETRY
static void __attribute__((unused)) MLINK_Send_Telemetry()
{
if(packet[0]==0x03)
{//Basic telemetry
//Incoming packet values
RX_RSSI = packet_in[2*2]; // Looks to be the RX RSSI value
RX_LQI = packet_in[5*2]; // Looks to be connection lost
}
// Read TX RSSI
TX_RSSI = CYRF_ReadRegister(CYRF_13_RSSI)&0x1F;
telemetry_counter++; // TX LQI counter
telemetry_link = 1;
if(telemetry_lost)
{
telemetry_lost = 0;
packet_count = 100;
telemetry_counter = 100;
}
}
#endif
uint16_t ReadMLINK()
{
uint8_t status;//,len,sum=0,check=0;
uint8_t start;
//uint16_t sum=0;
//static uint8_t retry;
switch(phase)
{
case MLINK_BIND_RX:
//debugln("RX");
status=CYRF_ReadRegister(CYRF_05_RX_CTRL);
if( (status&0x80) == 0 )
{//Packet received
len=CYRF_ReadRegister(CYRF_09_RX_COUNT);
debugln("L=%02X",len)
if( len==8 )
{
CYRF_ReadDataPacketLen(packet, len*2);
debug("RX=");
for(uint8_t i=0;i<8;i++)
debug(" %02X",packet[i*2]);
debugln("");
//Check CRC
crc8=0xFF; // Init = 0xFF
for(uint8_t i=0;i<MLINK_PACKET_SIZE-1;i++)
crc8_update(bit_reverse(packet[i<<1]));
if(packet[14] == bit_reverse(crc8))
{// CRC is ok
debugln("CRC ok");
if(packet[0]==0x7F)
packet_count=3; // Start sending bind payload
else if(packet_count > 0x19*2)
{
if(packet[0] == 0x8F)
packet_count++;
else if(packet[0] == 0x9F)
packet_count=0x80; // End bind
else
packet_count=0; // Restart bind...
}
}
}
}
else
packet_count=0;
CYRF_WriteRegister(CYRF_29_RX_ABORT, 0x20); // Enable RX abort
CYRF_WriteRegister(CYRF_0F_XACT_CFG, 0x24); // Force end state
CYRF_WriteRegister(CYRF_29_RX_ABORT, 0x00); // Disable RX abort
phase=MLINK_BIND_TX; // Retry sending bind packet
CYRF_SetTxRxMode(TX_EN); // Transmit mode
if(packet_count)
return 18136;
case MLINK_BIND_TX:
if(--bind_counter==0 || packet_count>=0x1B*2)
{ // Switch to normal mode
BIND_DONE;
phase=MLINK_PREP_DATA;
return 22720;
}
MLINK_send_bind_data_packet();
if(packet_count == 0 || packet_count > 0x19*2)
{
phase++; // MLINK_BIND_PREP_RX
return 4700; // Original is 4900
}
packet_count++;
if(packet_count&1)
return 6000;
return 22720;
case MLINK_BIND_PREP_RX:
start=micros();
while ((uint8_t)((uint8_t)micros()-(uint8_t)start) < 200) // Wait max 200µs for TX to finish
if((CYRF_ReadRegister(CYRF_02_TX_CTRL) & 0x80) == 0x00)
break; // Packet transmission complete
CYRF_SetTxRxMode(RX_EN); // Receive mode
CYRF_WriteRegister(CYRF_05_RX_CTRL, 0x82); // Prepare to receive
phase++; //MLINK_BIND_RX
return 28712-4700;
case MLINK_PREP_DATA:
CYRF_ConfigDataCode(MLINK_Data_Code,16);
MLINK_CRC_Init += 0xED;
hopping_frequency_no = 0x00;
CYRF_ConfigRFChannel(hopping_frequency[hopping_frequency_no]);
CYRF_SetPower(0x38);
#ifdef MLINK_HUB_TELEMETRY
packet_count = 0;
telemetry_lost = 1;
#endif
phase++;
case MLINK_SEND1:
MLINK_build_data_packet();
CYRF_WriteRegister(CYRF_02_TX_CTRL, 0x40);
CYRF_WriteRegisterMulti(CYRF_20_TX_BUFFER, packet, MLINK_PACKET_SIZE);
CYRF_WriteRegister(CYRF_02_TX_CTRL, 0x82);
phase++;
return 4880;
case MLINK_CHECK1:
status=CYRF_ReadRegister(CYRF_04_TX_IRQ_STATUS);
//debugln("C1:%02X",status);
CYRF_WriteRegister(CYRF_02_TX_CTRL, 0x00);
phase++;
return 1111;
case MLINK_SEND2:
MLINK_build_data_packet();
CYRF_WriteRegister(CYRF_02_TX_CTRL, 0x40);
CYRF_WriteRegisterMulti(CYRF_20_TX_BUFFER, packet, MLINK_PACKET_SIZE);
CYRF_WriteRegister(CYRF_02_TX_CTRL, 0x82);
phase++;
return 4617;
case MLINK_CHECK2:
status=CYRF_ReadRegister(CYRF_04_TX_IRQ_STATUS);
//debugln("C2:%02X",status);
CYRF_WriteRegister(CYRF_02_TX_CTRL, 0x00);
phase++;
if(hopping_frequency_no%5==0)
return 1017;
return 1422;
case MLINK_SEND3:
MLINK_build_data_packet();
CYRF_WriteRegister(CYRF_02_TX_CTRL, 0x40);
CYRF_WriteRegisterMulti(CYRF_20_TX_BUFFER, packet, MLINK_PACKET_SIZE);
CYRF_WriteRegister(CYRF_02_TX_CTRL, 0x82);
phase++;
return 4611;
case MLINK_CHECK3:
status=CYRF_ReadRegister(CYRF_04_TX_IRQ_STATUS);
//debugln("C3:%02X",status);
CYRF_WriteRegister(CYRF_02_TX_CTRL, 0x00);
//check RX but there is nothing to check...
status=CYRF_ReadRegister(CYRF_05_RX_CTRL);
//debugln("CTRL:%02X",status);
len=CYRF_ReadRegister(CYRF_09_RX_COUNT);
//debugln("L=%02X",len)
if( len && len<=8 )
CYRF_ReadDataPacketLen(packet, len*2);
CYRF_WriteRegister(CYRF_05_RX_CTRL,0x00);
//Next channel
hopping_frequency_no++;
if(hopping_frequency_no>=MLINK_NUM_FREQ)
hopping_frequency_no=0;
CYRF_ConfigRFChannel(hopping_frequency[hopping_frequency_no]);
//Receive telemetry
if(hopping_frequency_no%5==0)
{//Receive telemetry
CYRF_SetTxRxMode(RX_EN); // Receive mode
CYRF_WriteRegister(CYRF_05_RX_CTRL, 0x82); // Prepare to receive
phase++; //MLINK_RX
return 8038;
}
else
CYRF_SetPower(0x38);
phase=MLINK_SEND1;
return 4470;
case MLINK_RX:
#ifdef MLINK_HUB_TELEMETRY
//TX LQI calculation
packet_count++;
if(packet_count>=100)
{
packet_count=0;
TX_LQI=telemetry_counter;
if(telemetry_counter==0)
telemetry_lost = 1;
telemetry_counter = 0;
}
#endif
status=CYRF_ReadRegister(CYRF_05_RX_CTRL);//CYRF_07_RX_IRQ_STATUS);
debug("T(%02X):",status);
//status=CYRF_ReadRegister(CYRF_05_RX_CTRL);
//if( (status&0x80) == 0 )
{//Packet received
len=CYRF_ReadRegister(CYRF_09_RX_COUNT);
debug("(%X)",len)
if( len && len<=8 )
{
CYRF_ReadDataPacketLen(packet_in, len*2);
#ifdef MLINK_HUB_TELEMETRY
if(len==8)
{
//Check CRC
crc8=bit_reverse(MLINK_CRC_Init);
for(uint8_t i=0;i<MLINK_PACKET_SIZE-1;i++)
crc8_update(bit_reverse(packet[i<<1]));
if(packet_in[14] == bit_reverse(crc8)) // Packet CRC is ok
{
MLINK_Send_Telemetry();
for(uint8_t i=0;i<8;i++)
debug(" %02X",packet_in[i*2]);
}
}
#endif
}
}
debugln("");
CYRF_WriteRegister(CYRF_29_RX_ABORT, 0x20); // Enable RX abort
CYRF_WriteRegister(CYRF_0F_XACT_CFG, 0x24); // Force end state
CYRF_WriteRegister(CYRF_29_RX_ABORT, 0x00); // Disable RX abort
CYRF_SetTxRxMode(TX_EN); // Transmit mode
phase++;
return 2434;
case MLINK_CHECK4:
status=CYRF_ReadRegister(CYRF_05_RX_CTRL);
debugln("C4: CTRL:%02X",status);
len=CYRF_ReadRegister(CYRF_09_RX_COUNT);
debugln("L=%02X",len)
if( len && len<=8 )
CYRF_ReadDataPacketLen(packet, len*2);
CYRF_WriteRegister(CYRF_05_RX_CTRL,0x00);
phase=MLINK_SEND2;
return 410;
}
return 1000;
}
uint16_t initMLINK()
{
MLINK_cyrf_config();
#ifdef MLINK_FORCE_ID
//Cockpit SX
memcpy(MLINK_Data_Code,"\x4C\x97\x9D\xBF\xB8\x3D\xB5\xBE",8);
memcpy(hopping_frequency,"\x0D\x41\x09\x43\x17\x2D\x05\x31\x13\x3B\x1B\x3D\x0B\x41\x11\x45\x09\x2B\x17\x4D\x19\x3F\x03\x3F\x0F\x37\x1F\x47\x1B\x49\x07\x35\x27\x2F\x15\x33\x23\x39\x1F\x33\x19\x45\x0D\x2D\x11\x35\x0B\x47\x25\x3D\x21\x37\x1D\x3B\x05\x2F\x21\x39\x23\x4B\x03\x31\x25\x29\x07\x4F\x1D\x4B\x15\x4D\x13\x4F\x0F\x49\x29\x2B\x27\x43",78);
MLINK_Unk_6_2 = 0x3A; //unknown value sent during bind but doesn't seem to matter
MLINK_CRC_Init = 0x07; //value sent during bind then used to init the CRC
//HFM3
memcpy(MLINK_Data_Code,"\xC0\x90\x8F\xBB\x7C\x8E\x2B\x8E",8);
memcpy(hopping_frequency,"\x05\x41\x27\x4B\x17\x33\x11\x39\x0F\x3F\x05\x2F\x13\x2D\x25\x31\x1F\x2D\x25\x35\x03\x41\x1B\x43\x09\x3D\x1F\x29\x1D\x35\x0D\x3B\x19\x49\x23\x3B\x17\x47\x1D\x2B\x13\x37\x0B\x31\x23\x33\x29\x3F\x07\x37\x07\x43\x11\x2B\x1B\x39\x0B\x4B\x03\x4F\x21\x47\x0F\x4D\x15\x45\x21\x4F\x09\x3D\x19\x2F\x15\x45\x0D\x49\x27\x4D",78);
MLINK_Unk_6_2 = 0x02; //unknown value but doesn't seem to matter
MLINK_CRC_Init = 0x3E; //value sent during bind then used to init the CRC
//Other TX
//MLINK_Unk_6_2 = 0x7e; //unknown value but doesn't seem to matter
//MLINK_CRC_Init = 0xA2; //value sent during bind then used to init the CRC
#endif
for(uint8_t i=0;i<8;i++)
MLINK_Data_Code[i+8]=MLINK_Data_Code[7-i];
debug("ID:")
for(uint8_t i=0;i<16;i++)
debug(" %02X", MLINK_Data_Code[i]);
debugln("");
debugln("CRC init: %02X", MLINK_CRC_Init)
debug("RF:")
for(uint8_t i=0;i<MLINK_NUM_FREQ;i++)
debug(" %02X", hopping_frequency[i]);
debugln("");
if(IS_BIND_IN_PROGRESS)
{
packet_count = 0;
bind_counter = MLINK_BIND_COUNT;
CYRF_ConfigDataCode((uint8_t*)"\x6F\xBE\x32\x01\xDB\xF1\x2B\x01\xE3\x5C\xFA\x02\x97\x93\xF9\x02",16); //Bind data code
CYRF_ConfigRFChannel(MLINK_BIND_CHANNEL);
phase = MLINK_BIND_TX;
}
else
phase = MLINK_PREP_DATA;
return 10000;
}
#endif

View File

@@ -222,7 +222,12 @@ static void __attribute__((unused)) MT99XX_initialize_txid()
uint16_t MT99XX_callback()
{
if(IS_BIND_DONE)
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
MT99XX_send_packet();
}
else
{
if (bind_counter == 0)

View File

@@ -1,9 +1,9 @@
1,Flysky,Flysky,V9x9,V6x6,V912,CX20
2,Hubsan,H107,H301,H501
3,FrskyD
3,FrskyD,D8,Cloned
4,Hisky,Hisky,HK310
5,V2x2,V2x2,JXD506
6,DSM,DSM2-22,DSM2-11,DSMX-22,DSMX-11,AUTO
5,V2x2,V2x2,JXD506,MR101
6,DSM,DSM2_1F,DSM2_2F,DSMX_1F,DSMX_2F,AUTO
7,Devo,8CH,10CH,12CH,6CH,7CH
8,YD717,YD717,SKYWLKR,SYMAX4,XINXUN,NIHUI
9,KN,WLTOYS,FEILUN
@@ -11,42 +11,73 @@
11,SLT,SLT_V1,SLT_V2,Q100,Q200,MR100
12,CX10,GREEN,BLUE,DM007,---,J3015_1,J3015_2,MK33041
13,CG023,CG023,YD829
14,Bayang,Bayang,H8S3D,X16_AH,IRDRONE,DHD_D4
15,FrskyX,CH_16,CH_8,EU_16,EU_8
16,ESky
14,Bayang,Bayang,H8S3D,X16_AH,IRDRONE,DHD_D4,QX100
15,FrskyX,CH_16,CH_8,EU_16,EU_8,Cloned,Clon_8
16,ESky,Std,ET4
17,MT99xx,MT,H7,YZ,LS,FY805
18,MJXq,WLH08,X600,X800,H26D,E010,H26WH,PHOENIX
19,Shenqi
20,FY326,FY326,FY319
21,SFHSS
21,Futaba,SFHSS
22,J6PRO
23,FQ777
24,ASSAN
25,FrskyV
26,HONTAI,HONTAI,JJRCX1,X5C1,FQ777_951
27,OpnLrs
28,AFHDS2A,PWM_IBUS,PPM_IBUS,PWM_SBUS,PPM_SBUS
28,AFHDS2A,PWM_IBUS,PPM_IBUS,PWM_SBUS,PPM_SBUS,PWM_IB16,PPM_IB16
29,Q2X2,Q222,Q242,Q282
30,WK2x01,WK2801,WK2401,W6_5_1,W6_6_1,W6_HEL,W6_HEL_I
31,Q303,Q303,CX35,CX10D,CX10WD
32,GW008
33,DM002
34,CABELL,CAB_V3,C_TELEM,-,-,-,-,F_SAFE,UNBIND
35,ESKY150
35,ESKY150,4CH,7CH
36,H8_3D,H8_3D,H20H,H20Mini,H30Mini
37,CORONA,COR_V1,COR_V2,FD_V3
38,CFlie
39,Hitec,OPT_FW,OPT_HUB,MINIMA
40,WFLY
40,WFLY,WFR0x
41,BUGS
42,BUGSMINI,BUGSMINI,BUGS3H
43,Traxxas
43,Traxxas,RX6519
44,NCC1701
45,E01X,E012,E015,E016H
46,V911S
47,GD00X,GD_V1,GD_V2
48,V761
46,V911S,V911S,E119
47,GD00x,GD_V1,GD_V2
48,V761,3CH,4CH
49,KF606
50,REDPINE,FAST,SLOW
51,POTENSIC,A20
63,XN_DUMP,250K,1M,2M
50,Redpine,Fast,Slow
51,Potensic,A20
52,ZSX,280
53,Height,5ch,8ch
54,Scanner
55,Frsky_RX,RX,CloneTX
56,AFHDS2A_RX
57,HoTT,Sync,No_Sync
58,FX816,P38
59,Bayang_RX
60,Pelikan,Pro,Lite
61,Tiger
62,XK,X450,X420
63,XN_DUMP,250K,1M,2M,AUTO
64,FrskyX2,CH_16,CH_8,EU_16,EU_8,Cloned
65,FrSkyR9,915MHz,868MHz,915_8ch,868_8ch,FCC,--,FCC_8ch,--_8ch
66,PROPEL,74-Z
67,LR12,LR12,LR12_6ch
68,Skyartec
69,ESKYv2,150V2
70,DSM_RX
71,JJRC345,JJRC345,SkyTmblr
72,Q90C
73,Kyosho,FHSS,Hype
74,RadioLink,Surface,Air,DumboRC
75,---
76,Realacc,R11
77,OMP
78,M-Link
79,WFLY,RF20x
80,E016H,E016Hv2
81,E010r5
82,LOLI
83,E129

View File

@@ -0,0 +1,429 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(MULTI_NAMES)
const char STR_FLYSKY[] ="FlySky";
const char STR_HUBSAN[] ="Hubsan";
const char STR_FRSKYD[] ="FrSky D";
const char STR_HISKY[] ="Hisky";
const char STR_V2X2[] ="V2x2";
const char STR_DSM[] ="DSM";
const char STR_DSM_RX[] ="DSM_RX";
const char STR_DEVO[] ="Devo";
const char STR_YD717[] ="YD717";
const char STR_KN[] ="KN";
const char STR_SYMAX[] ="SymaX";
const char STR_SLT[] ="SLT";
const char STR_CX10[] ="CX10";
const char STR_CG023[] ="CG023";
const char STR_BAYANG[] ="Bayang";
const char STR_FRSKYL[] ="FrSky L";
const char STR_FRSKYX[] ="FrSky X";
const char STR_FRSKYX2[] ="FrSkyX2";
const char STR_ESKY[] ="ESky";
const char STR_MT99XX[] ="MT99XX";
const char STR_MJXQ[] ="MJXq";
const char STR_SHENQI[] ="Shenqi";
const char STR_FY326[] ="FY326";
const char STR_FUTABA[] ="Futaba";
const char STR_J6PRO[] ="J6 Pro";
const char STR_JJRC345[] ="JJRC345";
const char STR_FQ777[] ="FQ777";
const char STR_ASSAN[] ="Assan";
const char STR_FRSKYV[] ="FrSky V";
const char STR_HONTAI[] ="Hontai";
const char STR_AFHDS2A[] ="FlSky2A";
const char STR_Q2X2[] ="Q2x2";
const char STR_WK2x01[] ="Walkera";
const char STR_Q303[] ="Q303";
const char STR_Q90C[] ="Q90C";
const char STR_GW008[] ="GW008";
const char STR_DM002[] ="DM002";
const char STR_CABELL[] ="Cabell";
const char STR_ESKY150[] ="Esky150";
const char STR_ESKY150V2[] ="EskyV2";
const char STR_H8_3D[] ="H8 3D";
const char STR_CORONA[] ="Corona";
const char STR_CFLIE[] ="CFlie";
const char STR_HITEC[] ="Hitec";
const char STR_WFLY[] ="WFLY";
const char STR_WFLY2[] ="WFLY2";
const char STR_BUGS[] ="Bugs";
const char STR_BUGSMINI[] ="BugMini";
const char STR_TRAXXAS[] ="Traxxas";
const char STR_NCC1701[] ="NCC1701";
const char STR_E01X[] ="E01X";
const char STR_V911S[] ="V911S";
const char STR_GD00X[] ="GD00x";
const char STR_V761[] ="V761";
const char STR_KF606[] ="KF606";
const char STR_REDPINE[] ="Redpine";
const char STR_POTENSIC[] ="Potensi";
const char STR_ZSX[] ="ZSX";
const char STR_HEIGHT[] ="Height";
const char STR_SCANNER[] ="Scanner";
const char STR_FRSKY_RX[] ="FrSkyRX";
const char STR_AFHDS2A_RX[] ="FS2A_RX";
const char STR_HOTT[] ="HoTT";
const char STR_FX816[] ="FX816";
const char STR_BAYANG_RX[] ="BayanRX";
const char STR_PELIKAN[] ="Pelikan";
const char STR_TIGER[] ="Tiger";
const char STR_XK[] ="XK";
const char STR_XN297DUMP[] ="XN297DP";
const char STR_FRSKYR9[] ="FrSkyR9";
const char STR_PROPEL[] ="Propel";
const char STR_SKYARTEC[] ="Skyartc";
const char STR_KYOSHO[] ="Kyosho";
const char STR_RLINK[] ="RadLink";
const char STR_REALACC[] ="Realacc";
const char STR_OMP[] ="OMP";
const char STR_MLINK[] ="M-Link";
const char STR_TEST[] ="Test";
const char STR_NANORF[] ="NanoRF";
const char STR_E016HV2[] ="E016Hv2";
const char STR_E010R5[] ="E010r5";
const char STR_LOLI[] ="LOLI";
const char STR_E129[] ="E129";
const char STR_SUBTYPE_FLYSKY[] = "\x04""Std\0""V9x9""V6x6""V912""CX20";
const char STR_SUBTYPE_HUBSAN[] = "\x04""H107""H301""H501";
const char STR_SUBTYPE_FRSKYD[] = "\x06""D8\0 ""Cloned";
const char STR_SUBTYPE_FRSKYX[] = "\x07""D16\0 ""D16 8ch""LBT(EU)""LBT 8ch""Cloned\0""Clo 8ch";
const char STR_SUBTYPE_HISKY[] = "\x05""Std\0 ""HK310";
const char STR_SUBTYPE_V2X2[] = "\x06""Std\0 ""JXD506""MR101\0";
const char STR_SUBTYPE_DSM[] = "\x04""2 1F""2 2F""X 1F""X 2F""Auto";
const char STR_SUBTYPE_DEVO[] = "\x04""8ch\0""10ch""12ch""6ch\0""7ch\0";
const char STR_SUBTYPE_YD717[] = "\x07""Std\0 ""SkyWlkr""Syma X4""XINXUN\0""NIHUI\0 ";
const char STR_SUBTYPE_KN[] = "\x06""WLtoys""FeiLun";
const char STR_SUBTYPE_SYMAX[] = "\x03""Std""X5C";
const char STR_SUBTYPE_SLT[] = "\x06""V1_6ch""V2_8ch""Q100\0 ""Q200\0 ""MR100\0";
const char STR_SUBTYPE_CX10[] = "\x07""Green\0 ""Blue\0 ""DM007\0 ""-\0 ""JC3015a""JC3015b""MK33041";
const char STR_SUBTYPE_CG023[] = "\x05""Std\0 ""YD829";
const char STR_SUBTYPE_BAYANG[] = "\x07""Std\0 ""H8S3D\0 ""X16 AH\0""IRDrone""DHD D4\0""QX100\0 ";
const char STR_SUBTYPE_MT99[] = "\x06""MT99\0 ""H7\0 ""YZ\0 ""LS\0 ""FY805";
const char STR_SUBTYPE_MJXQ[] = "\x07""WLH08\0 ""X600\0 ""X800\0 ""H26D\0 ""E010\0 ""H26WH\0 ""Phoenix";
const char STR_SUBTYPE_FY326[] = "\x05""Std\0 ""FY319";
const char STR_SUBTYPE_HONTAI[] = "\x07""Std\0 ""JJRC X1""X5C1\0 ""FQ_951";
const char STR_SUBTYPE_AFHDS2A[] = "\x08""PWM,IBUS""PPM,IBUS""PWM,SBUS""PPM,SBUS""PWM,IB16""PPM,IB16""PWM,SB16""PPM,SB16";
const char STR_SUBTYPE_Q2X2[] = "\x04""Q222""Q242""Q282";
const char STR_SUBTYPE_WK2x01[] = "\x06""WK2801""WK2401""W6_5_1""W6_6_1""W6_HeL""W6_HeI";
const char STR_SUBTYPE_Q303[] = "\x06""Std\0 ""CX35\0 ""CX10D\0""CX10WD";
const char STR_SUBTYPE_CABELL[] = "\x07""V3\0 ""V3 Telm""-\0 ""-\0 ""-\0 ""-\0 ""F-Safe\0""Unbind\0";
const char STR_SUBTYPE_H83D[] = "\x07""Std\0 ""H20H\0 ""H20Mini""H30Mini";
const char STR_SUBTYPE_CORONA[] = "\x05""V1\0 ""V2\0 ""FD V3";
const char STR_SUBTYPE_HITEC[] = "\x07""Optima\0""Opt Hub""Minima\0";
const char STR_SUBTYPE_BUGS_MINI[] = "\x06""Std\0 ""Bugs3H";
const char STR_SUBTYPE_TRAXXAS[] = "\x04""6519";
const char STR_SUBTYPE_E01X[] = "\x05""E012\0""E015\0""E016H";
const char STR_SUBTYPE_GD00X[] = "\x05""GD_V1""GD_V2";
const char STR_SUBTYPE_REDPINE[] = "\x04""Fast""Slow";
const char STR_SUBTYPE_POTENSIC[] = "\x03""A20";
const char STR_SUBTYPE_ZSX[] = "\x07""280JJRC";
const char STR_SUBTYPE_HEIGHT[] = "\x03""5ch""8ch";
const char STR_SUBTYPE_FX816[] = "\x03""P38";
const char STR_SUBTYPE_XN297DUMP[] = "\x07""250Kbps""1Mbps\0 ""2Mbps\0 ""Auto\0 ""NRF\0 ";
const char STR_SUBTYPE_ESKY150[] = "\x03""4ch""7ch";
const char STR_SUBTYPE_ESKY150V2[] = "\x05""150V2";
const char STR_SUBTYPE_V911S[] = "\x05""V911S""E119\0";
const char STR_SUBTYPE_XK[] = "\x04""X450""X420";
const char STR_SUBTYPE_FRSKYR9[] = "\x07""915MHz\0""868MHz\0""915 8ch""868 8ch""FCC\0 ""--\0 ""FCC 8ch""-- 8ch\0";
const char STR_SUBTYPE_ESKY[] = "\x03""Std""ET4";
const char STR_SUBTYPE_PROPEL[] = "\x04""74-Z";
const char STR_SUBTYPE_FRSKY_RX[] = "\x07""RX\0 ""CloneTX";
const char STR_SUBTYPE_FRSKYL[] = "\x08""LR12\0 ""LR12 6ch";
const char STR_SUBTYPE_WFLY[] = "\x05""WFR0x";
const char STR_SUBTYPE_WFLY2[] = "\x05""RF20x";
const char STR_SUBTYPE_HOTT[] = "\x07""Sync\0 ""No_Sync";
const char STR_SUBTYPE_PELIKAN[] = "\x04""Pro\0""Lite";
const char STR_SUBTYPE_V761[] = "\x03""3ch""4ch";
const char STR_SUBTYPE_RLINK[] = "\x07""Surface""Air\0 ""DumboRC";
const char STR_SUBTYPE_REALACC[] = "\x03""R11";
const char STR_SUBTYPE_KYOSHO[] = "\x04""FHSS""Hype";
const char STR_SUBTYPE_FUTABA[] = "\x05""SFHSS";
const char STR_SUBTYPE_JJRC345[] = "\x08""JJRC345\0""SkyTmblr";
enum
{
OPTION_NONE,
OPTION_OPTION,
OPTION_RFTUNE,
OPTION_VIDFREQ,
OPTION_FIXEDID,
OPTION_TELEM,
OPTION_SRVFREQ,
OPTION_MAXTHR,
OPTION_RFCHAN,
OPTION_RFPOWER,
};
#define NO_SUBTYPE nullptr
const mm_protocol_definition multi_protocols[] = {
// Protocol number, Protocol String, Number of sub_protocols, Sub_protocol strings, Option type
#if defined(ASSAN_NRF24L01_INO)
{PROTO_ASSAN, STR_ASSAN, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(BAYANG_NRF24L01_INO)
{PROTO_BAYANG, STR_BAYANG, 6, STR_SUBTYPE_BAYANG, OPTION_TELEM },
#endif
#if defined(BAYANG_RX_NRF24L01_INO)
{PROTO_BAYANG_RX, STR_BAYANG_RX, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(BUGS_A7105_INO)
{PROTO_BUGS, STR_BUGS, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(BUGSMINI_NRF24L01_INO)
{PROTO_BUGSMINI, STR_BUGSMINI, 2, STR_SUBTYPE_BUGS_MINI, OPTION_NONE },
#endif
#if defined(CABELL_NRF24L01_INO)
{PROTO_CABELL, STR_CABELL, 8, STR_SUBTYPE_CABELL, OPTION_OPTION },
#endif
#if defined(CFLIE_NRF24L01_INO)
{PROTO_CFLIE, STR_CFLIE, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(CG023_NRF24L01_INO)
{PROTO_CG023, STR_CG023, 2, STR_SUBTYPE_CG023, OPTION_NONE },
#endif
#if defined(CORONA_CC2500_INO)
{PROTO_CORONA, STR_CORONA, 3, STR_SUBTYPE_CORONA, OPTION_RFTUNE },
#endif
#if defined(CX10_NRF24L01_INO)
{PROTO_CX10, STR_CX10, 7, STR_SUBTYPE_CX10, OPTION_NONE },
#endif
#if defined(DEVO_CYRF6936_INO)
{PROTO_DEVO, STR_DEVO, 5, STR_SUBTYPE_DEVO, OPTION_FIXEDID },
#endif
#if defined(DM002_NRF24L01_INO)
{PROTO_DM002, STR_DM002, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(DSM_CYRF6936_INO)
{PROTO_DSM, STR_DSM, 5, STR_SUBTYPE_DSM, OPTION_MAXTHR },
#endif
#if defined(DSM_RX_CYRF6936_INO)
{PROTO_DSM_RX, STR_DSM_RX, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(E010R5_CYRF6936_INO)
{PROTO_E010R5, STR_E010R5, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(E016HV2_CC2500_INO)
{PROTO_E016HV2, STR_E016HV2, 0, NO_SUBTYPE, OPTION_RFTUNE },
#endif
#if defined(E01X_NRF24L01_INO)
{PROTO_E01X, STR_E01X, 3, STR_SUBTYPE_E01X, OPTION_OPTION },
#endif
#if defined(E129_CYRF6936_INO)
{PROTO_E129, STR_E129, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(ESKY_NRF24L01_INO)
{PROTO_ESKY, STR_ESKY, 2, STR_SUBTYPE_ESKY, OPTION_NONE },
#endif
#if defined(ESKY150_NRF24L01_INO)
{PROTO_ESKY150, STR_ESKY150, 2, STR_SUBTYPE_ESKY150, OPTION_NONE },
#endif
#if defined(ESKY150V2_CC2500_INO)
{PROTO_ESKY150V2, STR_ESKY150V2, 1, STR_SUBTYPE_ESKY150V2, OPTION_RFTUNE },
#endif
#if defined(FLYSKY_A7105_INO)
{PROTO_FLYSKY, STR_FLYSKY, 5, STR_SUBTYPE_FLYSKY, OPTION_NONE },
#endif
#if defined(AFHDS2A_A7105_INO)
{PROTO_AFHDS2A, STR_AFHDS2A, 8, STR_SUBTYPE_AFHDS2A, OPTION_SRVFREQ },
#endif
#if defined(AFHDS2A_RX_A7105_INO)
{PROTO_AFHDS2A_RX, STR_AFHDS2A_RX,0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(FQ777_NRF24L01_INO)
{PROTO_FQ777, STR_FQ777, 0, NO_SUBTYPE, OPTION_NONE },
#endif
//OpenTX 2.3.x issue: DO NOT CHANGE ORDER below
#if defined(FRSKY_RX_CC2500_INO)
{PROTO_FRSKY_RX, STR_FRSKY_RX, 2, STR_SUBTYPE_FRSKY_RX, OPTION_RFTUNE },
#endif
#if defined(FRSKYD_CC2500_INO)
{PROTO_FRSKYD, STR_FRSKYD, 2, STR_SUBTYPE_FRSKYD, OPTION_RFTUNE },
#endif
#if defined(FRSKYV_CC2500_INO)
{PROTO_FRSKYV, STR_FRSKYV, 0, NO_SUBTYPE, OPTION_RFTUNE },
#endif
#if defined(FRSKYX_CC2500_INO)
{PROTO_FRSKYX, STR_FRSKYX, 6, STR_SUBTYPE_FRSKYX, OPTION_RFTUNE },
{PROTO_FRSKYX2, STR_FRSKYX2, 6, STR_SUBTYPE_FRSKYX, OPTION_RFTUNE },
#endif
//OpenTX 2.3.x issue: DO NOT CHANGE ORDER above
#if defined(FRSKYL_CC2500_INO)
{PROTO_FRSKYL, STR_FRSKYL, 2, STR_SUBTYPE_FRSKYL, OPTION_RFTUNE },
#endif
#if defined(FRSKYR9_SX1276_INO)
{PROTO_FRSKY_R9, STR_FRSKYR9, 8, STR_SUBTYPE_FRSKYR9, OPTION_NONE },
#endif
#if defined(FUTABA_CC2500_INO)
{PROTO_FUTABA, STR_FUTABA, 1, STR_SUBTYPE_FUTABA, OPTION_RFTUNE },
#endif
#if defined(FX816_NRF24L01_INO)
{PROTO_FX816, STR_FX816, 1, STR_SUBTYPE_FX816, OPTION_NONE },
#endif
#if defined(FY326_NRF24L01_INO)
{PROTO_FY326, STR_FY326, 2, STR_SUBTYPE_FY326, OPTION_NONE },
#endif
#if defined(GD00X_NRF24L01_INO)
{PROTO_GD00X, STR_GD00X, 2, STR_SUBTYPE_GD00X, OPTION_RFTUNE },
#endif
#if defined(GW008_NRF24L01_INO)
{PROTO_GW008, STR_GW008, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(H8_3D_NRF24L01_INO)
{PROTO_H8_3D, STR_H8_3D, 4, STR_SUBTYPE_H83D, OPTION_NONE },
#endif
#if defined(HEIGHT_A7105_INO)
{PROTO_HEIGHT, STR_HEIGHT, 2, STR_SUBTYPE_HEIGHT, OPTION_NONE },
#endif
#if defined(HISKY_NRF24L01_INO)
{PROTO_HISKY, STR_HISKY, 2, STR_SUBTYPE_HISKY, OPTION_NONE },
#endif
#if defined(HITEC_CC2500_INO)
{PROTO_HITEC, STR_HITEC, 3, STR_SUBTYPE_HITEC, OPTION_RFTUNE },
#endif
#if defined(HONTAI_NRF24L01_INO)
{PROTO_HONTAI, STR_HONTAI, 4, STR_SUBTYPE_HONTAI, OPTION_NONE },
#endif
#if defined(HOTT_CC2500_INO)
{PROTO_HOTT, STR_HOTT, 2, STR_SUBTYPE_HOTT, OPTION_RFTUNE },
#endif
#if defined(HUBSAN_A7105_INO)
{PROTO_HUBSAN, STR_HUBSAN, 3, STR_SUBTYPE_HUBSAN, OPTION_VIDFREQ },
#endif
#if defined(J6PRO_CYRF6936_INO)
{PROTO_J6PRO, STR_J6PRO, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(JJRC345_NRF24L01_INO)
{PROTO_JJRC345, STR_JJRC345, 2, STR_SUBTYPE_JJRC345, OPTION_NONE },
#endif
#if defined(KF606_NRF24L01_INO)
{PROTO_KF606, STR_KF606, 0, NO_SUBTYPE, OPTION_RFTUNE },
#endif
#if defined(KN_NRF24L01_INO)
{PROTO_KN, STR_KN, 2, STR_SUBTYPE_KN, OPTION_NONE },
#endif
#if defined(KYOSHO_A7105_INO)
{PROTO_KYOSHO, STR_KYOSHO, 2, STR_SUBTYPE_KYOSHO, OPTION_NONE },
#endif
#if defined(LOLI_NRF24L01_INO)
{PROTO_LOLI, STR_LOLI, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(MJXQ_NRF24L01_INO)
{PROTO_MJXQ, STR_MJXQ, 7, STR_SUBTYPE_MJXQ, OPTION_RFTUNE },
#endif
#if defined(MLINK_CYRF6936_INO)
{PROTO_MLINK, STR_MLINK, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(MT99XX_NRF24L01_INO)
{PROTO_MT99XX, STR_MT99XX, 5, STR_SUBTYPE_MT99, OPTION_NONE },
#endif
#if defined(NCC1701_NRF24L01_INO)
{PROTO_NCC1701, STR_NCC1701, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(OMP_CC2500_INO)
{PROTO_OMP, STR_OMP, 0, NO_SUBTYPE, OPTION_RFTUNE },
#endif
#if defined(PELIKAN_A7105_INO)
{PROTO_PELIKAN, STR_PELIKAN , 2, STR_SUBTYPE_PELIKAN, OPTION_NONE },
#endif
#if defined(POTENSIC_NRF24L01_INO)
{PROTO_POTENSIC, STR_POTENSIC, 1, STR_SUBTYPE_POTENSIC, OPTION_NONE },
#endif
#if defined(PROPEL_NRF24L01_INO)
{PROTO_PROPEL, STR_PROPEL, 1, STR_SUBTYPE_PROPEL, OPTION_NONE },
#endif
#if defined(CX10_NRF24L01_INO)
{PROTO_Q2X2, STR_Q2X2, 3, STR_SUBTYPE_Q2X2, OPTION_NONE },
#endif
#if defined(Q303_NRF24L01_INO)
{PROTO_Q303, STR_Q303, 4, STR_SUBTYPE_Q303, OPTION_NONE },
#endif
#if defined(Q90C_NRF24L01_INO)
{PROTO_Q90C, STR_Q90C, 0, NO_SUBTYPE, OPTION_RFTUNE },
#endif
#if defined(RLINK_CC2500_INO)
{PROTO_RLINK, STR_RLINK, 3, STR_SUBTYPE_RLINK, OPTION_RFTUNE },
#endif
#if defined(REALACC_NRF24L01_INO)
{PROTO_REALACC, STR_REALACC, 1, STR_SUBTYPE_REALACC, OPTION_NONE },
#endif
#if defined(REDPINE_CC2500_INO)
{PROTO_REDPINE, STR_REDPINE, 2, STR_SUBTYPE_REDPINE, OPTION_RFTUNE },
#endif
#if defined(SCANNER_CC2500_INO)
// {PROTO_SCANNER, STR_SCANNER, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(SHENQI_NRF24L01_INO)
{PROTO_SHENQI, STR_SHENQI, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(SKYARTEC_CC2500_INO)
{PROTO_SKYARTEC, STR_SKYARTEC, 0, NO_SUBTYPE, OPTION_RFTUNE },
#endif
#if defined(SLT_NRF24L01_INO)
{PROTO_SLT, STR_SLT, 5, STR_SUBTYPE_SLT, OPTION_RFTUNE },
#endif
#if defined(SYMAX_NRF24L01_INO)
{PROTO_SYMAX, STR_SYMAX, 2, STR_SUBTYPE_SYMAX, OPTION_NONE },
#endif
#if defined(TIGER_NRF24L01_INO)
{PROTO_TIGER, STR_TIGER , 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(TRAXXAS_CYRF6936_INO)
{PROTO_TRAXXAS, STR_TRAXXAS, 1, STR_SUBTYPE_TRAXXAS, OPTION_NONE },
#endif
#if defined(V2X2_NRF24L01_INO)
{PROTO_V2X2, STR_V2X2, 3, STR_SUBTYPE_V2X2, OPTION_NONE },
#endif
#if defined(V761_NRF24L01_INO)
{PROTO_V761, STR_V761, 2, STR_SUBTYPE_V761, OPTION_NONE },
#endif
#if defined(V911S_NRF24L01_INO)
{PROTO_V911S, STR_V911S, 2, STR_SUBTYPE_V911S, OPTION_RFTUNE },
#endif
#if defined(WK2x01_CYRF6936_INO)
{PROTO_WK2x01, STR_WK2x01, 6, STR_SUBTYPE_WK2x01, OPTION_NONE },
#endif
#if defined(WFLY_CYRF6936_INO)
{PROTO_WFLY, STR_WFLY, 1, STR_SUBTYPE_WFLY, OPTION_NONE },
#endif
#if defined(WFLY2_A7105_INO)
{PROTO_WFLY2, STR_WFLY2, 1, STR_SUBTYPE_WFLY2, OPTION_OPTION },
#endif
#if defined(XK_NRF24L01_INO)
{PROTO_XK, STR_XK , 2, STR_SUBTYPE_XK, OPTION_RFTUNE },
#endif
#if defined(XN297DUMP_NRF24L01_INO)
{PROTO_XN297DUMP, STR_XN297DUMP, 5, STR_SUBTYPE_XN297DUMP, OPTION_RFCHAN },
#endif
#if defined(YD717_NRF24L01_INO)
{PROTO_YD717, STR_YD717, 5, STR_SUBTYPE_YD717, OPTION_NONE },
#endif
#if defined(ZSX_NRF24L01_INO)
{PROTO_ZSX, STR_ZSX, 1, STR_SUBTYPE_ZSX, OPTION_NONE },
#endif
#if defined(TEST_CC2500_INO)
{PROTO_TEST, STR_TEST, 0, NO_SUBTYPE, OPTION_RFTUNE },
#endif
#if defined(NANORF_NRF24L01_INO)
{PROTO_NANORF, STR_NANORF, 0, NO_SUBTYPE, OPTION_NONE },
#endif
{0x00, nullptr, 0, nullptr, 0 }
};
#endif

View File

@@ -17,9 +17,9 @@
// Version
//******************
#define VERSION_MAJOR 1
#define VERSION_MINOR 2
#define VERSION_REVISION 1
#define VERSION_PATCH_LEVEL 69
#define VERSION_MINOR 3
#define VERSION_REVISION 2
#define VERSION_PATCH_LEVEL 12
//******************
// Protocols
@@ -47,7 +47,7 @@ enum PROTOCOLS
PROTO_MJXQ = 18, // =>NRF24L01
PROTO_SHENQI = 19, // =>NRF24L01
PROTO_FY326 = 20, // =>NRF24L01
PROTO_SFHSS = 21, // =>CC2500
PROTO_FUTABA = 21, // =>CC2500
PROTO_J6PRO = 22, // =>CYRF6936
PROTO_FQ777 = 23, // =>NRF24L01
PROTO_ASSAN = 24, // =>NRF24L01
@@ -78,7 +78,40 @@ enum PROTOCOLS
PROTO_KF606 = 49, // =>NRF24L01
PROTO_REDPINE = 50, // =>CC2500
PROTO_POTENSIC = 51, // =>NRF24L01
PROTO_ZSX = 52, // =>NRF24L01
PROTO_HEIGHT = 53, // =>A7105
PROTO_SCANNER = 54, // =>CC2500
PROTO_FRSKY_RX = 55, // =>CC2500
PROTO_AFHDS2A_RX= 56, // =>A7105
PROTO_HOTT = 57, // =>CC2500
PROTO_FX816 = 58, // =>NRF24L01
PROTO_BAYANG_RX = 59, // =>NRF24L01
PROTO_PELIKAN = 60, // =>A7105
PROTO_TIGER = 61, // =>NRF24L01
PROTO_XK = 62, // =>NRF24L01
PROTO_XN297DUMP = 63, // =>NRF24L01
PROTO_FRSKYX2 = 64, // =>CC2500
PROTO_FRSKY_R9 = 65, // =>SX1276
PROTO_PROPEL = 66, // =>NRF24L01
PROTO_FRSKYL = 67, // =>CC2500
PROTO_SKYARTEC = 68, // =>CC2500
PROTO_ESKY150V2 = 69, // =>CC2500+NRF24L01
PROTO_DSM_RX = 70, // =>CYRF6936
PROTO_JJRC345 = 71, // =>NRF24L01
PROTO_Q90C = 72, // =>NRF24L01 or CC2500
PROTO_KYOSHO = 73, // =>A7105
PROTO_RLINK = 74, // =>CC2500
PROTO_REALACC = 76, // =>NRF24L01
PROTO_OMP = 77, // =>CC2500 & NRF24L01
PROTO_MLINK = 78, // =>CYRF6936
PROTO_WFLY2 = 79, // =>A7105
PROTO_E016HV2 = 80, // =>CC2500 & NRF24L01
PROTO_E010R5 = 81, // =>CYRF6936
PROTO_LOLI = 82, // =>NRF24L01
PROTO_E129 = 83, // =>CYRF6936
PROTO_NANORF = 126, // =>NRF24L01
PROTO_TEST = 127, // =>CC2500
};
enum Flysky
@@ -89,6 +122,10 @@ enum Flysky
V912 = 3,
CX20 = 4,
};
enum Height
{
FZ410 = 0,
};
enum Hubsan
{
H107 = 0,
@@ -101,6 +138,8 @@ enum AFHDS2A
PPM_IBUS = 1,
PWM_SBUS = 2,
PPM_SBUS = 3,
PWM_IB16 = 4,
PPM_IB16 = 5,
};
enum Hisky
{
@@ -171,6 +210,7 @@ enum BAYANG
X16_AH = 2,
IRDRONE = 3,
DHD_D4 = 4,
QX100 = 5,
};
enum MT99XX
{
@@ -190,12 +230,19 @@ enum MJXQ
H26WH = 5,
PHOENIX = 6,
};
enum FRSKYD
{
FRSKYD = 0,
DCLONE = 1,
};
enum FRSKYX
{
CH_16 = 0,
CH_8 = 1,
EU_16 = 2,
EU_8 = 3,
CH_16 = 0,
CH_8 = 1,
EU_16 = 2,
EU_8 = 3,
XCLONE_16 = 4,
XCLONE_8 = 5,
};
enum HONTAI
{
@@ -208,6 +255,7 @@ enum V2X2
{
V2X2 = 0,
JXD506 = 1,
V2X2_MR101 = 2,
};
enum FY326
{
@@ -281,6 +329,99 @@ enum TRAXXAS
{
RX6519 = 0,
};
enum ESKY150
{
ESKY150_4CH = 0,
ESKY150_7CH = 1,
};
enum V911S
{
V911S_STD = 0,
V911S_E119 = 1,
};
enum XK
{
X450 = 0,
X420 = 1,
};
enum XN297DUMP
{
XN297DUMP_250K = 0,
XN297DUMP_1M = 1,
XN297DUMP_2M = 2,
XN297DUMP_AUTO = 3,
};
enum FRSKY_R9
{
R9_915 = 0,
R9_868 = 1,
R9_915_8CH = 2,
R9_868_8CH = 3,
R9_FCC = 4,
R9_EU = 5,
R9_FCC_8CH = 6,
R9_EU_8CH = 7,
};
enum ESKY
{
ESKY_STD = 0,
ESKY_ET4 = 1,
};
enum FRSKY_RX
{
FRSKY_RX = 0,
FRSKY_CLONE = 1,
};
enum FRSKYL
{
LR12 = 0,
LR12_6CH = 1,
};
enum HOTT
{
HOTT_SYNC = 0,
HOTT_NO_SYNC= 1,
};
enum PELIKAN
{
PELIKAN_PRO = 0,
PELIKAN_LITE= 1,
};
enum V761
{
V761_3CH = 0,
V761_4CH = 1,
};
enum HEIGHT
{
HEIGHT_5CH = 0,
HEIGHT_8CH = 1,
};
enum KYOSHO
{
KYOSHO_FHSS = 0,
KYOSHO_HYPE = 1,
};
enum JJRC345
{
JJRC345 = 0,
SKYTMBLR = 1,
};
enum RLINK
{
RLINK_SURFACE = 0,
RLINK_AIR = 1,
RLINK_DUMBORC = 2,
};
#define NONE 0
#define P_HIGH 1
@@ -290,16 +431,16 @@ enum TRAXXAS
struct PPM_Parameters
{
uint8_t protocol : 6;
uint8_t sub_proto : 3;
uint8_t rx_num : 4;
uint8_t power : 1;
uint8_t autobind : 1;
uint8_t option;
uint8_t protocol;
uint8_t sub_proto : 3;
uint8_t rx_num : 6;
uint8_t power : 1;
uint8_t autobind : 1;
int8_t option;
uint32_t chan_order;
};
// Telemetry
enum MultiPacketTypes
{
MULTI_TELEMETRY_STATUS = 1,
@@ -308,15 +449,25 @@ enum MultiPacketTypes
MULTI_TELEMETRY_DSM = 4,
MULTI_TELEMETRY_DSMBIND = 5,
MULTI_TELEMETRY_AFHDS2A = 6,
MULTI_TELEMETRY_CONFIG = 7,
MULTI_TELEMETRY_REUSE_1 = 7,
MULTI_TELEMETRY_SYNC = 8,
MULTI_TELEMETRY_SPORT_POLLING = 9,
MULTI_TELEMETRY_REUSE_2 = 9,
MULTI_TELEMETRY_HITEC = 10,
MULTI_TELEMETRY_SCANNER = 11,
MULTI_TELEMETRY_AFHDS2A_AC = 12,
MULTI_TELEMETRY_RX_CHANNELS = 13,
MULTI_TELEMETRY_HOTT = 14,
};
// Macros
#define NOP() __asm__ __volatile__("nop")
//***************
//*** Tests ***
//***************
#define IS_FAILSAFE_PROTOCOL ( (protocol==PROTO_HISKY && sub_protocol==HK310) || protocol==PROTO_AFHDS2A || protocol==PROTO_DEVO || protocol==PROTO_FUTABA || protocol==PROTO_WK2x01 || protocol== PROTO_HOTT || protocol==PROTO_FRSKYX || protocol==PROTO_FRSKYX2 || protocol==PROTO_FRSKY_R9 || protocol==PROTO_WFLY2 || protocol==PROTO_LOLI)
#define IS_CHMAP_PROTOCOL ( (protocol==PROTO_HISKY && sub_protocol==HK310) || protocol==PROTO_AFHDS2A || protocol==PROTO_DEVO || protocol==PROTO_FUTABA || protocol==PROTO_WK2x01 || protocol== PROTO_DSM || protocol==PROTO_SLT || protocol==PROTO_FLYSKY || (protocol==PROTO_KYOSHO && sub_protocol==KYOSHO_HYPE) || protocol==PROTO_ESKY || protocol==PROTO_J6PRO || protocol==PROTO_PELIKAN || protocol==PROTO_SKYARTEC || protocol==PROTO_ESKY150V2 || protocol==PROTO_DSM_RX)
//***************
//*** Flags ***
//***************
@@ -372,6 +523,7 @@ enum MultiPacketTypes
#define TX_RX_PAUSE_on protocol_flags2 |= _BV(4)
#define IS_TX_RX_PAUSE_on ( ( protocol_flags2 & _BV(4) ) !=0 )
#define IS_TX_PAUSE_on ( ( protocol_flags2 & (_BV(4)|_BV(3)) ) !=0 )
#define IS_TX_PAUSE_off ( ( protocol_flags2 & (_BV(4)|_BV(3)) ) ==0 )
//Signal OK
#define INPUT_SIGNAL_off protocol_flags2 &= ~_BV(5)
#define INPUT_SIGNAL_on protocol_flags2 |= _BV(5)
@@ -387,6 +539,29 @@ enum MultiPacketTypes
#define WAIT_BIND_on protocol_flags2 |= _BV(7)
#define IS_WAIT_BIND_on ( ( protocol_flags2 & _BV(7) ) !=0 )
#define IS_WAIT_BIND_off ( ( protocol_flags2 & _BV(7) ) ==0 )
//Incoming telemetry data buffer
#define DATA_BUFFER_LOW_off protocol_flags3 &= ~_BV(0)
#define DATA_BUFFER_LOW_on protocol_flags3 |= _BV(0)
#define IS_DATA_BUFFER_LOW_on ( ( protocol_flags3 & _BV(0) ) !=0 )
#define IS_DATA_BUFFER_LOW_off ( ( protocol_flags3 & _BV(0) ) ==0 )
#define SEND_MULTI_STATUS_off protocol_flags3 &= ~_BV(1)
#define SEND_MULTI_STATUS_on protocol_flags3 |= _BV(1)
#define IS_SEND_MULTI_STATUS_on ( ( protocol_flags3 & _BV(1) ) !=0 )
#define IS_SEND_MULTI_STATUS_off ( ( protocol_flags3 & _BV(1) ) ==0 )
#define DISABLE_CH_MAP_off protocol_flags3 &= ~_BV(2)
#define DISABLE_CH_MAP_on protocol_flags3 |= _BV(2)
#define IS_DISABLE_CH_MAP_on ( ( protocol_flags3 & _BV(2) ) !=0 )
#define IS_DISABLE_CH_MAP_off ( ( protocol_flags3 & _BV(2) ) ==0 )
#define DISABLE_TELEM_off protocol_flags3 &= ~_BV(3)
#define DISABLE_TELEM_on protocol_flags3 |= _BV(3)
#define IS_DISABLE_TELEM_on ( ( protocol_flags3 & _BV(3) ) !=0 )
#define IS_DISABLE_TELEM_off ( ( protocol_flags3 & _BV(3) ) ==0 )
//LBT power
#define LBT_POWER_off protocol_flags3 &= ~_BV(7)
#define LBT_POWER_on protocol_flags3 |= _BV(7)
#define IS_LBT_POWER_on ( ( protocol_flags3 & _BV(7) ) !=0 )
#define IS_LBT_POWER_off ( ( protocol_flags3 & _BV(7) ) ==0 )
// Failsafe
#define FAILSAFE_CHANNEL_HOLD 2047
@@ -395,7 +570,7 @@ enum MultiPacketTypes
//********************
//** Debug messages **
//********************
#if defined(STM32_BOARD) && defined (DEBUG_SERIAL)
#if defined(STM32_BOARD) && (defined (DEBUG_SERIAL) || defined (ARDUINO_MULTI_DEBUG))
uint16_t debug_time=0;
#define debug(msg, ...) {char debug_buf[64]; sprintf(debug_buf, msg, ##__VA_ARGS__); Serial.write(debug_buf);}
#define debugln(msg, ...) {char debug_buf[64]; sprintf(debug_buf, msg "\r\n", ##__VA_ARGS__); Serial.write(debug_buf);}
@@ -454,17 +629,17 @@ enum {
};
// A7105 power
// Power amp is ~+16dBm so:
// The numbers do not take into account any outside amplifier
enum A7105_POWER
{
A7105_POWER_0 = 0x00<<3 | 0x00, // TXPOWER_100uW = -23dBm == PAC=0 TBG=0
A7105_POWER_1 = 0x00<<3 | 0x01, // TXPOWER_300uW = -20dBm == PAC=0 TBG=1
A7105_POWER_2 = 0x00<<3 | 0x02, // TXPOWER_1mW = -16dBm == PAC=0 TBG=2
A7105_POWER_3 = 0x00<<3 | 0x04, // TXPOWER_3mW = -11dBm == PAC=0 TBG=4
A7105_POWER_4 = 0x01<<3 | 0x05, // TXPOWER_10mW = -6dBm == PAC=1 TBG=5
A7105_POWER_5 = 0x02<<3 | 0x07, // TXPOWER_30mW = 0dBm == PAC=2 TBG=7
A7105_POWER_6 = 0x03<<3 | 0x07, // TXPOWER_100mW = 1dBm == PAC=3 TBG=7
A7105_POWER_7 = 0x03<<3 | 0x07 // TXPOWER_150mW = 1dBm == PAC=3 TBG=7
A7105_POWER_0 = 0x00<<3 | 0x00, // -23dBm == PAC=0 TBG=0
A7105_POWER_1 = 0x00<<3 | 0x01, // -20dBm == PAC=0 TBG=1
A7105_POWER_2 = 0x00<<3 | 0x02, // -16dBm == PAC=0 TBG=2
A7105_POWER_3 = 0x00<<3 | 0x04, // -11dBm == PAC=0 TBG=4
A7105_POWER_4 = 0x01<<3 | 0x05, // -6dBm == PAC=1 TBG=5
A7105_POWER_5 = 0x02<<3 | 0x07, // 0dBm == PAC=2 TBG=7
A7105_POWER_6 = 0x03<<3 | 0x07, // +1dBm == PAC=3 TBG=7
A7105_POWER_7 = 0x03<<3 | 0x07 // +1dBm == PAC=3 TBG=7
};
#define A7105_HIGH_POWER A7105_POWER_7
#define A7105_LOW_POWER A7105_POWER_3
@@ -472,14 +647,13 @@ enum A7105_POWER
#define A7105_BIND_POWER A7105_POWER_0
// NRF Power
// Power setting is 0..3 for nRF24L01
// Claimed power amp for nRF24L01 from eBay is 20dBm.
// The numbers do not take into account any outside amplifier
enum NRF_POWER
{ // Raw w 20dBm PA
NRF_POWER_0 = 0x00, // 0 : -18dBm (16uW) 2dBm (1.6mW)
NRF_POWER_1 = 0x01, // 1 : -12dBm (60uW) 8dBm (6mW)
NRF_POWER_2 = 0x02, // 2 : -6dBm (250uW) 14dBm (25mW)
NRF_POWER_3 = 0x03 // 3 : 0dBm (1mW) 20dBm (100mW)
{
NRF_POWER_0 = 0x00, // -18dBm
NRF_POWER_1 = 0x01, // -12dBm
NRF_POWER_2 = 0x02, // -6dBm
NRF_POWER_3 = 0x03 // 0dBm
};
#define NRF_HIGH_POWER NRF_POWER_3
#define NRF_LOW_POWER NRF_POWER_1
@@ -510,11 +684,13 @@ enum CC2500_POWER
CC2500_POWER_17 = 0xFF // +1dbm
};
#define CC2500_HIGH_POWER CC2500_POWER_17
#define CC2500_LBT_POWER CC2500_POWER_14
#define CC2500_LOW_POWER CC2500_POWER_13
#define CC2500_RANGE_POWER CC2500_POWER_1
#define CC2500_BIND_POWER CC2500_POWER_1
// CYRF power
// The numbers do not take into account any outside amplifier
enum CYRF_POWER
{
CYRF_POWER_0 = 0x00, // -35dbm
@@ -558,76 +734,126 @@ enum {
#define AFHDS2A_EEPROM_OFFSET 50 // RX ID, 4 bytes per model id, end is 50+64=114
#define BUGS_EEPROM_OFFSET 114 // RX ID, 2 bytes per model id, end is 114+32=146
#define BUGSMINI_EEPROM_OFFSET 146 // RX ID, 2 bytes per model id, end is 146+32=178
//#define CONFIG_EEPROM_OFFSET 210 // Current configuration of the multimodule
#define FRSKY_RX_EEPROM_OFFSET 178 // (1) format + (3) TX ID + (1) freq_tune + (47) channels, 52 bytes, end is 178+52=230
#define AFHDS2A_RX_EEPROM_OFFSET 230 // (4) TX ID + (16) channels, 20 bytes, end is 230+20=250
#define AFHDS2A_EEPROM_OFFSET2 250 // RX ID, 4 bytes per model id, end is 250+192=442
#define HOTT_EEPROM_OFFSET 442 // RX ID, 5 bytes per model id, end is 320+442=762
#define BAYANG_RX_EEPROM_OFFSET 762 // (5) TX ID + (4) channels, 9 bytes, end is 771
#define FRSKYD_CLONE_EEPROM_OFFSET 771 // (1) format + (3) TX ID + (47) channels, 51 bytes, end is 822
#define FRSKYX_CLONE_EEPROM_OFFSET 822 // (1) format + (3) TX ID + (47) channels, 51 bytes, end is 873
#define FRSKYX2_CLONE_EEPROM_OFFSET 873 // (1) format + (3) TX ID, 4 bytes, end is 877
#define DSM_RX_EEPROM_OFFSET 877 // (4) TX ID + format, 5 bytes, end is 882
//#define CONFIG_EEPROM_OFFSET 882 // Current configuration of the multimodule
/* STM32 Flash Size */
#ifndef DISABLE_FLASH_SIZE_CHECK
#ifdef MCU_STM32F103C8
#define MCU_EXPECTED_FLASH_SIZE 64 // STM32F103C8 has 64KB of flash space
#else
#define MCU_EXPECTED_FLASH_SIZE 128 // STM32F103CB has 128KB of flash space
#endif
#endif
//****************************************
//*** MULTI protocol serial definition ***
//****************************************
/*
**************************
***************************
16 channels serial protocol
**************************
***************************
Serial: 100000 Baud 8e2 _ xxxx xxxx p --
Total of 26 bytes
Stream[0] = 0x55 sub_protocol values are 0..31 Stream contains channels
Stream[0] = 0x54 sub_protocol values are 32..63 Stream contains channels
Stream[0] = 0x57 sub_protocol values are 0..31 Stream contains failsafe
Stream[0] = 0x56 sub_protocol values are 32..63 Stream contains failsafe
header
Total of 26 bytes for protocol V1, variable length 27..36 for protocol V2
Stream[0] = header
0x55 sub_protocol values are 0..31 Stream contains channels
0x54 sub_protocol values are 32..63 Stream contains channels
0x57 sub_protocol values are 0..31 Stream contains failsafe
0x56 sub_protocol values are 32..63 Stream contains failsafe
Note: V2 adds the 2 top bits to extend the number of protocols to 256 in Stream[26]
Stream[1] = sub_protocol|BindBit|RangeCheckBit|AutoBindBit;
sub_protocol is 0..31 (bits 0..4), value should be added with 32 if Stream[0] = 0x54
=> Reserved 0
Flysky 1
Hubsan 2
FrskyD 3
Hisky 4
V2x2 5
DSM 6
Devo 7
YD717 8
KN 9
SymaX 10
SLT 11
CX10 12
CG023 13
Bayang 14
FrskyX 15
ESky 16
MT99XX 17
MJXQ 18
SHENQI 19
FY326 20
SFHSS 21
J6PRO 22
FQ777 23
ASSAN 24
FrskyV 25
HONTAI 26
OpenLRS 27
AFHDS2A 28
Q2X2 29
WK2x01 30
Q303 31
GW008 32
DM002 33
CABELL 34
ESKY150 35
H8_3D 36
CORONA 37
CFlie 38
Hitec 39
WFLY 40
BUGS 41
BUGSMINI 42
TRAXXAS 43
NCC1701 44
E01X 45
V911S 46
GD00X 47
V761 48
KF606 49
REDPINE 50
POTENSIC 51
sub_protocol is 0..31 (bits 0..4)
Reserved 0
Flysky 1
Hubsan 2
FrskyD 3
Hisky 4
V2x2 5
DSM 6
Devo 7
YD717 8
KN 9
SymaX 10
SLT 11
CX10 12
CG023 13
Bayang 14
FrskyX 15
ESky 16
MT99XX 17
MJXQ 18
SHENQI 19
FY326 20
Futaba 21
J6PRO 22
FQ777 23
ASSAN 24
FrskyV 25
HONTAI 26
OpenLRS 27
AFHDS2A 28
Q2X2 29
WK2x01 30
Q303 31
GW008 32
DM002 33
CABELL 34
ESKY150 35
H8_3D 36
CORONA 37
CFlie 38
Hitec 39
WFLY 40
BUGS 41
BUGSMINI 42
TRAXXAS 43
NCC1701 44
E01X 45
V911S 46
GD00X 47
V761 48
KF606 49
REDPINE 50
POTENSIC 51
ZSX 52
HEIGHT 53
SCANNER 54
FRSKY_RX 55
AFHDS2A_RX 56
HOTT 57
FX816 58
BAYANG_RX 59
PELIKAN 60
TIGER 61
XK 62
XN297DUMP 63
FRSKYX2 64
FRSKY_R9 65
PROPEL 66
FRSKYL 67
SKYARTEC 68
ESKY150V2 69
DSM_RX 70
JJRC345 71
Q90C 72
KYOSHO 73
RLINK 74
REALACC 76
OMP 77
MLINK 78
WFLY2 79
E016HV2 80
E010R5 81
LOLI 82
E129 83
BindBit=> 0x80 1=Bind/0=No
AutoBindBit=> 0x40 1=Yes /0=No
RangeCheck=> 0x20 1=Yes /0=No
@@ -700,11 +926,21 @@ Serial: 100000 Baud 8e2 _ xxxx xxxx p --
E010 4
H26WH 5
PHOENIX 6
sub_protocol==FRSKYD
FRSKYD 0
DCLONE 1
sub_protocol==FRSKYX
CH_16 0
CH_8 1
EU_16 2
EU_8 3
XCLONE 4
sub_protocol==FRSKYX2
CH_16 0
CH_8 1
EU_16 2
EU_8 3
XCLONE 4
sub_protocol==HONTAI
HONTAI 0
JJRCX1 1
@@ -715,9 +951,12 @@ Serial: 100000 Baud 8e2 _ xxxx xxxx p --
PPM_IBUS 1
PWM_SBUS 2
PPM_SBUS 3
PWM_IB16 4
PPM_IB16 5
sub_protocol==V2X2
V2X2 0
JXD506 1
V2X2_MR101 2
sub_protocol==FY326
FY326 0
FY319 1
@@ -769,6 +1008,52 @@ Serial: 100000 Baud 8e2 _ xxxx xxxx p --
RED_SLOW 1
sub_protocol==TRAXXAS
RX6519 0
sub_protocol==ESKY150
ESKY150_4CH 0
ESKY150_7CH 1
sub_protocol==V911S
V911S_STD 0
V911S_E119 1
sub_protocol==XK
X450 0
X420 1
sub_protocol==FRSKY_R9
R9_915 0
R9_868 1
R9_915_8CH 2
R9_868_8CH 3
R9_FCC 4
R9_EU 5
R9_FCC_8CH 6
R9_EU_8CH 7
sub_protocol==ESKY
ESKY_STD 0
ESKY_ET4 1
sub_protocol==FRSKY_RX
FRSKY_RX 0
FRSKY_CLONE 1
sub_protocol==FRSKYL
LR12 0
LR12_6CH 1
sub_protocol==HOTT
HOTT_SYNC 0
HOTT_NO_SYNC 1
sub_protocol==PELIKAN
PELIKAN_PRO 0
PELIKAN_LITE 1
sub_protocol==V761
V761_3CH 0
V761_4CH 1
sub_protocol==HEIGHT
HEIGHT_5CH 0
HEIGHT_8CH 1
sub_protocol==JJRC345
JJRC345 0
SKYTMBLR 1
sub_protocol==RLINK
RLINK_SURFACE 0
RLINK_AIR 1
RLINK_DUMBORC 2
Power value => 0x80 0=High/1=Low
Stream[3] = option_protocol;
@@ -782,7 +1067,20 @@ Serial: 100000 Baud 8e2 _ xxxx xxxx p --
2047 +125%
Values are concatenated to fit in 22 bytes like in SBUS protocol.
Failsafe values have exactly the same range/values than normal channels except the extremes where
0=hold, 2047=no pulse. If failsafe is not set or RX then failsafe packets should not be sent.
0=no pulse, 2047=hold. If failsafe is not set or RX then failsafe packets should not be sent.
Stream[26] = sub_protocol bits 6 & 7|RxNum bits 4 & 5|Telemetry_Invert 3|Future_Use 2|Disable_Telemetry 1|Disable_CH_Mapping 0
sub_protocol is 0..255 (bits 0..5 + bits 6..7)
RxNum value is 0..63 (bits 0..3 + bits 4..5)
Telemetry_Invert => 0x08 0=normal, 1=invert
Future_Use => 0x04 0= , 1=
Disable_Telemetry => 0x02 0=enable, 1=disable
Disable_CH_Mapping => 0x01 0=enable, 1=disable
Stream[27.. 35] = between 0 and 9 bytes for additional protocol data
Protocol specific use:
FrSkyX and FrSkyX2: Stream[27] during bind Telem on=0x00,off=0x01 | CH1-8=0x00,CH9-16=0x02
FrSkyX and FrSkyX2: Stream[27..34] during normal operation unstuffed SPort data to be sent
HoTT: Stream[27] 1 byte for telemetry type
DSM: Stream[27..33] Forward Programming
*/
/*
Multimodule Status
@@ -802,7 +1100,9 @@ Serial: 100000 Baud 8e2 _ xxxx xxxx p --
0x04 = Protocol is valid
0x08 = Module is in binding mode
0x10 = Module waits a bind event to load the protocol
0x20 = Failsafe supported by currently running protocol
0x20 = Current protocol supports failsafe
0x40 = Current protocol supports disable channel mapping
0x80 = Data buffer is almost full
[3] major
[4] minor
[5] revision
@@ -836,24 +1136,43 @@ Serial: 100000 Baud 8e2 _ xxxx xxxx p --
[4] Flags
0x01 = Input signal detected
0x02 = Serial mode enabled
0x04 = protocol is valid
0x08 = module is in binding mode
0x10 = module waits a bind event to load the protocol
0x04 = Protocol is valid
0x08 = Module is in binding mode
0x10 = Module waits a bind event to load the protocol
0x20 = Current protocol supports failsafe
0x40 = Current protocol supports disable channel mapping
0x80 = Data buffer is almost full
[5] major
[6] minor
[7] revision
[8] patchlevel,
version of multi code, should be displayed as major.minor.revision.patchlevel
[8] patchlevel
version of multi code, should be displayed as major.minor.revision.patchlevel
[9] channel order: CH4|CH3|CH2|CH1 with CHx value A=0,E=1,T=2,R=3
[10] Next valid protocol number, can be used to skip invalid protocols
[11] Prev valid protocol number, can be used to skip invalid protocols
[12..18] Protocol name [7], not null terminated if prototcol len == 7
[19>>4] Option text to be displayed:
OPTION_NONE 0
OPTION_OPTION 1
OPTION_RFTUNE 2
OPTION_VIDFREQ 3
OPTION_FIXEDID 4
OPTION_TELEM 5
OPTION_SRVFREQ 6
OPTION_MAXTHR 7
OPTION_RFCHAN 8
OPTION_RFPOWER 9
[19&0x0F] Number of sub protocols
[20..27] Sub protocol name [8], not null terminated if sub prototcol len == 8
If the current protocol is invalid [12..27] are all 0x00.
more information can be added by specifing a longer length of the type, the TX will just ignore these bytes
Type 0x02 Frksy S.port telemetry
Type 0x03 Frsky Hub telemetry
*No* usual frsky byte stuffing and without start/stop byte (0x7e)
Type 0x04 Spektrum telemetry data
data[0] TX RSSI
data[1-15] telemetry data
@@ -864,11 +1183,24 @@ Serial: 100000 Baud 8e2 _ xxxx xxxx p --
technically DSM bind data is only 10 bytes but multi sends 16
like with telemtery, check length field)
Type 0x06 Flysky AFHDS2 telemetry data
Type 0x06 Flysky AFHDS2 telemetry data type 0xAA
length: 29
data[0] = RSSI value
data[1-28] telemetry data
Type 0x08 Input synchronisation
Informs the TX about desired rate and current delay
length: 4
data[0-1] Desired refresh rate in ??s
data[2-3] Time (??s) between last serial servo input received and servo input needed (lateness), TX should adjust its
sending time to minimise this value.
data[4] Interval of this message in ms
data[5] Input delay target in 10??s
Note that there are protocols (AFHDS2A) that have a refresh rate that is smaller than the maximum achievable
refresh rate via the serial protocol, in this case, the TX should double the rate and also subract this
refresh rate from the input lag if the input lag is more than the desired refresh rate.
The remote should try to get to zero of (inputdelay+target*10).
Type 0x0A Hitec telemetry data
length: 8
data[0] = TX RSSI value
@@ -877,4 +1209,30 @@ Serial: 100000 Baud 8e2 _ xxxx xxxx p --
data[3-7] telemetry data
Full description at the bottom of Hitec_cc2500.ino
Type 0x0B Spectrum Scanner telemetry data
length: 6
data[0] = start channel (2400 + x*0.333 Mhz)
data[1-5] power levels
Type 0x0C Flysky AFHDS2 telemetry data type 0xAC
length: 29
data[0] = RSSI value
data[1-28] telemetry data
Type 0x0D RX channels forwarding
length: variable
data[0] = received packets per second
data[1] = rssi
data[2] = start channel
data[3] = number of channels to follow
data[4-]= packed channels data, 11 bit per channel
Type 0x0E HoTT telemetry
length: 14
data[0] = TX_RSSI
data[1] = TX_LQI
data[2] = type
data[3] = page
data[4-13] = data
*/

File diff suppressed because it is too large Load Diff

View File

@@ -58,11 +58,11 @@ static void __attribute__((unused)) NCC_init()
const uint8_t NCC_xor[]={0x80, 0x44, 0x64, 0x75, 0x6C, 0x71, 0x2A, 0x36, 0x7C, 0xF1, 0x6E, 0x52, 0x09, 0x9D};
static void __attribute__((unused)) NCC_Crypt_Packet()
{
uint16_t crc=0;
crc=0;
for(uint8_t i=0; i< NCC_TX_PACKET_LEN-2; i++)
{
packet[i]^=NCC_xor[i];
crc=crc16_update(crc, packet[i], 8);
crc16_update(packet[i], 8);
}
crc^=0x60DE;
packet[NCC_TX_PACKET_LEN-2]=crc>>8;
@@ -70,11 +70,11 @@ static void __attribute__((unused)) NCC_Crypt_Packet()
}
static boolean __attribute__((unused)) NCC_Decrypt_Packet()
{
uint16_t crc=0;
crc=0;
debug("RX: ");
for(uint8_t i=0; i< NCC_RX_PACKET_LEN-2; i++)
{
crc=crc16_update(crc, packet[i], 8);
crc16_update( packet[i], 8);
packet[i]^=NCC_xor[i];
debug("%02X ",packet[i]);
}
@@ -197,6 +197,9 @@ uint16_t NCC_callback()
phase = NCC_BIND_TX2;
return NCC_PACKET_INTERVAL - NCC_WRITE_WAIT;
case NCC_TX3:
#ifdef MULTI_SYNC
telemetry_set_input_sync(NCC_PACKET_INTERVAL);
#endif
if( NRF24L01_ReadReg(NRF24L01_07_STATUS) & _BV(NRF24L01_07_RX_DR))
{ // RX fifo data ready
NRF24L01_ReadPayload(packet, NCC_RX_PACKET_LEN);
@@ -268,9 +271,6 @@ uint16_t initNCC(void)
hopping_frequency_no=4; // start with bind
NCC_init();
phase=NCC_BIND_TX1;
#ifdef NCC1701_HUB_TELEMETRY
init_frskyd_link_telemetry();
#endif
return 10000;
}

View File

@@ -172,6 +172,10 @@ void NRF24L01_SetPower()
if(prev_power != power)
{
rf_setup = (rf_setup & 0xF9) | (power << 1);
if(power==3)
rf_setup |=0x01; // Si24r01 full power, unused bit for NRF
else
rf_setup &=0xFE;
NRF24L01_WriteReg(NRF24L01_06_RF_SETUP, rf_setup);
prev_power=power;
}
@@ -286,7 +290,7 @@ const uint16_t PROGMEM xn297_crc_xorout_scrambled_enhanced[] = {
// unscrambled enhanced mode crc xorout table
// unused so far
/*
#ifdef XN297DUMP_NRF24L01_INO
const uint16_t xn297_crc_xorout_enhanced[] = {
0x0000, 0x8BE6, 0xD8EC, 0xB87A, 0x42DC, 0xAA89,
0x83AF, 0x10E4, 0xE83E, 0x5C29, 0xAC76, 0x1C69,
@@ -294,30 +298,7 @@ const uint16_t xn297_crc_xorout_enhanced[] = {
0x7CDB, 0x7A14, 0xD5D2, 0x57D7, 0xE31D, 0xCE42,
0x648D, 0xBF2D, 0x653B, 0x190C, 0x9117, 0x9A97,
0xABFC, 0xE68E, 0x0DE7, 0x28A2, 0x1965 };
*/
static uint8_t bit_reverse(uint8_t b_in)
{
uint8_t b_out = 0;
for (uint8_t i = 0; i < 8; ++i)
{
b_out = (b_out << 1) | (b_in & 1);
b_in >>= 1;
}
return b_out;
}
static const uint16_t polynomial = 0x1021;
static uint16_t crc16_update(uint16_t crc, uint8_t a, uint8_t bits)
{
crc ^= a << 8;
while(bits--)
if (crc & 0x8000)
crc = (crc << 1) ^ polynomial;
else
crc = crc << 1;
return crc;
}
#endif
void XN297_SetTXAddr(const uint8_t* addr, uint8_t len)
{
@@ -397,9 +378,9 @@ void XN297_WritePayload(uint8_t* msg, uint8_t len)
if (xn297_crc)
{
uint8_t offset = xn297_addr_len < 4 ? 1 : 0;
uint16_t crc = 0xb5d2;
crc = 0xb5d2;
for (uint8_t i = offset; i < last; ++i)
crc = crc16_update(crc, buf[i], 8);
crc16_update( buf[i], 8);
if(xn297_scramble_enabled)
crc ^= pgm_read_word(&xn297_crc_xorout_scrambled[xn297_addr_len - 3 + len]);
else
@@ -462,10 +443,10 @@ void XN297_WriteEnhancedPayload(uint8_t* msg, uint8_t len, uint8_t noack)
if (xn297_crc)
{
uint8_t offset = xn297_addr_len < 4 ? 1 : 0;
uint16_t crc = 0xb5d2;
crc = 0xb5d2;
for (uint8_t i = offset; i < last; ++i)
crc = crc16_update(crc, packet[i], 8);
crc = crc16_update(crc, packet[last] & 0xc0, 2);
crc16_update( packet[i], 8);
crc16_update( packet[last] & 0xc0, 2);
if (xn297_scramble_enabled)
crc ^= pgm_read_word(&xn297_crc_xorout_scrambled_enhanced[xn297_addr_len-3+len]);
//else
@@ -501,18 +482,18 @@ boolean XN297_ReadPayload(uint8_t* msg, uint8_t len)
return true; // No CRC so OK by default...
// Calculate CRC
uint16_t crc = 0xb5d2;
crc = 0xb5d2;
//process address
for (uint8_t i = 0; i < xn297_addr_len; ++i)
{
uint8_t b_in=xn297_tx_addr[xn297_addr_len-i-1];
uint8_t b_in=xn297_rx_addr[xn297_addr_len-i-1];
if(xn297_scramble_enabled)
b_in ^= xn297_scramble[i];
crc = crc16_update(crc, b_in, 8);
crc16_update( b_in, 8);
}
//process payload
for (uint8_t i = 0; i < len; ++i)
crc = crc16_update(crc, buf[i], 8);
crc16_update( buf[i], 8);
//xorout
if(xn297_scramble_enabled)
crc ^= pgm_read_word(&xn297_crc_xorout_scrambled[xn297_addr_len - 3 + len]);
@@ -525,10 +506,13 @@ boolean XN297_ReadPayload(uint8_t* msg, uint8_t len)
}
uint8_t XN297_ReadEnhancedPayload(uint8_t* msg, uint8_t len)
{
{ //!!! Don't forget do a +2 and if using CRC add +4 on any of the used NRF24L01_11_RX_PW_Px !!!
uint8_t buffer[32];
uint8_t pcf_size; // pcf payload size
NRF24L01_ReadPayload(buffer, len+2); // pcf + payload
if (xn297_crc)
NRF24L01_ReadPayload(buffer, len+4); // Read pcf + payload + CRC
else
NRF24L01_ReadPayload(buffer, len+2); // Read pcf + payload
pcf_size = buffer[0];
if(xn297_scramble_enabled)
pcf_size ^= xn297_scramble[xn297_addr_len];
@@ -540,7 +524,35 @@ uint8_t XN297_ReadEnhancedPayload(uint8_t* msg, uint8_t len)
msg[i] ^= bit_reverse((xn297_scramble[xn297_addr_len+i+1] << 2) |
(xn297_scramble[xn297_addr_len+i+2] >> 6));
}
return pcf_size;
if (!xn297_crc)
return pcf_size; // No CRC so OK by default...
// Calculate CRC
crc = 0xb5d2;
//process address
for (uint8_t i = 0; i < xn297_addr_len; ++i)
{
uint8_t b_in=xn297_rx_addr[xn297_addr_len-i-1];
if(xn297_scramble_enabled)
b_in ^= xn297_scramble[i];
crc16_update( b_in, 8);
}
//process payload
for (uint8_t i = 0; i < len+1; ++i)
crc16_update( buffer[i], 8);
crc16_update( buffer[len+1] & 0xc0, 2);
//xorout
if (xn297_scramble_enabled)
crc ^= pgm_read_word(&xn297_crc_xorout_scrambled_enhanced[xn297_addr_len-3+len]);
#ifdef XN297DUMP_NRF24L01_INO
else
crc ^= pgm_read_word(&xn297_crc_xorout_enhanced[xn297_addr_len - 3 + len]);
#endif
uint16_t crcxored=(buffer[len+1]<<10)|(buffer[len+2]<<2)|(buffer[len+3]>>6) ;
if( crc == crcxored)
return pcf_size; // CRC OK
return 0; // CRC NOK
}
// End of XN297 emulation
@@ -571,9 +583,10 @@ void HS6200_SetTXAddr(const uint8_t* addr, uint8_t len)
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, (uint8_t*)"\xaa\xaa\xaa\xaa\xaa", 5);
// precompute address crc
hs6200_crc_init = 0xffff;
crc = 0xffff;
for(int i=0; i<len; i++)
hs6200_crc_init = crc16_update(hs6200_crc_init, addr[len-1-i], 8);
crc16_update(addr[len-1-i], 8);
hs6200_crc_init=crc;
memcpy(hs6200_tx_addr, addr, len);
hs6200_address_length = len;
}
@@ -581,14 +594,14 @@ void HS6200_SetTXAddr(const uint8_t* addr, uint8_t len)
static uint16_t hs6200_calc_crc(uint8_t* msg, uint8_t len)
{
uint8_t pos;
uint16_t crc = hs6200_crc_init;
crc = hs6200_crc_init;
// pcf + payload
for(pos=0; pos < len-1; pos++)
crc = crc16_update(crc, msg[pos], 8);
crc16_update(msg[pos], 8);
// last byte (1 bit only)
if(len > 0)
crc = crc16_update(crc, msg[pos+1], 1);
crc16_update(msg[pos+1], 1);
return crc;
}
@@ -762,7 +775,8 @@ void LT8900_SetAddress(uint8_t *address,uint8_t addr_size)
uint8_t LT8900_ReadPayload(uint8_t* msg, uint8_t len)
{
uint8_t i,pos=0,shift,end,buffer[32];
unsigned int crc=LT8900_CRC_Initial_Data,a;
unsigned int a;
crc=LT8900_CRC_Initial_Data;
pos=LT8900_buffer_overhead_bits/8-LT8900_buffer_start;
end=pos+len+(LT8900_Flags&_BV(LT8900_PACKET_LENGTH_EN)?1:0)+(LT8900_Flags&_BV(LT8900_CRC_ON)?2:0);
//Read payload
@@ -782,14 +796,14 @@ uint8_t LT8900_ReadPayload(uint8_t* msg, uint8_t len)
//Check len
if(LT8900_Flags&_BV(LT8900_PACKET_LENGTH_EN))
{
crc=crc16_update(crc,buffer[pos],8);
crc16_update(buffer[pos],8);
if(bit_reverse(len)!=buffer[pos++])
return 0; // wrong len...
}
//Decode message
for(i=0;i<len;i++)
{
crc=crc16_update(crc,buffer[pos],8);
crc16_update(buffer[pos],8);
msg[i]=bit_reverse(buffer[pos++]);
}
//Check CRC
@@ -804,21 +818,22 @@ uint8_t LT8900_ReadPayload(uint8_t* msg, uint8_t len)
void LT8900_WritePayload(uint8_t* msg, uint8_t len)
{
unsigned int crc=LT8900_CRC_Initial_Data,a,mask;
unsigned int a,mask;
uint8_t i, pos=0,tmp, buffer[64], pos_final,shift;
crc=LT8900_CRC_Initial_Data;
//Add packet len
if(LT8900_Flags&_BV(LT8900_PACKET_LENGTH_EN))
{
tmp=bit_reverse(len);
buffer[pos++]=tmp;
crc=crc16_update(crc,tmp,8);
crc16_update(tmp,8);
}
//Add payload
for(i=0;i<len;i++)
{
tmp=bit_reverse(msg[i]);
buffer[pos++]=tmp;
crc=crc16_update(crc,tmp,8);
crc16_update(tmp,8);
}
//Add CRC
if(LT8900_Flags&_BV(LT8900_CRC_ON))

View File

@@ -0,0 +1,332 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef NRF24L01_INSTALLED
#include "iface_nrf250k.h"
static void __attribute__((unused)) XN297L_Init()
{
prev_option = option;
#ifdef CC2500_INSTALLED
if(option==0)
#endif
{//NRF
debugln("Using NRF");
PE1_on; //NRF24L01 antenna RF3 by default
PE2_off; //NRF24L01 antenna RF3 by default
NRF24L01_Initialize();
NRF24L01_SetTxRxMode(TX_EN);
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowldgement on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_SetBitrate(NRF24L01_BR_250K); // 250Kbps
NRF24L01_SetPower();
return;
}
//CC2500
#ifdef CC2500_INSTALLED
debugln("Using CC2500");
xn297_scramble_enabled=XN297_SCRAMBLED; //enabled by default
PE1_off; // antenna RF2
PE2_on;
CC2500_250K_Init();
#endif
}
static void __attribute__((unused)) XN297L_SetTXAddr(const uint8_t* addr, uint8_t len)
{
#ifdef CC2500_INSTALLED
if(option==0)
#endif
{//NRF
XN297_SetTXAddr(addr,len);
return;
}
//CC2500
#ifdef CC2500_INSTALLED
if (len > 5) len = 5;
if (len < 3) len = 3;
xn297_addr_len = len;
memcpy(xn297_tx_addr, addr, len);
#endif
}
static void __attribute__((unused)) XN297L_WritePayload(uint8_t* msg, uint8_t len)
{
#ifdef CC2500_INSTALLED
if(option==0)
#endif
{//NRF
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP));
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
XN297_WritePayload(msg, len);
return;
}
//CC2500
#ifdef CC2500_INSTALLED
uint8_t buf[32];
uint8_t last = 0;
uint8_t i;
// address
for (i = 0; i < xn297_addr_len; ++i)
{
buf[last] = xn297_tx_addr[xn297_addr_len - i - 1];
if(xn297_scramble_enabled)
buf[last] ^= xn297_scramble[i];
last++;
}
// payload
for (i = 0; i < len; ++i) {
// bit-reverse bytes in packet
buf[last] = bit_reverse(msg[i]);
if(xn297_scramble_enabled)
buf[last] ^= xn297_scramble[xn297_addr_len+i];
last++;
}
// crc
crc = 0xb5d2;
for (uint8_t i = 0; i < last; ++i)
crc16_update( buf[i], 8);
if(xn297_scramble_enabled)
crc ^= pgm_read_word(&xn297_crc_xorout_scrambled[xn297_addr_len - 3 + len]);
else
crc ^= pgm_read_word(&xn297_crc_xorout[xn297_addr_len - 3 + len]);
buf[last++] = crc >> 8;
buf[last++] = crc & 0xff;
// stop TX/RX
CC2500_Strobe(CC2500_SIDLE);
// flush tx FIFO
CC2500_Strobe(CC2500_SFTX);
// packet length
CC2500_WriteReg(CC2500_3F_TXFIFO, last + 3);
// xn297L preamble
CC2500_WriteRegisterMulti(CC2500_3F_TXFIFO, (uint8_t*)"\x71\x0f\x55", 3);
// xn297 packet
CC2500_WriteRegisterMulti(CC2500_3F_TXFIFO, buf, last);
// transmit
CC2500_Strobe(CC2500_STX);
#endif
}
static void __attribute__((unused)) XN297L_WriteEnhancedPayload(uint8_t* msg, uint8_t len, uint8_t noack)
{
#ifdef CC2500_INSTALLED
if(option==0)
#endif
{//NRF
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP));
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
XN297_WriteEnhancedPayload(msg, len, noack);
return;
}
//CC2500
#ifdef CC2500_INSTALLED
uint8_t buf[32];
uint8_t scramble_index=0;
uint8_t last = 0;
static uint8_t pid=0;
// address
for (uint8_t i = 0; i < xn297_addr_len; ++i)
{
buf[last] = xn297_tx_addr[xn297_addr_len-i-1];
if(xn297_scramble_enabled)
buf[last] ^= xn297_scramble[scramble_index++];
last++;
}
// pcf
buf[last] = (len << 1) | (pid>>1);
if(xn297_scramble_enabled)
buf[last] ^= xn297_scramble[scramble_index++];
last++;
buf[last] = (pid << 7) | (noack << 6);
// payload
buf[last]|= bit_reverse(msg[0]) >> 2; // first 6 bit of payload
if(xn297_scramble_enabled)
buf[last] ^= xn297_scramble[scramble_index++];
for (uint8_t i = 0; i < len-1; ++i)
{
last++;
buf[last] = (bit_reverse(msg[i]) << 6) | (bit_reverse(msg[i+1]) >> 2);
if(xn297_scramble_enabled)
buf[last] ^= xn297_scramble[scramble_index++];
}
last++;
buf[last] = bit_reverse(msg[len-1]) << 6; // last 2 bit of payload
if(xn297_scramble_enabled)
buf[last] ^= xn297_scramble[scramble_index++] & 0xc0;
// crc
//if (xn297_crc)
{
crc = 0xb5d2;
for (uint8_t i = 0; i < last; ++i)
crc16_update( buf[i], 8);
crc16_update( buf[last] & 0xc0, 2);
if (xn297_scramble_enabled)
crc ^= pgm_read_word(&xn297_crc_xorout_scrambled_enhanced[xn297_addr_len-3+len]);
//else
// crc ^= pgm_read_word(&xn297_crc_xorout_enhanced[xn297_addr_len - 3 + len]);
buf[last++] |= (crc >> 8) >> 2;
buf[last++] = ((crc >> 8) << 6) | ((crc & 0xff) >> 2);
buf[last++] = (crc & 0xff) << 6;
}
pid++;
pid &= 3;
// stop TX/RX
CC2500_Strobe(CC2500_SIDLE);
// flush tx FIFO
CC2500_Strobe(CC2500_SFTX);
// packet length
CC2500_WriteReg(CC2500_3F_TXFIFO, last + 3);
// xn297L preamble
CC2500_WriteRegisterMulti(CC2500_3F_TXFIFO, (uint8_t*)"\x71\x0F\x55", 3);
// xn297 packet
CC2500_WriteRegisterMulti(CC2500_3F_TXFIFO, buf, last);
// transmit
CC2500_Strobe(CC2500_STX);
#endif
}
static void __attribute__((unused)) XN297L_HoppingCalib(uint8_t num_freq)
{ //calibrate hopping frequencies
#ifdef CC2500_INSTALLED
if(option==0)
#endif
return; //NRF
#ifdef CC2500_INSTALLED
CC2500_250K_HoppingCalib(num_freq);
#endif
}
static void __attribute__((unused)) XN297L_Hopping(uint8_t index)
{
#ifdef CC2500_INSTALLED
if(option==0)
#endif
{//NRF
NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency[index]);
return;
}
#ifdef CC2500_INSTALLED
CC2500_250K_Hopping(index);
#endif
}
static void __attribute__((unused)) XN297L_RFChannel(uint8_t number)
{ //change channel
#ifdef CC2500_INSTALLED
if(option==0)
#endif
{//NRF
NRF24L01_WriteReg(NRF24L01_05_RF_CH, number);
return;
}
#ifdef CC2500_INSTALLED
CC2500_250K_RFChannel(number);
#endif
}
static void __attribute__((unused)) XN297L_SetPower()
{
#ifdef CC2500_INSTALLED
if(option==0)
#endif
{//NRF
NRF24L01_SetPower();
return;
}
#ifdef CC2500_INSTALLED
CC2500_SetPower();
#endif
}
static void __attribute__((unused)) XN297L_SetFreqOffset()
{ // Frequency offset
#ifdef CC2500_INSTALLED
if(option==0 && prev_option==0)
#endif
return; //NRF
#ifdef CC2500_INSTALLED
if (prev_option != option)
{
if(prev_option==0 || option==0)
CHANGE_PROTOCOL_FLAG_on; // switch from NRF <-> CC2500
CC2500_SetFreqOffset();
}
#endif
}
static void __attribute__((unused)) NRF250K_SetTXAddr(uint8_t* addr, uint8_t len)
{
if (len > 5) len = 5;
if (len < 3) len = 3;
#ifdef CC2500_INSTALLED
if(option==0)
#endif
{//NRF
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, len-2);
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, addr, len);
return;
}
//CC2500
#ifdef CC2500_INSTALLED
CC2500_250K_NRF_SetTXAddr(addr, len);
#endif
}
static void __attribute__((unused)) NRF250K_WritePayload(uint8_t* msg, uint8_t len)
{
#ifdef CC2500_INSTALLED
if(option==0)
#endif
{//NRF
NRF24L01_FlushTx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, _BV(NRF24L01_07_TX_DS) | _BV(NRF24L01_07_RX_DR) | _BV(NRF24L01_07_MAX_RT));
NRF24L01_WritePayload(msg, len);
return;
}
//CC2500
#ifdef CC2500_INSTALLED
CC2500_250K_NRF_WritePayload(msg, len);
#endif
}
static boolean __attribute__((unused)) NRF250K_IsPacketSent()
{
#ifdef CC2500_INSTALLED
if(option==0)
#endif
{ //NRF
return NRF24L01_ReadReg(NRF24L01_07_STATUS) & _BV(NRF24L01_07_TX_DS);
}
return true; // don't know on the CC2500 how to detect if the packet has been transmitted...
}
#endif

View File

@@ -0,0 +1,73 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(NANORF_NRF24L01_INO)
#include "iface_nrf24l01.h"
#define NANORF_PACKET_PERIOD 40000
#define NANORF_INITIAL_WAIT 500
#define NANORF_RF_CHANNEL 40
#define NANORF_PAYLOADSIZE 7
static void __attribute__((unused)) NANORF_send_packet()
{
packet[0] = convert_channel_8b(AILERON);
packet[1] = convert_channel_8b(ELEVATOR);
packet[2] = convert_channel_8b(THROTTLE);
packet[3] = convert_channel_8b(RUDDER);
packet[4] = convert_channel_8b(CH5);
packet[5] = convert_channel_8b(CH6);
packet[6] = 0;
for (uint8_t i=0; i < NANORF_PAYLOADSIZE-1; i++)
packet[6] += packet[i];
packet[6] += 0x55;
// clear packet status bits and TX FIFO
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
NRF24L01_WritePayload(packet, NANORF_PAYLOADSIZE);
}
static void __attribute__((unused)) NANORF_init()
{
NRF24L01_Initialize();
NRF24L01_SetTxRxMode(TX_EN);
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR , (uint8_t *)"Nano1",5);
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknoledgement
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable all data pipes (even though not used?)
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x03); // 5-byte RX/TX address
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0x00); // 4mS retransmit t/o, 15 tries (retries w/o AA?)
NRF24L01_WriteReg(NRF24L01_05_RF_CH, NANORF_RF_CHANNEL);
NRF24L01_SetBitrate(NRF24L01_BR_1M);
NRF24L01_SetPower(); // Set tx_power
NRF24L01_WriteReg(NRF24L01_00_CONFIG, _BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP)); //
}
uint16_t NANORF_callback()
{
NANORF_send_packet();
return NANORF_PACKET_PERIOD;
}
uint16_t initNANORF()
{
BIND_DONE;
NANORF_init();
return NANORF_INITIAL_WAIT;
}
#endif

View File

@@ -0,0 +1,301 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(OMP_CC2500_INO)
#include "iface_nrf250k.h"
//#define FORCE_OMP_ORIGINAL_ID
//#define OMP_TELEM_DEBUG
#define OMP_INITIAL_WAIT 500
#define OMP_PACKET_PERIOD 5000
#define OMP_RF_BIND_CHANNEL 35
#define OMP_RF_NUM_CHANNELS 8
#define OMP_PAYLOAD_SIZE 16
#define OMP_BIND_COUNT 600 //3sec
static void __attribute__((unused)) OMP_send_packet()
{
#ifdef OMP_HUB_TELEMETRY
if(option==0)
prev_option=option=1; // Select the CC2500 by default
PE1_off; PE2_on; // CC2500 antenna RF2
#endif
if(IS_BIND_IN_PROGRESS)
{
memcpy(packet,"BND",3);
memcpy(&packet[3],rx_tx_addr,5);
memcpy(&packet[8],hopping_frequency,8);
}
else
{
memset(packet,0x00,OMP_PAYLOAD_SIZE);
#ifdef OMP_HUB_TELEMETRY
//RX telem request every 7*5=35ms
packet_sent++;
packet_sent %= OMP_RF_NUM_CHANNELS-1; // Change telem RX channels every time
if(packet_sent==0)
{
packet[0] |= 0x40; // |0x40 to request RX telemetry
NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency[hopping_frequency_no]);
}
#endif
//hopping frequency
packet[0 ] |= hopping_frequency_no;
XN297L_Hopping(hopping_frequency_no);
hopping_frequency_no++;
hopping_frequency_no &= OMP_RF_NUM_CHANNELS-1; // 8 RF channels
//flags
packet[1 ] = 0x08 //unknown
| GET_FLAG(CH5_SW, 0x20); // HOLD
packet[2 ] = 0x40; //unknown
if(Channel_data[CH6] > CHANNEL_MAX_COMMAND)
packet[2 ] |= 0x20; // IDLE2
else if(Channel_data[CH6] > CHANNEL_MIN_COMMAND)
packet[1 ] |= 0x40; // IDLE1
if(Channel_data[CH7] > CHANNEL_MAX_COMMAND)
packet[2 ] |= 0x08; // 3D
else if(Channel_data[CH7] > CHANNEL_MIN_COMMAND)
packet[2 ] |= 0x04; // ATTITUDE
//trims??
//packet[3..6]
//channels TAER packed 11bits
uint16_t channel=convert_channel_16b_limit(THROTTLE,0,2047);
packet[7 ] = channel;
packet[8 ] = channel>>8;
channel=convert_channel_16b_limit(AILERON,2047,0);
packet[8 ] |= channel<<3;
packet[9 ] = channel>>5;
channel=convert_channel_16b_limit(ELEVATOR,0,2047);
packet[9] |= channel<<6;
packet[10] = channel>>2;
packet[11] = channel>>10;
channel=convert_channel_16b_limit(RUDDER,2047,0);
packet[11] |= channel<<1;
packet[12] = channel>>7;
//unknown
//packet[13..15]
packet[15] = 0x04;
}
XN297L_SetPower(); // Set tx_power
XN297L_SetFreqOffset(); // Set frequency offset
XN297L_WriteEnhancedPayload(packet, OMP_PAYLOAD_SIZE, packet_sent!=0);
}
static void __attribute__((unused)) OMP_init()
{
//Config CC2500
#ifdef OMP_HUB_TELEMETRY
if(option==0)
prev_option=option=1; // Select the CC2500
#endif
XN297L_Init();
XN297L_SetTXAddr((uint8_t*)"FLPBD", 5);
XN297L_HoppingCalib(OMP_RF_NUM_CHANNELS); // Calibrate all channels
XN297L_RFChannel(OMP_RF_BIND_CHANNEL); // Set bind channel
#ifdef OMP_HUB_TELEMETRY
//Config NRF
prev_option=option=0; // Select the NRF
XN297L_Init();
XN297_Configure(_BV(NRF24L01_00_EN_CRC));
XN297_SetRXAddr(rx_tx_addr, 5); // Set the RX address
NRF24L01_SetTxRxMode(TXRX_OFF); // Turn it off for now
NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, OMP_PAYLOAD_SIZE + 4); // packet length +4 bytes of PCF+CRC
#endif
}
static void __attribute__((unused)) OMP_initialize_txid()
{
calc_fh_channels(OMP_RF_NUM_CHANNELS);
#ifdef FORCE_OMP_ORIGINAL_ID
rx_tx_addr[0]=0x4E;
rx_tx_addr[1]=0x72;
rx_tx_addr[2]=0x8E;
rx_tx_addr[3]=0x70;
rx_tx_addr[4]=0x62;
for(uint8_t i=0; i<OMP_RF_NUM_CHANNELS;i++)
hopping_frequency[i]=(i+3)*5;
#endif
}
#ifdef OMP_HUB_TELEMETRY
static void __attribute__((unused)) OMP_Send_Telemetry(uint8_t v)
{
v_lipo1=v;
telemetry_counter++; //LQI
telemetry_link=1;
if(telemetry_lost)
{
telemetry_lost = 0;
packet_count = 100;
telemetry_counter = 100;
}
}
#endif
enum {
OMP_BIND = 0x00,
OMP_PREPDATA = 0x01,
OMP_DATA = 0x02,
OMP_RX = 0x03,
};
#define OMP_WRITE_TIME 850
uint16_t OMP_callback()
{
switch(phase)
{
case OMP_BIND:
if(--bind_counter==0)
phase++; // OMP_PREPDATA
OMP_send_packet();
return OMP_PACKET_PERIOD;
case OMP_PREPDATA:
BIND_DONE;
XN297L_SetTXAddr(rx_tx_addr, 5);
phase++; // OMP_DATA
case OMP_DATA:
#ifdef MULTI_SYNC
telemetry_set_input_sync(OMP_PACKET_PERIOD);
#endif
OMP_send_packet();
#ifdef OMP_HUB_TELEMETRY
if(packet_sent == 0)
{
phase++; // OMP_RX
return OMP_WRITE_TIME;
}
else if(packet_sent == 1)
{
if( NRF24L01_ReadReg(NRF24L01_07_STATUS) & _BV(NRF24L01_07_RX_DR))
{ // a packet has been received
if(XN297_ReadEnhancedPayload(packet_in, OMP_PAYLOAD_SIZE) == OMP_PAYLOAD_SIZE)
{ // packet with good CRC and length
#ifdef OMP_TELEM_DEBUG
debug("OK :");
for(uint8_t i=0;i<OMP_PAYLOAD_SIZE;i++)
debug(" %02X",packet_in[i]);
#endif
// packet_in = 01 00 98 2C 03 19 19 F0 49 02 00 00 00 00 00 00
// all bytes are fixed and unknown except 2 and 3 which represent the battery voltage: packet_in[3]*256+packet_in[2]=lipo voltage*100 in V
uint16_t v=((packet_in[3]<<8)+packet_in[2]-400)/50;
if(v>255) v=255;
v_lipo2=v;
OMP_Send_Telemetry(v);
}
else
{ // As soon as the motor spins the telem packets are becoming really bad and the CRC throws most of them in error as it should but...
#ifdef OMP_TELEM_DEBUG
debug("NOK:");
for(uint8_t i=0;i<OMP_PAYLOAD_SIZE;i++)
debug(" %02X",packet_in[i]);
#endif
if(packet_in[0]==0x01 && packet_in[1]==0x00)
{// the start of the packet looks ok...
uint16_t v=((packet_in[3]<<8)+packet_in[2]-400)/50;
if(v<260 && v>180)
{ //voltage is less than 13V and more than 9V (3V/element)
if(v>255) v=255;
uint16_t v1=v-v_lipo2;
if(v1&0x8000) v1=-v1;
if(v1<20) // the batt voltage is within 1V from a good reading...
{
OMP_Send_Telemetry(v); // ok to send
#ifdef OMP_TELEM_DEBUG
debug(" OK");
#endif
}
}
}
else
telemetry_counter++; //LQI
}
#ifdef OMP_TELEM_DEBUG
debugln("");
#endif
}
NRF24L01_SetTxRxMode(TXRX_OFF);
packet_count++;
if(packet_count>=100)
{//LQI calculation
packet_count=0;
TX_LQI=telemetry_counter;
RX_RSSI=telemetry_counter;
if(telemetry_counter==0)
telemetry_lost = 1;
telemetry_counter = 0;
}
}
#endif
return OMP_PACKET_PERIOD;
#ifdef OMP_HUB_TELEMETRY
case OMP_RX:
NRF24L01_WriteReg(NRF24L01_07_STATUS, (1 << NRF24L01_07_RX_DR) //reset the flag(s)
| (1 << NRF24L01_07_TX_DS)
| (1 << NRF24L01_07_MAX_RT));
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_00_CONFIG, (1 << NRF24L01_00_PWR_UP) | (1 << NRF24L01_00_PRIM_RX) ); // Start RX
{
uint16_t start=(uint16_t)micros();
while ((uint16_t)((uint16_t)micros()-(uint16_t)start) < 500)
{
if(CC2500_ReadReg(CC2500_35_MARCSTATE | CC2500_READ_BURST) != 0x13)
break;
}
}
NRF_CE_on;
PE1_on;PE2_off; // NRF24L01 antenna RF3
phase = OMP_DATA;
return OMP_PACKET_PERIOD-OMP_WRITE_TIME;
#endif
}
return OMP_PACKET_PERIOD;
}
uint16_t initOMP()
{
OMP_initialize_txid();
OMP_init();
hopping_frequency_no = 0;
packet_sent = 0;
#ifdef OMP_HUB_TELEMETRY
packet_count = 0;
telemetry_lost = 1;
#endif
if(IS_BIND_IN_PROGRESS)
{
bind_counter = OMP_BIND_COUNT;
phase = OMP_BIND;
}
else
phase = OMP_PREPDATA;
return OMP_INITIAL_WAIT;
}
#endif

View File

@@ -109,6 +109,9 @@ uint16_t POTENSIC_callback()
BIND_DONE;
XN297_SetTXAddr(rx_tx_addr,5);
}
#ifdef MULTI_SYNC
telemetry_set_input_sync(POTENSIC_PACKET_PERIOD);
#endif
POTENSIC_send_packet();
return POTENSIC_PACKET_PERIOD;
}

View File

@@ -0,0 +1,293 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// Compatible with CADET PRO V4 TX
#if defined(PELIKAN_A7105_INO)
#include "iface_a7105.h"
//#define PELIKAN_FORCE_ID
//#define PELIKAN_LITE_FORCE_ID
#define PELIKAN_LITE_FORCE_HOP
#define PELIKAN_BIND_COUNT 400
#define PELIKAN_BIND_RF 0x3C
#define PELIKAN_NUM_RF_CHAN 0x1D
#define PELIKAN_PACKET_PERIOD 7980
#define PELIKAN_LITE_PACKET_PERIOD 18000
static void __attribute__((unused)) pelikan_build_packet()
{
static boolean upper=false;
packet[0] = 0x15;
if(IS_BIND_IN_PROGRESS)
{
packet[1] = 0x04; //version??
packet[2] = rx_tx_addr[0];
packet[3] = rx_tx_addr[1];
packet[4] = rx_tx_addr[2];
packet[5] = rx_tx_addr[3];
if(sub_protocol==PELIKAN_PRO)
packet[6] = 0x05; //sub version??
else //PELIKAN_LITE
packet[6] = 0x03; //sub version??
packet[7] = 0x00; //??
packet[8] = 0x55; //??
packet_length = 10;
}
else
{
//ID
packet[1] = rx_tx_addr[0];
packet[7] = rx_tx_addr[1];
packet[12] = rx_tx_addr[2];
packet[13] = rx_tx_addr[3];
//Channels
uint8_t offset=upper?4:0;
uint16_t channel=convert_channel_16b_nolimit(CH_AETR[offset++], 153, 871,false);
uint8_t top=(channel>>2) & 0xC0;
packet[2] = channel;
channel=convert_channel_16b_nolimit(CH_AETR[offset++], 153, 871,false);
top|=(channel>>4) & 0x30;
packet[3] = channel;
channel=convert_channel_16b_nolimit(CH_AETR[offset++], 153, 871,false);
top|=(channel>>6) & 0x0C;
packet[4] = channel;
channel=convert_channel_16b_nolimit(CH_AETR[offset], 153, 871,false);
top|=(channel>>8) & 0x03;
packet[5] = channel;
packet[6] = top;
//Check
crc8=0x15;
for(uint8_t i=1;i<8;i++)
crc8+=packet[i];
packet[8]=crc8;
//Low/Up channel flag
packet[9]=upper?0xAA:0x00;
upper=!upper;
//Hopping counters
if(sub_protocol==PELIKAN_LITE || ++packet_count>4)
{
packet_count=0;
if(++hopping_frequency_no>=PELIKAN_NUM_RF_CHAN)
hopping_frequency_no=0;
}
packet[10]=hopping_frequency_no;
packet[11]=packet_count;
packet_length = 15;
}
//Check
crc8=0x15;
for(uint8_t i=1; i<packet_length-1 ;i++)
crc8+=packet[i];
packet[packet_length-1]=crc8;
//Send
#ifdef DEBUG_SERIAL
if(packet[9]==0x00)
{
debug("C: %02X P(%d):",IS_BIND_IN_PROGRESS?PELIKAN_BIND_RF:hopping_frequency[hopping_frequency_no],packet_length);
for(uint8_t i=0;i<packet_length;i++)
debug(" %02X",packet[i]);
debugln("");
}
#endif
A7105_WriteData(packet_length, IS_BIND_IN_PROGRESS?PELIKAN_BIND_RF:hopping_frequency[hopping_frequency_no]);
A7105_SetPower();
}
uint16_t ReadPelikan()
{
if(phase==0)
{
#ifndef FORCE_PELIKAN_TUNING
A7105_AdjustLOBaseFreq(1);
#endif
if(IS_BIND_IN_PROGRESS)
{
bind_counter--;
if (bind_counter==0)
{
BIND_DONE;
A7105_Strobe(A7105_STANDBY);
if(sub_protocol==PELIKAN_PRO)
A7105_WriteReg(A7105_03_FIFOI,0x28);
else//PELIKAN_LITE
A7105_WriteID(MProtocol_id);
}
}
#ifdef MULTI_SYNC
telemetry_set_input_sync(sub_protocol==PELIKAN_PRO?PELIKAN_PACKET_PERIOD:PELIKAN_LITE_PACKET_PERIOD);
#endif
pelikan_build_packet();
if(sub_protocol==PELIKAN_PRO || IS_BIND_IN_PROGRESS)
return PELIKAN_PACKET_PERIOD;
//PELIKAN_LITE
phase++;
return 942;
}
//PELIKAN_LITE
A7105_Strobe(A7105_TX);
phase++;
if(phase==1)
return 942;
phase=0;
return PELIKAN_LITE_PACKET_PERIOD-942-942;
}
static uint8_t pelikan_firstCh(uint8_t u, uint8_t l)
{
int16_t i;
i = u * 10 + l - 23;
do
{
if (i > 24)
i -= 24;
if (i <= 0)
return 10;
else if ((i > 0) && (i < 13))
return 10 + 12 + (i * 4);
else if ((i > 12) && (i < 24))
return 10 - 2 + ((i - 12) * 4);
}
while (i > 24);
return 0;
}
static uint8_t pelikan_adjust_value(uint8_t value, uint8_t addition, uint8_t limit)
{
uint8_t i;
do
{
i = 0;
if (value > limit) {
value -= 62;
i++;
}
if (value == 24) {
value += addition;
i++;
}
if (value == 48) {
value += addition;
i++;
}
}
while (i > 0);
return value;
}
static uint8_t pelikan_add(uint8_t pfrq,uint8_t a, uint8_t limit)
{
uint8_t nfrq;
nfrq = pfrq + a;
nfrq = pelikan_adjust_value(nfrq, a, limit);
return nfrq;
}
static void __attribute__((unused)) pelikan_init_hop()
{
#define PELIKAN_HOP_LIMIT 70
rx_tx_addr[0] = 0;
rx_tx_addr[1]+= RX_num;
uint8_t high = (rx_tx_addr[1]>>4) % 3; // 0..2
uint8_t low = rx_tx_addr[1] & 0x0F;
if(high==2)
low %= 0x04; // 0..3
else if(high)
low %= 0x0E; // 0..D
else
low %= 0x0F; // 0..E
rx_tx_addr[1] = (high<<4) + low;
uint8_t addition = (20 * high)+ (2 * low) + 8;
uint8_t first_channel = pelikan_firstCh(high, low);
first_channel = pelikan_adjust_value(first_channel, addition, PELIKAN_HOP_LIMIT);
hopping_frequency[0] = first_channel;
debug("%02X", first_channel);
for (uint8_t i = 1; i < PELIKAN_NUM_RF_CHAN; i++)
{
hopping_frequency[i] = pelikan_add(hopping_frequency[i-1], addition, PELIKAN_HOP_LIMIT);
debug(" %02X", hopping_frequency[i]);
}
debugln("");
}
#ifdef PELIKAN_FORCE_ID
const uint8_t PROGMEM pelikan_hopp[][PELIKAN_NUM_RF_CHAN] = {
{ 0x5A,0x46,0x32,0x6E,0x6C,0x58,0x44,0x42,0x40,0x6A,0x56,0x54,0x52,0x3E,0x68,0x66,0x64,0x50,0x3C,0x3A,0x38,0x62,0x4E,0x4C,0x5E,0x4A,0x36,0x5C,0x34 }
};
#endif
#ifdef PELIKAN_LITE_FORCE_HOP
const uint8_t PROGMEM pelikan_lite_hopp[][PELIKAN_NUM_RF_CHAN] = {
{ 0x46,0x2A,0x3E,0x5A,0x5C,0x24,0x4E,0x32,0x54,0x26,0x2C,0x34,0x56,0x1E,0x3A,0x3C,0x50,0x4A,0x2E,0x42,0x20,0x52,0x28,0x22,0x44,0x58,0x36,0x38,0x4C }
};
#endif
uint16_t initPelikan()
{
A7105_Init();
if(IS_BIND_IN_PROGRESS || sub_protocol==PELIKAN_LITE)
A7105_WriteReg(A7105_03_FIFOI,0x10);
pelikan_init_hop();
//ID from dump
#if defined(PELIKAN_FORCE_ID)
if(sub_protocol==PELIKAN_PRO)
{
rx_tx_addr[0]=0x0D; // hopping freq
rx_tx_addr[1]=0xF4; // hopping freq
rx_tx_addr[2]=0x50; // ID
rx_tx_addr[3]=0x18; // ID
// Fill frequency table
for(uint8_t i=0;i<PELIKAN_NUM_RF_CHAN;i++)
hopping_frequency[i]=pgm_read_byte_near(&pelikan_hopp[0][i]);
}
#endif
#if defined(PELIKAN_LITE_FORCE_ID) || defined(PELIKAN_LITE_FORCE_HOP)
if(sub_protocol==PELIKAN_LITE)
{
#if defined(PELIKAN_LITE_FORCE_ID)
// ID
rx_tx_addr[2]=0x60;
rx_tx_addr[3]=0x18;
#endif
#if defined(PELIKAN_LITE_FORCE_HOP)
// Hop frequency table
rx_tx_addr[0]=0x04; // hopping freq
rx_tx_addr[1]=0x63; // hopping freq
for(uint8_t i=0;i<PELIKAN_NUM_RF_CHAN;i++)
hopping_frequency[i]=pgm_read_byte_near(&pelikan_lite_hopp[0][i]);
#endif
}
#endif
MProtocol_id=((uint32_t)rx_tx_addr[0]<<24)|((uint32_t)rx_tx_addr[1]<<16)|((uint32_t)rx_tx_addr[2]<<8)|(rx_tx_addr[3]);
if(sub_protocol==PELIKAN_LITE && IS_BIND_DONE)
A7105_WriteID(MProtocol_id);
hopping_frequency_no=PELIKAN_NUM_RF_CHAN;
packet_count=5;
phase=0;
return 2400;
}
#endif

View File

@@ -223,6 +223,8 @@
#define S3_pin PA6
#define S4_pin PA7
//
#define RND_pin PB0
//
#define PE1_pin PB4 //PE1
#define PE2_pin PB5 //PE2
//CS pins
@@ -313,6 +315,20 @@
#define DEBUG_PIN_toggle
#endif
#ifdef MULTI_5IN1_INTERNAL
#undef RND_pin
#define SX1276_RST_pin PA2 //LED2 on other modules
#define SX1276_TXEN_pin PB0 //Random gen on other modules
#define SX1276_DIO0_pin PC13 //Unused on other modules
#define SX1276_RST_on digitalWrite(SX1276_RST_pin,HIGH)
#define SX1276_RST_off digitalWrite(SX1276_RST_pin,LOW)
#define SX1276_TXEN_on digitalWrite(SX1276_TXEN_pin,HIGH)
#define SX1276_RXEN_on digitalWrite(SX1276_TXEN_pin,LOW)
#define IS_DIO0_on ( digitalRead(SX1276_DIO0_pin)==HIGH )
#define IS_DIO0_off ( digitalRead(SX1276_DIO0_pin)==LOW )
#endif
#define cli() noInterrupts()
#define sei() interrupts()
#define delayMilliseconds(x) delay(x)

View File

@@ -0,0 +1,331 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// Compatible with PROPEL 74-Z Speeder Bike.
#if defined(PROPEL_NRF24L01_INO)
#include "iface_nrf24l01.h"
//#define PROPEL_FORCE_ID
#define PROPEL_INITIAL_WAIT 500
#define PROPEL_PACKET_PERIOD 10000
#define PROPEL_BIND_RF_CHANNEL 0x23
#define PROPEL_PAYLOAD_SIZE 16
#define PROPEL_SEARCH_PERIOD 50 //*10ms
#define PROPEL_BIND_PERIOD 1500
#define PROPEL_PACKET_SIZE 14
#define PROPEL_RF_NUM_CHANNELS 4
#define PROPEL_ADDRESS_LENGTH 5
#define PROPEL_DEFAULT_PERIOD 20
enum {
PROPEL_BIND1 = 0,
PROPEL_BIND2,
PROPEL_BIND3,
PROPEL_DATA1,
};
static uint16_t __attribute__((unused)) PROPEL_checksum()
{
typedef union {
struct {
uint8_t h:1;
uint8_t g:1;
uint8_t f:1;
uint8_t e:1;
uint8_t d:1;
uint8_t c:1;
uint8_t b:1;
uint8_t a:1;
} bits;
uint8_t byte:8;
} byte_bits_t;
uint8_t sum = packet[0];
for (uint8_t i = 1; i < PROPEL_PACKET_SIZE - 2; i++)
sum += packet[i];
byte_bits_t in = { .byte = sum };
byte_bits_t out = { .byte = sum };
out.byte ^= 0x0a;
out.bits.d = !(in.bits.d ^ in.bits.h);
out.bits.c = (!in.bits.c && !in.bits.d && in.bits.g)
|| (in.bits.c && !in.bits.d && !in.bits.g)
|| (!in.bits.c && in.bits.g && !in.bits.h)
|| (in.bits.c && !in.bits.g && !in.bits.h)
|| (in.bits.c && in.bits.d && in.bits.g && in.bits.h)
|| (!in.bits.c && in.bits.d && !in.bits.g && in.bits.h);
out.bits.b = (!in.bits.b && !in.bits.c && !in.bits.d)
|| (in.bits.b && in.bits.c && in.bits.g)
|| (!in.bits.b && !in.bits.c && !in.bits.g)
|| (!in.bits.b && !in.bits.d && !in.bits.g)
|| (!in.bits.b && !in.bits.c && !in.bits.h)
|| (!in.bits.b && !in.bits.g && !in.bits.h)
|| (in.bits.b && in.bits.c && in.bits.d && in.bits.h)
|| (in.bits.b && in.bits.d && in.bits.g && in.bits.h);
out.bits.a = (in.bits.a && !in.bits.b)
|| (in.bits.a && !in.bits.c && !in.bits.d)
|| (in.bits.a && !in.bits.c && !in.bits.g)
|| (in.bits.a && !in.bits.d && !in.bits.g)
|| (in.bits.a && !in.bits.c && !in.bits.h)
|| (in.bits.a && !in.bits.g && !in.bits.h)
|| (!in.bits.a && in.bits.b && in.bits.c && in.bits.g)
|| (!in.bits.a && in.bits.b && in.bits.c && in.bits.d && in.bits.h)
|| (!in.bits.a && in.bits.b && in.bits.d && in.bits.g && in.bits.h);
return (sum << 8) | (out.byte & 0xff);
}
static void __attribute__((unused)) PROPEL_bind_packet(bool valid_rx_id)
{
memset(packet, 0, PROPEL_PACKET_SIZE);
packet[0] = 0xD0;
memcpy(&packet[1], rx_tx_addr, 4); // only 4 bytes sent of 5-byte address
if (valid_rx_id) memcpy(&packet[5], rx_id, 4);
packet[9] = rf_ch_num; // hopping table to be used when switching to normal mode
packet[11] = 0x05; // unknown, 0x01 on TX2??
uint16_t check = PROPEL_checksum();
packet[12] = check >> 8;
packet[13] = check & 0xff;
NRF24L01_WriteReg(NRF24L01_07_STATUS, (_BV(NRF24L01_07_RX_DR) | _BV(NRF24L01_07_TX_DS) | _BV(NRF24L01_07_MAX_RT)));
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WritePayload(packet, PROPEL_PACKET_SIZE);
}
static void __attribute__((unused)) PROPEL_data_packet()
{
memset(packet, 0, PROPEL_PACKET_SIZE);
packet[0] = 0xC0;
packet[1] = convert_channel_16b_limit(THROTTLE, 0x2f, 0xcf);
packet[2] = convert_channel_16b_limit(RUDDER , 0xcf, 0x2f);
packet[3] = convert_channel_16b_limit(ELEVATOR, 0x2f, 0xcf);
packet[4] = convert_channel_16b_limit(AILERON , 0xcf, 0x2f);
packet[5] = 0x40; //might be trims but unsused
packet[6] = 0x40; //might be trims but unsused
packet[7] = 0x40; //might be trims but unsused
packet[8] = 0x40; //might be trims but unsused
if (bind_phase)
{//need to send a couple of default packets after bind
bind_phase--;
packet[10] = 0x80; // LEDs
}
else
{
packet[9] = 0x02 // Always fast speed, slow=0x00, medium=0x01, fast=0x02, 0x03=flight training mode
| GET_FLAG( CH14_SW, 0x03) // Flight training mode
| GET_FLAG( CH10_SW, 0x04) // Calibrate
| GET_FLAG( CH12_SW, 0x08) // Take off
| GET_FLAG( CH8_SW, 0x10) // Fire
| GET_FLAG( CH11_SW, 0x20) // Altitude hold=0x20
| GET_FLAG( CH6_SW, 0x40) // Roll CW
| GET_FLAG( CH7_SW, 0x80); // Roll CCW
packet[10] = GET_FLAG( CH13_SW, 0x20) // Land
| GET_FLAG( CH9_SW, 0x40) // Weapon system activted=0x40
| GET_FLAG(!CH5_SW, 0x80); // LEDs
}
packet[11] = 5; // unknown, 0x01 on TX2??
uint16_t check = PROPEL_checksum();
packet[12] = check >> 8;
packet[13] = check & 0xff;
NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency[hopping_frequency_no++]);
hopping_frequency_no &= 0x03;
NRF24L01_SetPower();
NRF24L01_WriteReg(NRF24L01_07_STATUS, (_BV(NRF24L01_07_RX_DR) | _BV(NRF24L01_07_TX_DS) | _BV(NRF24L01_07_MAX_RT)));
NRF24L01_FlushTx();
NRF24L01_WritePayload(packet, PROPEL_PACKET_SIZE);
}
static void __attribute__((unused)) PROPEL_init()
{
NRF24L01_Initialize();
NRF24L01_WriteReg(NRF24L01_00_CONFIG, 0x7f);
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x3f); // AA on all pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x3f); // Enable all pipes
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x03); // 5-byte address
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0x36); // retransmit 1ms, 6 times
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps
NRF24L01_SetPower();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x07); // ?? match protocol capture
NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, (uint8_t *)"\x99\x77\x55\x33\x11", PROPEL_ADDRESS_LENGTH); //Bind address
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, (uint8_t *)"\x99\x77\x55\x33\x11", PROPEL_ADDRESS_LENGTH); //Bind address
NRF24L01_WriteReg(NRF24L01_05_RF_CH, PROPEL_BIND_RF_CHANNEL);
NRF24L01_Activate(0x73); // Activate feature register
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 0x3f); // Enable dynamic payload length
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, 0x07); // Enable all features
// Beken 2425 register bank 1 initialized here in stock tx capture
// Hopefully won't matter for nRF compatibility
NRF24L01_FlushTx();
NRF24L01_SetTxRxMode(TX_EN);
}
const uint8_t PROGMEM PROPEL_hopping []= { 0x47,0x36,0x27,0x44,0x33,0x0D,0x3C,0x2E,0x1B,0x39,0x2A,0x18 };
static void __attribute__((unused)) PROPEL_initialize_txid()
{
//address last byte
rx_tx_addr[4]=0x11;
//random hopping channel table
rf_ch_num=random(0xfefefefe)&0x03;
for(uint8_t i=0; i<3; i++)
hopping_frequency[i]=pgm_read_byte_near( &PROPEL_hopping[i + 3*rf_ch_num] );
hopping_frequency[3]=0x23;
#ifdef PROPEL_FORCE_ID
if(RX_num&1)
memcpy(rx_tx_addr, (uint8_t *)"\x73\xd3\x31\x30\x11", PROPEL_ADDRESS_LENGTH); //TX1: 73 d3 31 30 11
else
memcpy(rx_tx_addr, (uint8_t *)"\x94\xc5\x31\x30\x11", PROPEL_ADDRESS_LENGTH); //TX2: 94 c5 31 30 11
rf_ch_num = 0x03; //TX1
memcpy(hopping_frequency,(uint8_t *)"\x39\x2A\x18\x23",PROPEL_RF_NUM_CHANNELS); //TX1: 57,42,24,35
rf_ch_num = 0x00; //TX2
memcpy(hopping_frequency,(uint8_t *)"\x47\x36\x27\x23",PROPEL_RF_NUM_CHANNELS); //TX2: 71,54,39,35
rf_ch_num = 0x01; // Manual search
memcpy(hopping_frequency,(uint8_t *)"\x44\x33\x0D\x23",PROPEL_RF_NUM_CHANNELS); //Manual: 68,51,13,35
rf_ch_num = 0x02; // Manual search
memcpy(hopping_frequency,(uint8_t *)"\x3C\x2E\x1B\x23",PROPEL_RF_NUM_CHANNELS); //Manual: 60,46,27,35
#endif
}
uint16_t PROPEL_callback()
{
uint8_t status;
switch (phase)
{
case PROPEL_BIND1:
PROPEL_bind_packet(false); //rx_id unknown
phase++; //BIND2
return PROPEL_BIND_PERIOD;
case PROPEL_BIND2:
status=NRF24L01_ReadReg(NRF24L01_07_STATUS);
if (status & _BV(NRF24L01_07_MAX_RT))
{// Max retry (6) reached
phase = PROPEL_BIND1;
return PROPEL_BIND_PERIOD;
}
if (!(_BV(NRF24L01_07_RX_DR) & status))
return PROPEL_BIND_PERIOD; // nothing received
// received frame, got rx_id, save it
NRF24L01_ReadPayload(packet_in, PROPEL_PACKET_SIZE);
memcpy(rx_id, &packet_in[1], 4);
PROPEL_bind_packet(true); //send bind packet with rx_id
phase++; //BIND3
break;
case PROPEL_BIND3:
if (_BV(NRF24L01_07_RX_DR) & NRF24L01_ReadReg(NRF24L01_07_STATUS))
{
NRF24L01_ReadPayload(packet_in, PROPEL_PACKET_SIZE);
if (packet_in[0] == 0xa3 && memcmp(&packet_in[1],rx_id,4)==0)
{//confirmation from the model
phase++; //PROPEL_DATA1
bind_phase=PROPEL_DEFAULT_PERIOD;
packet_count=0;
BIND_DONE;
break;
}
}
NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, rx_tx_addr, PROPEL_ADDRESS_LENGTH);
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, rx_tx_addr, PROPEL_ADDRESS_LENGTH);
PROPEL_bind_packet(true); //send bind packet with rx_id
break;
case PROPEL_DATA1:
#ifdef PROPEL_HUB_TELEMETRY
if (_BV(NRF24L01_07_RX_DR) & NRF24L01_ReadReg(NRF24L01_07_STATUS))
{// data received from the model
NRF24L01_ReadPayload(packet_in, PROPEL_PACKET_SIZE);
if (packet_in[0] == 0xa3 && memcmp(&packet_in[1],rx_id,3)==0)
{
telemetry_counter++; //LQI
v_lipo1=packet[5]; //number of life left?
v_lipo2=packet[4]; //bit mask: 0x80=flying, 0x08=taking off, 0x04=landing, 0x00=landed/crashed
if(telemetry_lost==0)
telemetry_link=1;
}
}
packet_count++;
if(packet_count>=100)
{//LQI calculation
packet_count=0;
TX_LQI=telemetry_counter;
RX_RSSI=telemetry_counter;
telemetry_counter = 0;
telemetry_lost=0;
}
#endif
PROPEL_data_packet();
break;
}
return PROPEL_PACKET_PERIOD;
}
uint16_t initPROPEL()
{
BIND_IN_PROGRESS; // autobind protocol
PROPEL_initialize_txid();
PROPEL_init();
hopping_frequency_no = 0;
phase=PROPEL_BIND1;
return PROPEL_INITIAL_WAIT;
}
#endif
// equations for checksum check byte from truth table
// (1) z = a && !b
// || a && !c && !d
// || a && !c && !g
// || a && !d && !g
// || a && !c && !h
// || a && !g && !h
// || !a && b && c && g
// || !a && b && c && d && h
// || !a && b && d && g && h;
//
// (2) y = !b && !c && !d
// || b && c && g
// || !b && !c && !g
// || !b && !d && !g
// || !b && !c && !h
// || !b && !g && !h
// || b && c && d && h
// || b && d && g && h;
//
// (3) x = !c && !d && g
// || c && !d && !g
// || !c && g && !h
// || c && !g && !h
// || c && d && g && h
// || !c && d && !g && h;
//
// (4) w = d && h
// || !d && !h;
//
// (5) v = !e;
//
// (6) u = f;
//
// (7) t = !g;
//
// (8) s = h;

View File

@@ -354,7 +354,12 @@ static void __attribute__((unused)) Q303_initialize_txid()
uint16_t Q303_callback()
{
if(IS_BIND_DONE)
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
Q303_send_packet(0);
}
else
{
if (bind_counter == 0)

View File

@@ -0,0 +1,176 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// Compatible with Q90C quad.
#if defined(Q90C_NRF24L01_INO)
#include "iface_nrf250k.h"
//#define FORCE_Q90C_ORIGINAL_ID
#define Q90C_BIND_COUNT 250
#define Q90C_PACKET_PERIOD 7336 // 6200 on saimat's TX...
#define Q90C_INITIAL_WAIT 500
#define Q90C_PACKET_SIZE 12
#define Q90C_RF_BIND_CHANNEL 0x33
#define Q90C_RF_NUM_CHANNELS 3
#define Q90C_ADDRESS_LENGTH 5
bool Q90C_VTX;
int16_t Q90C_channel(uint8_t num, int16_t in_min,int16_t in_max, int16_t out_min,int16_t out_max)
{
int32_t val=Channel_data[num];
if(val<in_min) val=in_min;
else if(val>in_max) val=in_max;
val=(val-in_min)*(out_max-out_min)/(in_max-in_min)+out_min;
return (uint16_t)val;
}
static void __attribute__((unused)) Q90C_send_packet()
{
if(IS_BIND_IN_PROGRESS)
{
memcpy(packet, rx_tx_addr, 4);
memcpy(&packet[4], hopping_frequency, 3);
//packet[7] = 0x1e; // 2e on Saimat 1???
packet[10] = 0x4B;
packet[11] = 0x4E;
}
else
{
XN297L_Hopping(hopping_frequency_no++); // RF Freq
hopping_frequency_no %= Q90C_RF_NUM_CHANNELS;
packet[0]= convert_channel_8b(THROTTLE); // 0..255
// A,E,R have weird scaling, 0x00-0xff range (unsigned) but center isn't 7f or 80
// rudder ff-7a-00
if (Channel_data[RUDDER] <= CHANNEL_MID)
packet[1] = Q90C_channel(RUDDER, CHANNEL_MIN_100, CHANNEL_MID, 0xff, 0x7a );
else
packet[1] = Q90C_channel(RUDDER, CHANNEL_MID, CHANNEL_MAX_100, 0x7a, 0x00 );
// elevator 00-88-ff
if (Channel_data[ELEVATOR] <= CHANNEL_MID)
packet[2] = Q90C_channel(ELEVATOR, CHANNEL_MIN_100, CHANNEL_MID, 0x00, 0x88);
else
packet[2] = Q90C_channel(ELEVATOR, CHANNEL_MID, CHANNEL_MAX_100, 0x88, 0xff);
// aileron ff-88-00
if (Channel_data[AILERON] <= CHANNEL_MID)
packet[3] = Q90C_channel(AILERON, CHANNEL_MIN_100, CHANNEL_MID, 0xff, 0x88);
else
packet[3] = Q90C_channel(AILERON, CHANNEL_MID, CHANNEL_MAX_100, 0x88, 0x00);
// required to "arm" (low throttle + aileron to the right)
if (packet[0] < 5 && packet[3] < 25) {
packet[1] = 0x7a;
packet[2] = 0x88;
}
packet[4] = 0x1e; // T trim 00-1e-3c
packet[5] = 0x1e; // R trim 3c-1e-00
packet[6] = 0x1e; // E trim 00-1e-3c
//packet[7] = 0x1e; // A trim 00-1e-3c
packet[8] |= 0x02; // Rudder rate 0=min,1,2=max
if(state!=Channel_data[CH5])
{
state=Channel_data[CH5];
if(state<CHANNEL_MIN_COMMAND)
packet[8] ^= 0x04; // Angle
else if(state>CHANNEL_MAX_COMMAND)
packet[8] ^= 0x10; // Acro
else
packet[8] ^= 0x08; // Horizon
}
if(!Q90C_VTX && CH6_SW)
packet[8] ^= 0x20; // VTX+
Q90C_VTX=CH6_SW;
debugln("8=%02X",packet[8]);
packet[10] = packet_count++;
}
packet[7] = 0x1e; // bind 1e or 2e, normal: A trim 00-1e-3c
// checksum
if(IS_BIND_DONE)
{
uint8_t sum=0;
for (uint8_t i = 0; i < Q90C_PACKET_SIZE - 1; i++)
sum += packet[i];
packet[11] = sum ^ crc8;
}
XN297L_SetFreqOffset(); // Set frequency offset
XN297L_SetPower(); // Set tx_power
XN297L_WriteEnhancedPayload(packet, Q90C_PACKET_SIZE, 0);
}
static void __attribute__((unused)) Q90C_initialize_txid()
{
calc_fh_channels(Q90C_RF_NUM_CHANNELS);
rx_tx_addr[4]=0x4B;
#ifdef FORCE_Q90C_ORIGINAL_ID
//24 03 01 82 18 26 37 1E 00 00 4B 4E
memcpy(rx_tx_addr, (uint8_t*)"\x24\x03\x01\x82\x4B", Q90C_ADDRESS_LENGTH); //Goebish
memcpy(hopping_frequency, (uint8_t*)"\x18\x26\x37", Q90C_RF_NUM_CHANNELS);
//4C 0A 02 01 17 24 36 2E 00 00 4B 4E
memcpy(rx_tx_addr, (uint8_t*)"\x4C\x0A\x02\x01\x4B", Q90C_ADDRESS_LENGTH); //Saimat 1
memcpy(hopping_frequency, (uint8_t*)"\x17\x24\x36", Q90C_RF_NUM_CHANNELS);
//34 13 02 01 18 26 37 1E 00 00 4B 4E
memcpy(rx_tx_addr, (uint8_t*)"\x34\x13\x02\x01\x4B", Q90C_ADDRESS_LENGTH); //Saimat 2
memcpy(hopping_frequency, (uint8_t*)"\x18\x26\x37", Q90C_RF_NUM_CHANNELS);
#endif
crc8=rx_tx_addr[0]^rx_tx_addr[1]^rx_tx_addr[2]^rx_tx_addr[3];
}
static void __attribute__((unused)) Q90C_init()
{
XN297L_Init();
if(IS_BIND_IN_PROGRESS)
XN297L_SetTXAddr((uint8_t*)"\x4F\x43\x54\x81\x81", Q90C_ADDRESS_LENGTH);
else
XN297L_SetTXAddr(rx_tx_addr, Q90C_ADDRESS_LENGTH);
XN297L_HoppingCalib(Q90C_RF_NUM_CHANNELS); // Calibrate all channels
XN297L_RFChannel(Q90C_RF_BIND_CHANNEL); // Set bind channel
}
uint16_t Q90C_callback()
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(Q90C_PACKET_PERIOD);
#endif
if(IS_BIND_IN_PROGRESS)
if(--bind_counter==0)
{
BIND_DONE;
XN297L_SetTXAddr(rx_tx_addr, Q90C_ADDRESS_LENGTH);
}
Q90C_send_packet();
return Q90C_PACKET_PERIOD;
}
uint16_t initQ90C()
{
Q90C_initialize_txid();
Q90C_init();
hopping_frequency_no = 0;
packet_count = 0;
bind_counter=Q90C_BIND_COUNT;
//features
state=Channel_data[CH5];
Q90C_VTX=CH6_SW;
packet[8] = 0x00;
packet[9] = 0x00;
return Q90C_INITIAL_WAIT;
}
#endif

View File

@@ -0,0 +1,157 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// Compatible with Realacc R11
#if defined(REALACC_NRF24L01_INO)
#include "iface_nrf24l01.h"
#define FORCE_REALACC_ORIGINAL_ID
#define REALACC_INITIAL_WAIT 500
#define REALACC_PACKET_PERIOD 2268
#define REALACC_BIND_RF_CHANNEL 80
#define REALACC_BIND_PAYLOAD_SIZE 10
#define REALACC_PAYLOAD_SIZE 13
#define REALACC_BIND_COUNT 50
#define REALACC_RF_NUM_CHANNELS 5
static void __attribute__((unused)) REALACC_send_packet()
{
packet[ 0]= 0xDC;
packet[ 1]= convert_channel_8b(AILERON); // 00..80..FF
packet[ 2]= convert_channel_8b(ELEVATOR); // 00..80..FF
packet[ 3]= convert_channel_8b(THROTTLE); // 00..FF
packet[ 4]= convert_channel_8b(RUDDER); // 00..80..FF
packet[ 5]= 0x20; // Trim
packet[ 6]= 0x20; // Trim
packet[ 7]= 0x20; // Trim
packet[ 8]= 0x20; // Trim
packet[ 9]= num_ch; // Change at each power up
packet[10]= 0x04 // Flag1
| 0x02 // Rate1=0, Rate2=1, Rate3=2
| GET_FLAG(CH8_SW, 0x20); // Headless
packet[11]= 0x00 // Flag2
| GET_FLAG(CH7_SW, 0x01) // Calib
| GET_FLAG(CH9_SW, 0x20) // Return
| GET_FLAG(CH10_SW,0x80); // Unknown
packet[12]= 0x00 // Flag3
| GET_FLAG(CH5_SW, 0x01) // Flip
| GET_FLAG(CH6_SW, 0x80); // Light
NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency_no);
hopping_frequency_no++;
hopping_frequency_no %= REALACC_RF_NUM_CHANNELS;
XN297_WriteEnhancedPayload(packet, REALACC_PAYLOAD_SIZE,0);
}
static void __attribute__((unused)) REALACC_send_bind_packet()
{
packet[0] = 0xB1;
memcpy(&packet[1],rx_tx_addr,4);
memcpy(&packet[5],hopping_frequency,5);
XN297_WriteEnhancedPayload(packet, REALACC_BIND_PAYLOAD_SIZE,1);
}
static void __attribute__((unused)) REALACC_initialize_txid()
{
calc_fh_channels(REALACC_RF_NUM_CHANNELS);
num_ch=random(0xfefefefe); // 00..FF
#ifdef FORCE_REALACC_ORIGINAL_ID
//Dump
rx_tx_addr[0]=0x99;
rx_tx_addr[1]=0x06;
rx_tx_addr[2]=0x00;
rx_tx_addr[3]=0x00;
hopping_frequency[0]=0x55;
hopping_frequency[1]=0x59;
hopping_frequency[2]=0x5A;
hopping_frequency[3]=0x5A;
hopping_frequency[4]=0x62;
num_ch=0xC5; // Value in dumps: C5 A2 77 F0 84 58
#endif
}
static void __attribute__((unused)) REALACC_init()
{
NRF24L01_Initialize();
NRF24L01_SetTxRxMode(TX_EN);
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowldgement on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps
NRF24L01_SetPower();
XN297_SetTXAddr((uint8_t*)"MAIN", 4);
NRF24L01_WriteReg(NRF24L01_05_RF_CH, REALACC_BIND_RF_CHANNEL); // Set bind channel
}
uint16_t REALACC_callback()
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(REALACC_PACKET_PERIOD);
#endif
XN297_Configure(_BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO) | _BV(NRF24L01_00_PWR_UP));
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
NRF24L01_SetPower();
if(IS_BIND_IN_PROGRESS)
{
REALACC_send_bind_packet();
if(--bind_counter==0)
{
BIND_DONE;
XN297_SetTXAddr(rx_tx_addr, 4);
}
}
else
REALACC_send_packet();
return REALACC_PACKET_PERIOD;
}
uint16_t initREALACC()
{
BIND_IN_PROGRESS; // autobind protocol
REALACC_initialize_txid();
REALACC_init();
bind_counter=REALACC_BIND_COUNT;
hopping_frequency_no=0;
return REALACC_INITIAL_WAIT;
}
#endif
// XN297 speed 1Mb, scrambled, enhanced
// Bind
// Address = 4D 41 49 4E = 'MAIN'
// Channel = 80 (most likely from dump)
// P(10) = B1 99 06 00 00 55 59 5A 5A 62
// B1 indicates bind packet
// 99 06 00 00 = ID = address of normal packets
// 55 59 5A 5A 62 = 85, 89, 90, 90, 98 = RF channels to be used (kind of match previous dumps)// Normal
// Normal
// Address = 99 06 00 00
// Channels = 84, 89, 90, 90, 98 (guess from bind)
// P(13)= DC 80 80 32 80 20 20 20 20 58 04 00 00
// DC = normal packet
// 80 80 32 80 : AETR 00..80..FF
// 20 20 20 20 : Trims
// 58 : changing every time the TX restart
// 04 : |0x20=headless, |0x01=rate2, |0x02=rate3
// 00 : |0x01=calib, |0x20=return, |0x80=unknown
// 00 : |0x80=light, |0x01=flip

View File

@@ -0,0 +1,104 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef CYRF6936_INSTALLED
#include "iface_rf2500.h"
#define RF2500_ADDR_LENGTH 4
uint8_t RF2500_payload_length, RF2500_tx_addr[RF2500_ADDR_LENGTH], RF2500_buf[80];
bool RF2500_scramble_enabled;
static void __attribute__((unused)) RF2500_Init(uint8_t payload_length, bool scramble)
{
CYRF_GFSK1M_Init( RF2500_ADDR_LENGTH + 2 + (payload_length+2)*4, 2 ); // full payload length with CRC + address + 5 + FEC
RF2500_payload_length=payload_length;
RF2500_scramble_enabled=scramble;
}
static void __attribute__((unused)) RF2500_SetTXAddr(const uint8_t* addr)
{
memcpy(RF2500_tx_addr, addr, RF2500_ADDR_LENGTH);
}
static void __attribute__((unused)) RF2500_BuildPayload(uint8_t* buffer)
{
const uint8_t RF2500_scramble[] = { 0xD0, 0x9E, 0x53, 0x33, 0xD8, 0xBA, 0x98, 0x08, 0x24, 0xCB, 0x3B, 0xFC, 0x71, 0xA3, 0xF4, 0x55 };
const uint16_t RF2500_crc_xorout_scramble = 0xAEE4;
//Scramble the incoming buffer
if(RF2500_scramble_enabled)
for(uint8_t i=0; i<RF2500_payload_length; i++)
buffer[i] ^= RF2500_scramble[i];
//Add CRC to the buffer
crc=0x0000;
for(uint8_t i=0;i<RF2500_payload_length;i++)
crc16_update(bit_reverse(buffer[i]),8);
buffer[RF2500_payload_length ] = bit_reverse(crc>>8);
buffer[RF2500_payload_length+1] = bit_reverse(crc);
if(RF2500_scramble_enabled)
{
buffer[RF2500_payload_length ] ^= RF2500_crc_xorout_scramble>>8;
buffer[RF2500_payload_length+1] ^= RF2500_crc_xorout_scramble;
}
#if 0
debug("B:");
for(uint8_t i=0; i<RF2500_payload_length+2; i++)
debug(" %02X",buffer[i]);
debugln("");
#endif
memcpy(RF2500_buf,RF2500_tx_addr,RF2500_ADDR_LENGTH); // Address
uint8_t pos = RF2500_ADDR_LENGTH;
RF2500_buf[pos++]=0xC3;RF2500_buf[pos++]=0xC3; // 5 FEC encoded
memset(&RF2500_buf[pos],0x00,(RF2500_payload_length+2)*4); // + CRC) * 4 FEC bytes per byte
//FEC encode
for(uint8_t i=0; i<RF2500_payload_length+2; i++) // Include CRC
{
for(uint8_t j=0;j<8;j++)
{
uint8_t offset=pos + (i<<2) + (j>>1);
RF2500_buf[offset] <<= 4;
if( (buffer[i]>>j) & 0x01 )
RF2500_buf[offset] |= 0x0C;
else
RF2500_buf[offset] |= 0x03;
}
}
#if 0
debug("E:");
for(uint8_t i=0; i<RF2500_ADDR_LENGTH+2+(RF2500_payload_length+2)*4; i++)
debug(" %02X",RF2500_buf[i]);
debugln("");
#endif
//CYRF wants LSB first
for(uint8_t i=0; i<RF2500_ADDR_LENGTH+2+(RF2500_payload_length+2)*4; i++)
RF2500_buf[i]=bit_reverse(RF2500_buf[i]);
}
static void __attribute__((unused)) RF2500_SendPayload()
{
CYRF_GFSK1M_SendPayload(RF2500_buf, RF2500_ADDR_LENGTH + 2 + (RF2500_payload_length+2)*4 );
}
#endif

View File

@@ -0,0 +1,309 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// Radiolink surface protocol. TXs: RC4GS,RC6GS. Compatible RXs:R7FG(Std),R6FG,R6F,R8EF,R8FM,R8F,R4FGM
#if defined(RLINK_CC2500_INO)
#include "iface_cc2500.h"
//#define RLINK_FORCE_ID
#define RLINK_TX_PACKET_LEN 33
#define RLINK_RX_PACKET_LEN 15
#define RLINK_TX_ID_LEN 4
#define RLINK_HOP 16
enum {
RLINK_DATA = 0x00,
RLINK_RX1 = 0x01,
RLINK_RX2 = 0x02,
};
uint32_t RLINK_rand1;
uint32_t RLINK_rand2;
static uint32_t __attribute__((unused)) RLINK_prng_next(uint32_t r)
{
return 0xA5E2A705 * r + 0x754DB79B;
}
static void __attribute__((unused)) RLINK_init_random(uint32_t id)
{
uint32_t result = id;
RLINK_rand2 = result;
for (uint8_t i=0; i<31; i++)
result = RLINK_prng_next(result);
RLINK_rand1 = result;
}
static uint8_t __attribute__((unused)) RLINK_next_random_swap()
{
uint8_t result = (RLINK_rand2 >> 16) + RLINK_rand2 + (RLINK_rand1 >> 16) + RLINK_rand1;
RLINK_rand2 = RLINK_prng_next(RLINK_rand2);
RLINK_rand1 = RLINK_prng_next(RLINK_rand1);
return result & 0x0F;
}
static uint32_t __attribute__((unused)) RLINK_compute_start_id(uint32_t id)
{
return id * 0xF65EF9F9u + 0x2EDDF6CAu;
}
static void __attribute__((unused)) RLINK_shuffle_freqs(uint32_t seed)
{
RLINK_init_random(seed);
for(uint8_t i=0; i<RLINK_HOP; i++)
{
uint8_t r = RLINK_next_random_swap();
uint8_t tmp = hopping_frequency[r];
hopping_frequency[r] = hopping_frequency[i];
hopping_frequency[i] = tmp;
}
}
static void __attribute__((unused)) RLINK_hop()
{
uint8_t inc=3*(rx_tx_addr[0]&3);
// init hop table
for(uint8_t i=0; i<RLINK_HOP; i++)
hopping_frequency[i] = (12*i) + inc;
// shuffle
RLINK_shuffle_freqs(RLINK_compute_start_id(rx_tx_addr[0] + (rx_tx_addr[1] << 8)));
RLINK_shuffle_freqs(RLINK_compute_start_id(rx_tx_addr[2] + (rx_tx_addr[3] << 8)));
// replace one of the channel randomely
rf_ch_num=random(0xfefefefe)%0x11; // 0x00..0x10
if(inc==9) inc=6; // frequency exception
hopping_frequency[rf_ch_num]=12*16+inc;
}
static void __attribute__((unused)) RLINK_init()
{
#ifdef RLINK_FORCE_ID
//surface RC6GS
memcpy(rx_tx_addr,"\x3A\x99\x22\x3A",RLINK_TX_ID_LEN);
//air T8FB
//memcpy(rx_tx_addr,"\xFC\x11\x0D\x20",RLINK_TX_ID_LEN);
#endif
// channels order depend on ID
RLINK_hop();
#if 0
debug("ID:");
for(uint8_t i=0;i<RLINK_TX_ID_LEN;i++)
debug(" 0x%02X",rx_tx_addr[i]);
debugln("");
debug("Hop(%d):", rf_ch_num);
for(uint8_t i=0;i<RLINK_HOP;i++)
debug(" 0x%02X",hopping_frequency[i]);
debugln("");
#endif
}
const PROGMEM uint8_t RLINK_init_values[] = {
/* 00 */ 0x5B, 0x06, 0x5C, 0x07, 0xAB, 0xCD, 0x40, 0x04,
/* 08 */ 0x45, 0x00, 0x00, 0x06, 0x00, 0x5C, 0x62, 0x76,
/* 10 */ 0x7A, 0x7F, 0x13, 0x23, 0xF8, 0x44, 0x07, 0x30,
/* 18 */ 0x18, 0x16, 0x6C, 0x43, 0x40, 0x91, 0x87, 0x6B,
/* 20 */ 0xF8, 0x56, 0x10, 0xA9, 0x0A, 0x00, 0x11
};
static void __attribute__((unused)) RLINK_rf_init()
{
CC2500_Strobe(CC2500_SIDLE);
for (uint8_t i = 0; i < 39; ++i)
CC2500_WriteReg(i, pgm_read_byte_near(&RLINK_init_values[i]));
if(sub_protocol==RLINK_DUMBORC)
{
CC2500_WriteReg(4, 0xBA);
CC2500_WriteReg(5, 0xDC);
}
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
CC2500_SetTxRxMode(TX_EN);
}
static void __attribute__((unused)) RLINK_send_packet()
{
static uint32_t pseudo=0;
uint32_t bits = 0;
uint8_t bitsavailable = 0;
uint8_t idx = 6;
CC2500_Strobe(CC2500_SIDLE);
// packet length
packet[0] = RLINK_TX_PACKET_LEN;
// header
if(packet_count>3)
packet[1] = 0x02; // 0x02 telemetry request flag
switch(sub_protocol)
{
case RLINK_SURFACE:
packet[1] |= 0x01;
//radiolink additionnal ID which is working only on a small set of RXs
//if(RX_num) packet[1] |= ((RX_num+2)<<4)+4; // RX number limited to 10 values, 0 is a wildcard
break;
case RLINK_AIR:
packet[1] |= 0x21; //air 0x21 on dump but it looks to support telemetry at least RSSI
break;
case RLINK_DUMBORC:
packet[1] = 0x00; //always 0x00 on dump
break;
}
// ID
memcpy(&packet[2],rx_tx_addr,RLINK_TX_ID_LEN);
// pack 16 channels on 11 bits values between 170 and 1876, 1023 middle. The last 8 channels are failsafe values associated to the first 8 values.
for (uint8_t i = 0; i < 16; i++)
{
uint32_t val = convert_channel_16b_nolimit(i,170,1876,false); // allow extended limits
if (val & 0x8000)
val = 0;
else if (val > 2047)
val=2047;
bits |= val << bitsavailable;
bitsavailable += 11;
while (bitsavailable >= 8) {
packet[idx++] = bits & 0xff;
bits >>= 8;
bitsavailable -= 8;
}
}
// hop
pseudo=((pseudo * 0xAA) + 0x03) % 0x7673; // calc next pseudo random value
CC2500_WriteReg(CC2500_0A_CHANNR, hopping_frequency[pseudo & 0x0F]);
packet[28]= pseudo;
packet[29]= pseudo >> 8;
packet[30]= 0x00; // unknown
packet[31]= 0x00; // unknown
packet[32]= rf_ch_num; // index of value changed in the RF table
// check
uint8_t sum=0;
for(uint8_t i=1;i<33;i++)
sum+=packet[i];
packet[33]=sum;
// send packet
CC2500_WriteData(packet, RLINK_TX_PACKET_LEN+1);
// packets type
packet_count++;
if(packet_count>5) packet_count=0;
//debugln("C= 0x%02X",hopping_frequency[pseudo & 0x0F]);
//debug("P=");
//for(uint8_t i=1;i<RLINK_TX_PACKET_LEN+1;i++)
// debug(" 0x%02X",packet[i]);
//debugln("");
}
#define RLINK_TIMING_PROTO 20000-100 // -100 for compatibility with R8EF
#define RLINK_TIMING_RFSEND 10500
#define RLINK_TIMING_CHECK 2000
uint16_t RLINK_callback()
{
switch(phase)
{
case RLINK_DATA:
#ifdef MULTI_SYNC
telemetry_set_input_sync(RLINK_TIMING_PROTO);
#endif
CC2500_SetPower();
CC2500_SetFreqOffset();
RLINK_send_packet();
#if not defined RLINK_HUB_TELEMETRY
return RLINK_TIMING_PROTO;
#else
if(!(packet[1]&0x02))
return RLINK_TIMING_PROTO; //Normal packet
//Telemetry packet
phase++; // RX1
return RLINK_TIMING_RFSEND;
case RLINK_RX1:
CC2500_Strobe(CC2500_SIDLE);
CC2500_Strobe(CC2500_SFRX);
CC2500_SetTxRxMode(RX_EN);
CC2500_Strobe(CC2500_SRX);
phase++; // RX2
return RLINK_TIMING_PROTO-RLINK_TIMING_RFSEND-RLINK_TIMING_CHECK;
case RLINK_RX2:
len = CC2500_ReadReg(CC2500_3B_RXBYTES | CC2500_READ_BURST) & 0x7F;
if (len == RLINK_RX_PACKET_LEN + 1 + 2) //Telemetry frame is 15 bytes + 1 byte for length + 2 bytes for RSSI&LQI&CRC
{
//debug("Telem:");
CC2500_ReadData(packet_in, len);
if(packet_in[0]==RLINK_RX_PACKET_LEN && (packet_in[len-1] & 0x80) && memcmp(&packet[2],rx_tx_addr,RLINK_TX_ID_LEN)==0 && packet_in[6]==packet[1])
{//Correct telemetry received: length, CRC, ID and type
//Debug
//for(uint8_t i=0;i<len;i++)
// debug(" %02X",packet_in[i]);
TX_RSSI = packet_in[len-2];
if(TX_RSSI >=128)
TX_RSSI -= 128;
else
TX_RSSI += 128;
RX_RSSI=packet_in[7]; //Should be packet_in[7]-256 but since it's an uint8_t...
v_lipo1=packet_in[8]<<1; //RX Batt
v_lipo2=packet_in[9]; //Batt
telemetry_link=1; //Send telemetry out
pps_counter++;
packet_count=0;
}
//debugln("");
}
if (millis() - pps_timer >= 2000)
{//1 telemetry packet every 100ms
pps_timer = millis();
if(pps_counter<20)
pps_counter*=5;
else
pps_counter=100;
debugln("%d pps", pps_counter);
TX_LQI = pps_counter; //0..100%
pps_counter = 0;
}
CC2500_SetTxRxMode(TX_EN);
phase=RLINK_DATA; // DATA
return RLINK_TIMING_CHECK;
#endif
}
return 0;
}
uint16_t initRLINK()
{
BIND_DONE; // Not a TX bind protocol
RLINK_init();
RLINK_rf_init();
packet_count = 0;
phase = RLINK_DATA;
return 10000;
}
#endif

View File

@@ -17,10 +17,10 @@
#include "iface_cc2500.h"
#define REDPINE_LOOPTIME_FAST 25 //2.5ms
#define REDPINE_LOOPTIME_SLOW 6 //6ms
#define REDPINE_LOOPTIME_FAST 20 //2.0ms
#define REDPINE_LOOPTIME_SLOW 20 //20ms
#define REDPINE_BIND 1000
#define REDPINE_BIND 2000
#define REDPINE_PACKET_SIZE 11
#define REDPINE_FEC false // from cc2500 datasheet: The convolutional coder is a rate 1/2 code with a constraint length of m=4
#define REDPINE_NUM_HOPS 50
@@ -98,17 +98,12 @@ static void REDPINE_data_frame() {
static uint16_t ReadREDPINE()
{
if ( prev_option != option )
{ // Frequency adjust
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
prev_option = option ;
}
CC2500_SetFreqOffset();
if(IS_BIND_IN_PROGRESS)
{
if(bind_counter == REDPINE_BIND)
REDPINE_init(0);
if(bind_counter == REDPINE_BIND/2)
REDPINE_init(1);
if (state == REDPINE_BIND) {
REDPINE_init(0);
}
REDPINE_set_channel(49);
CC2500_SetTxRxMode(TX_EN);
CC2500_SetPower();
@@ -121,24 +116,20 @@ static uint16_t ReadREDPINE()
BIND_DONE;
REDPINE_init(sub_protocol);
}
return 9000;
return 4000;
}
else
{
CC2500_SetTxRxMode(TX_EN);
REDPINE_set_channel(hopping_frequency_no);
CC2500_SetPower();
CC2500_Strobe(CC2500_SFRX);
REDPINE_data_frame();
CC2500_Strobe(CC2500_SIDLE);
hopping_frequency_no = (hopping_frequency_no + 1) % 49;
CC2500_WriteData(packet, REDPINE_PACKET_SIZE);
if (sub_protocol==0)
return REDPINE_LOOPTIME_FAST*100;
else
return REDPINE_LOOPTIME_SLOW*1000;
}
return 1;
#ifdef MULTI_SYNC
telemetry_set_input_sync(packet_period);
#endif
CC2500_SetTxRxMode(TX_EN);
REDPINE_set_channel(hopping_frequency_no);
CC2500_SetPower();
CC2500_Strobe(CC2500_SFRX);
REDPINE_data_frame();
CC2500_Strobe(CC2500_SIDLE);
hopping_frequency_no = (hopping_frequency_no + 1) % 49;
CC2500_WriteData(packet, REDPINE_PACKET_SIZE);
return packet_period;
}
// register, fast 250k, slow
@@ -149,23 +140,19 @@ static const uint8_t REDPINE_init_data[][3] = {
{CC2500_07_PKTCTRL1, 0x04, 0x04},
{CC2500_08_PKTCTRL0, 0x05, 0x05},
{CC2500_09_ADDR, 0x00, 0x00},
{CC2500_0B_FSCTRL1, 0x0A, 0x0A},
{CC2500_0B_FSCTRL1, 0x0A, 0x06},
{CC2500_0C_FSCTRL0, 0x00, 0x00},
{CC2500_0D_FREQ2, 0x5D, 0x5c},
{CC2500_0E_FREQ1, 0x93, 0x76},
{CC2500_0F_FREQ0, 0xB1, 0x27},
{CC2500_10_MDMCFG4, 0x2D, 0x7B},
{CC2500_11_MDMCFG3, 0x3B, 0x61},
{CC2500_12_MDMCFG2, 0x73, 0x13},
#ifdef REDPINE_FEC
{CC2500_13_MDMCFG1, 0xA3, 0xA3},
#else
{CC2500_13_MDMCFG1, 0x23, 0x23},
#endif
{CC2500_14_MDMCFG0, 0x56, 0x7a}, // Chan space
{CC2500_15_DEVIATN, 0x00, 0x51},
{CC2500_0D_FREQ2, 0x5D, 0x5D},
{CC2500_0E_FREQ1, 0x93, 0x93},
{CC2500_0F_FREQ0, 0xB1, 0xB1},
{CC2500_10_MDMCFG4, 0x2D, 0x78},
{CC2500_11_MDMCFG3, 0x3B, 0x93},
{CC2500_12_MDMCFG2, 0x73, 0x03},
{CC2500_13_MDMCFG1, 0x23, 0x22},
{CC2500_14_MDMCFG0, 0x56, 0xF8}, // Chan space
{CC2500_15_DEVIATN, 0x00, 0x44},
{CC2500_17_MCSM1, 0x0c, 0x0c},
{CC2500_18_MCSM0, 0x08, 0x08}, //??? 0x18, 0x18},
{CC2500_18_MCSM0, 0x18, 0x18},
{CC2500_19_FOCCFG, 0x1D, 0x16},
{CC2500_1A_BSCFG, 0x1C, 0x6c},
{CC2500_1B_AGCCTRL2, 0xC7, 0x43},
@@ -181,7 +168,7 @@ static const uint8_t REDPINE_init_data[][3] = {
{CC2500_2C_TEST2, 0x88, 0x88},
{CC2500_2D_TEST1, 0x31, 0x31},
{CC2500_2E_TEST0, 0x0B, 0x0B},
{CC2500_3E_PATABLE, 0xff, 0xff}
{CC2500_3E_PATABLE, 0xff, 0xff}
};
static void REDPINE_init(uint8_t format)
@@ -190,10 +177,10 @@ static void REDPINE_init(uint8_t format)
CC2500_WriteReg(CC2500_06_PKTLEN, REDPINE_PACKET_SIZE);
for (uint8_t i=0; i < ((sizeof REDPINE_init_data) / (sizeof REDPINE_init_data[0])); i++)
for (uint8_t i=0; i < ((sizeof(REDPINE_init_data)) / (sizeof(REDPINE_init_data[0]))); i++) {
CC2500_WriteReg(REDPINE_init_data[i][0], REDPINE_init_data[i][format+1]);
}
prev_option = option;
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
CC2500_Strobe(CC2500_SIDLE);
@@ -215,7 +202,6 @@ static uint16_t initREDPINE()
uint32_t idx = 0;
uint32_t rnd = MProtocol_id;
#define REDPINE_MAX_RF_CHANNEL 255
hopping_frequency[idx++] = 1;
while (idx < REDPINE_NUM_HOPS-1)
{
uint32_t i;
@@ -226,8 +212,9 @@ static uint16_t initREDPINE()
for (i = 0; i < idx; i++)
{
uint8_t ch = hopping_frequency[i];
if ((ch <= next_ch + 1) && (ch >= next_ch - 1) && (ch > 1))
break;
if ((ch <= next_ch + 1) && (ch >= next_ch - 1) && (ch >= 1)) {
break;
}
}
if (i != idx)
continue;
@@ -235,6 +222,11 @@ static uint16_t initREDPINE()
}
hopping_frequency[49] = 0; // Last channel is the bind channel at hop 0
if (sub_protocol==0)
packet_period = REDPINE_LOOPTIME_FAST*100;
else
packet_period = REDPINE_LOOPTIME_SLOW*1000;
bind_counter=REDPINE_BIND;
REDPINE_init(sub_protocol);
CC2500_SetTxRxMode(TX_EN); // enable PA

View File

@@ -63,6 +63,10 @@ void SHENQI_send_packet()
}
else
{
#ifdef MULTI_SYNC
if(packet_count==1)
telemetry_set_input_sync(3000+2508+6*1750);
#endif
LT8900_SetAddress(rx_tx_addr,4);
packet[1]=255-convert_channel_8b(RUDDER);
packet[2]=255-convert_channel_16b_limit(THROTTLE,0x60,0xA0);
@@ -91,7 +95,9 @@ void SHENQI_send_packet()
uint16_t SHENQI_callback()
{
if(IS_BIND_DONE)
{
SHENQI_send_packet();
}
else
{
if( NRF24L01_ReadReg(NRF24L01_07_STATUS) & _BV(NRF24L01_07_RX_DR))

View File

@@ -16,7 +16,7 @@
#if defined(SLT_NRF24L01_INO)
#include "iface_nrf24l01.h"
#include "iface_nrf250k.h"
//#define SLT_Q200_FORCE_ID
@@ -25,6 +25,7 @@
#define SLT_PAYLOADSIZE_V2 11
#define SLT_NFREQCHANNELS 15
#define SLT_TXID_SIZE 4
#define SLT_BIND_CHANNEL 0x50
enum{
// flags going to packet[6] (Q200)
@@ -48,30 +49,13 @@ enum {
SLT_DATA2,
SLT_DATA3,
SLT_BIND1,
SLT_BIND2
SLT_BIND2,
};
static void __attribute__((unused)) SLT_init()
{
NRF24L01_Initialize();
NRF24L01_WriteReg(NRF24L01_00_CONFIG, _BV(NRF24L01_00_EN_CRC) | _BV(NRF24L01_00_CRCO)); // 2-bytes CRC, radio off
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknoledgement
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x02); // 4-byte RX/TX address
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0x00); // Disable auto retransmit
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, 4); // bytes of data payload for pipe 1
NRF24L01_SetBitrate(NRF24L01_BR_250K); // 256kbps
NRF24L01_SetPower();
if(sub_protocol==SLT_V1)
NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, (uint8_t*)"\xC3\xC3\xAA\x55", SLT_TXID_SIZE);
else // V2
NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, (uint8_t*)"\x7E\xB8\x63\xA9", SLT_TXID_SIZE);
NRF24L01_FlushRx();
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, rx_tx_addr, SLT_TXID_SIZE);
NRF24L01_FlushTx();
// Turn radio power on
NRF24L01_SetTxRxMode(TX_EN);
NRF250K_Init();
NRF250K_SetTXAddr(rx_tx_addr, SLT_TXID_SIZE);
}
static void __attribute__((unused)) SLT_set_freq(void)
@@ -109,21 +93,25 @@ static void __attribute__((unused)) SLT_set_freq(void)
}
}
}
//Bind channel
hopping_frequency[SLT_NFREQCHANNELS]=SLT_BIND_CHANNEL;
//Calib all channels
NRF250K_HoppingCalib(SLT_NFREQCHANNELS+1);
}
static void __attribute__((unused)) SLT_wait_radio()
{
if (packet_sent)
while (!(NRF24L01_ReadReg(NRF24L01_07_STATUS) & _BV(NRF24L01_07_TX_DS)));
while (!NRF250K_IsPacketSent());
packet_sent = 0;
}
static void __attribute__((unused)) SLT_send_packet(uint8_t len)
{
SLT_wait_radio();
NRF24L01_FlushTx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, _BV(NRF24L01_07_TX_DS) | _BV(NRF24L01_07_RX_DR) | _BV(NRF24L01_07_MAX_RT));
NRF24L01_WritePayload(packet, len);
NRF250K_WritePayload(packet, len);
packet_sent = 1;
}
@@ -132,7 +120,8 @@ static void __attribute__((unused)) SLT_build_packet()
static uint8_t calib_counter=0;
// Set radio channel - once per packet batch
NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency[hopping_frequency_no]);
NRF250K_SetFreqOffset(); // Set frequency offset
NRF250K_Hopping(hopping_frequency_no);
if (++hopping_frequency_no >= SLT_NFREQCHANNELS)
hopping_frequency_no = 0;
@@ -140,8 +129,8 @@ static void __attribute__((unused)) SLT_build_packet()
uint8_t e = 0; // byte where extension 2 bits for every 10-bit channel are packed
for (uint8_t i = 0; i < 4; ++i)
{
uint16_t v = convert_channel_10b(CH_AETR[i]);
if(sub_protocol>SLT_V2 && (CH_AETR[i]==THROTTLE || CH_AETR[i]==ELEVATOR) )
uint16_t v = convert_channel_10b(CH_AETR[i], false);
if(sub_protocol>SLT_V2 && (i==CH2 || i==CH3) )
v=1023-v; // reverse throttle and elevator channels for Q100/Q200/MR100 protocols
packet[i] = v;
e = (e >> 2) | (uint8_t) ((v >> 2) & 0xC0);
@@ -183,23 +172,16 @@ static void __attribute__((unused)) SLT_build_packet()
static void __attribute__((unused)) SLT_send_bind_packet()
{
SLT_wait_radio();
BIND_IN_PROGRESS; //Limit TX power to bind level
NRF24L01_SetPower();
NRF250K_Hopping(SLT_NFREQCHANNELS); //Bind channel
BIND_IN_PROGRESS; //Limit TX power to bind level
NRF250K_SetPower();
BIND_DONE;
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, (uint8_t *)"\x7E\xB8\x63\xA9", SLT_TXID_SIZE);
NRF24L01_WriteReg(NRF24L01_05_RF_CH, 0x50);
NRF250K_SetTXAddr((uint8_t *)"\x7E\xB8\x63\xA9", SLT_TXID_SIZE);
memcpy((void*)packet,(void*)rx_tx_addr,SLT_TXID_SIZE);
if(phase==SLT_BIND2)
SLT_send_packet(SLT_TXID_SIZE);
else // SLT_BIND1
SLT_send_packet(SLT_PAYLOADSIZE_V2);
SLT_wait_radio(); //Wait until the packet's sent before changing TX address!
NRF24L01_SetPower(); //Change power back to normal level
if(phase==SLT_BIND2) // after V1 bind and V2 second bind packet
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, rx_tx_addr, SLT_TXID_SIZE);
}
#define SLT_TIMING_BUILD 1000
@@ -213,7 +195,12 @@ uint16_t SLT_callback()
switch (phase)
{
case SLT_BUILD:
#ifdef MULTI_SYNC
telemetry_set_input_sync(sub_protocol==SLT_V1?20000:13730);
#endif
SLT_build_packet();
NRF250K_SetPower(); //Change power level
NRF250K_SetTXAddr(rx_tx_addr, SLT_TXID_SIZE);
phase++;
return SLT_TIMING_BUILD;
case SLT_DATA1:
@@ -250,7 +237,6 @@ uint16_t SLT_callback()
}
else
{// Continue to send normal packets
NRF24L01_SetPower(); // Set tx_power
phase = SLT_BUILD;
if(sub_protocol==SLT_V1)
return 20000-SLT_TIMING_BUILD;
@@ -274,6 +260,7 @@ uint16_t SLT_callback()
uint16_t initSLT()
{
BIND_DONE; // Not a TX bind protocol
packet_count = 0;
packet_sent = 0;
hopping_frequency_no = 0;
@@ -286,8 +273,8 @@ uint16_t initSLT()
/* rx_tx_addr[0]=0x01;rx_tx_addr[1]=0x02;rx_tx_addr[2]=0x0B;rx_tx_addr[3]=0x57;*/
#endif
}
SLT_set_freq();
SLT_init();
SLT_set_freq();
phase = SLT_BUILD;
return 50000;
}

View File

@@ -0,0 +1,246 @@
#ifdef SX1276_INSTALLED
#include "iface_sx1276.h"
bool SX1276_Mode_LoRa=false;
void SX1276_WriteReg(uint8_t address, uint8_t data)
{
SPI_CSN_off;
SPI_Write(address | 0x80); // MSB 1 = write
NOP();
SPI_Write(data);
SPI_CSN_on;
}
uint8_t SX1276_ReadReg(uint8_t address)
{
SPI_CSN_off;
SPI_Write(address & 0x7F);
uint8_t result = SPI_Read();
SPI_CSN_on;
return result;
}
void SX1276_WriteRegisterMulti(uint8_t address, const uint8_t* data, uint8_t length)
{
SPI_CSN_off;
SPI_Write(address | 0x80); // MSB 1 = write
for(uint8_t i = 0; i < length; i++)
SPI_Write(data[i]);
SPI_CSN_on;
}
void SX1276_ReadRegisterMulti(uint8_t address, uint8_t* data, uint8_t length)
{
SPI_CSN_off;
SPI_Write(address & 0x7F);
for(uint8_t i = 0; i < length; i++)
data[i]=SPI_Read();
SPI_CSN_on;
}
uint8_t SX1276_Reset()
{
//TODO when pin is not wired
#ifdef SX1276_RST_pin
SX1276_RST_off;
delayMicroseconds(200);
SX1276_RST_on;
#endif
return 0;
}
bool SX1276_DetectChip() //to be called after reset, verfies the chip has been detected
{
#define SX1276_Detect_MaxAttempts 5
uint8_t i = 0;
bool chipFound = false;
while ((i < SX1276_Detect_MaxAttempts) && !chipFound)
{
uint8_t ChipVersion = SX1276_ReadReg(SX1276_42_VERSION);
if (ChipVersion == 0x12)
{
debugln("SX1276 reg version=%d", ChipVersion);
chipFound = true;
}
else
{
debug("SX1276 not found! attempts: %d", i);
debug(" of ");
debugln("%d SX1276 reg version=%d", SX1276_Detect_MaxAttempts, ChipVersion);
i++;
}
}
if (!chipFound)
{
debugln("SX1276 not detected!!!");
return false;
}
else
{
debugln("Found SX1276 Device!");
return true;
}
}
void SX1276_SetTxRxMode(uint8_t mode)
{
#ifdef SX1276_TXEN_pin
if(mode == TX_EN)
SX1276_TXEN_on;
else
SX1276_RXEN_on;
#endif
}
void SX1276_SetFrequency(uint32_t frequency)
{
uint32_t f = frequency / 61;
uint8_t data[3];
data[0] = f >> 16;
data[1] = f >> 8;
data[2] = f;
SX1276_WriteRegisterMulti(SX1276_06_FRFMSB, data, 3);
}
void SX1276_SetMode(bool lora, bool low_freq_mode, uint8_t mode)
{
uint8_t data = 0x00;
SX1276_Mode_LoRa=lora;
if(lora)
{
data = data | (1 << 7);
data = data & ~(1 << 6);
}
else
{
data = data & ~(1 << 7);
data = data | (1 << 6);
}
if(low_freq_mode)
data = data | (1 << 3);
data = data | mode;
SX1276_WriteReg(SX1276_01_OPMODE, data);
}
void SX1276_SetDetectOptimize(bool auto_if, uint8_t detect_optimize)
{
uint8_t data = SX1276_ReadReg(SX1276_31_DETECTOPTIMIZE);
data = (data & 0b01111000) | detect_optimize;
data = data | (auto_if << 7);
SX1276_WriteReg(SX1276_31_DETECTOPTIMIZE, data);
}
void SX1276_ConfigModem1(uint8_t bandwidth, uint8_t coding_rate, bool implicit_header_mode)
{
uint8_t data = 0x00;
data = data | (bandwidth << 4);
data = data | (coding_rate << 1);
data = data | implicit_header_mode;
SX1276_WriteReg(SX1276_1D_MODEMCONFIG1, data);
if (bandwidth == SX1276_MODEM_CONFIG1_BW_500KHZ) //datasheet errata reconmendation http://caxapa.ru/thumbs/972894/SX1276_77_8_ErrataNote_1.1_STD.pdf
{
SX1276_WriteReg(SX1276_36_LORA_REGHIGHBWOPTIMIZE1, 0x02);
SX1276_WriteReg(SX1276_3A_LORA_REGHIGHBWOPTIMIZE2, 0x64);
}
else
SX1276_WriteReg(SX1276_36_LORA_REGHIGHBWOPTIMIZE1, 0x03);
}
void SX1276_ConfigModem2(uint8_t spreading_factor, bool tx_continuous_mode, bool rx_payload_crc_on)
{
uint8_t data = SX1276_ReadReg(SX1276_1E_MODEMCONFIG2);
data = data & 0b11; // preserve the last 2 bits
data = data | (spreading_factor << 4);
data = data | (tx_continuous_mode << 3);
data = data | (rx_payload_crc_on << 2);
SX1276_WriteReg(SX1276_1E_MODEMCONFIG2, data);
}
void SX1276_ConfigModem3(bool low_data_rate_optimize, bool agc_auto_on)
{
uint8_t data = SX1276_ReadReg(SX1276_26_MODEMCONFIG3);
data = data & 0b11; // preserve the last 2 bits
data = data | (low_data_rate_optimize << 3);
data = data | (agc_auto_on << 2);
SX1276_WriteReg(SX1276_26_MODEMCONFIG3, data);
}
void SX1276_SetPreambleLength(uint16_t length)
{
uint8_t data[2];
data[0] = (length >> 8) & 0xFF; // high byte
data[1] = length & 0xFF; // low byte
SX1276_WriteRegisterMulti(SX1276_20_PREAMBLEMSB, data, 2);
}
void SX1276_SetDetectionThreshold(uint8_t threshold)
{
SX1276_WriteReg(SX1276_37_DETECTIONTHRESHOLD, threshold);
}
void SX1276_SetLna(uint8_t gain, bool high_freq_lna_boost)
{
uint8_t data = SX1276_ReadReg(SX1276_0C_LNA);
data = data & 0b100; // preserve the third bit
data = data | (gain << 5);
if(high_freq_lna_boost)
data = data | 0b11;
SX1276_WriteReg(SX1276_0C_LNA, data);
}
void SX1276_SetHopPeriod(uint8_t freq_hop_period)
{
SX1276_WriteReg(SX1276_24_HOPPERIOD, freq_hop_period);
}
void SX1276_SetPaDac(bool on)
{
uint8_t data = SX1276_ReadReg(SX1276_4D_PADAC);
data = data & 0b11111000; // preserve the upper 5 bits
if(on)
data = data | 0x07;
else
data = data | 0x04;
SX1276_WriteReg(SX1276_4D_PADAC, data);
}
void SX1276_SetPaConfig(bool pa_boost_pin, uint8_t max_power, uint8_t output_power)
{
uint8_t data = 0x00;
data = data | (pa_boost_pin << 7);
data = data | (max_power << 4);
data = data | output_power;
SX1276_WriteReg(SX1276_09_PACONFIG, data);
}
void SX1276_WritePayloadToFifo(uint8_t* payload, uint8_t length)
{
SX1276_WriteReg(SX1276_22_PAYLOAD_LENGTH, length);
SX1276_WriteReg(SX1276_0E_FIFOTXBASEADDR, 0x00);
SX1276_WriteReg(SX1276_0D_FIFOADDRPTR, 0x00);
SX1276_WriteRegisterMulti(SX1276_00_FIFO, payload, length);
}
#endif

View File

@@ -0,0 +1,147 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(SCANNER_CC2500_INO)
#include "iface_cc2500.h"
#define SCAN_MAX_RADIOCHANNEL 249 // 2483 MHz
#define SCAN_CHANNEL_LOCK_TIME 90 // with precalibration, channel requires only 90 usec for synthesizer to settle
#define SCAN_AVERAGE_INTVL 20
#define SCAN_MAX_COUNT 10
#define SCAN_CHANS_PER_PACKET 5
enum ScanStates {
SCAN_CHANNEL_CHANGE = 0,
SCAN_GET_RSSI = 1,
};
static void __attribute__((unused)) Scanner_cc2500_init()
{
/* Initialize CC2500 chip */
CC2500_WriteReg(CC2500_08_PKTCTRL0, 0x12); // Packet Automation Control
CC2500_WriteReg(CC2500_0B_FSCTRL1, 0x0A); // Frequency Synthesizer Control
CC2500_WriteReg(CC2500_0C_FSCTRL0, 0x00); // Frequency Synthesizer Control
CC2500_WriteReg(CC2500_0D_FREQ2, 0x5C); // Frequency Control Word, High Byte
CC2500_WriteReg(CC2500_0E_FREQ1, 0x4E); // Frequency Control Word, Middle Byte
CC2500_WriteReg(CC2500_0F_FREQ0, 0xC3); // Frequency Control Word, Low Byte
CC2500_WriteReg(CC2500_10_MDMCFG4, 0x8D); // Modem Configuration
CC2500_WriteReg(CC2500_11_MDMCFG3, 0x3B); // Modem Configuration
CC2500_WriteReg(CC2500_12_MDMCFG2, 0x10); // Modem Configuration
CC2500_WriteReg(CC2500_13_MDMCFG1, 0x23); // Modem Configuration
CC2500_WriteReg(CC2500_14_MDMCFG0, 0xA4); // Modem Configuration
CC2500_WriteReg(CC2500_15_DEVIATN, 0x62); // Modem Deviation Setting
CC2500_WriteReg(CC2500_18_MCSM0, 0x08); // Main Radio Control State Machine Configuration
CC2500_WriteReg(CC2500_19_FOCCFG, 0x1D); // Frequency Offset Compensation Configuration
CC2500_WriteReg(CC2500_1A_BSCFG, 0x1C); // Bit Synchronization Configuration
CC2500_WriteReg(CC2500_1B_AGCCTRL2, 0xC7); // AGC Control
CC2500_WriteReg(CC2500_1C_AGCCTRL1, 0x00); // AGC Control
CC2500_WriteReg(CC2500_1D_AGCCTRL0, 0xB0); // AGC Control
CC2500_WriteReg(CC2500_21_FREND1, 0xB6); // Front End RX Configuration
CC2500_SetTxRxMode(RX_EN); // Receive mode
CC2500_Strobe(CC2500_SIDLE);
CC2500_Strobe(CC2500_SRX);
delayMicroseconds(1000); // wait for RX to activate
}
static void __attribute__((unused)) Scanner_calibrate()
{
for (uint8_t c = 0; c < SCAN_MAX_RADIOCHANNEL; c++)
{
CC2500_Strobe(CC2500_SIDLE);
CC2500_WriteReg(CC2500_0A_CHANNR, c);
CC2500_Strobe(CC2500_SCAL);
delayMicroseconds(900);
calData[c] = CC2500_ReadReg(CC2500_25_FSCAL1);
}
CC2500_Strobe(CC2500_SIDLE);
}
static void __attribute__((unused)) Scanner_scan_next()
{
CC2500_WriteReg(CC2500_0A_CHANNR, rf_ch_num);
CC2500_WriteReg(CC2500_25_FSCAL1, calData[rf_ch_num]);
CC2500_Strobe(CC2500_SFRX);
CC2500_Strobe(CC2500_SRX);
}
static int __attribute__((unused)) Scanner_scan_rssi()
{
uint8_t rssi;
rssi = CC2500_ReadReg(0x40 | CC2500_34_RSSI); // 0.5 db/count, RSSI value read from the RSSI status register is a 2's complement number
uint8_t rssi_rel;
if (rssi >= 128) {
rssi_rel = rssi - 128; // relative power levels 0-127 (equals -137 to -72 dBm)
}
else {
rssi_rel = rssi + 128; // relative power levels 128-255 (equals -73 to -10 dBm)
}
return rssi_rel;
}
uint16_t Scanner_callback()
{
uint8_t rssi,max_rssi;
//!!!Blocking mode protocol!!!
TX_MAIN_PAUSE_off;
tx_resume();
while(1)
{ //Start
packet_in[0] = rf_ch_num; // start channel for telemetry packet
for(uint8_t i=0;i<SCAN_CHANS_PER_PACKET;i++)
{
Scanner_scan_next(); // set channel
delayMicroseconds(SCAN_CHANNEL_LOCK_TIME); // wait for freq to adjust
max_rssi = 0;
for(uint8_t j=0;j<SCAN_MAX_COUNT;j++)
{
rssi = Scanner_scan_rssi();
if(rssi >= max_rssi) max_rssi = rssi;
delayMicroseconds(SCAN_AVERAGE_INTVL); // wait before next read
}
packet_in[i+1] = max_rssi;
//next channel
rf_ch_num++;
if (rf_ch_num >= (SCAN_MAX_RADIOCHANNEL + 1))
rf_ch_num = 0;
}
telemetry_link = 1;
do
{
if(Update_All())
return 1000; // protocol has changed, give back the control to main
}
while(telemetry_link == 1);
}
return 0;
}
uint16_t initScanner(void)
{
rf_ch_num = 0;
telemetry_link = 0;
Scanner_cc2500_init();
CC2500_Strobe(CC2500_SRX);
Scanner_calibrate();
CC2500_Strobe(CC2500_SIDLE);
CC2500_SetTxRxMode(RX_EN);
CC2500_Strobe(CC2500_SRX); // Receive mode
return 1250;
}
#endif

View File

@@ -0,0 +1,174 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(SKYARTEC_CC2500_INO)
#include "iface_cc2500.h"
//#define SKYARTEC_FORCE_ID
#define SKYARTEC_COARSE 0x00
#define SKYARTEC_TX_ADDR rx_tx_addr[1]
#define SKYARTEC_TX_CHANNEL rx_tx_addr[0]
enum {
SKYARTEC_PKT1 = 0,
SKYARTEC_SLEEP1,
SKYARTEC_PKT2,
SKYARTEC_SLEEP2,
SKYARTEC_PKT3,
SKYARTEC_SLEEP3,
SKYARTEC_PKT4,
SKYARTEC_SLEEP4,
SKYARTEC_PKT5,
SKYARTEC_SLEEP5,
SKYARTEC_PKT6,
SKYARTEC_LAST,
};
const PROGMEM uint8_t SKYARTEC_init_values[] = {
/* 04 */ 0x13, 0x18, 0xFF, 0x05,
/* 08 */ 0x05, 0x43, 0xCD, 0x09, 0x00, 0x5D, 0x93, 0xB1 + SKYARTEC_COARSE,
/* 10 */ 0x2D, 0x20, 0x73, 0x22, 0xF8, 0x50, 0x07, 0x30,
/* 18 */ 0x18, 0x1D, 0x1C, 0xC7, 0x00, 0xB2, 0x87, 0x6B,
/* 20 */ 0xF8, 0xB6, 0x10, 0xEA, 0x0A, 0x00, 0x11, 0x41,
/* 28 */ 0x00, 0x59, 0x7F, 0x3F, 0x88, 0x31, 0x0B
};
static void __attribute__((unused)) SKYARTEC_rf_init()
{
CC2500_Strobe(CC2500_SIDLE);
for (uint8_t i = 4; i <= 0x2E; ++i)
CC2500_WriteReg(i, pgm_read_byte_near(&SKYARTEC_init_values[i-4]));
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
CC2500_SetTxRxMode(TX_EN);
CC2500_SetPower();
CC2500_Strobe(CC2500_SFTX);
CC2500_Strobe(CC2500_SFRX);
CC2500_Strobe(CC2500_SXOFF);
CC2500_Strobe(CC2500_SIDLE);
}
static void __attribute__((unused)) SKYARTEC_send_data_packet()
{
//13 c5 01 0259 0168 0000 0259 030c 021a 0489 f3 7e 0a
//header
packet[0] = 0x13; //Length
packet[1] = SKYARTEC_TX_ADDR; //Tx Addr?
packet[2] = 0x01; //???
//channels
for(uint8_t i = 0; i < 7; i++)
{
uint16_t value = convert_channel_16b_limit(CH_AETR[i],0x000,0x500);
packet[3+2*i] = value >> 8;
packet[4+2*i] = value & 0xff;
}
//checks
uint8_t xor1 = 0;
for(uint8_t i = 3; i <= 14; i++)
xor1 ^= packet[i];
packet[18] = xor1;
xor1 ^= packet[15];
xor1 ^= packet[16];
packet[17] = xor1;
packet[19] = packet[3] + packet[5] + packet[7] + packet[9] + packet[11] + packet[13];
CC2500_WriteReg(CC2500_04_SYNC1, rx_tx_addr[3]);
CC2500_WriteReg(CC2500_05_SYNC0, rx_tx_addr[2]);
CC2500_WriteReg(CC2500_09_ADDR, SKYARTEC_TX_ADDR);
CC2500_WriteReg(CC2500_0A_CHANNR, SKYARTEC_TX_CHANNEL);
CC2500_WriteData(packet, 20);
}
static void __attribute__((unused)) SKYARTEC_send_bind_packet()
{
//0b 7d 01 01 b2 c5 4a 2f 00 00 c5 d6
packet[0] = 0x0b; //Length
packet[1] = 0x7d;
packet[2] = 0x01;
packet[3] = 0x01;
packet[4] = rx_tx_addr[0];
packet[5] = rx_tx_addr[1];
packet[6] = rx_tx_addr[2];
packet[7] = rx_tx_addr[3];
packet[8] = 0x00;
packet[9] = 0x00;
packet[10] = SKYARTEC_TX_ADDR;
uint8_t xor1 = 0;
for(uint8_t i = 3; i < 11; i++)
xor1 ^= packet[i];
packet[11] = xor1;
CC2500_WriteReg(CC2500_04_SYNC1, 0x7d);
CC2500_WriteReg(CC2500_05_SYNC0, 0x7d);
CC2500_WriteReg(CC2500_09_ADDR, 0x7d);
CC2500_WriteReg(CC2500_0A_CHANNR, 0x7d);
CC2500_WriteData(packet, 12);
}
uint16_t ReadSKYARTEC()
{
if (phase & 0x01)
{
CC2500_Strobe(CC2500_SIDLE);
if (phase == SKYARTEC_LAST)
{
CC2500_SetPower();
// Tune frequency if it has been changed
CC2500_SetFreqOffset();
phase = SKYARTEC_PKT1;
}
else
phase++;
return 3000;
}
if (phase == SKYARTEC_PKT1 && bind_counter)
{
SKYARTEC_send_bind_packet();
bind_counter--;
if(bind_counter == 0)
BIND_DONE;
}
else
{
#ifdef MULTI_SYNC
telemetry_set_input_sync(6000);
#endif
SKYARTEC_send_data_packet();
}
phase++;
return 3000;
}
uint16_t initSKYARTEC()
{
SKYARTEC_rf_init();
#ifdef SKYARTEC_FORCE_ID
memset(rx_tx_addr,0x00,4);
#endif
if(rx_tx_addr[0]==0) rx_tx_addr[0]=0xB2;
if(rx_tx_addr[1]==0) rx_tx_addr[1]=0xC5;
if(rx_tx_addr[2]==0) rx_tx_addr[2]=0x4A;
if(rx_tx_addr[3]==0) rx_tx_addr[3]=0x2F;
bind_counter = 250;
phase = SKYARTEC_PKT1;
return 10000;
}
#endif

View File

@@ -359,6 +359,9 @@ uint16_t symax_callback()
}
break;
case SYMAX_DATA:
#ifdef MULTI_SYNC
telemetry_set_input_sync(SYMAX_PACKET_PERIOD);
#endif
SYMAX_send_packet(0);
break;
}

View File

@@ -0,0 +1,63 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(TEST_CC2500_INO)
#include "iface_nrf250k.h"
#define TEST_INITIAL_WAIT 500
#define TEST_PACKET_PERIOD 10000
#define TEST_PAYLOAD_SIZE 10
#define TEST_RF_NUM_CHANNELS 3
uint16_t TEST_callback()
{
option=1;
if(phase)
XN297L_WritePayload(packet, TEST_PAYLOAD_SIZE);
else
{
if(Channel_data[CH5]<CHANNEL_MIN_COMMAND)
hopping_frequency_no=0;
else if(Channel_data[CH5]>CHANNEL_MAX_COMMAND)
hopping_frequency_no=2;
else
hopping_frequency_no=1;
XN297L_Hopping(hopping_frequency_no);
CC2500_WriteReg(CC2500_3E_PATABLE,convert_channel_8b(CH6));
debugln("CH:%d, PWR:%d",hopping_frequency_no,convert_channel_8b(CH6));
}
phase ^= 1;
return TEST_PACKET_PERIOD>>1;
}
uint16_t initTEST()
{
option=1;
hopping_frequency[0]=0;
hopping_frequency[1]=40;
hopping_frequency[2]=80;
XN297L_Init();
XN297L_HoppingCalib(TEST_RF_NUM_CHANNELS); // Calibrate all channels
XN297L_SetTXAddr((uint8_t*)"RADIO", 5);
hopping_frequency_no = 0;
phase=0;
for(uint8_t i=0; i<TEST_PAYLOAD_SIZE; i++)
packet[i]= i;
return TEST_INITIAL_WAIT;
}
#endif

View File

@@ -77,19 +77,19 @@ static void __attribute__((unused)) TRAXXAS_send_data_packet()
packet[0] = 0x01;
memset(&packet[1],0x00,TRAXXAS_PACKET_SIZE-1);
//Steering
uint16_t ch = convert_channel_16b_nolimit(RUDDER,500,1000);
uint16_t ch = convert_channel_16b_nolimit(RUDDER,500,1000,false);
packet[2]=ch>>8;
packet[3]=ch;
//Throttle
ch = convert_channel_16b_nolimit(THROTTLE,500,1000);
ch = convert_channel_16b_nolimit(THROTTLE,500,1000,false);
packet[4]=ch>>8;
packet[5]=ch;
//AUX3
ch = convert_channel_16b_nolimit(AILERON,500,1000);
ch = convert_channel_16b_nolimit(AILERON,500,1000,false);
packet[6]=ch>>8;
packet[7]=ch;
//AUX4???
ch = convert_channel_16b_nolimit(ELEVATOR,500,1000);
ch = convert_channel_16b_nolimit(ELEVATOR,500,1000,false);
packet[12]=ch>>8;
packet[13]=ch;
@@ -162,6 +162,9 @@ uint16_t ReadTRAXXAS()
TRAXXAS_cyrf_data_config();
phase++;
case TRAXXAS_DATA:
#ifdef MULTI_SYNC
telemetry_set_input_sync(13940);
#endif
TRAXXAS_send_data_packet();
break;
}

View File

@@ -35,16 +35,16 @@
#endif
//Channel MIN MAX values
#define CHANNEL_MAX_100 1844 // 100%
#define CHANNEL_MIN_100 204 // 100%
#define CHANNEL_MAX_125 2047 // 125%
#define CHANNEL_MIN_125 0 // 125%
#define CHANNEL_MAX_100 1844 // +100%
#define CHANNEL_MIN_100 204 // -100%
#define CHANNEL_MAX_125 2047 // +125%
#define CHANNEL_MIN_125 0 // -125%
#define CHANNEL_MID 1024
#define CHANNEL_MIN_COMMAND 784 // 1350us
#define CHANNEL_SWITCH 1104 // 1550us
#define CHANNEL_MAX_COMMAND 1424 // 1750us
#define CHANNEL_MIN_COMMAND 409 // -75%
#define CHANNEL_SWITCH 1106 // +10%
#define CHANNEL_MAX_COMMAND 1639 // +75%
//Channel definitions
#define CH1 0

Some files were not shown because too many files have changed in this diff Show More