Compare commits

..

96 Commits

Author SHA1 Message Date
pascallanger
d90e698a15 Update Protocols_Details.md 2016-03-13 09:39:34 +01:00
pascallanger
f4d6f88e5c Update Protocols_Details.md 2016-03-13 09:30:30 +01:00
pascallanger
799dce4b13 DSM2: Option enables the selection of the number of channels
- 0 : 4 channels @22ms
- 1 : 5 channels @22ms
- 2 : 6 channels @22ms
- 3 : 7 channels @22ms

- 4 : 4 channels @11ms
- 5 : 5 channels @11ms
- 6 : 6 channels @11ms
- 7 : 7 channels @11ms

- 8 : 8 channels @22ms
- 9 : 9 channels @22ms
- 10 : 10 channels @22ms
- 11 : 11 channels @22ms
- 12 : 12 channels @22ms
2016-03-13 09:29:25 +01:00
pascallanger
a025d028d4 Capital 'M' 2016-03-08 22:20:49 +01:00
pascallanger
8cfa9a891d Delete multiprotocol.h 2016-03-08 22:18:44 +01:00
pascallanger
5b44439dd2 Update README.md 2016-03-03 17:10:40 +01:00
pascallanger
44fb7dcdaa Add Arduino Mini has a supported platform. 2016-03-03 16:34:57 +01:00
pascallanger
4f5d1ba26b Correct serial init 2016-03-03 16:26:43 +01:00
pascallanger
0a08b09d70 Update Protocols_Details.md 2016-02-26 19:40:34 +01:00
pascallanger
35eedda352 Update README.md 2016-02-26 19:32:11 +01:00
pascallanger
05fb8bc742 Added Shenqi protocol and LT8910 emulation layer 2016-02-26 19:02:26 +01:00
pascallanger
795df2937e Space and ram optimization on FrSky & FrSkyX 2016-02-15 21:15:09 +01:00
pascallanger
5607740e77 Update Protocols_Details.md 2016-02-13 09:06:58 +01:00
pascallanger
d4287d3046 Update README.md 2016-02-11 23:01:39 +01:00
pascallanger
71ef72bae3 Update README.md 2016-02-11 22:56:26 +01:00
pascallanger
c310d698ca Short description on how to compile 2016-02-11 22:52:41 +01:00
pascallanger
13ce3d1c92 Separate MD files for readability 2016-02-11 22:35:38 +01:00
pascallanger
122ed79a98 Create Protocols_Details.md 2016-02-11 22:29:33 +01:00
pascallanger
6d655242a6 Update list of protocols 2016-02-11 22:11:08 +01:00
pascallanger
09cab9d825 Removed some pics 2016-02-10 16:33:12 +01:00
pascallanger
d8bd38c124 OSH Park link 2016-02-10 16:31:20 +01:00
pascallanger
abc8bf0e62 PCB v2.3d details 2016-02-10 11:39:41 +01:00
pascallanger
24106ac3d2 PCB v2.3d pictures 2016-02-10 11:26:57 +01:00
pascallanger
bf506d382f PCB v2.3d 2016-02-10 10:53:13 +01:00
pascallanger
84b1a9bbec PCB v2.3d 2016-02-10 10:45:35 +01:00
pascallanger
d67afd4396 Update README.md 2016-02-09 08:55:56 +01:00
pascallanger
9f2f7eff5b Update README.md 2016-02-08 09:20:35 +01:00
pascallanger
c863d5976b Fix MT99xx... 2016-02-06 11:33:50 +01:00
pascallanger
d6338e9daf Update README.md 2016-02-05 18:44:26 +01:00
pascallanger
b393d2666d Added FrSkyX protocol, Added MT99xx YZ sub protocol, Ram usage optimization 2016-02-05 17:28:09 +01:00
pascallanger
c5b1e73312 Update README.md 2016-02-04 22:08:07 +01:00
pascallanger
fa65222228 Added FrSkyX description and telemetry info 2016-02-04 21:59:49 +01:00
pascallanger
38e57ccd71 Update README.md 2016-02-04 14:19:48 +01:00
pascallanger
86d3d26273 New protocol MJXQ 2016-02-04 13:35:16 +01:00
pascallanger
db8e4a03a8 New protocol MJXQ and FTDI upload method 2016-02-04 13:24:16 +01:00
pascallanger
c90db8594a Update README.md 2016-02-03 18:32:08 +01:00
pascallanger
855ca77194 Update README.md 2016-02-03 18:24:56 +01:00
pascallanger
4f23af070e Update README.md 2016-02-03 17:49:42 +01:00
pascallanger
626613b545 Update README.md 2016-02-02 16:02:16 +01:00
pascallanger
c26de3bd67 Update README.md 2016-02-02 16:00:34 +01:00
pascallanger
c059915bd3 Update README.md 2016-02-01 15:22:58 +01:00
pascallanger
d2d70dcb38 Update README.md 2016-02-01 15:21:14 +01:00
pascallanger
846292442c CX10 sub protocol details 2016-02-01 15:19:12 +01:00
pascallanger
11283a2199 MT99xx protocol for MT99xx, Eachine H7, Yi Zhan i6S 2016-02-01 13:23:41 +01:00
pascallanger
4c8a0b9a63 MT99XX protocol 2016-02-01 12:18:09 +01:00
pascallanger
54accbf21f CG023 small change 2016-02-01 11:49:10 +01:00
pascallanger
08dc0db2e2 Preparation for new protocol MT99XX (includes H7) 2016-02-01 11:41:36 +01:00
pascallanger
38c6330a2a CX-10A bind improvement 2016-02-01 11:39:36 +01:00
pascallanger
2f983f42fe Update README.md 2016-01-31 22:03:43 +01:00
pascallanger
b9e45c4bb0 Fix: Hubsan telemetry packet check function 2016-01-28 19:31:03 +01:00
pascallanger
9d3b1d75d1 Revert "Fix: Hubsan telemetry packet check function & Change: Telemetry variables to static"
This reverts commit ac78ddcc82.
2016-01-28 19:27:56 +01:00
pascallanger
ac78ddcc82 Fix: Hubsan telemetry packet check function & Change: Telemetry variables to static 2016-01-28 18:43:59 +01:00
pascallanger
f912d84ab6 Telemetry display for Hubsan TX RSSI 2016-01-28 17:27:58 +01:00
pascallanger
85548d6e8e Add: Telemetry display for Hubsan TX RSSI 2016-01-28 17:25:15 +01:00
pascallanger
c74de12ceb Fix: small bug in telemetry for Hubsan 2016-01-28 11:42:56 +01:00
pascallanger
017a21c17f Added: Display error messages if wrong board type is selected at compilation time 2016-01-28 11:26:49 +01:00
pascallanger
9a63038a5f Arduino 1.6.7 support 2016-01-28 10:53:14 +01:00
pascallanger
304fc2536b Fix: Arduino 1.6.7 compilation issues 2016-01-28 10:51:11 +01:00
pascallanger
365169a9fb Update README.md 2016-01-28 09:52:44 +01:00
pascallanger
4b82ead18b Improved Toolchain section 2016-01-28 09:48:19 +01:00
pascallanger
141d7cc268 Update README.md 2016-01-28 09:45:00 +01:00
pascallanger
ee8e94cfb0 Telemetry additions 2016-01-27 18:09:20 +01:00
pascallanger
b50bedef39 Hub telemetry and fix compilation warnings/errors if protocols are commented 2016-01-27 17:57:33 +01:00
pascallanger
a689ce4de9 Fix: Update_aux_flags missplaced for PPM input 2016-01-26 22:33:17 +01:00
pascallanger
ae0478a7e9 Frsky telemetry update 2016-01-26 13:46:38 +01:00
pascallanger
ee6eed5ac5 Update README.md 2016-01-25 18:16:20 +01:00
pascallanger
9140c426c4 New protocol CX-10/Q242 2016-01-25 18:14:56 +01:00
pascallanger
a41bfabede HK310: 2 packets per 5ms + Core: reset CC2500 at boot 2016-01-25 17:23:03 +01:00
pascallanger
5d26357025 Couple of edits... 2016-01-25 17:23:01 +01:00
pascallanger
644c10e994 Update README.md 2016-01-25 17:07:37 +01:00
pascallanger
b3ca0beead Fix typo in ESky 2016-01-23 12:59:28 +01:00
pascallanger
93300c6821 Fix: removed reset of nrf24l01 if not previously used... 2016-01-23 09:03:15 +01:00
pascallanger
2bd8d7ee32 Update README.md 2016-01-22 16:34:34 +01:00
pascallanger
95c339ef74 Update README.md 2016-01-22 16:33:46 +01:00
pascallanger
76ad1d5ef7 Default PPM protocols and settings 2016-01-22 16:30:59 +01:00
pascallanger
151e82a2c3 _Config.h file and all protocol settings for PPM mode 2016-01-22 16:23:59 +01:00
pascallanger
3fcaf93788 Update README.md 2016-01-21 17:26:31 +01:00
pascallanger
b8927d66e9 PPM fix 2016-01-20 21:30:37 +01:00
pascallanger
9273f364fc Update README.md 2016-01-20 14:34:29 +01:00
pascallanger
bc42dbf88a Core and all protocols have been updated
Lot of changes in this new master
ChangeLog:
- Core: LED flashing when an invalid protocol has been selected
- Core: Channels 5 to 12 available as switches for all protocols: code
and size optimization
- Documentation (readme.md): fully updated, all protocols/sub
protocols/channels described, models example, many improvements
- All protocols have been updated in some way, here are some highlights:
* Bayang: added picture, video and inverted channels
* CG023->H8_3D: added light and calibration channels
* CX10: added sub protocols Q282, JC3015_1, JC3015_2, MK33041
* ESky: added new protocol - untested
* Hubsan: added compatibility with the new Hubsan Plus protocol
* KN: fully rewritten protocol: added sub protocols WLTOYS and FEILUN,
11 channels support

New version successfully tested on all my models: Flysky RX/F939/V911
protocol Flysky, Frsky RX protocol Frsky, Hubsan X4 protocol Hubsan,
Hisky HCP100/HCP80 protocol Hisky, HK-3000/HK3100 RX protocol
Hisky/HK310, XINXUN X39 protocol YD717/XINXUN, Symax X5C-1 protocol
SymaX/SYMAX, Cheerson CX-10A protocol CX10/BLUE, Eachine 3D-X4 protocol
CG023.

To access new protocols from er9x/ersky9x, you need to build a version
from this github repository https://github.com/pascallanger/mbtx based
on the latest er9x r820 and ersky9x r218.
2016-01-20 10:51:17 +01:00
pascallanger
481d4c15d6 Hubsan Plus protocol compatibility 2016-01-19 19:11:56 +01:00
pascallanger
563030e732 Added one more LED status: flash in case of invalid protocol selected 2016-01-19 18:44:08 +01:00
pascallanger
4f9137d009 KN channels and sub protocols 2016-01-19 00:19:32 +01:00
pascallanger
ed1b4d1885 YD717: corrected sub protocol name 2016-01-18 21:01:02 +01:00
pascallanger
6bbcd9020e V2x2 clarification 2016-01-18 18:56:15 +01:00
pascallanger
0ba916a7d6 Syma X5C protocol clarification 2016-01-18 18:21:04 +01:00
pascallanger
cf498462eb Hubsan Plus protocol addition 2016-01-18 17:02:39 +01:00
pascallanger
e8b8b861a4 CX10 new sub protocols 2016-01-18 15:28:11 +01:00
pascallanger
4afb045234 Update README.md 2016-01-18 13:54:09 +01:00
pascallanger
ef5c876085 Update README.md 2016-01-16 22:48:45 +01:00
pascallanger
7fbcfeec9c Update README.md 2016-01-16 12:05:24 +01:00
pascallanger
2981a8ef83 Update README.md 2016-01-15 11:29:22 +01:00
pascallanger
b1e8bfe2ab Update README.md 2016-01-15 11:14:36 +01:00
pascallanger
623d568eb9 Update README.md 2016-01-15 10:40:57 +01:00
pascallanger
3625834be3 Update README.md 2016-01-12 15:52:51 +01:00
pascallanger
925a4f4a57 H8 3D channels clarifications 2016-01-11 11:17:03 +01:00
42 changed files with 9978 additions and 1748 deletions

View File

@@ -140,19 +140,18 @@ void A7105_WriteID(uint32_t ida) {
CS_on;
}
void A7105_SetPower_Value(int power)
/*
static void A7105_SetPower_Value(int power)
{
/*
Power amp is ~+16dBm so:
TXPOWER_100uW = -23dBm == PAC=0 TBG=0
TXPOWER_300uW = -20dBm == PAC=0 TBG=1
TXPOWER_1mW = -16dBm == PAC=0 TBG=2
TXPOWER_3mW = -11dBm == PAC=0 TBG=4
TXPOWER_10mW = -6dBm == PAC=1 TBG=5
TXPOWER_30mW = 0dBm == PAC=2 TBG=7
TXPOWER_100mW = 1dBm == PAC=3 TBG=7
TXPOWER_150mW = 1dBm == PAC=3 TBG=7
*/
//Power amp is ~+16dBm so:
//TXPOWER_100uW = -23dBm == PAC=0 TBG=0
//TXPOWER_300uW = -20dBm == PAC=0 TBG=1
//TXPOWER_1mW = -16dBm == PAC=0 TBG=2
//TXPOWER_3mW = -11dBm == PAC=0 TBG=4
//TXPOWER_10mW = -6dBm == PAC=1 TBG=5
//TXPOWER_30mW = 0dBm == PAC=2 TBG=7
//TXPOWER_100mW = 1dBm == PAC=3 TBG=7
//TXPOWER_150mW = 1dBm == PAC=3 TBG=7
uint8_t pac, tbg;
switch(power) {
case 0: pac = 0; tbg = 0; break;
@@ -167,6 +166,7 @@ void A7105_SetPower_Value(int power)
};
A7105_WriteReg(0x28, (pac << 3) | tbg);
}
*/
void A7105_SetPower()
{
@@ -196,6 +196,8 @@ const uint8_t PROGMEM FLYSKY_A7105_regs[] = {
0x13, 0xc3, 0x00, 0xff, 0x00, 0x00, 0x3b, 0x00, 0x17, 0x47, 0x80, 0x03, 0x01, 0x45, 0x18, 0x00,
0x01, 0x0f, 0xff
};
#define ID_NORMAL 0x55201041
#define ID_PLUS 0xAA201041
void A7105_Init(uint8_t protocol)
{
void *A7105_Regs;
@@ -207,7 +209,7 @@ void A7105_Init(uint8_t protocol)
}
else
{
A7105_WriteID(0x55201041);
A7105_WriteID(ID_NORMAL);
A7105_Regs=(void *)HUBSAN_A7105_regs;
}
for (uint8_t i = 0; i < 0x33; i++){

View File

@@ -4,7 +4,7 @@
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
@@ -12,7 +12,8 @@
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// compatible with EAchine H8 mini, H10, BayangToys X6/X7/X9, JJRC JJ850 ...
// Compatible with EAchine H8 mini, H10, BayangToys X6/X7/X9, JJRC JJ850 ...
// Last sync with hexfet new_protocols/bayang_nrf24l01.c dated 2015-12-22
#if defined(BAYANG_NRF24L01_INO)
@@ -30,15 +31,14 @@ enum BAYANG_FLAGS {
// flags going to packet[2]
BAYANG_FLAG_RTH = 0x01,
BAYANG_FLAG_HEADLESS = 0x02,
BAYANG_FLAG_FLIP = 0x08
BAYANG_FLAG_FLIP = 0x08,
BAYANG_FLAG_VIDEO = 0x10,
BAYANG_FLAG_PICTURE = 0x20,
// flags going to packet[3]
BAYANG_FLAG_INVERTED = 0x80 // inverted flight on Floureon H101
};
enum BAYANG_PHASES {
BAYANG_BIND = 0,
BAYANG_DATA
};
void BAYANG_send_packet(uint8_t bind)
static void __attribute__((unused)) BAYANG_send_packet(uint8_t bind)
{
uint8_t i;
if (bind)
@@ -48,8 +48,8 @@ void BAYANG_send_packet(uint8_t bind)
packet[i+1]=rx_tx_addr[i];
for(i=0;i<4;i++)
packet[i+6]=hopping_frequency[i];
packet[10] = rx_tx_addr[0];
packet[11] = rx_tx_addr[1];
packet[10] = rx_tx_addr[0]; // txid[0]
packet[11] = rx_tx_addr[1]; // txid[1]
}
else
{
@@ -57,16 +57,22 @@ void BAYANG_send_packet(uint8_t bind)
packet[0] = 0xA5;
packet[1] = 0xFA; // normal mode is 0xf7, expert 0xfa
//Flags
packet[2] =0x00;
if(Servo_data[AUX1] > PPM_SWITCH)
packet[2] |= BAYANG_FLAG_FLIP;
if(Servo_data[AUX2] > PPM_SWITCH)
packet[2] |= BAYANG_FLAG_HEADLESS;
if(Servo_data[AUX3] > PPM_SWITCH)
//Flags packet[2]
packet[2] = 0x00;
if(Servo_AUX1)
packet[2] = BAYANG_FLAG_FLIP;
if(Servo_AUX2)
packet[2] |= BAYANG_FLAG_RTH;
if(Servo_AUX3)
packet[2] |= BAYANG_FLAG_PICTURE;
if(Servo_AUX4)
packet[2] |= BAYANG_FLAG_VIDEO;
if(Servo_AUX5)
packet[2] |= BAYANG_FLAG_HEADLESS;
//Flags packet[3]
packet[3] = 0x00;
if(Servo_AUX6)
packet[3] = BAYANG_FLAG_INVERTED;
//Aileron
val = convert_channel_10b(AILERON);
@@ -85,7 +91,7 @@ void BAYANG_send_packet(uint8_t bind)
packet[10] = (val>>8) + (val>>2 & 0xFC);
packet[11] = val & 0xFF;
}
packet[12] = rx_tx_addr[2];
packet[12] = rx_tx_addr[2]; // txid[2]
packet[13] = 0x0A;
packet[14] = 0;
for (uint8_t i=0; i < BAYANG_PACKET_SIZE-1; i++)
@@ -95,10 +101,7 @@ void BAYANG_send_packet(uint8_t bind)
// Why CRC0? xn297 does not interpret it - either 16-bit CRC or nothing
XN297_Configure(BV(NRF24L01_00_EN_CRC) | BV(NRF24L01_00_CRCO) | BV(NRF24L01_00_PWR_UP));
if (bind)
NRF24L01_WriteReg(NRF24L01_05_RF_CH, BAYANG_RF_BIND_CHANNEL);
else
NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency[hopping_frequency_no++]);
NRF24L01_WriteReg(NRF24L01_05_RF_CH, bind ? BAYANG_RF_BIND_CHANNEL:hopping_frequency[hopping_frequency_no++]);
hopping_frequency_no%=BAYANG_RF_NUM_CHANNELS;
// clear packet status bits and TX FIFO
@@ -109,7 +112,7 @@ void BAYANG_send_packet(uint8_t bind)
NRF24L01_SetPower(); // Set tx_power
}
void BAYANG_init()
static void __attribute__((unused)) BAYANG_init()
{
NRF24L01_Initialize();
NRF24L01_SetTxRxMode(TX_EN);
@@ -118,49 +121,40 @@ void BAYANG_init()
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowldgement on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x03);
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0x00); // no retransmits
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps
NRF24L01_SetPower();
NRF24L01_Activate(0x73); // Activate feature register
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 0x00); // Disable dynamic payload length on all pipes
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, 0x01);
NRF24L01_Activate(0x73);
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps
NRF24L01_SetPower();
}
uint16_t BAYANG_callback()
{
switch (phase)
if(IS_BIND_DONE_on)
BAYANG_send_packet(0);
else
{
case BAYANG_BIND:
if (bind_counter == 0)
{
XN297_SetTXAddr(rx_tx_addr, BAYANG_ADDRESS_LENGTH);
phase = BAYANG_DATA;
BIND_DONE;
}
else
{
BAYANG_send_packet(1);
bind_counter--;
}
break;
case BAYANG_DATA:
BAYANG_send_packet(0);
break;
if (bind_counter == 0)
{
XN297_SetTXAddr(rx_tx_addr, BAYANG_ADDRESS_LENGTH);
BIND_DONE;
}
else
{
BAYANG_send_packet(1);
bind_counter--;
}
}
return BAYANG_PACKET_PERIOD;
}
void BAYANG_initialize_txid()
static void __attribute__((unused)) BAYANG_initialize_txid()
{
// Strange txid, rx_tx_addr and rf_channels could be anything so I will use on rx_tx_addr for all of them...
// Strange also that there is no check of duplicated rf channels... I think we need to implement that later...
for(uint8_t i=0; i<BAYANG_RF_NUM_CHANNELS; i++)
hopping_frequency[i]=rx_tx_addr[i]%42;
//Could be using txid[0..2] but using rx_tx_addr everywhere instead...
hopping_frequency[0]=0;
hopping_frequency[1]=(rx_tx_addr[0]&0x1F)+0x10;
hopping_frequency[2]=hopping_frequency[1]+0x20;
hopping_frequency[3]=hopping_frequency[2]+0x20;
hopping_frequency_no=0;
}
@@ -169,9 +163,8 @@ uint16_t initBAYANG(void)
BIND_IN_PROGRESS; // autobind protocol
bind_counter = BAYANG_BIND_COUNT;
BAYANG_initialize_txid();
phase=BAYANG_BIND;
BAYANG_init();
return BAYANG_INITIAL_WAIT+BAYANG_PACKET_PERIOD;
}
#endif
#endif

View File

@@ -36,7 +36,7 @@ static void ReadRegisterMulti(uint8_t address, uint8_t data[], uint8_t length)
//*********************************************
void CC2500_WriteRegisterMulti(uint8_t address, const uint8_t data[], uint8_t length)
static void CC2500_WriteRegisterMulti(uint8_t address, const uint8_t data[], uint8_t length)
{
CC25_CSN_off;
cc2500_spi_write(CC2500_WRITE_BURST | address);
@@ -53,7 +53,7 @@ void cc2500_writeFifo(uint8_t *dpbuffer, uint8_t len)
}
//--------------------------------------
void cc2500_spi_write(uint8_t command) {
static void cc2500_spi_write(uint8_t command) {
uint8_t n=8;
SCK_off;//SCK start low
@@ -81,7 +81,7 @@ void cc2500_writeReg(uint8_t address, uint8_t data) {//same as 7105
CC25_CSN_on;
}
uint8_t cc2500_spi_read(void)
static uint8_t cc2500_spi_read(void)
{
uint8_t result;
uint8_t i;
@@ -101,7 +101,7 @@ uint8_t cc2500_spi_read(void)
}
//--------------------------------------------
uint8_t cc2500_readReg(uint8_t address)
static uint8_t cc2500_readReg(uint8_t address)
{
uint8_t result;
CC25_CSN_off;
@@ -119,7 +119,7 @@ void cc2500_strobe(uint8_t address)
CC25_CSN_on;
}
//------------------------
void cc2500_resetChip(void)
/*static void cc2500_resetChip(void)
{
// Toggle chip select signal
CC25_CSN_on;
@@ -131,7 +131,7 @@ void cc2500_resetChip(void)
cc2500_strobe(CC2500_SRES);
_delay_ms(100);
}
*/
uint8_t CC2500_Reset()
{
cc2500_strobe(CC2500_SRES);
@@ -139,8 +139,8 @@ uint8_t CC2500_Reset()
CC2500_SetTxRxMode(TXRX_OFF);
return cc2500_readReg(CC2500_0E_FREQ1) == 0xC4;//check if reset
}
void CC2500_SetPower_Value(uint8_t power)
/*
static void CC2500_SetPower_Value(uint8_t power)
{
const unsigned char patable[8]= {
0xC5, // -12dbm
@@ -156,7 +156,7 @@ void CC2500_SetPower_Value(uint8_t power)
power = 7;
cc2500_writeReg(CC2500_3E_PATABLE, patable[power]);
}
*/
void CC2500_SetPower()
{
uint8_t power=CC2500_BIND_POWER;
@@ -185,4 +185,4 @@ void CC2500_SetTxRxMode(uint8_t mode)
cc2500_writeReg(CC2500_02_IOCFG0, 0x2F);
cc2500_writeReg(CC2500_00_IOCFG2, 0x2F);
}
}
}

View File

@@ -12,8 +12,10 @@
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// compatible with EAchine 3D X4, CG023/CG031, Attop YD-822/YD-829/YD-829C and H8_3D/JJRC H20/H22
// Merged CG023 and H8_3D protocols
// compatible with EAchine 3D X4, CG023/CG031, Attop YD-822/YD-829/YD-829C and H8_3D/JJRC H20
// Last sync with hexfet new_protocols/cg023_nrf24l01.c dated 2015-10-03
// Last sync with hexfet new_protocols/h8_3d_nrf24l01.c dated 2015-11-18
#if defined(CG023_NRF24L01_INO)
@@ -58,8 +60,9 @@ enum H8_3D_FLAGS {
H8_3D_FLAG_FLIP = 0x01,
H8_3D_FLAG_RATE_MID = 0x02,
H8_3D_FLAG_RATE_HIGH = 0x04,
H8_3D_FLAG_HEADLESS = 0x10, // RTH + headless on H8, headless on JJRC H20
H8_3D_FLAG_RTH = 0x40, // 360 flip mode on H8 3D, RTH on JJRC H20
H8_3D_FLAG_LIGTH = 0x08, // Light on H22
H8_3D_FLAG_HEADLESS = 0x10, // RTH + headless on H8, headless on JJRC H20, RTH on H22
H8_3D_FLAG_RTH = 0x20, // 360 flip mode on H8 3D and H22, RTH on JJRC H20
};
enum H8_3D_FLAGS_2 {
@@ -67,12 +70,7 @@ enum H8_3D_FLAGS_2 {
H8_3D_FLAG_CALIBRATE = 0x20, // accelerometer calibration
};
enum CG023_PHASES {
CG023_BIND = 0,
CG023_DATA
};
void CG023_send_packet(uint8_t bind)
static void __attribute__((unused)) CG023_send_packet(uint8_t bind)
{
// throttle : 0x00 - 0xFF
throttle=convert_channel_8b(THROTTLE);
@@ -92,7 +90,7 @@ void CG023_send_packet(uint8_t bind)
packet[0] = 0x13;
packet[3] = rx_tx_addr[2];
packet[4] = rx_tx_addr[3];
packet[8] = (rx_tx_addr[0]+rx_tx_addr[1]+rx_tx_addr[2]+rx_tx_addr[3]) & 0xff; // txid checksum
packet[8] = rx_tx_addr[0]+rx_tx_addr[1]+rx_tx_addr[2]+rx_tx_addr[3]; // txid checksum
memset(&packet[9], 0, 10);
if (bind)
{
@@ -106,6 +104,8 @@ void CG023_send_packet(uint8_t bind)
packet[6] = 0x08;
packet[7] = 0x03;
packet[9] = throttle;
if(rudder==0x01) rudder=0; // Small deadband
if(rudder==0x81) rudder=0; // Small deadband
packet[10] = rudder;
packet[11] = elevator;
packet[12] = aileron;
@@ -114,16 +114,12 @@ void CG023_send_packet(uint8_t bind)
packet[14] = 0x20;
packet[15] = 0x20;
packet[16] = 0x20;
packet[17] = H8_3D_FLAG_RATE_HIGH;
if(Servo_data[AUX1] > PPM_SWITCH)
packet[17] |= H8_3D_FLAG_FLIP;
if(Servo_data[AUX2] > PPM_SWITCH)
packet[17] |= H8_3D_FLAG_HEADLESS;
if(Servo_data[AUX3] > PPM_SWITCH)
packet[17] |= H8_3D_FLAG_RTH; // 180/360 flip mode on H8 3D
// both sticks bottom left: calibrate acc
if(packet[9] <= 0x05 && packet[10] >= 0xa7 && packet[11] <= 0x57 && packet[12] >= 0xa7)
packet[17] = H8_3D_FLAG_RATE_HIGH
| GET_FLAG(Servo_AUX1,H8_3D_FLAG_FLIP)
| GET_FLAG(Servo_AUX2,H8_3D_FLAG_LIGTH) //H22 light
| GET_FLAG(Servo_AUX3,H8_3D_FLAG_HEADLESS)
| GET_FLAG(Servo_AUX4,H8_3D_FLAG_RTH); // 180/360 flip mode on H8 3D
if(Servo_AUX5)
packet[18] = H8_3D_FLAG_CALIBRATE;
}
uint8_t sum = packet[9];
@@ -154,32 +150,21 @@ void CG023_send_packet(uint8_t bind)
if(sub_protocol==CG023)
{
// rate
packet[13] = CG023_FLAG_RATE_HIGH;
// flags
if(Servo_data[AUX1] > PPM_SWITCH)
packet[13] |= CG023_FLAG_FLIP;
if(Servo_data[AUX2] > PPM_SWITCH)
packet[13] |= CG023_FLAG_LED_OFF;
if(Servo_data[AUX3] > PPM_SWITCH)
packet[13] |= CG023_FLAG_STILL;
if(Servo_data[AUX4] > PPM_SWITCH)
packet[13] |= CG023_FLAG_VIDEO;
if(Servo_data[AUX5] > PPM_SWITCH)
packet[13] |= CG023_FLAG_EASY;
packet[13] = CG023_FLAG_RATE_HIGH
| GET_FLAG(Servo_AUX1,CG023_FLAG_FLIP)
| GET_FLAG(Servo_AUX2,CG023_FLAG_LED_OFF)
| GET_FLAG(Servo_AUX3,CG023_FLAG_STILL)
| GET_FLAG(Servo_AUX4,CG023_FLAG_VIDEO)
| GET_FLAG(Servo_AUX5,CG023_FLAG_EASY);
}
else
{// YD829
// rate
packet[13] = YD829_FLAG_RATE_HIGH;
// flags
if(Servo_data[AUX1] > PPM_SWITCH)
packet[13] |= YD829_FLAG_FLIP;
if(Servo_data[AUX3] > PPM_SWITCH)
packet[13] |= YD829_FLAG_STILL;
if(Servo_data[AUX4] > PPM_SWITCH)
packet[13] |= YD829_FLAG_VIDEO;
if(Servo_data[AUX5] > PPM_SWITCH)
packet[13] |= YD829_FLAG_HEADLESS;
packet[13] = YD829_FLAG_RATE_HIGH
| GET_FLAG(Servo_AUX1,YD829_FLAG_FLIP)
| GET_FLAG(Servo_AUX3,YD829_FLAG_STILL)
| GET_FLAG(Servo_AUX4,YD829_FLAG_VIDEO)
| GET_FLAG(Servo_AUX5,YD829_FLAG_HEADLESS);
}
packet[14] = 0;
}
@@ -207,7 +192,7 @@ void CG023_send_packet(uint8_t bind)
NRF24L01_SetPower(); // Set tx_power
}
void CG023_init()
static void __attribute__((unused)) CG023_init()
{
NRF24L01_Initialize();
NRF24L01_SetTxRxMode(TX_EN);
@@ -227,33 +212,22 @@ void CG023_init()
uint16_t CG023_callback()
{
switch (phase)
{
case CG023_BIND:
if (bind_counter == 0)
{
phase = CG023_DATA;
BIND_DONE;
}
else
{
CG023_send_packet(1);
bind_counter--;
}
break;
case CG023_DATA:
CG023_send_packet(0);
break;
}
if(sub_protocol==CG023)
return CG023_PACKET_PERIOD;
if(IS_BIND_DONE_on)
CG023_send_packet(0);
else
if(sub_protocol==YD829)
return YD829_PACKET_PERIOD;
return H8_3D_PACKET_PERIOD;
{
if (bind_counter == 0)
BIND_DONE;
else
{
CG023_send_packet(1);
bind_counter--;
}
}
return packet_period;
}
void CG023_initialize_txid()
static void __attribute__((unused)) CG023_initialize_txid()
{
if(sub_protocol==H8_3D)
{
@@ -262,10 +236,10 @@ void CG023_initialize_txid()
rx_tx_addr[2] = rx_tx_addr[2] % 0x20;
rx_tx_addr[3] = rx_tx_addr[3] % 0x11;
hopping_frequency[0] = 0x06 + (((rx_tx_addr[0]>>8) + (rx_tx_addr[0]&0x0f)) % 0x0f);
hopping_frequency[1] = 0x15 + (((rx_tx_addr[1]>>8) + (rx_tx_addr[1]&0x0f)) % 0x0f);
hopping_frequency[2] = 0x24 + (((rx_tx_addr[2]>>8) + (rx_tx_addr[2]&0x0f)) % 0x0f);
hopping_frequency[3] = 0x33 + (((rx_tx_addr[3]>>8) + (rx_tx_addr[3]&0x0f)) % 0x0f);
hopping_frequency[0] = 0x06 + ((rx_tx_addr[0]&0x0f) % 0x0f);
hopping_frequency[1] = 0x15 + ((rx_tx_addr[1]&0x0f) % 0x0f);
hopping_frequency[2] = 0x24 + ((rx_tx_addr[2]&0x0f) % 0x0f);
hopping_frequency[3] = 0x33 + ((rx_tx_addr[3]&0x0f) % 0x0f);
}
else
{ // CG023 and YD829
@@ -282,13 +256,14 @@ uint16_t initCG023(void)
bind_counter = CG023_BIND_COUNT;
CG023_initialize_txid();
CG023_init();
phase=CG023_BIND;
if(sub_protocol==CG023)
return CG023_INITIAL_WAIT+CG023_PACKET_PERIOD;
packet_period=CG023_PACKET_PERIOD;
else
if(sub_protocol==YD829)
return CG023_INITIAL_WAIT+YD829_PACKET_PERIOD;
return CG023_INITIAL_WAIT+H8_3D_PACKET_PERIOD;
packet_period=YD829_PACKET_PERIOD;
else
packet_period=H8_3D_PACKET_PERIOD;
return CG023_INITIAL_WAIT+YD829_PACKET_PERIOD;
}
#endif

View File

@@ -12,19 +12,22 @@
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// compatible with Cheerson CX-10 blue & newer red pcb, CX-10A, CX11, CX-10 green pcb, DM007, Floureon FX-10, CX-Stars
// compatible with Cheerson CX-10 blue & newer red pcb, CX-10A, CX11, CX-10 green pcb, DM007, Floureon FX-10, JXD 509 (Q282)
// Last sync with hexfet new_protocols/cx10_nrf24l01.c dated 2015-11-26
#if defined(CX10_NRF24L01_INO)
#include "iface_nrf24l01.h"
#define CX10_BIND_COUNT 4360 // 6 seconds
#define CX10_PACKET_SIZE 15
#define CX10A_PACKET_SIZE 19 // CX10 blue board packets have 19-byte payload
#define CX10_PACKET_PERIOD 1316 // Timeout for callback in uSec
#define CX10A_PACKET_PERIOD 6000
#define CX10_BIND_COUNT 4360 // 6 seconds
#define CX10_PACKET_SIZE 15
#define CX10A_PACKET_SIZE 19 // CX10 blue board packets have 19-byte payload
#define Q282_PACKET_SIZE 21
#define CX10_PACKET_PERIOD 1316 // Timeout for callback in uSec
#define CX10A_PACKET_PERIOD 6000
#define CX10A_BIND_COUNT 400 // 2 seconds
#define INITIAL_WAIT 500
#define CX10_INITIAL_WAIT 500
// flags
#define CX10_FLAG_FLIP 0x10 // goes to rudder channel
@@ -35,17 +38,16 @@
#define CX10_FLAG_SNAPSHOT 0x04
// frequency channel management
#define RF_BIND_CHANNEL 0x02
#define NUM_RF_CHANNELS 4
#define CX10_RF_BIND_CHANNEL 0x02
#define CX10_NUM_RF_CHANNELS 4
enum {
CX10_INIT1 = 0,
CX10_BIND1,
CX10_BIND1 = 0,
CX10_BIND2,
CX10_DATA
};
void CX10_Write_Packet(uint8_t bind)
static void __attribute__((unused)) CX10_Write_Packet(uint8_t bind)
{
uint8_t offset = 0;
if(sub_protocol == CX10_BLUE)
@@ -66,42 +68,94 @@ void CX10_Write_Packet(uint8_t bind)
packet[12+offset]= highByte(Servo_data[RUDDER]);
// Channel 5 - flip flag
if(Servo_data[AUX1] > PPM_SWITCH)
if(Servo_AUX1)
packet[12+offset] |= CX10_FLAG_FLIP; // flip flag
// Channel 6 - mode
if(Servo_data[AUX2] > PPM_MAX_COMMAND) // mode 3 / headless on CX-10A
packet[13+offset] = 0x02;
//flags=0; // packet 13
uint8_t flags2=0; // packet 14
// Channel 6 - rate mode is 2 lsb of packet 13
if(Servo_data[AUX2] > PPM_MAX_COMMAND) // rate 3 / headless on CX-10A
flags = 0x02;
else
if(Servo_data[AUX2] < PPM_MIN_COMMAND)
packet[13+offset] = 0x00; // mode 1
flags = 0x00; // rate 1
else
packet[13+offset] = 0x01; // mode 2
flags = 0x01; // rate 2
flags=0;
if(sub_protocol == DM007)
uint8_t video_state=packet[14] & 0x21;
switch(sub_protocol)
{
// Channel 7 - snapshot
if(Servo_data[AUX3] > PPM_SWITCH)
flags |= CX10_FLAG_SNAPSHOT;
// Channel 8 - video
if(Servo_data[AUX4] > PPM_SWITCH)
flags |= CX10_FLAG_VIDEO;
// Channel 9 - headless
if(Servo_data[AUX5] > PPM_SWITCH)
packet[13+offset] |= CX10_FLAG_HEADLESS;
case CX10_BLUE:
flags |= GET_FLAG(!Servo_AUX3, 0x10) // Channel 7 - picture
|GET_FLAG( Servo_AUX4, 0x08); // Channel 8 - video
break;
case Q282:
case Q242:
memcpy(&packet[15], "\x10\x10\xaa\xaa\x00\x00", 6);
//FLIP|LED|PICTURE|VIDEO|HEADLESS|RTH|XCAL|YCAL
flags2 = GET_FLAG(Servo_AUX1, 0x80) // Channel 5 - FLIP
|GET_FLAG(Servo_AUX2, 0x40) // Channel 6 - LED
|GET_FLAG(Servo_AUX5, 0x08) // Channel 9 - HEADLESS
|GET_FLAG(Servo_AUX7, 0x04) // Channel 11 - XCAL
|GET_FLAG(Servo_AUX8, 0x02); // Channel 12 - YCAL or Start/Stop motors on JXD 509
if(sub_protocol==Q282)
{
flags=3;
if(Servo_AUX4) // Channel 8 - video
{
if (!(video_state & 0x20)) video_state ^= 0x21;
}
else
if (video_state & 0x20) video_state &= 0x01;
flags2 |= video_state
|GET_FLAG(Servo_AUX3,0x10); // Channel 7 - picture
}
else
{
flags=2;
flags2|= GET_FLAG(Servo_AUX3,0x01) // Channel 7 - picture
|GET_FLAG(Servo_AUX4,0x10); // Channel 8 - video
packet[17]=0x00;
packet[18]=0x00;
}
if(Servo_AUX6) flags |=0x80; // Channel 10 - RTH
break;
case DM007:
//FLIP|MODE|PICTURE|VIDEO|HEADLESS
flags2= GET_FLAG(Servo_AUX3,CX10_FLAG_SNAPSHOT) // Channel 7 - picture
|GET_FLAG(Servo_AUX4,CX10_FLAG_VIDEO); // Channel 8 - video
if(Servo_AUX5) flags |= CX10_FLAG_HEADLESS; // Channel 9 - headless
break;
case JC3015_2:
//FLIP|MODE|LED|DFLIP
if(Servo_AUX4) packet[12] &= ~CX10_FLAG_FLIP;
case JC3015_1:
//FLIP|MODE|PICTURE|VIDEO
flags2= GET_FLAG(Servo_AUX3,_BV(3)) // Channel 7
|GET_FLAG(Servo_AUX4,_BV(4)); // Channel 8
break;
case MK33041:
//FLIP|MODE|PICTURE|VIDEO|HEADLESS|RTH
flags|=GET_FLAG(Servo_AUX3,_BV(7)) // Channel 7 - picture
|GET_FLAG(Servo_AUX6,_BV(2)); // Channel 10 - rth
flags2=GET_FLAG(Servo_AUX4,_BV(0)) // Channel 8 - video
|GET_FLAG(Servo_AUX5,_BV(5)); // Channel 9 - headless
break;
}
packet[14+offset] = flags;
packet[13+offset]=flags;
packet[14+offset]=flags2;
// Power on, TX mode, 2byte CRC
// Why CRC0? xn297 does not interpret it - either 16-bit CRC or nothing
XN297_Configure(BV(NRF24L01_00_EN_CRC) | BV(NRF24L01_00_CRCO) | BV(NRF24L01_00_PWR_UP));
if (bind)
NRF24L01_WriteReg(NRF24L01_05_RF_CH, RF_BIND_CHANNEL);
NRF24L01_WriteReg(NRF24L01_05_RF_CH, CX10_RF_BIND_CHANNEL);
else
{
NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency[hopping_frequency_no++]);
hopping_frequency_no %= NUM_RF_CHANNELS;
hopping_frequency_no %= CX10_NUM_RF_CHANNELS;
}
// clear packet status bits and TX FIFO
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
@@ -111,7 +165,7 @@ void CX10_Write_Packet(uint8_t bind)
NRF24L01_SetPower();
}
void CX10_init()
static void __attribute__((unused)) CX10_init()
{
NRF24L01_Initialize();
NRF24L01_SetTxRxMode(TX_EN);
@@ -123,16 +177,13 @@ void CX10_init()
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowledgment on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, packet_length); // rx pipe 0 (used only for blue board)
NRF24L01_WriteReg(NRF24L01_05_RF_CH, RF_BIND_CHANNEL);
NRF24L01_WriteReg(NRF24L01_05_RF_CH, CX10_RF_BIND_CHANNEL);
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps
NRF24L01_SetPower();
}
uint16_t CX10_callback() {
switch (phase) {
case CX10_INIT1:
phase = bind_phase;
break;
case CX10_BIND1:
if (bind_counter == 0)
{
@@ -146,20 +197,29 @@ uint16_t CX10_callback() {
}
break;
case CX10_BIND2:
bind_counter--;
if(bind_counter==0)
{ // Needed for some CX-10A to properly finish the bind
CX10_init();
bind_counter=CX10A_BIND_COUNT;
}
if( NRF24L01_ReadReg(NRF24L01_07_STATUS) & BV(NRF24L01_07_RX_DR))
{ // RX fifo data ready
XN297_ReadPayload(packet, packet_length);
NRF24L01_SetTxRxMode(TXRX_OFF);
NRF24L01_SetTxRxMode(TX_EN);
if(packet[9] == 1)
{
phase = CX10_BIND1;
bind_counter=0;
}
}
else
{
NRF24L01_SetTxRxMode(TXRX_OFF);
NRF24L01_SetTxRxMode(TX_EN);
CX10_Write_Packet(1);
delay(1); // used to be 300µs in deviation but not working so 1ms now
delayMicroseconds(400); // 300µs in deviation but not working so using 400µs instead
// switch to RX mode
NRF24L01_SetTxRxMode(TXRX_OFF);
NRF24L01_FlushRx();
@@ -174,41 +234,61 @@ uint16_t CX10_callback() {
return packet_period;
}
void initialize_txid()
static void __attribute__((unused)) CX10_initialize_txid()
{
rx_tx_addr[1]%= 0x30;
hopping_frequency[0] = 0x03 + (rx_tx_addr[0] & 0x0F);
hopping_frequency[1] = 0x16 + (rx_tx_addr[0] >> 4);
hopping_frequency[2] = 0x2D + (rx_tx_addr[1] & 0x0F);
hopping_frequency[3] = 0x40 + (rx_tx_addr[1] >> 4);
if(sub_protocol==Q282)
{
hopping_frequency[0] = 0x46;
hopping_frequency[1] = 0x48;
hopping_frequency[2] = 0x4a;
hopping_frequency[3] = 0x4c;
}
else
if(sub_protocol==Q242)
{
hopping_frequency[0] = 0x48;
hopping_frequency[1] = 0x4a;
hopping_frequency[2] = 0x4c;
hopping_frequency[3] = 0x4e;
}
else
{
hopping_frequency[0] = 0x03 + (rx_tx_addr[0] & 0x0F);
hopping_frequency[1] = 0x16 + (rx_tx_addr[0] >> 4);
hopping_frequency[2] = 0x2D + (rx_tx_addr[1] & 0x0F);
hopping_frequency[3] = 0x40 + (rx_tx_addr[1] >> 4);
}
}
uint16_t initCX10(void)
{
switch(sub_protocol)
if(sub_protocol==CX10_BLUE)
{
case CX10_GREEN:
case DM007:
packet_length = CX10_PACKET_SIZE;
packet_period = CX10_PACKET_PERIOD;
bind_phase = CX10_BIND1;
bind_counter = CX10_BIND_COUNT;
break;
case CX10_BLUE:
packet_length = CX10A_PACKET_SIZE;
packet_period = CX10A_PACKET_PERIOD;
bind_phase = CX10_BIND2;
bind_counter=0;
for(uint8_t i=0; i<4; i++)
packet[5+i] = 0xff; // clear aircraft id
packet[9] = 0;
break;
packet_length = CX10A_PACKET_SIZE;
packet_period = CX10A_PACKET_PERIOD;
phase = CX10_BIND2;
bind_counter=CX10A_BIND_COUNT;
for(uint8_t i=0; i<4; i++)
packet[5+i] = 0xff; // clear aircraft id
packet[9] = 0;
}
initialize_txid();
else
{
if(sub_protocol==Q282||sub_protocol==Q242)
packet_length = Q282_PACKET_SIZE;
else
packet_length = CX10_PACKET_SIZE;
packet_period = CX10_PACKET_PERIOD;
phase = CX10_BIND1;
bind_counter = CX10_BIND_COUNT;
}
CX10_initialize_txid();
CX10_init();
phase = CX10_INIT1;
BIND_IN_PROGRESS; // autobind protocol
return INITIAL_WAIT;
return CX10_INITIAL_WAIT+packet_period;
}
#endif

View File

@@ -14,7 +14,7 @@
*/
#include "iface_cyrf6936.h"
void cyrf_spi_write(uint8_t command)
static void cyrf_spi_write(uint8_t command)
{
uint8_t n=8;
SCK_off;//SCK start low
@@ -32,7 +32,7 @@ void cyrf_spi_write(uint8_t command)
SDI_on;
}
uint8_t cyrf_spi_read()
static uint8_t cyrf_spi_read()
{
uint8_t result;
uint8_t i;
@@ -59,7 +59,7 @@ void CYRF_WriteRegister(uint8_t address, uint8_t data)
CYRF_CSN_on;
}
void CYRF_WriteRegisterMulti(uint8_t address, const uint8_t data[], uint8_t length)
static void CYRF_WriteRegisterMulti(uint8_t address, const uint8_t data[], uint8_t length)
{
uint8_t i;
@@ -70,7 +70,7 @@ void CYRF_WriteRegisterMulti(uint8_t address, const uint8_t data[], uint8_t leng
CYRF_CSN_on;
}
void CYRF_ReadRegisterMulti(uint8_t address, uint8_t data[], uint8_t length)
static void CYRF_ReadRegisterMulti(uint8_t address, uint8_t data[], uint8_t length)
{
uint8_t i;
@@ -149,11 +149,13 @@ void CYRF_ConfigRFChannel(uint8_t ch)
CYRF_WriteRegister(CYRF_00_CHANNEL,ch);
}
void CYRF_SetPower_Value(uint8_t power)
/*
static void CYRF_SetPower_Value(uint8_t power)
{
uint8_t val = CYRF_ReadRegister(CYRF_03_TX_CFG) & 0xF8;
CYRF_WriteRegister(CYRF_03_TX_CFG, val | (power & 0x07));
}
*/
void CYRF_SetPower(uint8_t val)
{
@@ -203,22 +205,22 @@ void CYRF_WritePreamble(uint32_t preamble)
/*
*
*/
void CYRF_StartReceive()
static void CYRF_StartReceive()
{
CYRF_WriteRegister(CYRF_05_RX_CTRL,0x87);
}
void CYRF_ReadDataPacket(uint8_t dpbuffer[])
/*static void CYRF_ReadDataPacket(uint8_t dpbuffer[])
{
CYRF_ReadRegisterMulti(CYRF_21_RX_BUFFER, dpbuffer, 0x10);
}
void CYRF_ReadDataPacketLen(uint8_t dpbuffer[], uint8_t length)
*/
/*static void CYRF_ReadDataPacketLen(uint8_t dpbuffer[], uint8_t length)
{
ReadRegisterMulti(CYRF_21_RX_BUFFER, dpbuffer, length);
}
void CYRF_WriteDataPacketLen(const uint8_t dpbuffer[], uint8_t len)
*/
static void CYRF_WriteDataPacketLen(const uint8_t dpbuffer[], uint8_t len)
{
CYRF_WriteRegister(CYRF_01_TX_LENGTH, len);
CYRF_WriteRegister(CYRF_02_TX_CTRL, 0x40);
@@ -231,7 +233,7 @@ void CYRF_WriteDataPacket(const uint8_t dpbuffer[])
CYRF_WriteDataPacketLen(dpbuffer, 16);
}
uint8_t CYRF_ReadRSSI(uint8_t dodummyread)
/*static uint8_t CYRF_ReadRSSI(uint8_t dodummyread)
{
uint8_t result;
if(dodummyread)
@@ -241,7 +243,7 @@ uint8_t CYRF_ReadRSSI(uint8_t dodummyread)
result = CYRF_ReadRegister(CYRF_13_RSSI);
return (result & 0x0F);
}
*/
//NOTE: This routine will reset the CRC Seed
void CYRF_FindBestChannels(uint8_t *channels, uint8_t len, uint8_t minspace, uint8_t min, uint8_t max)
{

View File

@@ -17,7 +17,6 @@
#include "iface_cyrf6936.h"
#define DSM2_NUM_CHANNELS 7
#define RANDOM_CHANNELS 0 // disabled
//#define RANDOM_CHANNELS 1 // enabled
#define BIND_CHANNEL 0x0d //13 This can be any odd channel
@@ -42,8 +41,7 @@ enum {
DSM2_CH2_READ_B = BIND_COUNT1 + 10,
};
const uint8_t pncodes[5][9][8] = {
const uint8_t PROGMEM pncodes[5][9][8] = {
/* Note these are in order transmitted (LSB 1st) */
{ /* Row 0 */
/* Col 0 */ {0x03, 0xBC, 0x6E, 0x8A, 0xEF, 0xBD, 0xFE, 0xF8},
@@ -102,6 +100,12 @@ const uint8_t pncodes[5][9][8] = {
},
};
static void __attribute__((unused)) read_code(uint8_t *buf, uint8_t row, uint8_t col, uint8_t len)
{
for(uint8_t i=0;i<len;i++)
buf[i]=pgm_read_byte_near( &pncodes[row][col][i] );
}
//
uint8_t chidx;
uint8_t sop_col;
@@ -109,26 +113,15 @@ uint8_t data_col;
uint16_t cyrf_state;
uint8_t crcidx;
uint8_t binding;
uint16_t crc;
uint8_t model;
/*
#ifdef USE_FIXED_MFGID
const uint8_t cyrfmfg_id[6] = {0x5e, 0x28, 0xa3, 0x1b, 0x00, 0x00}; //dx8
const uint8_t cyrfmfg_id[6] = {0xd4, 0x62, 0xd6, 0xad, 0xd3, 0xff}; //dx6i
#else
//uint8_t cyrfmfg_id[6];
#endif
*/
void build_bind_packet()
static void __attribute__((unused)) build_bind_packet()
{
uint8_t i;
uint16_t sum = 384 - 0x10;//
packet[0] = crc >> 8;
packet[1] = crc & 0xff;
packet[2] = 0xff ^ cyrfmfg_id[2];
packet[3] = (0xff ^ cyrfmfg_id[3]) + model;
packet[3] = (0xff ^ cyrfmfg_id[3]) + RX_num;
packet[4] = packet[0];
packet[5] = packet[1];
packet[6] = packet[2];
@@ -138,15 +131,11 @@ void build_bind_packet()
packet[8] = sum >> 8;
packet[9] = sum & 0xff;
packet[10] = 0x01; //???
packet[11] = DSM2_NUM_CHANNELS;
packet[11] = option>3?option:option+4;
if(sub_protocol==DSMX) //DSMX type
packet[12] = 0xb2; // Telemetry off: packet[12] = num_channels < 8 && Model.proto_opts[PROTOOPTS_TELEMETRY] == TELEM_OFF ? 0xa2 : 0xb2;
else
#if DSM2_NUM_CHANNELS < 8
packet[12] = 0x01;
#else
packet[12] = 0x02;
#endif
packet[12] = option<8?0x01:0x02;
packet[13] = 0x00; //???
for(i = 8; i < 14; i++)
sum += packet[i];
@@ -154,46 +143,66 @@ void build_bind_packet()
packet[15] = sum & 0xff;
}
void build_data_packet(uint8_t upper)//
static uint8_t __attribute__((unused)) PROTOCOL_SticksMoved(uint8_t init)
{
#if DSM2_NUM_CHANNELS==4
const uint8_t ch_map[] = {0, 1, 2, 3, 0xff, 0xff, 0xff}; //Guess
#elif DSM2_NUM_CHANNELS==5
const uint8_t ch_map[] = {0, 1, 2, 3, 4, 0xff, 0xff}; //Guess
#elif DSM2_NUM_CHANNELS==6
const uint8_t ch_map[] = {1, 5, 2, 3, 0, 4, 0xff}; //HP6DSM
#elif DSM2_NUM_CHANNELS==7
const uint8_t ch_map[] = {1, 5, 2, 4, 3, 6, 0}; //DX6i
#elif DSM2_NUM_CHANNELS==8
const uint8_t ch_map[] = {1, 5, 2, 3, 6, 0xff, 0xff, 4, 0, 7, 0xff, 0xff, 0xff, 0xff}; //DX8
#elif DSM2_NUM_CHANNELS==9
const uint8_t ch_map[] = {3, 2, 1, 5, 0, 4, 6, 7, 8, 0xff, 0xff, 0xff, 0xff, 0xff}; //DM9
#elif DSM2_NUM_CHANNELS==10
const uint8_t ch_map[] = {3, 2, 1, 5, 0, 4, 6, 7, 8, 9, 0xff, 0xff, 0xff, 0xff};
#elif DSM2_NUM_CHANNELS==11
const uint8_t ch_map[] = {3, 2, 1, 5, 0, 4, 6, 7, 8, 9, 10, 0xff, 0xff, 0xff};
#elif DSM2_NUM_CHANNELS==12
const uint8_t ch_map[] = {3, 2, 1, 5, 0, 4, 6, 7, 8, 9, 10, 11, 0xff, 0xff};
#endif
#define STICK_MOVEMENT 15*(PPM_MAX-PPM_MIN)/100 // defines when the bind dialog should be interrupted (stick movement STICK_MOVEMENT %)
static uint16_t ele_start, ail_start;
uint16_t ele = Servo_data[ELEVATOR];//CHAN_ReadInput(MIXER_MapChannel(INP_ELEVATOR));
uint16_t ail = Servo_data[AILERON];//CHAN_ReadInput(MIXER_MapChannel(INP_AILERON));
if(init) {
ele_start = ele;
ail_start = ail;
return 0;
}
uint16_t ele_diff = ele_start - ele;//abs(ele_start - ele);
uint16_t ail_diff = ail_start - ail;//abs(ail_start - ail);
return ((ele_diff + ail_diff) > STICK_MOVEMENT);//
}
static void __attribute__((unused)) build_data_packet(uint8_t upper)//
{
uint8_t i;
uint8_t bits;
uint8_t ch_map[] = {3, 2, 1, 5, 0, 4, 6, 7, 8, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}; //9 Channels - DM9 TX
switch(option>3?option:option+4) // Create channel map based on number of channels
{
case 12:
ch_map[11]=11; // 12 channels
case 11:
ch_map[10]=10; // 11 channels
case 10:
ch_map[9]=9; // 10 channels
break;
case 8:
memcpy(ch_map,"\x01\x05\x02\x03\x06\xFF\xFF\x04\x00\x07",10); // 8 channels - DX8 TX
break;
case 7:
memcpy(ch_map,"\x01\x05\x02\x04\x03\x06\x00",7); // 7 channels - DX6i TX
break;
case 6:
memcpy(ch_map,"\x01\x05\x02\x03\x00\x04\xFF",7); // 6 channels - HP6DSM TX
break;
case 4:
case 5:
memcpy(ch_map,"\x00\x01\x02\x03\xFF\xFF\xFF",7); // 4 channels - Guess
if(option&0x01)
ch_map[4]=4; // 5 channels - Guess
break;
}
//
if( binding && PROTOCOL_SticksMoved(0) )
{
//BIND_DONE;
binding = 0;
}
if (sub_protocol==DSMX)
{
packet[0] = cyrfmfg_id[2];
packet[1] = cyrfmfg_id[3] + model;
packet[1] = cyrfmfg_id[3] + RX_num;
bits=11;
}
else
{
packet[0] = (0xff ^ cyrfmfg_id[2]);
packet[1] = (0xff ^ cyrfmfg_id[3]) + model;
packet[1] = (0xff ^ cyrfmfg_id[3]) + RX_num;
bits=10;
}
//
@@ -252,23 +261,7 @@ void build_data_packet(uint8_t upper)//
}
}
uint8_t PROTOCOL_SticksMoved(uint8_t init)
{
#define STICK_MOVEMENT 15*(PPM_MAX-PPM_MIN)/100 // defines when the bind dialog should be interrupted (stick movement STICK_MOVEMENT %)
static uint16_t ele_start, ail_start;
uint16_t ele = Servo_data[ELEVATOR];//CHAN_ReadInput(MIXER_MapChannel(INP_ELEVATOR));
uint16_t ail = Servo_data[AILERON];//CHAN_ReadInput(MIXER_MapChannel(INP_AILERON));
if(init) {
ele_start = ele;
ail_start = ail;
return 0;
}
uint16_t ele_diff = ele_start - ele;//abs(ele_start - ele);
uint16_t ail_diff = ail_start - ail;//abs(ail_start - ail);
return ((ele_diff + ail_diff) > STICK_MOVEMENT);//
}
uint8_t get_pn_row(uint8_t channel)
static uint8_t __attribute__((unused)) get_pn_row(uint8_t channel)
{
return (sub_protocol == DSMX ? (channel - 2) % 5 : channel % 5);
}
@@ -300,7 +293,7 @@ const uint8_t init_vals[][2] = {
{CYRF_01_TX_LENGTH, 0x10}, //16byte packet
};
void cyrf_config()
static void __attribute__((unused)) cyrf_config()
{
for(uint8_t i = 0; i < sizeof(init_vals) / 2; i++)
CYRF_WriteRegister(init_vals[i][0], init_vals[i][1]);
@@ -308,19 +301,22 @@ void cyrf_config()
CYRF_ConfigRFChannel(0x61);
}
void initialize_bind_state()
static void __attribute__((unused)) initialize_bind_state()
{
const uint8_t pn_bind[] = { 0xc6,0x94,0x22,0xfe,0x48,0xe6,0x57,0x4e };
uint8_t data_code[32];
uint8_t code[32];
CYRF_ConfigRFChannel(BIND_CHANNEL); //This seems to be random?
uint8_t pn_row = get_pn_row(BIND_CHANNEL);
//printf("Ch: %d Row: %d SOP: %d Data: %d\n", BIND_CHANNEL, pn_row, sop_col, data_col);
CYRF_ConfigCRCSeed(crc);
CYRF_ConfigSOPCode(pncodes[pn_row][sop_col]);
memcpy(data_code, pncodes[pn_row][data_col], 16);
memcpy(data_code + 16, pncodes[0][8], 8);
memcpy(data_code + 24, pn_bind, 8);
CYRF_ConfigDataCode(data_code, 32);
read_code(code,pn_row,sop_col,8);
CYRF_ConfigSOPCode(code);
read_code(code,pn_row,data_col,16);
read_code(code+16,0,8,8);
memcpy(code + 24, "\xc6\x94\x22\xfe\x48\xe6\x57\x4e", 8);
CYRF_ConfigDataCode(code, 32);
build_bind_packet();
}
@@ -342,20 +338,25 @@ const uint8_t data_vals[][2] = {
{CYRF_10_FRAMING_CFG, 0xea},
};
void cyrf_configdata()
static void __attribute__((unused)) cyrf_configdata()
{
for(uint8_t i = 0; i < sizeof(data_vals) / 2; i++)
CYRF_WriteRegister(data_vals[i][0], data_vals[i][1]);
}
void set_sop_data_crc()
static void __attribute__((unused)) set_sop_data_crc()
{
uint8_t code[16];
uint8_t pn_row = get_pn_row(hopping_frequency[chidx]);
//printf("Ch: %d Row: %d SOP: %d Data: %d\n", ch[chidx], pn_row, sop_col, data_col);
CYRF_ConfigRFChannel(hopping_frequency[chidx]);
CYRF_ConfigCRCSeed(crcidx ? ~crc : crc);
CYRF_ConfigSOPCode(pncodes[pn_row][sop_col]);
CYRF_ConfigDataCode(pncodes[pn_row][data_col], 16);
read_code(code,pn_row,sop_col,8);
CYRF_ConfigSOPCode(code);
read_code(code,pn_row,data_col,16);
CYRF_ConfigDataCode(code, 16);
if(sub_protocol == DSMX)
chidx = (chidx + 1) % 23;
else
@@ -363,7 +364,7 @@ void set_sop_data_crc()
crcidx = !crcidx;
}
void calc_dsmx_channel()
static void __attribute__((unused)) calc_dsmx_channel()
{
uint8_t idx = 0;
uint32_t id = ~(((uint32_t)cyrfmfg_id[0] << 24) | ((uint32_t)cyrfmfg_id[1] << 16) | ((uint32_t)cyrfmfg_id[2] << 8) | (cyrfmfg_id[3] << 0));
@@ -461,12 +462,16 @@ uint16_t ReadDsm2()
set_sop_data_crc();
if (cyrf_state == DSM2_CH2_CHECK_A)
{
#if DSM2_NUM_CHANNELS < 8
cyrf_state = DSM2_CH1_WRITE_A; // change from CH2_CHECK_A to CH1_WRITE_A (ie no upper)
return 11000 - CH1_CH2_DELAY - WRITE_DELAY ; // Original is 22000 from deviation but it works better this way
#else
cyrf_state = DSM2_CH1_WRITE_B; // change from CH2_CHECK_A to CH1_WRITE_A (to transmit upper)
#endif
if(option < 8)
{
cyrf_state = DSM2_CH1_WRITE_A; // change from CH2_CHECK_A to CH1_WRITE_A (ie no upper)
if(option>3)
return 11000 - CH1_CH2_DELAY - WRITE_DELAY ; // force 11ms if option>3 ie 4,5,6,7 channels @11ms
else
return 22000 - CH1_CH2_DELAY - WRITE_DELAY ; // normal 22ms mode if option<=3 ie 4,5,6,7 channels @22ms
}
else
cyrf_state = DSM2_CH1_WRITE_B; // change from CH2_CHECK_A to CH1_WRITE_A (to transmit upper)
}
else
cyrf_state = DSM2_CH1_WRITE_A; // change from CH2_CHECK_B to CH1_WRITE_A (upper already transmitted so transmit lower)
@@ -513,8 +518,6 @@ uint16_t initDsm2()
sop_col = (cyrfmfg_id[0] + cyrfmfg_id[1] + cyrfmfg_id[2] + 2) & 0x07;//Ok
data_col = 7 - sop_col;//ok
model=MProtocol_id-MProtocol_id_master; // RxNum for serial or 0 for ppm
CYRF_SetTxRxMode(TX_EN);
//
if(IS_AUTOBIND_FLAG_on)

View File

@@ -66,7 +66,7 @@ uint8_t ch_idx;
uint8_t use_fixed_id;
uint8_t failsafe_pkt;
void scramble_pkt()
static void __attribute__((unused)) scramble_pkt()
{
#ifdef NO_SCRAMBLE
return;
@@ -77,7 +77,7 @@ void scramble_pkt()
#endif
}
void add_pkt_suffix()
static void __attribute__((unused)) add_pkt_suffix()
{
uint8_t bind_state;
if (use_fixed_id)
@@ -97,7 +97,7 @@ void add_pkt_suffix()
packet[15] = (fixed_id >> 16) & 0xff;
}
void build_beacon_pkt(uint8_t upper)
static void __attribute__((unused)) build_beacon_pkt(uint8_t upper)
{
packet[0] = ((DEVO_NUM_CHANNELS << 4) | 0x07);
// uint8_t enable = 0;
@@ -116,7 +116,7 @@ void build_beacon_pkt(uint8_t upper)
add_pkt_suffix();
}
void build_bind_pkt()
static void __attribute__((unused)) build_bind_pkt()
{
packet[0] = (DEVO_NUM_CHANNELS << 4) | 0x0a;
packet[1] = bind_counter & 0xff;
@@ -136,7 +136,7 @@ void build_bind_pkt()
packet[15] ^= cyrfmfg_id[2];
}
void build_data_pkt()
static void __attribute__((unused)) build_data_pkt()
{
uint8_t i;
packet[0] = (DEVO_NUM_CHANNELS << 4) | (0x0b + ch_idx);
@@ -161,7 +161,7 @@ void build_data_pkt()
add_pkt_suffix();
}
void cyrf_set_bound_sop_code()
static void __attribute__((unused)) cyrf_set_bound_sop_code()
{
/* crc == 0 isn't allowed, so use 1 if the math results in 0 */
uint8_t crc = (cyrfmfg_id[0] + (cyrfmfg_id[1] >> 6) + cyrfmfg_id[2]);
@@ -174,7 +174,7 @@ void cyrf_set_bound_sop_code()
CYRF_SetPower(0x08);
}
void cyrf_init()
static void __attribute__((unused)) cyrf_init()
{
/* Initialise CYRF chip */
CYRF_WriteRegister(CYRF_1D_MODE_OVERRIDE, 0x39);
@@ -201,7 +201,7 @@ void cyrf_init()
CYRF_WriteRegister(CYRF_0F_XACT_CFG, 0x28);
}
void set_radio_channels()
static void __attribute__((unused)) set_radio_channels()
{
//int i;
CYRF_FindBestChannels(hopping_frequency, 3, 4, 4, 80);
@@ -217,7 +217,7 @@ void set_radio_channels()
hopping_frequency[4] = hopping_frequency[1];
}
void DEVO_BuildPacket()
static void __attribute__((unused)) DEVO_BuildPacket()
{
switch(phase)
{
@@ -302,7 +302,7 @@ uint16_t devo_callback()
return 1200;
}
void devo_bind()
/*static void __attribute__((unused)) devo_bind()
{
fixed_id = Model_fixed_id;
bind_counter = DEVO_BIND_COUNT;
@@ -310,8 +310,8 @@ void devo_bind()
//PROTOCOL_SetBindState(0x1388 * 2400 / 1000); //msecs 12000ms
}
/*
void generate_fixed_id_bind(){
static void __attribute__((unused)) generate_fixed_id_bind(){
if(BIND_0){
//randomSeed((uint32_t)analogRead(A6)<<10|analogRead(A7));//seed
uint8_t txid[4];

View File

@@ -0,0 +1,171 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// Last sync with hexfet new_protocols/esky_nrf24l01.c dated 2015-02-13
#if defined(ESKY_NRF24L01_INO)
#include "iface_nrf24l01.h"
#define ESKY_BIND_COUNT 1000
#define ESKY_PACKET_PERIOD 3333
#define ESKY_PAYLOAD_SIZE 13
#define ESKY_PACKET_CHKTIME 100 // Time to wait for packet to be sent (no ACK, so very short)
static void __attribute__((unused)) ESKY_set_data_address()
{
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x02); // 4-byte RX/TX address for regular packets
NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, rx_tx_addr, 4);
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, rx_tx_addr, 4);
}
static void __attribute__((unused)) ESKY_init(uint8_t bind)
{
NRF24L01_Initialize();
// 2-bytes CRC, radio off
NRF24L01_WriteReg(NRF24L01_00_CONFIG, BV(NRF24L01_00_EN_CRC) | BV(NRF24L01_00_CRCO));
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowledgement
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0
if (bind)
{
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x01); // 3-byte RX/TX address for bind packets
NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, (uint8_t*)"\x00\x00\x00", 3);
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, (uint8_t*)"\x00\x00\x00", 3);
}
else
ESKY_set_data_address();
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0); // No auto retransmission
NRF24L01_WriteReg(NRF24L01_05_RF_CH, 50); // Channel 50 for bind packets
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps
NRF24L01_SetPower();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, ESKY_PAYLOAD_SIZE); // bytes of data payload for pipe 0
NRF24L01_WriteReg(NRF24L01_12_RX_PW_P1, ESKY_PAYLOAD_SIZE);
NRF24L01_WriteReg(NRF24L01_13_RX_PW_P2, ESKY_PAYLOAD_SIZE);
NRF24L01_WriteReg(NRF24L01_14_RX_PW_P3, ESKY_PAYLOAD_SIZE);
NRF24L01_WriteReg(NRF24L01_15_RX_PW_P4, ESKY_PAYLOAD_SIZE);
NRF24L01_WriteReg(NRF24L01_16_RX_PW_P5, ESKY_PAYLOAD_SIZE);
NRF24L01_WriteReg(NRF24L01_17_FIFO_STATUS, 0x00); // Just in case, no real bits to write here
}
static void __attribute__((unused)) ESKY_init2()
{
NRF24L01_FlushTx();
packet_sent = 0;
hopping_frequency_no = 0;
uint16_t channel_ord = rx_tx_addr[0] % 74;
hopping_frequency[12] = 10 + (uint8_t)channel_ord; //channel_code
uint8_t channel1, channel2;
channel1 = 10 + (uint8_t)((37 + channel_ord*5) % 74);
channel2 = 10 + (uint8_t)(( channel_ord*5) % 74) ;
hopping_frequency[0] = channel1;
hopping_frequency[1] = channel1;
hopping_frequency[2] = channel1;
hopping_frequency[3] = channel2;
hopping_frequency[4] = channel2;
hopping_frequency[5] = channel2;
//end_bytes
hopping_frequency[6] = 6;
hopping_frequency[7] = channel1*2;
hopping_frequency[8] = channel2*2;
hopping_frequency[9] = 6;
hopping_frequency[10] = channel1*2;
hopping_frequency[11] = channel2*2;
// Turn radio power on
NRF24L01_SetTxRxMode(TX_EN);
}
static void __attribute__((unused)) ESKY_send_packet(uint8_t bind)
{
uint8_t rf_ch = 50; // bind channel
if (bind)
{
// Bind packet
packet[0] = rx_tx_addr[2];
packet[1] = rx_tx_addr[1];
packet[2] = rx_tx_addr[0];
packet[3] = hopping_frequency[12]; // channel_code encodes pair of channels to transmit on
packet[4] = 0x18;
packet[5] = 0x29;
packet[6] = 0;
packet[7] = 0;
packet[8] = 0;
packet[9] = 0;
packet[10] = 0;
packet[11] = 0;
packet[12] = 0;
}
else
{
// Regular packet
// Each data packet is repeated 3 times on one channel, and 3 times on another channel
// For arithmetic simplicity, channels are repeated in rf_channels array
if (hopping_frequency_no == 0)
{
const uint8_t ch[]={AILERON, ELEVATOR, THROTTLE, RUDDER, AUX1, AUX2};
for (uint8_t i = 0; i < 6; i++)
{
packet[i*2] = Servo_data[ch[i]]>>8; //high byte of servo timing(1000-2000us)
packet[i*2+1] = Servo_data[ch[i]]&0xFF; //low byte of servo timing(1000-2000us)
}
}
rf_ch = hopping_frequency[hopping_frequency_no];
packet[12] = hopping_frequency[hopping_frequency_no+6]; // end_bytes
hopping_frequency_no++;
if (hopping_frequency_no > 6) hopping_frequency_no = 0;
}
NRF24L01_WriteReg(NRF24L01_05_RF_CH, rf_ch);
NRF24L01_FlushTx();
NRF24L01_WritePayload(packet, ESKY_PAYLOAD_SIZE);
packet_sent = 1;
if (! rf_ch_num)
NRF24L01_SetPower(); //Keep transmit power updated
}
uint16_t ESKY_callback()
{
if(IS_BIND_DONE_on)
{
if (packet_sent && NRF24L01_packet_ack() != PKT_ACKED)
return ESKY_PACKET_CHKTIME;
ESKY_send_packet(0);
}
else
{
if (packet_sent && NRF24L01_packet_ack() != PKT_ACKED)
return ESKY_PACKET_CHKTIME;
ESKY_send_packet(1);
if (--bind_counter == 0)
{
ESKY_set_data_address();
BIND_DONE;
}
}
return ESKY_PACKET_PERIOD;
}
uint16_t initESKY(void)
{
bind_counter = ESKY_BIND_COUNT;
rx_tx_addr[3] = 0xBB;
ESKY_init(IS_AUTOBIND_FLAG_on);
ESKY_init2();
return 50000;
}
#endif

View File

@@ -12,6 +12,7 @@
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// Last sync with hexfet new_protocols/flysky_a7105.c dated 2015-09-28
#if defined(FLYSKY_A7105_INO)
@@ -44,7 +45,7 @@ enum {
FLAG_V9X9_VIDEO = 0x40,
FLAG_V9X9_CAMERA= 0x80,
// flags going to byte 12
FLAG_V9X9_UNK = 0x10, // undocumented ?
FLAG_V9X9_FLIP = 0x10,
FLAG_V9X9_LED = 0x20,
};
@@ -72,44 +73,45 @@ uint8_t chanrow;
uint8_t chancol;
uint8_t chanoffset;
void flysky_apply_extension_flags()
static void __attribute__((unused)) flysky_apply_extension_flags()
{
const uint8_t V912_X17_SEQ[10] = { 0x14, 0x31, 0x40, 0x49, 0x49, // sometime first byte is 0x15 ?
0x49, 0x49, 0x49, 0x49, 0x49, };
static uint8_t seq_counter;
switch(sub_protocol) {
switch(sub_protocol)
{
case V9X9:
if(Servo_data[AUX1] > PPM_SWITCH)
packet[12] |= FLAG_V9X9_UNK;
if(Servo_data[AUX2] > PPM_SWITCH)
if(Servo_AUX1)
packet[12] |= FLAG_V9X9_FLIP;
if(Servo_AUX2)
packet[12] |= FLAG_V9X9_LED;
if(Servo_data[AUX3] > PPM_SWITCH)
if(Servo_AUX3)
packet[10] |= FLAG_V9X9_CAMERA;
if(Servo_data[AUX4] > PPM_SWITCH)
if(Servo_AUX4)
packet[10] |= FLAG_V9X9_VIDEO;
break;
case V6X6:
packet[13] = 0x03; // 3 = 100% rate (0=40%, 1=60%, 2=80%)
packet[14] = 0x00;
if(Servo_data[AUX1] > PPM_SWITCH)
if(Servo_AUX1)
packet[14] |= FLAG_V6X6_FLIP;
if(Servo_data[AUX2] > PPM_SWITCH)
if(Servo_AUX2)
packet[14] |= FLAG_V6X6_LED;
if(Servo_data[AUX3] > PPM_SWITCH)
if(Servo_AUX3)
packet[14] |= FLAG_V6X6_CAMERA;
if(Servo_data[AUX4] > PPM_SWITCH)
if(Servo_AUX4)
packet[14] |= FLAG_V6X6_VIDEO;
if(Servo_data[AUX5] > PPM_SWITCH)
if(Servo_AUX5)
{
packet[13] |= FLAG_V6X6_HLESS1;
packet[14] |= FLAG_V6X6_HLESS2;
}
if(Servo_data[AUX6] > PPM_SWITCH) //use option to manipulate these bytes
if(Servo_AUX6) //use option to manipulate these bytes
packet[14] |= FLAG_V6X6_RTH;
if(Servo_data[AUX7] > PPM_SWITCH)
if(Servo_AUX7)
packet[14] |= FLAG_V6X6_XCAL;
if(Servo_data[AUX8] > PPM_SWITCH)
if(Servo_AUX8)
packet[14] |= FLAG_V6X6_YCAL;
packet[15] = 0x10; // unknown
packet[16] = 0x10; // unknown
@@ -126,9 +128,9 @@ void flysky_apply_extension_flags()
packet[12] |= 0x20; // bit 6 is always set ?
packet[13] = 0x00; // unknown
packet[14] = 0x00;
if(Servo_data[AUX1] > PPM_SWITCH)
packet[14] |= FLAG_V912_BTMBTN;
if(Servo_data[AUX2] > PPM_SWITCH)
if(Servo_AUX1)
packet[14] = FLAG_V912_BTMBTN;
if(Servo_AUX2)
packet[14] |= FLAG_V912_TOPBTN;
packet[15] = 0x27; // [15] and [16] apparently hold an analog channel with a value lower than 1000
packet[16] = 0x03; // maybe it's there for a pitch channel for a CP copter ?
@@ -146,7 +148,7 @@ void flysky_apply_extension_flags()
}
}
void flysky_build_packet(uint8_t init)
static void __attribute__((unused)) flysky_build_packet(uint8_t init)
{
uint8_t i;
//servodata timing range for flysky.
@@ -159,7 +161,7 @@ void flysky_build_packet(uint8_t init)
packet[2] = rx_tx_addr[2];
packet[3] = rx_tx_addr[1];
packet[4] = rx_tx_addr[0];
uint8_t ch[]={AILERON, ELEVATOR, THROTTLE, RUDDER, AUX1, AUX2, AUX3, AUX4};
const uint8_t ch[]={AILERON, ELEVATOR, THROTTLE, RUDDER, AUX1, AUX2, AUX3, AUX4};
for(i = 0; i < 8; i++)
{
packet[5+2*i]=lowByte(Servo_data[ch[i]]); //low byte of servo timing(1000-2000us)

View File

@@ -1,21 +1,309 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
/* **************************
* By Midelic on RCGroups *
**************************
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(FRSKYX_CC2500_INO)
#include "iface_cc2500.h"
uint8_t chanskip;
uint8_t calData[48][3];
uint8_t channr;
uint8_t pass_ = 1 ;
uint8_t counter_rst;
uint8_t ctr;
uint8_t FS_flag=0;
// uint8_t ptr[4]={0x01,0x12,0x23,0x30};
//uint8_t ptr[4]={0x00,0x11,0x22,0x33};
const PROGMEM uint8_t hop_data[]={
0x02, 0xD4, 0xBB, 0xA2, 0x89,
0x70, 0x57, 0x3E, 0x25, 0x0C,
0xDE, 0xC5, 0xAC, 0x93, 0x7A,
0x61, 0x48, 0x2F, 0x16, 0xE8,
0xCF, 0xB6, 0x9D, 0x84, 0x6B,
0x52, 0x39, 0x20, 0x07, 0xD9,
0xC0, 0xA7, 0x8E, 0x75, 0x5C,
0x43, 0x2A, 0x11, 0xE3, 0xCA,
0xB1, 0x98, 0x7F, 0x66, 0x4D,
0x34, 0x1B, 0x00, 0x1D, 0x03
};
#include "iface_cc2500.h"
static uint8_t __attribute__((unused)) hop(uint8_t byte)
{
return pgm_read_byte_near(&hop_data[byte]);
}
static void __attribute__((unused)) set_start(uint8_t ch )
{
cc2500_strobe(CC2500_SIDLE);
cc2500_writeReg(CC2500_23_FSCAL3, calData[ch][0]);
cc2500_writeReg(CC2500_24_FSCAL2, calData[ch][1]);
cc2500_writeReg(CC2500_25_FSCAL1, calData[ch][2]);
cc2500_writeReg(CC2500_0A_CHANNR, ch==47?0:pgm_read_word(&hop_data[ch]));
}
static void __attribute__((unused)) frskyX_init()
{
CC2500_Reset();
for(uint8_t i=0;i<36;i++)
{
uint8_t reg=pgm_read_byte_near(&cc2500_conf[i][0]);
uint8_t val=pgm_read_byte_near(&cc2500_conf[i][1]);
if(reg==CC2500_06_PKTLEN)
val=0x1E;
else
if(reg==CC2500_08_PKTCTRL0)
val=0x01;
else
if(reg==CC2500_0B_FSCTRL1)
val=0x0A;
else
if(reg==CC2500_10_MDMCFG4)
val=0x7B;
else
if(reg==CC2500_11_MDMCFG3)
val=0x61;
else
if(reg==CC2500_12_MDMCFG2)
val=0x13;
else
if(reg==CC2500_15_DEVIATN)
val=0x51;
cc2500_writeReg(reg,val);
}
#endif
cc2500_writeReg(CC2500_07_PKTCTRL1, 0x04);
cc2500_writeReg(CC2500_0C_FSCTRL0, option);
cc2500_strobe(CC2500_SIDLE);
//
for(uint8_t c=0;c < 47;c++){//calibrate hop channels
cc2500_strobe(CC2500_SIDLE);
cc2500_writeReg(CC2500_0A_CHANNR,pgm_read_word(&hop_data[c]));
cc2500_strobe(CC2500_SCAL);
delayMicroseconds(900);//
calData[c][0] = cc2500_readReg(CC2500_23_FSCAL3);
calData[c][1] = cc2500_readReg(CC2500_24_FSCAL2);
calData[c][2] = cc2500_readReg(CC2500_25_FSCAL1);
}
cc2500_strobe(CC2500_SIDLE);
cc2500_writeReg(CC2500_0A_CHANNR,0x00);
cc2500_strobe(CC2500_SCAL);
delayMicroseconds(900);
calData[47][0] = cc2500_readReg(CC2500_23_FSCAL3);
calData[47][1] = cc2500_readReg(CC2500_24_FSCAL2);
calData[47][2] = cc2500_readReg(CC2500_25_FSCAL1);
//#######END INIT########
}
static void __attribute__((unused)) initialize_data(uint8_t adr)
{
cc2500_writeReg(CC2500_0C_FSCTRL0,option); // Frequency offset hack
cc2500_writeReg(CC2500_18_MCSM0, 0x8);
cc2500_writeReg(CC2500_09_ADDR, adr ? 0x03 : rx_tx_addr[3]);
cc2500_writeReg(CC2500_07_PKTCTRL1,0x05);
}
static uint8_t __attribute__((unused)) crc_Byte( uint8_t byte )
{
crc = (crc<<8) ^ pgm_read_word(&CRCTable[((uint8_t)(crc>>8) ^ byte) & 0xFF]);
return byte;
}
static uint16_t __attribute__((unused)) scaleForPXX( uint8_t i )
{ //mapped 860,2140(125%) range to 64,1984(PXX values);
return (uint16_t)(((Servo_data[i]-PPM_MIN)*3)>>1)+64;
}
static void __attribute__((unused)) frskyX_build_bind_packet()
{
crc=0;
packet[0] = 0x1D;
packet[1] = 0x03;
packet[2] = 0x01;
//
packet[3] = crc_Byte(rx_tx_addr[3]);
packet[4] = crc_Byte(rx_tx_addr[2]);
int idx = ((state -FRSKY_BIND) % 10) * 5;
packet[5] = crc_Byte(idx);
packet[6] = crc_Byte(pgm_read_word(&hop_data[idx++]));
packet[7] = crc_Byte(pgm_read_word(&hop_data[idx++]));
packet[8] = crc_Byte(pgm_read_word(&hop_data[idx++]));
packet[9] = crc_Byte(pgm_read_word(&hop_data[idx++]));
packet[10] = crc_Byte(pgm_read_word(&hop_data[idx++]));
packet[11] = crc_Byte(0x02);
packet[12] = crc_Byte(RX_num);
//
for(uint8_t i=13;i<28;i++)
packet[i]=crc_Byte(0);
//
packet[28]=highByte(crc);
packet[29]=lowByte(crc);
//
}
static void __attribute__((unused)) frskyX_data_frame()
{
//0x1D 0xB3 0xFD 0x02 0x56 0x07 0x15 0x00 0x00 0x00 0x04 0x40 0x00 0x04 0x40 0x00 0x04 0x40 0x00 0x04 0x40 0x08 0x00 0x00 0x00 0x00 0x00 0x00 0x96 0x12
//
uint8_t lpass = pass_ ;
uint16_t chan_0 ;
uint16_t chan_1 ;
uint8_t flag2 = 0;
uint8_t startChan = 0;
crc = 0;
//static uint8_t p = 0;
//
packet[0] = 0x1D;
packet[1] = rx_tx_addr[3];
packet[2] = rx_tx_addr[2];
packet[3] = crc_Byte(0x02);
//
packet[4] = crc_Byte((ctr<<6)+channr); //*64
packet[5] = crc_Byte(counter_rst);
packet[6] = crc_Byte(RX_num);
// FLAGS 00 - standard packet
//10, 12, 14, 16, 18, 1A, 1C, 1E - failsafe packet
//20 - range check packet
packet[7] = crc_Byte(FS_flag);
packet[8] = crc_Byte(flag2);
//
if ( lpass & 1 )
startChan += 8 ;
for(uint8_t i = 0; i <12 ; i+=3)
{//12 bytes
chan_0 = scaleForPXX(startChan);
if(lpass & 1 )
chan_0+=2048;
packet[9+i] = crc_Byte(lowByte(chan_0));//3 bytes*4
startChan++;
chan_1 = scaleForPXX(startChan);
if(lpass & 1 )
chan_1+= 2048;
startChan++;
packet[9+i+1]=crc_Byte((((chan_0>>8) & 0x0F)|(chan_1 << 4)));
packet[9+i+2]=crc_Byte(chan_1>>4);
}
//packet[21]=crc_Byte(0x08);//first
packet[21]=crc_Byte(0x80);//??? when received first telemetry frame is changed to 0x80
//packet[21]=crc_Byte(ptr[p]);//???
//p=(p+1)%4;//repeating 4 bytes sequence pattern every 4th frame.
pass_=lpass+1;
for (uint8_t i=22;i<28;i++)
packet[i]=crc_Byte(0);
packet[28]=highByte(crc);
packet[29]=lowByte(crc);
}
uint16_t ReadFrSkyX()
{
switch(state)
{
default:
set_start(47);
CC2500_SetPower();
cc2500_strobe(CC2500_SFRX);
//
frskyX_build_bind_packet();
cc2500_strobe(CC2500_SIDLE);
cc2500_writeFifo(packet, packet[0]+1);
state++;
return 9000;
case FRSKY_BIND_DONE:
initialize_data(0);
channr=0;
BIND_DONE;
state++;
break;
case FRSKY_DATA1:
LED_ON;
CC2500_SetTxRxMode(TX_EN);
set_start(channr);
CC2500_SetPower();
cc2500_strobe(CC2500_SFRX);
channr = (channr+chanskip)%47;
cc2500_strobe(CC2500_SIDLE);
cc2500_writeFifo(packet, packet[0]+1);
//
frskyX_data_frame();
state++;
return 5500;
case FRSKY_DATA2:
CC2500_SetTxRxMode(RX_EN);
cc2500_strobe(CC2500_SIDLE);
state++;
return 200;
case FRSKY_DATA3:
cc2500_strobe(CC2500_SRX);
state++;
return 3000;
case FRSKY_DATA4:
len = cc2500_readReg(CC2500_3B_RXBYTES | CC2500_READ_BURST) & 0x7F;
if (len &&(len<MAX_PKT))
{
cc2500_readFifo(pkt, len);
#if defined TELEMETRY
frsky_check_telemetry(pkt,len); //check if valid telemetry packets
//parse telemetry packets here
//The same telemetry function used by FrSky(D8).
#endif
}
state = FRSKY_DATA1;
return 300;
}
return 1;
}
uint16_t initFrSkyX()
{
while(!chanskip)
{
randomSeed((uint32_t)analogRead(A6) << 10 | analogRead(A7));
chanskip=random(0xfefefefe)%47;
}
while((chanskip-ctr)%4)
ctr=(ctr+1)%4;
counter_rst=(chanskip-ctr)>>2;
//for test***************
//rx_tx_addr[3]=0xB3;
//rx_tx_addr[2]=0xFD;
//************************
frskyX_init();
//
if(IS_AUTOBIND_FLAG_on)
{
state = FRSKY_BIND;
initialize_data(1);
}
else
{
state = FRSKY_DATA1;
initialize_data(0);
}
return 10000;
}
#endif

View File

@@ -18,9 +18,10 @@
#include "iface_cc2500.h"
//##########Variables########
uint32_t state;
uint8_t len;
//uint32_t state;
//uint8_t len;
/*
enum {
FRSKY_BIND = 0,
FRSKY_BIND_DONE = 1000,
@@ -30,6 +31,112 @@ enum {
FRSKY_DATA4,
FRSKY_DATA5
};
*/
static void __attribute__((unused)) frsky2way_init(uint8_t bind)
{
// Configure cc2500 for tx mode
CC2500_Reset();
//
for(uint8_t i=0;i<36;i++)
{
uint8_t reg=pgm_read_byte_near(&cc2500_conf[i][0]);
uint8_t val=pgm_read_byte_near(&cc2500_conf[i][1]);
if(reg==CC2500_0C_FSCTRL0)
val=option;
else
if(reg==CC2500_1B_AGCCTRL2)
val=bind ? 0x43 : 0x03;
cc2500_writeReg(reg,val);
}
CC2500_SetTxRxMode(TX_EN);
CC2500_SetPower();
cc2500_strobe(CC2500_SIDLE);
cc2500_writeReg(CC2500_09_ADDR, bind ? 0x03 : rx_tx_addr[3]);
cc2500_writeReg(CC2500_07_PKTCTRL1, 0x05);
cc2500_strobe(CC2500_SIDLE); // Go to idle...
//
cc2500_writeReg(CC2500_0A_CHANNR, 0x00);
cc2500_writeReg(CC2500_23_FSCAL3, 0x89);
cc2500_strobe(CC2500_SFRX);
//#######END INIT########
}
static uint8_t __attribute__((unused)) get_chan_num(uint16_t idx)
{
uint8_t ret = (idx * 0x1e) % 0xeb;
if(idx == 3 || idx == 23 || idx == 47)
ret++;
if(idx > 47)
return 0;
return ret;
}
static void __attribute__((unused)) frsky2way_build_bind_packet()
{
//11 03 01 d7 2d 00 00 1e 3c 5b 78 00 00 00 00 00 00 01
//11 03 01 19 3e 00 02 8e 2f bb 5c 00 00 00 00 00 00 01
packet[0] = 0x11;
packet[1] = 0x03;
packet[2] = 0x01;
packet[3] = rx_tx_addr[3];
packet[4] = rx_tx_addr[2];
uint16_t idx = ((state -FRSKY_BIND) % 10) * 5;
packet[5] = idx;
packet[6] = get_chan_num(idx++);
packet[7] = get_chan_num(idx++);
packet[8] = get_chan_num(idx++);
packet[9] = get_chan_num(idx++);
packet[10] = get_chan_num(idx++);
packet[11] = 0x00;
packet[12] = 0x00;
packet[13] = 0x00;
packet[14] = 0x00;
packet[15] = 0x00;
packet[16] = 0x00;
packet[17] = 0x01;
}
static void __attribute__((unused)) frsky2way_data_frame()
{//pachet[4] is telemetry user frame counter(hub)
//11 d7 2d 22 00 01 c9 c9 ca ca 88 88 ca ca c9 ca 88 88
//11 57 12 00 00 01 f2 f2 f2 f2 06 06 ca ca ca ca 18 18
packet[0] = 0x11; //Length
packet[1] = rx_tx_addr[3];
packet[2] = rx_tx_addr[2];
packet[3] = counter;//
#if defined TELEMETRY
packet[4] = telemetry_counter;
#else
packet[4] = 0x00;
#endif
packet[5] = 0x01;
//
packet[10] = 0;
packet[11] = 0;
packet[16] = 0;
packet[17] = 0;
for(uint8_t i = 0; i < 8; i++)
{
uint16_t value;
value = convert_channel_frsky(i);
if(i < 4)
{
packet[6+i] = value & 0xff;
packet[10+(i>>1)] |= ((value >> 8) & 0x0f) << (4 *(i & 0x01));
}
else
{
packet[8+i] = value & 0xff;
packet[16+((i-4)>>1)] |= ((value >> 8) & 0x0f) << (4 * ((i-4) & 0x01));
}
}
}
uint16_t initFrSky_2way()
{
@@ -88,12 +195,12 @@ uint16_t ReadFrSky_2way()
if (state == FRSKY_DATA1)
{
len = cc2500_readReg(CC2500_3B_RXBYTES | CC2500_READ_BURST) & 0x7F;
if (len)//20 bytes
if (len<=MAX_PKT)//27 bytes
{
cc2500_readFifo(pkt, len); //received telemetry packets
#if defined(TELEMETRY)
//parse telemetry packet here
check_telemetry(pkt,len); //check if valid telemetry packets and buffer them.
frsky_check_telemetry(pkt,len); //check if valid telemetry packets and buffer them.
#endif
}
CC2500_SetTxRxMode(TX_EN);
@@ -109,161 +216,4 @@ uint16_t ReadFrSky_2way()
}
return state == FRSKY_DATA4 ? 7500 : 9000;
}
#if defined(TELEMETRY)
void check_telemetry(uint8_t *pkt,uint8_t len)
{
if(pkt[1] != rx_tx_addr[3] || pkt[2] != rx_tx_addr[2] || len != pkt[0] + 3)
{//only packets with the required id and packet length
for(uint8_t i=3;i<6;i++)
pktt[i]=0;
return;
}
else
{
for (uint8_t i=3;i<len;i++)
pktt[i]=pkt[i];
telemetry_link=1;
}
}
void compute_RSSIdbm(){
if(pktt[len-2] >=128){
RSSI_dBm =(((uint16_t)(pktt[len-2])*18)>>5)- 82;
}
else{
RSSI_dBm = (((uint16_t)(pktt[len-2])*18)>>5)+65;
}
}
#endif
void frsky2way_init(uint8_t bind)
{
// Configure cc2500 for tx mode
CC2500_Reset();
//
cc2500_writeReg(CC2500_02_IOCFG0, 0x06);
cc2500_writeReg(CC2500_00_IOCFG2, 0x06);
cc2500_writeReg(CC2500_17_MCSM1, 0x0c);
cc2500_writeReg(CC2500_18_MCSM0, 0x18);
cc2500_writeReg(CC2500_06_PKTLEN, 0x19);
cc2500_writeReg(CC2500_07_PKTCTRL1, 0x04);
cc2500_writeReg(CC2500_08_PKTCTRL0, 0x05);
cc2500_writeReg(CC2500_3E_PATABLE, 0xff);
cc2500_writeReg(CC2500_0B_FSCTRL1, 0x08);
cc2500_writeReg(CC2500_0C_FSCTRL0, fine);
//base freq FREQ = 0x5C7627 (F = 2404MHz)
cc2500_writeReg(CC2500_0D_FREQ2, 0x5c);
cc2500_writeReg(CC2500_0E_FREQ1, 0x76);
cc2500_writeReg(CC2500_0F_FREQ0, 0x27);
//
cc2500_writeReg(CC2500_10_MDMCFG4, 0xAA);
cc2500_writeReg(CC2500_11_MDMCFG3, 0x39);
cc2500_writeReg(CC2500_12_MDMCFG2, 0x11);
cc2500_writeReg(CC2500_13_MDMCFG1, 0x23);
cc2500_writeReg(CC2500_14_MDMCFG0, 0x7a);
cc2500_writeReg(CC2500_15_DEVIATN, 0x42);
cc2500_writeReg(CC2500_19_FOCCFG, 0x16);
cc2500_writeReg(CC2500_1A_BSCFG, 0x6c);
cc2500_writeReg(CC2500_1B_AGCCTRL2, bind ? 0x43 : 0x03);
cc2500_writeReg(CC2500_1C_AGCCTRL1,0x40);
cc2500_writeReg(CC2500_1D_AGCCTRL0,0x91);
cc2500_writeReg(CC2500_21_FREND1, 0x56);
cc2500_writeReg(CC2500_22_FREND0, 0x10);
cc2500_writeReg(CC2500_23_FSCAL3, 0xa9);
cc2500_writeReg(CC2500_24_FSCAL2, 0x0A);
cc2500_writeReg(CC2500_25_FSCAL1, 0x00);
cc2500_writeReg(CC2500_26_FSCAL0, 0x11);
cc2500_writeReg(CC2500_29_FSTEST, 0x59);
cc2500_writeReg(CC2500_2C_TEST2, 0x88);
cc2500_writeReg(CC2500_2D_TEST1, 0x31);
cc2500_writeReg(CC2500_2E_TEST0, 0x0B);
cc2500_writeReg(CC2500_03_FIFOTHR, 0x07);
cc2500_writeReg(CC2500_09_ADDR, 0x00);
//
CC2500_SetTxRxMode(TX_EN);
CC2500_SetPower();
cc2500_strobe(CC2500_SIDLE);
cc2500_writeReg(CC2500_09_ADDR, bind ? 0x03 : rx_tx_addr[3]);
cc2500_writeReg(CC2500_07_PKTCTRL1, 0x05);
cc2500_strobe(CC2500_SIDLE); // Go to idle...
//
cc2500_writeReg(CC2500_0A_CHANNR, 0x00);
cc2500_writeReg(CC2500_23_FSCAL3, 0x89);
cc2500_strobe(CC2500_SFRX);
//#######END INIT########
}
uint8_t get_chan_num(uint16_t idx)
{
uint8_t ret = (idx * 0x1e) % 0xeb;
if(idx == 3 || idx == 23 || idx == 47)
ret++;
if(idx > 47)
return 0;
return ret;
}
void frsky2way_build_bind_packet()
{
//11 03 01 d7 2d 00 00 1e 3c 5b 78 00 00 00 00 00 00 01
//11 03 01 19 3e 00 02 8e 2f bb 5c 00 00 00 00 00 00 01
packet[0] = 0x11;
packet[1] = 0x03;
packet[2] = 0x01;
packet[3] = rx_tx_addr[3];
packet[4] = rx_tx_addr[2];
uint16_t idx = ((state -FRSKY_BIND) % 10) * 5;
packet[5] = idx;
packet[6] = get_chan_num(idx++);
packet[7] = get_chan_num(idx++);
packet[8] = get_chan_num(idx++);
packet[9] = get_chan_num(idx++);
packet[10] = get_chan_num(idx++);
packet[11] = 0x00;
packet[12] = 0x00;
packet[13] = 0x00;
packet[14] = 0x00;
packet[15] = 0x00;
packet[16] = 0x00;
packet[17] = 0x01;
}
uint8_t telemetry_counter=0;
void frsky2way_data_frame()
{//pachet[4] is telemetry user frame counter(hub)
//11 d7 2d 22 00 01 c9 c9 ca ca 88 88 ca ca c9 ca 88 88
//11 57 12 00 00 01 f2 f2 f2 f2 06 06 ca ca ca ca 18 18
packet[0] = 0x11; //Length
packet[1] = rx_tx_addr[3];
packet[2] = rx_tx_addr[2];
packet[3] = counter;//
packet[4] = pkt[6]?(telemetry_counter++)%32:0;
packet[5] = 0x01;
//
packet[10] = 0;
packet[11] = 0;
packet[16] = 0;
packet[17] = 0;
for(uint8_t i = 0; i < 8; i++)
{
uint16_t value;
value = convert_channel_frsky(i);
if(i < 4)
{
packet[6+i] = value & 0xff;
packet[10+(i>>1)] |= ((value >> 8) & 0x0f) << (4 *(i & 0x01));
}
else
{
packet[8+i] = value & 0xff;
packet[16+((i-4)>>1)] |= ((value >> 8) & 0x0f) << (4 * ((i-4) & 0x01));
}
}
}
#endif

View File

@@ -12,26 +12,27 @@
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// Last sync with hexfet new_protocols/hisky_nrf24l01.c dated 2015-03-27
#if defined(HISKY_NRF24L01_INO)
#include "iface_nrf24l01.h"
#define BIND_COUNT 1000
#define TXID_SIZE 5
#define FREQUENCE_NUM 20
#define HISKY_BIND_COUNT 1000
#define HISKY_TXID_SIZE 5
#define HISKY_FREQUENCE_NUM 20
//
uint8_t bind_buf_arry[4][10];
// HiSky protocol uses TX id as an address for nRF24L01, and uses frequency hopping sequence
// which does not depend on this id and is passed explicitly in binding sequence. So we are free
// to generate this sequence as we wish. It should be in the range [02..77]
void calc_fh_channels(uint32_t seed)
static void __attribute__((unused)) calc_fh_channels()
{
uint8_t idx = 0;
uint32_t rnd = seed;
uint32_t rnd = MProtocol_id;
while (idx < FREQUENCE_NUM)
while (idx < HISKY_FREQUENCE_NUM)
{
uint8_t i;
uint8_t count_2_26 = 0, count_27_50 = 0, count_51_74 = 0;
@@ -40,7 +41,7 @@ void calc_fh_channels(uint32_t seed)
// Use least-significant byte. 73 is prime, so channels 76..77 are unused
uint8_t next_ch = ((rnd >> 8) % 73) + 2;
// Keep the distance 2 between the channels - either odd or even
if (((next_ch ^ (uint8_t)seed) & 0x01 )== 0)
if (((next_ch ^ (uint8_t)rx_tx_addr[3]) & 0x01 )== 0)
continue;
// Check that it's not duplicated and spread uniformly
for (i = 0; i < idx; i++) {
@@ -60,7 +61,7 @@ void calc_fh_channels(uint32_t seed)
}
}
void build_binding_packet(void)
static void __attribute__((unused)) build_binding_packet(void)
{
uint8_t i;
uint16_t sum=0;
@@ -94,7 +95,7 @@ void build_binding_packet(void)
}
}
void hisky_init()
static void __attribute__((unused)) hisky_init()
{
NRF24L01_Initialize();
@@ -115,11 +116,11 @@ void hisky_init()
// HiSky channel sequence: AILE ELEV THRO RUDD GEAR PITCH, channel data value is from 0 to 1000
// Channel 7 - Gyro mode, 0 - 6 axis, 3 - 3 axis
void build_ch_data()
static void __attribute__((unused)) build_ch_data()
{
uint16_t temp;
uint8_t i,j;
uint8_t ch[]={AILERON, ELEVATOR, THROTTLE, RUDDER, AUX1, AUX2, AUX3, AUX4};
const uint8_t ch[]={AILERON, ELEVATOR, THROTTLE, RUDDER, AUX1, AUX2, AUX3, AUX4};
for (i = 0; i< 8; i++) {
j=ch[i];
temp=map(limit_channel_100(j),PPM_MIN_100,PPM_MAX_100,0,1000);
@@ -143,10 +144,14 @@ uint16_t hisky_cb()
NRF24L01_SetPower();
phase=2;
break;
case 3:
if (! bind_counter)
NRF24L01_WritePayload(packet,10); // 2 packets per 5ms
break;
case 4:
phase=6;
break;
case 7: // build packet and send failsafe every 100ms
case 7: // build packet with failsafe every 100ms
convert_channel_HK310(hopping_frequency_no!=0?RUDDER:AUX2,&packet[0],&packet[1]);
convert_channel_HK310(hopping_frequency_no!=0?THROTTLE:AUX3,&packet[2],&packet[3]);
convert_channel_HK310(hopping_frequency_no!=0?AUX1:AUX4,&packet[4],&packet[5]);
@@ -194,7 +199,7 @@ uint16_t hisky_cb()
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, rx_tx_addr, 5);
NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency[hopping_frequency_no]);
hopping_frequency_no++;
if (hopping_frequency_no >= FREQUENCE_NUM)
if (hopping_frequency_no >= HISKY_FREQUENCE_NUM)
hopping_frequency_no = 0;
break;
case 7:
@@ -212,15 +217,19 @@ uint16_t hisky_cb()
return 1000; // send 1 binding packet and 1 data packet per 9ms
}
// Generate internal id from TX id and manufacturer id (STM32 unique id)
void initialize_tx_id()
static void __attribute__((unused)) initialize_tx_id()
{
//Generate frequency hopping table
if(sub_protocol==HK310)
for(uint8_t i=0;i<FREQUENCE_NUM;i++)
hopping_frequency[i]=i; // Sequential order hop channels...
{
// for HiSky surface protocol, the transmitter always generates hop channels in sequential order.
// The transmitter only generates the first hop channel between 0 and 49. So the channel range is from 0 to 69.
hopping_frequency_no=rx_tx_addr[0]%50;
for(uint8_t i=0;i<HISKY_FREQUENCE_NUM;i++)
hopping_frequency[i]=hopping_frequency_no++; // Sequential order hop channels...
}
else
calc_fh_channels(MProtocol_id);
calc_fh_channels();
}
uint16_t initHiSky()
@@ -233,7 +242,7 @@ uint16_t initHiSky()
binding_idx = 0;
if(IS_AUTOBIND_FLAG_on)
bind_counter = BIND_COUNT;
bind_counter = HISKY_BIND_COUNT;
else
bind_counter = 0;
return 1000;

View File

@@ -12,19 +12,32 @@
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// compatible with Hubsan H102D, H107/L/C/D and H107P/C+/D+
// Last sync with hexfet new_protocols/hubsan_a7105.c dated 2015-12-11
#if defined(HUBSAN_A7105_INO)
#include "iface_a7105.h"
enum{
HUBSAN_FLAG_VIDEO = 0x01, // record video
HUBSAN_FLAG_FLIP = 0x08,
HUBSAN_FLAG_LIGHT = 0x04
// flags going to packet[9] (Normal)
HUBSAN_FLAG_VIDEO= 0x01, // record video
HUBSAN_FLAG_FLIP = 0x08, // enable flips
HUBSAN_FLAG_LED = 0x04 // enable LEDs
};
uint32_t sessionid;
const uint32_t txid = 0xdb042679;
enum{
// flags going to packet[9] (Plus series)
HUBSAN_FLAG_HEADLESS = 0x08, // headless mode
};
enum{
// flags going to packet[13] (Plus series)
HUBSAN_FLAG_SNAPSHOT = 0x01,
HUBSAN_FLAG_FLIP_PLUS = 0x80,
};
uint32_t sessionid,id_data;
enum {
BIND_1,
@@ -43,7 +56,7 @@ enum {
};
#define WAIT_WRITE 0x80
void update_crc()
static void __attribute__((unused)) hubsan_update_crc()
{
uint8_t sum = 0;
for(uint8_t i = 0; i < 15; i++)
@@ -51,93 +64,156 @@ void update_crc()
packet[15] = (256 - (sum % 256)) & 0xFF;
}
void hubsan_build_bind_packet(uint8_t state)
static void __attribute__((unused)) hubsan_build_bind_packet(uint8_t bind_state)
{
packet[0] = state;
static uint8_t handshake_counter;
if(phase < BIND_7)
handshake_counter = 0;
memset(packet, 0, 16);
packet[0] = bind_state;
packet[1] = channel;
packet[2] = (sessionid >> 24) & 0xFF;
packet[3] = (sessionid >> 16) & 0xFF;
packet[4] = (sessionid >> 8) & 0xFF;
packet[5] = (sessionid >> 0) & 0xFF;
packet[6] = 0x08;
packet[7] = 0xe4;
packet[8] = 0xea;
packet[9] = 0x9e;
packet[10] = 0x50;
packet[11] = (txid >> 24) & 0xFF;
packet[12] = (txid >> 16) & 0xFF;
packet[13] = (txid >> 8) & 0xFF;
packet[14] = (txid >> 0) & 0xFF;
update_crc();
if(id_data == ID_NORMAL)
{
packet[6] = 0x08;
packet[7] = 0xe4;
packet[8] = 0xea;
packet[9] = 0x9e;
packet[10] = 0x50;
//const uint32_t txid = 0xdb042679;
packet[11] = 0xDB;
packet[12] = 0x04;
packet[13] = 0x26;
packet[14] = 0x79;
}
else
{ //ID_PLUS
if(phase >= BIND_3)
{
packet[7] = 0x62;
packet[8] = 0x16;
}
if(phase == BIND_7)
packet[2] = handshake_counter++;
}
hubsan_update_crc();
}
//cc : throttle observed range: 0x00 - 0xFF (smaller is down)
//ee : rudder observed range: 0x34 - 0xcc (smaller is right)52-204-60%
//gg : elevator observed range: 0x3e - 0xbc (smaller is up)62-188 -50%
//ii : aileron observed range: 0x45 - 0xc3 (smaller is right)69-195-50%
void hubsan_build_packet()
static void __attribute__((unused)) hubsan_build_packet()
{
static uint8_t vtx_freq = 0;
memset(packet, 0, 16);
if(vtx_freq != option || packet_count==100) // set vTX frequency (H107D)
{
vtx_freq = option;
packet[0] = 0x40;
packet[1] = (option>0xF2)?0x17:0x16;
packet[2] = option+0x0D; // 5645 - 5900 MHz
packet[0] = 0x40; // vtx data packet
packet[1] = (vtx_freq>0xF2)?0x17:0x16;
packet[2] = vtx_freq+0x0D; // 5645 - 5900 MHz
packet[3] = 0x82;
packet_count++;
}
else //20 00 00 00 80 00 7d 00 84 02 64 db 04 26 79 7b
{
packet[0] = 0x20;
packet[2] = convert_channel_8b(THROTTLE);//throtle
packet[0] = 0x20; // normal data packet
packet[2] = convert_channel_8b(THROTTLE); //Throtle
}
packet[4] = 0xFF - convert_channel_8b(RUDDER);//Rudder is reversed
packet[6] = 0xFF - convert_channel_8b(ELEVATOR); //Elevator is reversed
packet[8] = convert_channel_8b(AILERON);//aileron
if( packet_count < 100) {
packet[9] = 0x02 | HUBSAN_FLAG_LIGHT | HUBSAN_FLAG_FLIP;
packet_count++;
packet[4] = 0xFF - convert_channel_8b(RUDDER); //Rudder is reversed
packet[6] = 0xFF - convert_channel_8b(ELEVATOR); //Elevator is reversed
packet[8] = convert_channel_8b(AILERON); //Aileron
if(id_data == ID_NORMAL)
{
if( packet_count < 100)
{
packet[9] = 0x02 | HUBSAN_FLAG_LED | HUBSAN_FLAG_FLIP; // sends default value for the 100 first packets
packet_count++;
}
else
{
packet[9] = 0x02;
// Channel 5
if(Servo_AUX1) packet[9] |= HUBSAN_FLAG_FLIP;
// Channel 6
if(Servo_AUX2) packet[9] |= HUBSAN_FLAG_LED;
// Channel 8
if(Servo_AUX4) packet[9] |= HUBSAN_FLAG_VIDEO; // H102D
}
packet[10] = 0x64;
//const uint32_t txid = 0xdb042679;
packet[11] = 0xDB;
packet[12] = 0x04;
packet[13] = 0x26;
packet[14] = 0x79;
}
else
{
packet[9] = 0x02;
// Channel 5
if( Servo_data[AUX1] >= PPM_SWITCH)
packet[9] |= HUBSAN_FLAG_FLIP;
// Channel 6
if( Servo_data[AUX2] >= PPM_SWITCH)
packet[9] |= HUBSAN_FLAG_LIGHT;
// Channel 8
if( Servo_data[AUX4] > PPM_SWITCH)
packet[9] |= HUBSAN_FLAG_VIDEO;
{ //ID_PLUS
packet[3] = 0x64;
packet[5] = 0x64;
packet[7] = 0x64;
packet[9] = 0x06;
//FLIP|LIGHT|PICTURE|VIDEO|HEADLESS
if(Servo_AUX4) packet[9] |= HUBSAN_FLAG_VIDEO;
if(Servo_AUX5) packet[9] |= HUBSAN_FLAG_HEADLESS;
packet[10]= 0x19;
packet[12]= 0x5C; // ghost channel ?
packet[13] = 0;
if(Servo_AUX3) packet[13] = HUBSAN_FLAG_SNAPSHOT;
if(Servo_AUX1) packet[13] |= HUBSAN_FLAG_FLIP_PLUS;
packet[14]= 0x49; // ghost channel ?
if(packet_count < 100)
{ // set channels to neutral for first 100 packets
packet[2] = 0x80; // throttle neutral is at mid stick on plus series
packet[4] = 0x80;
packet[6] = 0x80;
packet[8] = 0x80;
packet[9] = 0x06;
packet[13]= 0x00;
packet_count++;
}
}
packet[10] = 0x64;
packet[11] = (txid >> 24) & 0xFF;
packet[12] = (txid >> 16) & 0xFF;
packet[13] = (txid >> 8) & 0xFF;
packet[14] = (txid >> 0) & 0xFF;
update_crc();
hubsan_update_crc();
}
uint8_t hubsan_check_integrity()
#if defined(TELEMETRY)
static uint8_t __attribute__((unused)) hubsan_check_integrity()
{
uint8_t sum = 0;
for(int i = 0; i < 15; i++)
if( (packet[0]&0xFE) != 0xE0 )
return 0;
uint8_t sum = 0;
for(uint8_t i = 0; i < 15; i++)
sum += packet[i];
return packet[15] == ((256 - (sum % 256)) & 0xFF);
return ( packet[15] == (uint8_t)(-sum) );
}
#endif
uint16_t ReadHubsan()
{
static uint8_t txState=0;
#if defined(TELEMETRY)
static uint8_t rfMode=0;
#endif
static uint8_t txState=0;
static uint8_t bind_count=0;
uint16_t delay;
uint8_t i;
switch(phase) {
case BIND_1:
bind_count++;
if(bind_count >= 20)
{
if(id_data == ID_NORMAL)
id_data = ID_PLUS;
else
id_data = ID_NORMAL;
A7105_WriteID(id_data);
bind_count = 0;
}
case BIND_3:
case BIND_5:
case BIND_7:
@@ -151,13 +227,22 @@ uint16_t ReadHubsan()
case BIND_5 | WAIT_WRITE:
case BIND_7 | WAIT_WRITE:
//wait for completion
for(i = 0; i< 20; i++) {
for(i = 0; i< 20; i++)
if(! (A7105_ReadReg(A7105_00_MODE) & 0x01))
break;
}
A7105_SetTxRxMode(RX_EN);
A7105_Strobe(A7105_RX);
phase &= ~WAIT_WRITE;
if(id_data == ID_PLUS)
{
if(state == BIND_7 && packet[2] == 9)
{
state = DATA_1;
A7105_WriteReg(A7105_1F_CODE_I, 0x0F);
BIND_DONE;
return 4500;
}
}
phase++;
return 4500; //7.5msec elapsed since last write
case BIND_2:
@@ -180,7 +265,7 @@ uint16_t ReadHubsan()
return 15000; //22.5msec elapsed since last write
}
A7105_ReadData();
if(packet[1] == 9) {
if(packet[1] == 9 && id_data == ID_NORMAL) {
phase = DATA_1;
A7105_WriteReg(A7105_1F_CODE_I, 0x0F);
BIND_DONE;
@@ -195,12 +280,14 @@ uint16_t ReadHubsan()
case DATA_4:
case DATA_5:
if( txState == 0) { // send packet
#if defined(TELEMETRY)
rfMode = A7105_TX;
#endif
if( phase == DATA_1)
A7105_SetPower(); //Keep transmit power in sync
hubsan_build_packet();
A7105_Strobe(A7105_STANDBY);
A7105_WriteData(16, phase == DATA_5 ? channel + 0x23 : channel);
A7105_WriteData(16, phase == DATA_5 && id_data == ID_NORMAL ? channel + 0x23 : channel);
if (phase == DATA_5)
phase = DATA_1;
else
@@ -209,7 +296,8 @@ uint16_t ReadHubsan()
}
else {
#if defined(TELEMETRY)
if( rfMode == A7105_TX) {// switch to rx mode 3ms after packet sent
if( rfMode == A7105_TX)
{// switch to rx mode 3ms after packet sent
for( i=0; i<10; i++)
{
if( !(A7105_ReadReg(A7105_00_MODE) & 0x01)) {// wait for tx completion
@@ -220,15 +308,23 @@ uint16_t ReadHubsan()
}
}
}
if( rfMode == A7105_RX) { // check for telemetry frame
for( i=0; i<10; i++) {
if( !(A7105_ReadReg(A7105_00_MODE) & 0x01)) { // data received
if( rfMode == A7105_RX)
{ // check for telemetry frame
for( i=0; i<10; i++)
{
if( !(A7105_ReadReg(A7105_00_MODE) & 0x01))
{ // data received
A7105_ReadData();
if( !(A7105_ReadReg(A7105_00_MODE) & 0x01)){ // data received
v_lipo=packet[13];// hubsan lipo voltage 8bits the real value is h_lipo/10(0x2A=42-4.2V)
if( hubsan_check_integrity() )
{
v_lipo=packet[13];// hubsan lipo voltage 8bits the real value is h_lipo/10(0x2A=42 -> 4.2V)
telemetry_link=1;
}
A7105_Strobe(A7105_RX);
// Read TX RSSI
RSSI_dBm=256-(A7105_ReadReg(A7105_1D_RSSI_THOLD)*8)/5; // value from A7105 is between 8 for maximum signal strength to 160 or less
if(RSSI_dBm<0) RSSI_dBm=0;
else if(RSSI_dBm>255) RSSI_dBm=255;
break;
}
}
@@ -249,13 +345,17 @@ uint16_t initHubsan() {
const uint8_t allowed_ch[] = {0x14, 0x1e, 0x28, 0x32, 0x3c, 0x46, 0x50, 0x5a, 0x64, 0x6e, 0x78, 0x82};
A7105_Init(INIT_HUBSAN); //hubsan_init();
randomSeed((uint32_t)analogRead(A0) << 10 | analogRead(A4));
randomSeed((uint32_t)analogRead(A6) << 10 | analogRead(A7));
sessionid = random(0xfefefefe) + ((uint32_t)random(0xfefefefe) << 16);
channel = allowed_ch[random(0xfefefefe) % sizeof(allowed_ch)];
BIND_IN_PROGRESS; // autobind protocol
phase = BIND_1;
packet_count=0;
id_data=ID_NORMAL;
#if defined(TELEMETRY)
telemetry_link=0;
#endif
return 10000;
}

View File

@@ -12,53 +12,241 @@
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// Last sync with hexfet new_protocols/KN_nrf24l01.c dated 2015-11-09
#if defined(KN_NRF24L01_INO)
#include "iface_nrf24l01.h"
#define KN_BIND_COUNT 1000 // for KN 2sec every 2ms - 1000 packets
// Timeout for callback in uSec, 2ms=2000us for KN
#define KN_PACKET_PERIOD 2000
#define KN_PACKET_CHKTIME 100 // Time to wait for packet to be sent (no ACK, so very short)
// Wait for RX chip stable - 10ms
#define KN_INIT_WAIT_MS 10000
//#define PAYLOADSIZE 16
#define NFREQCHANNELS 4
#define KN_TXID_SIZE 4
//Payload(16 bytes) plus overhead(10 bytes) is 208 bits, takes about 0.4ms or 0.2ms
//to send for the rate of 500kb/s and 1Mb/s respectively.
// Callback timeout period for sending bind packets, minimum 250
#define KN_BINDING_PACKET_PERIOD 1000
// Timeout for sending data packets, in uSec, KN protocol requires 2ms
#define KN_WL_SENDING_PACKET_PERIOD 2000
// Timeout for sending data packets, in uSec, KNFX protocol requires 1.2 ms
#define KN_FX_SENDING_PACKET_PERIOD 1200
// packets to be sent during binding, last 0.5 seconds in WL Toys and 0.2 seconds in Feilun
#define KN_WL_BIND_COUNT 500
#define KN_FX_BIND_COUNT 200
#define KN_PAYLOADSIZE 16
//24L01 has 126 RF channels, can we use all of them?
#define KN_MAX_RF_CHANNEL 73
//KN protocol for WL Toys changes RF frequency every 10 ms, repeats with only 4 channels.
//Feilun variant uses only 2 channels, so we will just repeat the hopping channels later
#define KN_RF_CH_COUNT 4
//KN protocol for WL Toys sends 4 data packets every 2ms per frequency, plus a 2ms gap.
#define KN_WL_PACKET_SEND_COUNT 5
//KN protocol for Feilun sends 8 data packets every 1.2ms per frequency, plus a 0.3ms gap.
#define KN_FX_PACKET_SEND_COUNT 8
#define KN_TX_ADDRESS_SIZE 5
enum {
KN_FLAG_DR = 0x01, // Dual Rate
KN_FLAG_TH = 0x02, // Throttle Hold
KN_FLAG_IDLEUP = 0x04, // Idle up
KN_PHASE_PRE_BIND,
KN_PHASE_BINDING,
KN_PHASE_PRE_SEND,
KN_PHASE_SENDING,
};
enum {
KN_FLAG_DR = 0x01, // Dual Rate: 1 - full range
KN_FLAG_TH = 0x02, // Throttle Hold: 1 - hold
KN_FLAG_IDLEUP = 0x04, // Idle up: 1 - 3D
KN_FLAG_RES1 = 0x08,
KN_FLAG_RES2 = 0x10,
KN_FLAG_RES3 = 0x20,
KN_FLAG_GYRO3 = 0x40, // 00 - 6G mode, 01 - 3G mode
KN_FLAG_GYRO3 = 0x40, // 0 - 6G mode, 1 - 3G mode
KN_FLAG_GYROR = 0x80 // Always 0 so far
};
//
enum {
KN_INIT2 = 0,
KN_INIT2_NO_BIND,
KN_BIND,
KN_DATA
};
/*enum {
USE1MBPS_NO = 0,
USE1MBPS_YES = 1,
};*/
// 2-bytes CRC
#define CRC_CONFIG (BV(NRF24L01_00_EN_CRC) | BV(NRF24L01_00_CRCO))
void kn_init()
//-------------------------------------------------------------------------------------------------
// This function init 24L01 regs and packet data for binding
// Send tx address, hopping table (for Wl Toys), and data rate to the KN receiver during binding.
// It seems that KN can remember these parameters, no binding needed after power up.
// Bind uses fixed TX address "KNDZK", 1 Mbps data rate and channel 83
//-------------------------------------------------------------------------------------------------
static void __attribute__((unused)) kn_bind_init()
{
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, (uint8_t*)"KNDZK", 5);
packet[0] = 'K';
packet[1] = 'N';
packet[2] = 'D';
packet[3] = 'Z';
//Use first four bytes of tx_addr
packet[4] = rx_tx_addr[0];
packet[5] = rx_tx_addr[1];
packet[6] = rx_tx_addr[2];
packet[7] = rx_tx_addr[3];
if(sub_protocol==WLTOYS)
{
packet[8] = hopping_frequency[0];
packet[9] = hopping_frequency[1];
packet[10] = hopping_frequency[2];
packet[11] = hopping_frequency[3];
}
else
{
packet[8] = 0x00;
packet[9] = 0x00;
packet[10] = 0x00;
packet[11] = 0x00;
}
packet[12] = 0x00;
packet[13] = 0x00;
packet[14] = 0x00;
packet[15] = 0x01; //(USE1MBPS_YES) ? 0x01 : 0x00;
//Set RF channel
NRF24L01_WriteReg(NRF24L01_05_RF_CH, 83);
}
//-------------------------------------------------------------------------------------------------
// Update control data to be sent
// Do it once per frequency, so the same values will be sent 4 times
// KN uses 4 10-bit data channels plus a 8-bit switch channel
//
// The packet[0] is used for pitch/throttle, the relation is hard coded, not changeable.
// We can change the throttle/pitch range though.
//
// How to use trim? V977 stock controller can trim 6-axis mode to eliminate the drift.
//-------------------------------------------------------------------------------------------------
static void __attribute__((unused)) kn_update_packet_control_data()
{
uint16_t value;
value = convert_channel_10b(THROTTLE);
packet[0] = (value >> 8) & 0xFF;
packet[1] = value & 0xFF;
value = convert_channel_10b(AILERON);
packet[2] = (value >> 8) & 0xFF;
packet[3] = value & 0xFF;
value = convert_channel_10b(ELEVATOR);
packet[4] = (value >> 8) & 0xFF;
packet[5] = value & 0xFF;
value = convert_channel_10b(RUDDER);
packet[6] = (value >> 8) & 0xFF;
packet[7] = value & 0xFF;
// Trims, middle is 0x64 (100) range 0-200
packet[8] = convert_channel_8b_scale(AUX5,0,200); // 0x64; // T
packet[9] = convert_channel_8b_scale(AUX6,0,200); // 0x64; // A
packet[10] = convert_channel_8b_scale(AUX7,0,200); // 0x64; // E
packet[11] = 0x64; // R
flags=0;
if (Servo_AUX1)
flags = KN_FLAG_DR;
if (Servo_AUX2)
flags |= KN_FLAG_TH;
if (Servo_AUX3)
flags |= KN_FLAG_IDLEUP;
if (Servo_AUX4)
flags |= KN_FLAG_GYRO3;
packet[12] = flags;
packet[13] = 0x00;
if(sub_protocol==WLTOYS)
packet[13] = (packet_sent << 5) | (hopping_frequency_no << 2);
packet[14] = 0x00;
packet[15] = 0x00;
NRF24L01_SetPower();
}
//-------------------------------------------------------------------------------------------------
// This function generate RF TX packet address
// V977 can remember the binding parameters; we do not need rebind when power up.
// This requires the address must be repeatable for a specific RF ID at power up.
//-------------------------------------------------------------------------------------------------
static void __attribute__((unused)) kn_calculate_tx_addr()
{
if(sub_protocol==FEILUN)
{
uint8_t addr2;
// Generate TXID with sum of minimum 256 and maximum 256+MAX_RF_CHANNEL-32
rx_tx_addr[1] = 1 + rx_tx_addr[0] % (KN_MAX_RF_CHANNEL-33);
addr2 = 1 + rx_tx_addr[2] % (KN_MAX_RF_CHANNEL-33);
if ((uint16_t)(rx_tx_addr[0] + rx_tx_addr[1]) < 256)
rx_tx_addr[2] = addr2;
else
rx_tx_addr[2] = 0x00;
rx_tx_addr[3] = 0x00;
while((uint16_t)(rx_tx_addr[0] + rx_tx_addr[1] + rx_tx_addr[2] + rx_tx_addr[3]) < 257)
rx_tx_addr[3] += addr2;
}
//The 5th byte is a constant, must be 'K'
rx_tx_addr[4] = 'K';
}
//-------------------------------------------------------------------------------------------------
// This function generates "random" RF hopping frequency channel numbers.
// These numbers must be repeatable for a specific seed
// The generated number range is from 0 to MAX_RF_CHANNEL. No repeat or adjacent numbers
//
// For Feilun variant, the channels are calculated from TXID, and since only 2 channels are used
// we copy them to fill up to MAX_RF_CHANNEL
//-------------------------------------------------------------------------------------------------
static void __attribute__((unused)) kn_calculate_freqency_hopping_channels()
{
if(sub_protocol==WLTOYS)
{
uint8_t idx = 0;
uint32_t rnd = MProtocol_id;
while (idx < KN_RF_CH_COUNT)
{
uint8_t i;
rnd = rnd * 0x0019660D + 0x3C6EF35F; // Randomization
// Use least-significant byte. 73 is prime, so channels 76..77 are unused
uint8_t next_ch = ((rnd >> 8) % KN_MAX_RF_CHANNEL) + 2;
// Keep the distance 2 between the channels - either odd or even
if (((next_ch ^ MProtocol_id) & 0x01 )== 0)
continue;
// Check that it's not duplicate and spread uniformly
for (i = 0; i < idx; i++)
if(hopping_frequency[i] == next_ch)
break;
if (i != idx)
continue;
hopping_frequency[idx++] = next_ch;
}
}
else
{//FEILUN
hopping_frequency[0] = rx_tx_addr[0] + rx_tx_addr[1] + rx_tx_addr[2] + rx_tx_addr[3]; // - 256; ???
hopping_frequency[1] = hopping_frequency[0] + 32;
hopping_frequency[2] = hopping_frequency[0];
hopping_frequency[3] = hopping_frequency[1];
}
}
//-------------------------------------------------------------------------------------------------
// This function setup 24L01
// V977 uses one way communication, receiving only. 24L01 RX is never enabled.
// V977 needs payload length in the packet. We should configure 24L01 to enable Packet Control Field(PCF)
// Some RX reg settings are actually for enable PCF
//-------------------------------------------------------------------------------------------------
static void __attribute__((unused)) kn_init()
{
kn_calculate_tx_addr();
kn_calculate_freqency_hopping_channels();
NRF24L01_Initialize();
NRF24L01_WriteReg(NRF24L01_00_CONFIG, CRC_CONFIG);
NRF24L01_WriteReg(NRF24L01_00_CONFIG, BV(NRF24L01_00_EN_CRC) | BV(NRF24L01_00_CRCO));
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknoledgement
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x03); // 5-byte RX/TX address
@@ -68,207 +256,92 @@ void kn_init()
NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, 0x20); // bytes of data payload for pipe 0
NRF24L01_Activate(0x73); // Activate feature register
NRF24L01_Activate(0x73);
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 1); // Dynamic payload for data pipe 0
// Enable: Dynamic Payload Length, Payload with ACK , W_TX_PAYLOAD_NOACK
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, BV(NRF2401_1D_EN_DPL) | BV(NRF2401_1D_EN_ACK_PAY) | BV(NRF2401_1D_EN_DYN_ACK));
NRF24L01_Activate(0x73);
}
// Enable: Dynamic Payload Length to enable PCF
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, BV(NRF2401_1D_EN_DPL));
NRF24L01_SetPower();
uint16_t kn_init2()
{
NRF24L01_FlushTx();
NRF24L01_FlushRx();
packet_sent = 0;
packet_count = 0;
hopping_frequency_no = 0;
// Turn radio power on
NRF24L01_SetTxRxMode(TX_EN);
NRF24L01_WriteReg(NRF24L01_00_CONFIG, CRC_CONFIG | BV(NRF24L01_00_PWR_UP));
return 150;
NRF24L01_SetTxRxMode(TX_EN);
NRF24L01_SetBitrate(NRF24L01_BR_1M); //USE1MBPS_YES ? NRF24L01_BR_1M : NRF24L01_BR_250K;
}
void set_tx_for_bind()
//================================================================================================
// Private Functions
//================================================================================================
uint16_t initKN()
{
NRF24L01_WriteReg(NRF24L01_05_RF_CH, 83);
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps for binding
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, (uint8_t *) "KNDZK", 5);
}
void set_tx_for_data()
{
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, rx_tx_addr, 5);
}
void kn_calc_fh_channels(uint32_t seed)
{
uint8_t idx = 0;
uint32_t rnd = seed;
while (idx < NFREQCHANNELS) {
uint8_t i;
rnd = rnd * 0x0019660D + 0x3C6EF35F; // Randomization
// Use least-significant byte. 73 is prime, so channels 76..77 are unused
uint8_t next_ch = ((rnd >> 8) % 73) + 2;
// Keep the distance 2 between the channels - either odd or even
if (((next_ch ^ seed) & 0x01 )== 0)
continue;
// Check that it's not duplicate and spread uniformly
for (i = 0; i < idx; i++) {
if(hopping_frequency[i] == next_ch)
break;
}
if (i != idx)
continue;
hopping_frequency[idx++] = next_ch;
if(sub_protocol==WLTOYS)
{
packet_period = KN_WL_SENDING_PACKET_PERIOD;
bind_counter = KN_WL_BIND_COUNT;
packet_count = KN_WL_PACKET_SEND_COUNT;
}
}
void kn_initialize_tx_id()
{
rx_tx_addr[4] = 'K';
kn_calc_fh_channels(MProtocol_id);
}
#define PACKET_COUNT_SHIFT 5
#define RF_CHANNEL_SHIFT 2
void kn_send_packet(uint8_t bind)
{
uint8_t rf_ch;
if (bind) {
rf_ch = 83;
packet[0] = 'K';
packet[1] = 'N';
packet[2] = 'D';
packet[3] = 'Z';
packet[4] = rx_tx_addr[0];
packet[5] = rx_tx_addr[1];
packet[6] = rx_tx_addr[2];
packet[7] = rx_tx_addr[3];
packet[8] = hopping_frequency[0];
packet[9] = hopping_frequency[1];
packet[10] = hopping_frequency[2];
packet[11] = hopping_frequency[3];
packet[12] = 0x00;
packet[13] = 0x00;
packet[14] = 0x00;
packet[15] = 0x01; //mode_bitrate == USE1MBPS_YES ? 0x01 : 0x00;
} else {
rf_ch = hopping_frequency[hopping_frequency_no];
// Each packet is repeated 4 times on the same channel
// We're not strictly repeating them, rather we
// send new packet on the same frequency, so the
// receiver gets the freshest command. As receiver
// hops to a new frequency as soon as valid packet
// received it does not matter that the packet is
// not the same one repeated twice - nobody checks this
// NB! packet_count overflow is handled and used in
// callback.
if (++packet_count == 4)
hopping_frequency_no = (hopping_frequency_no + 1) & 0x03;
uint16_t kn_throttle, kn_rudder, kn_elevator, kn_aileron;
kn_throttle = convert_channel_10b(THROTTLE);
kn_aileron = convert_channel_10b(AILERON);
kn_elevator = convert_channel_10b(ELEVATOR);
kn_rudder = convert_channel_10b(RUDDER);
packet[0] = (kn_throttle >> 8) & 0xFF;
packet[1] = kn_throttle & 0xFF;
packet[2] = (kn_aileron >> 8) & 0xFF;
packet[3] = kn_aileron & 0xFF;
packet[4] = (kn_elevator >> 8) & 0xFF;
packet[5] = kn_elevator & 0xFF;
packet[6] = (kn_rudder >> 8) & 0xFF;
packet[7] = kn_rudder & 0xFF;
// Trims, middle is 0x64 (100) 0-200
packet[8] = 0x64; // T
packet[9] = 0x64; // A
packet[10] = 0x64; // E
packet[11] = 0x64; // R
if (Servo_data[AUX1] > PPM_SWITCH)
flags |= KN_FLAG_DR;
else
flags=0;
if (Servo_data[AUX2] > PPM_SWITCH)
flags |= KN_FLAG_TH;
if (Servo_data[AUX3] > PPM_SWITCH)
flags |= KN_FLAG_IDLEUP;
if (Servo_data[AUX4] > PPM_SWITCH)
flags |= KN_FLAG_GYRO3;
packet[12] = flags;
packet[13] = (packet_count << PACKET_COUNT_SHIFT) | (hopping_frequency_no << RF_CHANNEL_SHIFT);
packet[14] = 0x00;
packet[15] = 0x00;
else
{
packet_period = KN_FX_SENDING_PACKET_PERIOD;
bind_counter = KN_FX_BIND_COUNT;
packet_count = KN_FX_PACKET_SEND_COUNT;
}
kn_init();
phase = IS_AUTOBIND_FLAG_on ? KN_PHASE_PRE_BIND : KN_PHASE_PRE_SEND;
packet_sent = 0;
NRF24L01_WriteReg(NRF24L01_05_RF_CH, rf_ch);
NRF24L01_FlushTx();
NRF24L01_WritePayload(packet, 16);
//++total_packets;
packet_sent = 1;
if (! hopping_frequency_no) {
//Keep transmit power updated
NRF24L01_SetPower();
}
return KN_INIT_WAIT_MS;
}
uint16_t kn_callback()
{
uint16_t timeout = KN_PACKET_PERIOD;
switch (phase)
{
case KN_INIT2:
bind_counter = KN_BIND_COUNT;
timeout = kn_init2();
phase = KN_BIND;
set_tx_for_bind();
break;
case KN_INIT2_NO_BIND:
timeout = kn_init2();
phase = KN_DATA;
set_tx_for_data();
break;
case KN_BIND:
if (packet_sent && NRF24L01_packet_ack() != PKT_ACKED)
return KN_PACKET_CHKTIME;
kn_send_packet(1);
if (--bind_counter == 0) {
phase = KN_DATA;
set_tx_for_data();
BIND_DONE;
case KN_PHASE_PRE_BIND:
kn_bind_init();
phase=KN_PHASE_BINDING;
//Do once, no break needed
case KN_PHASE_BINDING:
if(bind_counter>0)
{
bind_counter--;
NRF24L01_WritePayload(packet, KN_PAYLOADSIZE);
return KN_BINDING_PACKET_PERIOD;
}
break;
case KN_DATA:
if (packet_count == 4)
packet_count = 0;
else {
if (packet_sent && NRF24L01_packet_ack() != PKT_ACKED)
return KN_PACKET_CHKTIME;
kn_send_packet(0);
BIND_DONE;
//Continue
case KN_PHASE_PRE_SEND:
packet_sent = 0;
hopping_frequency_no = 0;
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, rx_tx_addr, KN_TX_ADDRESS_SIZE);
phase = KN_PHASE_SENDING;
//Do once, no break needed
case KN_PHASE_SENDING:
if(packet_sent >= packet_count)
{
packet_sent = 0;
hopping_frequency_no++;
if(hopping_frequency_no >= KN_RF_CH_COUNT) hopping_frequency_no = 0;
kn_update_packet_control_data();
NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency[hopping_frequency_no]);
}
break;
}
return timeout;
}
uint16_t initKN(){
//total_packets = 0;
//mode_bitrate=USE1MBPS_YES;
kn_init();
phase = IS_AUTOBIND_FLAG_on ? KN_INIT2 : KN_INIT2_NO_BIND;
kn_initialize_tx_id();
// Call callback in 50ms
return 50000;
else
{
// Update sending count and RF channel index.
// The protocol sends 4 data packets every 2ms per frequency, plus a 2ms gap.
// Each data packet need a packet number and RF channel index
packet[13] = 0x00;
if(sub_protocol==WLTOYS)
packet[13] = (packet_sent << 5) | (hopping_frequency_no << 2);
}
NRF24L01_WritePayload(packet, KN_PAYLOADSIZE);
packet_sent++;
return packet_period;
} //switch
//Bad things happened, reset
packet_sent = 0;
phase = KN_PHASE_PRE_SEND;
return packet_period;
}
#endif

View File

@@ -0,0 +1,247 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// compatible with MJX WLH08, X600, X800, H26D
// Last sync with hexfet new_protocols/mjxq_nrf24l01.c dated 2016-01-17
#if defined(MJXQ_NRF24L01_INO)
#include "iface_nrf24l01.h"
#define MJXQ_BIND_COUNT 150
#define MJXQ_PACKET_PERIOD 4000 // Timeout for callback in uSec
#define MJXQ_INITIAL_WAIT 500
#define MJXQ_PACKET_SIZE 16
#define MJXQ_RF_NUM_CHANNELS 4
#define MJXQ_ADDRESS_LENGTH 5
#define MJXQ_PAN_TILT_COUNT 16 // for H26D - match stock tx timing
#define MJXQ_PAN_DOWN 0x08
#define MJXQ_PAN_UP 0x04
#define MJXQ_TILT_DOWN 0x20
#define MJXQ_TILT_UP 0x10
static uint8_t __attribute__((unused)) MJXQ_pan_tilt_value()
{
// Servo_AUX8 PAN // H26D
// Servo_AUX9 TILT
uint8_t pan = 0;
packet_count++;
if(packet_count & MJXQ_PAN_TILT_COUNT)
{
if(Servo_AUX8)
pan=MJXQ_PAN_UP;
if(Servo_data[AUX8]<PPM_MIN_COMMAND)
pan=MJXQ_PAN_DOWN;
if(Servo_data[AUX9]>PPM_MIN_COMMAND)
pan=MJXQ_TILT_UP;
if(Servo_data[AUX9]<PPM_MIN_COMMAND)
pan=MJXQ_TILT_DOWN;
}
return pan;
}
#define MJXQ_CHAN2TRIM(X) (((X) & 0x80 ? (X) : 0x7f - (X)) >> 1)
static void __attribute__((unused)) MJXQ_send_packet(uint8_t bind)
{
packet[0] = convert_channel_8b(THROTTLE);
packet[1] = convert_channel_s8b(RUDDER);
packet[4] = 0x40; // rudder does not work well with dyntrim
packet[2] = convert_channel_s8b(ELEVATOR);
packet[5] = MJXQ_CHAN2TRIM(packet[2]); // trim elevator
packet[3] = convert_channel_s8b(AILERON);
packet[6] = MJXQ_CHAN2TRIM(packet[3]); // trim aileron
packet[7] = rx_tx_addr[0];
packet[8] = rx_tx_addr[1];
packet[9] = rx_tx_addr[2];
packet[10] = 0x00; // overwritten below for feature bits
packet[11] = 0x00; // overwritten below for X600
packet[12] = 0x00;
packet[13] = 0x00;
packet[14] = 0xC0; // bind value
// Servo_AUX1 FLIP
// Servo_AUX2 LED
// Servo_AUX3 PICTURE
// Servo_AUX4 VIDEO
// Servo_AUX5 HEADLESS
// Servo_AUX6 RTH
// Servo_AUX7 AUTOFLIP // X800, X600
switch(sub_protocol)
{
case H26D:
packet[10]=MJXQ_pan_tilt_value();
// fall through on purpose - no break
case WLH08:
packet[10] += GET_FLAG(Servo_AUX6, 0x02) //RTH
| GET_FLAG(Servo_AUX5, 0x01); //HEADLESS
if (!bind)
{
packet[14] = 0x04
| GET_FLAG(Servo_AUX1, 0x01) //FLIP
| GET_FLAG(Servo_AUX3, 0x08) //PICTURE
| GET_FLAG(Servo_AUX4, 0x10) //VIDEO
| GET_FLAG(!Servo_AUX2, 0x20); // air/ground mode
}
break;
case X600:
if(Servo_AUX5) //HEADLESS
{ // driven trims cause issues when headless is enabled
packet[5] = 0x40;
packet[6] = 0x40;
}
packet[10] = GET_FLAG(!Servo_AUX2, 0x02); //LED
packet[11] = GET_FLAG(Servo_AUX6, 0x01); //RTH
if (!bind)
{
packet[14] = 0x02 // always high rates by bit2 = 1
| GET_FLAG(Servo_AUX1, 0x04) //FLIP
| GET_FLAG(Servo_AUX7, 0x10) //AUTOFLIP
| GET_FLAG(Servo_AUX5, 0x20); //HEADLESS
}
break;
case X800:
default:
packet[10] = 0x10
| GET_FLAG(!Servo_AUX2, 0x02) //LED
| GET_FLAG(Servo_AUX7, 0x01); //AUTOFLIP
if (!bind)
{
packet[14] = 0x02 // always high rates by bit2 = 1
| GET_FLAG(Servo_AUX1, 0x04) //FLIP
| GET_FLAG(Servo_AUX3, 0x08) //PICTURE
| GET_FLAG(Servo_AUX4, 0x10); //VIDEO
}
break;
}
uint8_t sum = packet[0];
for (uint8_t i=1; i < MJXQ_PACKET_SIZE-1; i++) sum += packet[i];
packet[15] = sum;
// Power on, TX mode, 2byte CRC
if (sub_protocol == H26D)
NRF24L01_SetTxRxMode(TX_EN);
else
XN297_Configure(BV(NRF24L01_00_EN_CRC) | BV(NRF24L01_00_CRCO) | BV(NRF24L01_00_PWR_UP));
NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency[hopping_frequency_no++ / 2]);
hopping_frequency_no %= 2 * MJXQ_RF_NUM_CHANNELS; // channels repeated
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
if (sub_protocol == H26D)
NRF24L01_WritePayload(packet, MJXQ_PACKET_SIZE);
else
XN297_WritePayload(packet, MJXQ_PACKET_SIZE);
NRF24L01_SetPower();
}
static void __attribute__((unused)) MJXQ_init()
{
uint8_t addr[MJXQ_ADDRESS_LENGTH];
memcpy(addr, "\x6d\x6a\x77\x77\x77", MJXQ_ADDRESS_LENGTH);
if (sub_protocol == WLH08)
memcpy(hopping_frequency, "\x12\x22\x32\x42", MJXQ_RF_NUM_CHANNELS);
else
if (sub_protocol == H26D)
memcpy(hopping_frequency, "\x36\x3e\x46\x2e", MJXQ_RF_NUM_CHANNELS);
else
{
memcpy(hopping_frequency, "\x0a\x35\x42\x3d", MJXQ_RF_NUM_CHANNELS);
memcpy(addr, "\x6d\x6a\x73\x73\x73", MJXQ_RF_NUM_CHANNELS);
}
NRF24L01_Initialize();
NRF24L01_SetTxRxMode(TX_EN);
if (sub_protocol == H26D)
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, addr, MJXQ_ADDRESS_LENGTH);
else
XN297_SetTXAddr(addr, MJXQ_ADDRESS_LENGTH);
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowledgment on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0x00); // no retransmits
NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, MJXQ_PACKET_SIZE); // rx pipe 0 (used only for blue board)
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps
NRF24L01_SetPower();
}
static void __attribute__((unused)) MJXQ_init2()
{
// haven't figured out txid<-->rf channel mapping for MJX models
static const uint8_t rf_map[][4] = {
{0x0A, 0x46, 0x3A, 0x42},
{0x0A, 0x3C, 0x36, 0x3F},
{0x0A, 0x43, 0x36, 0x3F} };
if (sub_protocol == H26D)
memcpy(hopping_frequency, "\x32\x3e\x42\x4e", MJXQ_RF_NUM_CHANNELS);
else
if (sub_protocol == WLH08)
memcpy(hopping_frequency, rf_map[rx_tx_addr[0]%3], MJXQ_RF_NUM_CHANNELS);
}
static void __attribute__((unused)) MJXQ_initialize_txid()
{
// haven't figured out txid<-->rf channel mapping for MJX models
static const uint8_t tx_map[][3]={
{0xF8, 0x4F, 0x1C},
{0xC8, 0x6E, 0x02},
{0x48, 0x6A, 0x40} };
if (sub_protocol == WLH08)
rx_tx_addr[0]&=0xF8; // txid must be multiple of 8
else
memcpy(rx_tx_addr,tx_map[rx_tx_addr[0]%3],3);
}
uint16_t MJXQ_callback()
{
if(IS_BIND_DONE_on)
MJXQ_send_packet(0);
else
{
if (bind_counter == 0)
{
MJXQ_init2();
BIND_DONE;
}
else
{
bind_counter--;
MJXQ_send_packet(1);
}
}
return MJXQ_PACKET_PERIOD;
}
uint16_t initMJXQ(void)
{
BIND_IN_PROGRESS; // autobind protocol
bind_counter = MJXQ_BIND_COUNT;
MJXQ_initialize_txid();
MJXQ_init();
packet_count=0;
return MJXQ_INITIAL_WAIT+MJXQ_PACKET_PERIOD;
}
#endif

View File

@@ -0,0 +1,218 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// compatible with MT99xx, Eachine H7, Yi Zhan i6S
// Last sync with Goebish mt99xx_nrf24l01.c dated 2016-01-29
#if defined(MT99XX_NRF24L01_INO)
#include "iface_nrf24l01.h"
#define MT99XX_BIND_COUNT 928
#define MT99XX_PACKET_PERIOD_MT 2625
#define MT99XX_PACKET_PERIOD_YZ 3125
#define MT99XX_INITIAL_WAIT 500
#define MT99XX_PACKET_SIZE 9
#define checksum_offset rf_ch_num
#define channel_offset phase
enum{
// flags going to packet[6] (MT99xx, H7)
FLAG_MT_RATE1 = 0x01, // (H7 high rate)
FLAG_MT_RATE2 = 0x02, // (MT9916 only)
FLAG_MT_VIDEO = 0x10,
FLAG_MT_SNAPSHOT= 0x20,
FLAG_MT_FLIP = 0x80,
};
enum {
MT99XX_INIT = 0,
MT99XX_BIND,
MT99XX_DATA
};
static void __attribute__((unused)) MT99XX_send_packet()
{
const uint8_t yz_p4_seq[] = {0xa0, 0x20, 0x60};
const uint8_t mys_byte[] = {
0x01, 0x11, 0x02, 0x12, 0x03, 0x13, 0x04, 0x14,
0x05, 0x15, 0x06, 0x16, 0x07, 0x17, 0x00, 0x10
};
static uint8_t yz_seq_num=0;
if(sub_protocol != YZ)
{ // MT99XX & H7
packet[0] = convert_channel_8b_scale(THROTTLE,0x00,0xE1); // throttle
packet[1] = convert_channel_8b_scale(RUDDER ,0x00,0xE1); // rudder
packet[2] = convert_channel_8b_scale(AILERON ,0x00,0xE1); // aileron
packet[3] = convert_channel_8b_scale(ELEVATOR,0x00,0xE1); // elevator
packet[4] = 0x20; // pitch trim (0x3f-0x20-0x00)
packet[5] = 0x20; // roll trim (0x00-0x20-0x3f)
packet[6] = GET_FLAG( Servo_AUX1, FLAG_MT_FLIP )
| GET_FLAG( Servo_AUX3, FLAG_MT_SNAPSHOT )
| GET_FLAG( Servo_AUX4, FLAG_MT_VIDEO );
if(sub_protocol==MT99)
packet[6] |= 0x40 | FLAG_MT_RATE2;
else
packet[6] |= FLAG_MT_RATE1; // max rate on H7
// todo: mys_byte = next channel index ?
// low nibble: index in chan list ?
// high nibble: 0->start from start of list, 1->start from end of list ?
packet[7] = mys_byte[hopping_frequency_no];
uint8_t result=checksum_offset;
for(uint8_t i=0; i<8; i++)
result += packet[i];
packet[8] = result;
}
else
{ // YZ
packet[0] = convert_channel_8b_scale(THROTTLE,0x00,0x64); // throttle
packet[1] = convert_channel_8b_scale(RUDDER ,0x00,0x64); // rudder
packet[2] = convert_channel_8b_scale(ELEVATOR,0x00,0x64); // elevator
packet[3] = convert_channel_8b_scale(AILERON ,0x00,0x64); // aileron
if(packet_count++ >= 23)
{
yz_seq_num ++;
if(yz_seq_num > 2)
yz_seq_num = 0;
packet_count=0;
}
packet[4] = yz_p4_seq[yz_seq_num];
packet[5] = 0x02 // expert ? (0=unarmed, 1=normal)
| GET_FLAG(Servo_AUX4, 0x10) //VIDEO
| GET_FLAG(Servo_AUX1, 0x80) //FLIP
| GET_FLAG(Servo_AUX5, 0x04) //HEADLESS
| GET_FLAG(Servo_AUX3, 0x20); //SNAPSHOT
packet[6] = GET_FLAG(Servo_AUX2, 0x80); //LED
packet[7] = packet[0];
for(uint8_t idx = 1; idx < MT99XX_PACKET_SIZE-2; idx++)
packet[7] += packet[idx];
packet[8] = 0xff;
}
NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency[hopping_frequency_no] + channel_offset);
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
XN297_WritePayload(packet, MT99XX_PACKET_SIZE);
hopping_frequency_no++;
if(sub_protocol == YZ)
hopping_frequency_no++; // skip every other channel
if(hopping_frequency_no > 15)
hopping_frequency_no = 0;
NRF24L01_SetPower();
}
static void __attribute__((unused)) MT99XX_init()
{
NRF24L01_Initialize();
NRF24L01_SetTxRxMode(TX_EN);
NRF24L01_FlushTx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowldgement on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x03); // 5 bytes address
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0x00); // no auto retransmit
if(sub_protocol == YZ)
NRF24L01_SetBitrate(NRF24L01_BR_250K); // 250Kbps (nRF24L01+ only)
else
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps
NRF24L01_SetPower();
XN297_Configure(BV(NRF24L01_00_EN_CRC) | BV(NRF24L01_00_CRCO) | BV(NRF24L01_00_PWR_UP) | (sub_protocol == YZ ? BV(XN297_UNSCRAMBLED):0) );
XN297_SetTXAddr((uint8_t *)"\xCC\xCC\xCC\xCC\xCC", 5);
}
static void __attribute__((unused)) MT99XX_initialize_txid()
{
if(sub_protocol == YZ)
{
rx_tx_addr[0] = 0x53; // test (SB id)
rx_tx_addr[1] = 0x00;
}
checksum_offset = (rx_tx_addr[0] + rx_tx_addr[1]) & 0xff;
channel_offset = (((checksum_offset & 0xf0)>>4) + (checksum_offset & 0x0f)) % 8;
}
uint16_t MT99XX_callback()
{
if(IS_BIND_DONE_on)
MT99XX_send_packet();
else
{
if (bind_counter == 0)
{
rx_tx_addr[2] = 0x00;
rx_tx_addr[3] = 0xCC;
rx_tx_addr[4] = 0xCC;
// set tx address for data packets
XN297_SetTXAddr(rx_tx_addr, 5);
BIND_DONE;
}
else
{
NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency[hopping_frequency_no]);
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
XN297_WritePayload(packet, MT99XX_PACKET_SIZE); // bind packet
hopping_frequency_no++;
if(sub_protocol == YZ)
hopping_frequency_no++; // skip every other channel
if(hopping_frequency_no > 15)
hopping_frequency_no = 0;
bind_counter--;
}
}
return packet_period;
}
uint16_t initMT99XX(void)
{
BIND_IN_PROGRESS; // autobind protocol
bind_counter = MT99XX_BIND_COUNT;
memcpy(hopping_frequency,"\x02\x48\x0C\x3e\x16\x34\x20\x2A\x2A\x20\x34\x16\x3e\x0c\x48\x02",16);
MT99XX_initialize_txid();
MT99XX_init();
packet[0] = 0x20;
if(sub_protocol!=YZ)
{ // MT99 & H7
packet_period = MT99XX_PACKET_PERIOD_MT;
packet[1] = 0x14;
packet[2] = 0x03;
packet[3] = 0x25;
}
else
{ // YZ
packet_period = MT99XX_PACKET_PERIOD_YZ;
packet[1] = 0x15;
packet[2] = 0x05;
packet[3] = 0x06;
}
packet[4] = rx_tx_addr[0]; // 1st byte for data state tx address
packet[5] = rx_tx_addr[1]; // 2nd byte for data state tx address (always 0x00 on Yi Zhan ?)
packet[6] = 0x00; // 3rd byte for data state tx address (always 0x00 ?)
packet[7] = checksum_offset; // checksum offset
packet[8] = 0xAA; // fixed
packet_count=0;
return MT99XX_INITIAL_WAIT+MT99XX_PACKET_PERIOD_MT;
}
#endif

View File

@@ -13,26 +13,41 @@
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// Check selected board type
#if not defined(ARDUINO_AVR_PRO) && not defined(ARDUINO_AVR_MINI)
#error You must select the board type "Arduino Pro or Pro Mini" or "Arduino Mini"
#endif
#if F_CPU != 16000000L || not defined(__AVR_ATmega328P__)
#error You must select the processor type "ATmega328(5V, 16MHz)"
#endif
//******************
// Protocols
//******************
enum PROTOCOLS
{
MODE_SERIAL = 0, // Serial commands
MODE_FLYSKY = 1, // =>A7105 / FLYSKY protocol
MODE_HUBSAN = 2, // =>A7105 / HUBSAN protocol
MODE_FRSKY = 3, // =>CC2500 / FRSKY protocol
MODE_HISKY = 4, // =>NRF24L01 / HISKY protocol
MODE_V2X2 = 5, // =>NRF24L01 / V2x2 protocol
MODE_DSM2 = 6, // =>CYRF6936 / DSM2 protocol
MODE_DEVO =7, // =>CYRF6936 / DEVO protocol
MODE_YD717 = 8, // =>NRF24L01 / YD717 protocol (CX10 red pcb)
MODE_KN = 9, // =>NRF24L01 / KN protocol
MODE_SYMAX = 10, // =>NRF24L01 / SYMAX protocol (SYMAX4 working)
MODE_SLT = 11, // =>NRF24L01 / SLT protocol
MODE_CX10 = 12, // =>NRF24L01 / CX-10 protocol
MODE_CG023 = 13, // =>NRF24L01 / CG023 protocol
MODE_BAYANG = 14, // =>NRF24L01 / BAYANG protocol
MODE_FRSKYX = 15, // =>CC2500 / FRSKYX protocol
MODE_FLYSKY = 1, // =>A7105
MODE_HUBSAN = 2, // =>A7105
MODE_FRSKY = 3, // =>CC2500
MODE_HISKY = 4, // =>NRF24L01
MODE_V2X2 = 5, // =>NRF24L01
MODE_DSM2 = 6, // =>CYRF6936
MODE_DEVO =7, // =>CYRF6936
MODE_YD717 = 8, // =>NRF24L01
MODE_KN = 9, // =>NRF24L01
MODE_SYMAX = 10, // =>NRF24L01
MODE_SLT = 11, // =>NRF24L01
MODE_CX10 = 12, // =>NRF24L01
MODE_CG023 = 13, // =>NRF24L01
MODE_BAYANG = 14, // =>NRF24L01
MODE_FRSKYX = 15, // =>CC2500
MODE_ESKY = 16, // =>NRF24L01
MODE_MT99XX=17, // =>NRF24L01
MODE_MJXQ=18, // =>NRF24L01
MODE_SHENQI=19 // =>NRF24L01
};
enum Flysky
{
Flysky=0,
@@ -53,31 +68,66 @@ enum YD717
{
YD717=0,
SKYWLKR=1,
SYMAX2=2,
SYMAX4=2,
XINXUN=3,
NIHUI=4
};
enum KN
{
WLTOYS=0,
FEILUN=1
};
enum SYMAX
{
SYMAX=0,
SYMAX5C=1,
SYMAX5C=1
};
enum CX10 {
enum CX10
{
CX10_GREEN = 0,
CX10_BLUE, // also compatible with CX10-A, CX12
DM007
CX10_BLUE=1, // also compatible with CX10-A, CX12
DM007=2,
Q282=3,
JC3015_1=4,
JC3015_2=5,
MK33041=6,
Q242=7
};
enum CG023 {
enum CG023
{
CG023 = 0,
YD829 = 1,
H8_3D = 2
};
enum MT99XX
{
MT99 = 0,
H7 = 1,
YZ = 2
};
enum MJXQ
{
WLH08 = 0,
X600 = 1,
X800 = 2,
H26D = 3
};
#define PPM_MIN_COMMAND 1250
#define PPM_SWITCH 1550
#define PPM_MAX_COMMAND 1750
#define NONE 0
#define P_HIGH 1
#define P_LOW 0
#define AUTOBIND 1
#define NO_AUTOBIND 0
struct PPM_Parameters
{
uint8_t protocol : 5;
uint8_t sub_proto : 3;
uint8_t rx_num : 4;
uint8_t power : 1;
uint8_t autobind : 1;
uint8_t option;
};
//*******************
//*** Pinouts ***
@@ -143,6 +193,7 @@ enum CG023 {
#define LED_OFF PORTB &= ~_BV(5)
#define LED_TOGGLE PORTB ^= _BV(5)
#define LED_SET_OUTPUT DDRB |= _BV(5)
#define IS_LED_on ( (PORTB & _BV(5)) != 0x00 )
// Macros
#define NOP() __asm__ __volatile__("nop")
@@ -183,8 +234,26 @@ enum CG023 {
#define BIND_DONE protocol_flags |= _BV(7)
#define IS_BIND_DONE_on ( ( protocol_flags & _BV(7) ) !=0 )
#define BAD_PROTO_off protocol_flags2 &= ~_BV(0)
#define BAD_PROTO_on protocol_flags2 |= _BV(0)
#define IS_BAD_PROTO_on ( ( protocol_flags2 & _BV(0) ) !=0 )
#define BLINK_BIND_TIME 100
#define BLINK_SERIAL_TIME 500
#define BLINK_BAD_PROTO_TIME_LOW 1000
#define BLINK_BAD_PROTO_TIME_HIGH 50
//AUX flags definition
#define Servo_AUX1 Servo_AUX & _BV(0)
#define Servo_AUX2 Servo_AUX & _BV(1)
#define Servo_AUX3 Servo_AUX & _BV(2)
#define Servo_AUX4 Servo_AUX & _BV(3)
#define Servo_AUX5 Servo_AUX & _BV(4)
#define Servo_AUX6 Servo_AUX & _BV(5)
#define Servo_AUX7 Servo_AUX & _BV(6)
#define Servo_AUX8 Servo_AUX & _BV(7)
#define GET_FLAG(ch, mask) ( ch ? mask : 0)
//************************
//*** Power settings ***
@@ -285,41 +354,40 @@ enum {
//*******************
const uint16_t PROGMEM CRCTable[]=
{
0x0000,0x1189,0x2312,0x329b,0x4624,0x57ad,0x6536,0x74bf,
0x8c48,0x9dc1,0xaf5a,0xbed3,0xca6c,0xdbe5,0xe97e,0xf8f7,
0x1081,0x0108,0x3393,0x221a,0x56a5,0x472c,0x75b7,0x643e,
0x9cc9,0x8d40,0xbfdb,0xae52,0xdaed,0xcb64,0xf9ff,0xe876,
0x2102,0x308b,0x0210,0x1399,0x6726,0x76af,0x4434,0x55bd,
0xad4a,0xbcc3,0x8e58,0x9fd1,0xeb6e,0xfae7,0xc87c,0xd9f5,
0x3183,0x200a,0x1291,0x0318,0x77a7,0x662e,0x54b5,0x453c,
0xbdcb,0xac42,0x9ed9,0x8f50,0xfbef,0xea66,0xd8fd,0xc974,
0x4204,0x538d,0x6116,0x709f,0x0420,0x15a9,0x2732,0x36bb,
0xce4c,0xdfc5,0xed5e,0xfcd7,0x8868,0x99e1,0xab7a,0xbaf3,
0x5285,0x430c,0x7197,0x601e,0x14a1,0x0528,0x37b3,0x263a,
0xdecd,0xcf44,0xfddf,0xec56,0x98e9,0x8960,0xbbfb,0xaa72,
0x6306,0x728f,0x4014,0x519d,0x2522,0x34ab,0x0630,0x17b9,
0xef4e,0xfec7,0xcc5c,0xddd5,0xa96a,0xb8e3,0x8a78,0x9bf1,
0x7387,0x620e,0x5095,0x411c,0x35a3,0x242a,0x16b1,0x0738,
0xffcf,0xee46,0xdcdd,0xcd54,0xb9eb,0xa862,0x9af9,0x8b70,
0x8408,0x9581,0xa71a,0xb693,0xc22c,0xd3a5,0xe13e,0xf0b7,
0x0840,0x19c9,0x2b52,0x3adb,0x4e64,0x5fed,0x6d76,0x7cff,
0x9489,0x8500,0xb79b,0xa612,0xd2ad,0xc324,0xf1bf,0xe036,
0x18c1,0x0948,0x3bd3,0x2a5a,0x5ee5,0x4f6c,0x7df7,0x6c7e,
0xa50a,0xb483,0x8618,0x9791,0xe32e,0xf2a7,0xc03c,0xd1b5,
0x2942,0x38cb,0x0a50,0x1bd9,0x6f66,0x7eef,0x4c74,0x5dfd,
0xb58b,0xa402,0x9699,0x8710,0xf3af,0xe226,0xd0bd,0xc134,
0x39c3,0x284a,0x1ad1,0x0b58,0x7fe7,0x6e6e,0x5cf5,0x4d7c,
0xc60c,0xd785,0xe51e,0xf497,0x8028,0x91a1,0xa33a,0xb2b3,
0x4a44,0x5bcd,0x6956,0x78df,0x0c60,0x1de9,0x2f72,0x3efb,
0xd68d,0xc704,0xf59f,0xe416,0x90a9,0x8120,0xb3bb,0xa232,
0x5ac5,0x4b4c,0x79d7,0x685e,0x1ce1,0x0d68,0x3ff3,0x2e7a,
0xe70e,0xf687,0xc41c,0xd595,0xa12a,0xb0a3,0x8238,0x93b1,
0x6b46,0x7acf,0x4854,0x59dd,0x2d62,0x3ceb,0x0e70,0x1ff9,
0xf78f,0xe606,0xd49d,0xc514,0xb1ab,0xa022,0x92b9,0x8330,
0x7bc7,0x6a4e,0x58d5,0x495c,0x3de3,0x2c6a,0x1ef1,0x0f78
0x0000,0x1189,0x2312,0x329b,0x4624,0x57ad,0x6536,0x74bf,
0x8c48,0x9dc1,0xaf5a,0xbed3,0xca6c,0xdbe5,0xe97e,0xf8f7,
0x1081,0x0108,0x3393,0x221a,0x56a5,0x472c,0x75b7,0x643e,
0x9cc9,0x8d40,0xbfdb,0xae52,0xdaed,0xcb64,0xf9ff,0xe876,
0x2102,0x308b,0x0210,0x1399,0x6726,0x76af,0x4434,0x55bd,
0xad4a,0xbcc3,0x8e58,0x9fd1,0xeb6e,0xfae7,0xc87c,0xd9f5,
0x3183,0x200a,0x1291,0x0318,0x77a7,0x662e,0x54b5,0x453c,
0xbdcb,0xac42,0x9ed9,0x8f50,0xfbef,0xea66,0xd8fd,0xc974,
0x4204,0x538d,0x6116,0x709f,0x0420,0x15a9,0x2732,0x36bb,
0xce4c,0xdfc5,0xed5e,0xfcd7,0x8868,0x99e1,0xab7a,0xbaf3,
0x5285,0x430c,0x7197,0x601e,0x14a1,0x0528,0x37b3,0x263a,
0xdecd,0xcf44,0xfddf,0xec56,0x98e9,0x8960,0xbbfb,0xaa72,
0x6306,0x728f,0x4014,0x519d,0x2522,0x34ab,0x0630,0x17b9,
0xef4e,0xfec7,0xcc5c,0xddd5,0xa96a,0xb8e3,0x8a78,0x9bf1,
0x7387,0x620e,0x5095,0x411c,0x35a3,0x242a,0x16b1,0x0738,
0xffcf,0xee46,0xdcdd,0xcd54,0xb9eb,0xa862,0x9af9,0x8b70,
0x8408,0x9581,0xa71a,0xb693,0xc22c,0xd3a5,0xe13e,0xf0b7,
0x0840,0x19c9,0x2b52,0x3adb,0x4e64,0x5fed,0x6d76,0x7cff,
0x9489,0x8500,0xb79b,0xa612,0xd2ad,0xc324,0xf1bf,0xe036,
0x18c1,0x0948,0x3bd3,0x2a5a,0x5ee5,0x4f6c,0x7df7,0x6c7e,
0xa50a,0xb483,0x8618,0x9791,0xe32e,0xf2a7,0xc03c,0xd1b5,
0x2942,0x38cb,0x0a50,0x1bd9,0x6f66,0x7eef,0x4c74,0x5dfd,
0xb58b,0xa402,0x9699,0x8710,0xf3af,0xe226,0xd0bd,0xc134,
0x39c3,0x284a,0x1ad1,0x0b58,0x7fe7,0x6e6e,0x5cf5,0x4d7c,
0xc60c,0xd785,0xe51e,0xf497,0x8028,0x91a1,0xa33a,0xb2b3,
0x4a44,0x5bcd,0x6956,0x78df,0x0c60,0x1de9,0x2f72,0x3efb,
0xd68d,0xc704,0xf59f,0xe416,0x90a9,0x8120,0xb3bb,0xa232,
0x5ac5,0x4b4c,0x79d7,0x685e,0x1ce1,0x0d68,0x3ff3,0x2e7a,
0xe70e,0xf687,0xc41c,0xd595,0xa12a,0xb0a3,0x8238,0x93b1,
0x6b46,0x7acf,0x4854,0x59dd,0x2d62,0x3ceb,0x0e70,0x1ff9,
0xf78f,0xe606,0xd49d,0xc514,0xb1ab,0xa022,0x92b9,0x8330,
0x7bc7,0x6a4e,0x58d5,0x495c,0x3de3,0x2c6a,0x1ef1,0x0f78
};
//****************************************
//*** MULTI protocol serial definition ***
//****************************************
@@ -349,6 +417,10 @@ Serial: 100000 Baud 8e2 _ xxxx xxxx p --
CG023 13
Bayang 14
FrskyX 15
ESky 16
MT99XX 17
MJXQ 18
SHENQI 19
BindBit=> 0x80 1=Bind/0=No
AutoBindBit=> 0x40 1=Yes /0=No
RangeCheck=> 0x20 1=Yes /0=No
@@ -369,9 +441,12 @@ Serial: 100000 Baud 8e2 _ xxxx xxxx p --
sub_protocol==YD717
YD717 0
SKYWLKR 1
SYMAX2 2
SYMAX4 2
XINXUN 3
NIHUI 4
sub_protocol==KN
WLTOYS 0
FEILUN 1
sub_protocol==SYMAX
SYMAX 0
SYMAX5C 1
@@ -379,10 +454,24 @@ Serial: 100000 Baud 8e2 _ xxxx xxxx p --
CX10_GREEN 0
CX10_BLUE 1 // also compatible with CX10-A, CX12
DM007 2
Q282 3
JC3015_1 4
JC3015_2 5
MK33041 6
Q242 7
sub_protocol==CG023
CG023 0
YD829 1
H8_3D 2
sub_protocol==MT99XX
MT99 0
H7 1
YZ 2
sub_protocol==MJXQ
WLH08 0
X600 1
X800 2
H26D 3
Power value => 0x80 0=High/1=Low
Stream[3] = option_protocol;
option_protocol value is -127..127
@@ -394,78 +483,5 @@ Serial: 100000 Baud 8e2 _ xxxx xxxx p --
1843 +100%
2047 +125%
Channels bits are concatenated to fit in 22 bytes like in SBUS protocol
**************************
8 channels serial protocol
**************************
Serial: 125000 Baud 8n1 _ xxxx xxxx - ---
Channels:
Nbr=8
10bits=0..1023
0 -125%
96 -100%
512 0%
928 +100%
1023 +125%
Stream[0] = sub_protocol|BindBit|RangeCheckBit|AutoBindBit;
sub_protocol is 0..31 (bits 0..4)
=> Reserved 0
Flysky 1
Hubsan 2
Frsky 3
Hisky 4
V2x2 5
DSM2 6
Devo 7
YD717 8
KN 9
SymaX 10
SLT 11
CX10 12
CG023 13
Bayang 14
FrskyX 15
BindBit=> 0x80 1=Bind/0=No
AutoBindBit=> 0x40 1=Yes /0=No
RangeCheck=> 0x20 1=Yes /0=No
Stream[1] = RxNum | Power | Type;
RxNum value is 0..15 (bits 0..3)
Type is 0..7 <<4 (bit 4..6)
sub_protocol==Flysky
Flysky 0
V9x9 1
V6x6 2
V912 3
sub_protocol==Hisky
Hisky 0
HK310 1
sub_protocol==DSM2
DSM2 0
DSMX 1
sub_protocol==YD717
YD717 0
SKYWLKR 1
SYMAX2 2
XINXUN 3
NIHUI 4
sub_protocol==SYMAX
SYMAX 0
SYMAX5C 1
sub_protocol==CX10
CX10_GREEN 0
CX10_BLUE 1 // also compatible with CX10-A, CX12
DM007 2
sub_protocol==CG023
CG023 0
YD829 1
H8_3D 2
Power value => 0x80 0=High/1=Low
Stream[2] = option_protocol;
option_protocol value is -127..127
Stream[i+3] = lowByte(channel[i]) // with i[0..7]
Stream[11] = highByte(channel[0])<<6 | highByte(channel[1])<<4 | highByte(channel[2])<<2 | highByte(channel[3])
Stream[12] = highByte(channel[4])<<6 | highByte(channel[5])<<4 | highByte(channel[6])<<2 | highByte(channel[7])
Stream[13] = lowByte(CRC16(Stream[0..12])
*/

View File

@@ -4,7 +4,7 @@
http://www.rcgroups.com/forums/showthread.php?t=2165676
https://github.com/pascallanger/DIY-Multiprotocol-TX-Module/edit/master/README.md
Thanks to PhracturedBlue
Thanks to PhracturedBlue, Hexfet, Goebish and all protocol developers
Ported from deviation firmware
This project is free software: you can redistribute it and/or modify
@@ -23,162 +23,60 @@
#include <avr/eeprom.h>
#include <avr/pgmspace.h>
#include <util/delay.h>
#include "Multiprotocol.h"
#include "multiprotocol.h"
//******************************************************
// Multiprotocol module configuration starts here
//Uncomment the TX type
#define ER9X
//#define DEVO7
//Uncomment to enable 8 channels serial protocol, 16 otherwise
//#define NUM_SERIAL_CH_8
//Uncomment to enable telemetry
#define TELEMETRY
//Protocols to include in compilation, comment to exclude
#define BAYANG_NRF24L01_INO
#define CG023_NRF24L01_INO
#define CX10_NRF24L01_INO
#define DEVO_CYRF6936_INO
#define DSM2_CYRF6936_INO
#define FLYSKY_A7105_INO
#define FRSKY_CC2500_INO
#define HISKY_NRF24L01_INO
#define HUBSAN_A7105_INO
#define KN_NRF24L01_INO
#define SLT_NRF24L01_INO
#define SYMAX_NRF24L01_INO
#define V2X2_NRF24L01_INO
#define YD717_NRF24L01_INO
//#define FRSKYX_CC2500_INO
//Update this table to set which protocol/sub_protocol is called for the corresponding dial number
static const uint8_t PPM_prot[15][2]= { {MODE_FLYSKY , Flysky }, //Dial=1
{MODE_HUBSAN , 0 }, //Dial=2
{MODE_FRSKY , 0 }, //Dial=3
{MODE_HISKY , Hisky }, //Dial=4
{MODE_V2X2 , 0 }, //Dial=5
{MODE_DSM2 , DSM2 }, //Dial=6
{MODE_DEVO , 0 }, //Dial=7
{MODE_YD717 , YD717 }, //Dial=8
{MODE_KN , 0 }, //Dial=9
{MODE_SYMAX , SYMAX }, //Dial=10
{MODE_SLT , 0 }, //Dial=11
{MODE_CX10 , CX10_BLUE }, //Dial=12
{MODE_CG023 , CG023 }, //Dial=13
{MODE_BAYANG , 0 }, //Dial=14
{MODE_SYMAX , SYMAX5C } //Dial=15
};
//
//TX definitions with timing endpoints and channels order
//
// Turnigy PPM and channels
#if defined(ER9X)
#define PPM_MAX 2140
#define PPM_MIN 860
#define PPM_MAX_100 2012
#define PPM_MIN_100 988
enum chan_order{
AILERON =0,
ELEVATOR,
THROTTLE,
RUDDER,
AUX1,
AUX2,
AUX3,
AUX4,
AUX5,
AUX6,
AUX7,
AUX8
};
#endif
// Devo PPM and channels
#if defined(DEVO7)
#define PPM_MAX 2100
#define PPM_MIN 900
#define PPM_MAX_100 1920
#define PPM_MIN_100 1120
enum chan_order{
ELEVATOR=0,
AILERON,
THROTTLE,
RUDDER,
AUX1,
AUX2,
AUX3,
AUX4,
AUX5,
AUX6,
AUX7,
AUX8
};
#endif
//CC2500 RF module frequency adjustment, use in case you cannot bind with Frsky RX
//Note: this is set via Option when serial protocol is used
//values from 0-127 offset increase frequency, values from 255 to 127 decrease base frequency
//uint8_t fine = 0x00;
uint8_t fine = 0xd7; //* 215=-41 *
// Multiprotocol module configuration ends here
//******************************************************
//Multiprotocol module configuration file
#include "_Config.h"
//Global constants/variables
uint32_t MProtocol_id;//tx id,
uint32_t MProtocol_id_master;
uint32_t Model_fixed_id=0;
uint32_t fixed_id;
uint8_t cyrfmfg_id[6];//for dsm2 and devo
uint8_t cyrfmfg_id[6];//for dsm2 and devo
uint32_t blink=0;
//
uint16_t counter;
uint8_t channel;
uint8_t packet[40];
uint8_t channel;
uint8_t packet[40];
#define NUM_CHN 16
// Servo data
uint16_t Servo_data[NUM_CHN];
// PPM variable
volatile uint16_t PPM_data[NUM_CHN];
uint8_t Servo_AUX;
// NRF variables
uint8_t rx_tx_addr[5];
uint8_t phase;
// Protocol variables
uint8_t rx_tx_addr[5];
uint8_t phase;
uint16_t bind_counter;
uint8_t bind_phase;
uint8_t binding_idx;
uint8_t bind_phase;
uint8_t binding_idx;
uint32_t packet_counter;
uint16_t packet_period;
uint8_t packet_count;
uint8_t packet_sent;
uint8_t packet_length;
uint8_t hopping_frequency[23];
uint8_t *hopping_frequency_ptr;
uint8_t hopping_frequency_no=0;
uint8_t rf_ch_num;
uint8_t throttle, rudder, elevator, aileron;
uint8_t flags;
uint8_t packet_count;
uint8_t packet_sent;
uint8_t packet_length;
uint8_t hopping_frequency[23];
uint8_t *hopping_frequency_ptr;
uint8_t hopping_frequency_no=0;
uint8_t rf_ch_num;
uint8_t throttle, rudder, elevator, aileron;
uint8_t flags;
uint16_t crc;
//
uint32_t state;
uint8_t len;
uint8_t RX_num;
// Mode_select variables
uint8_t mode_select;
uint8_t protocol_flags;
uint8_t protocol_flags=0,protocol_flags2=0;
// PPM variable
volatile uint16_t PPM_data[NUM_CHN];
// Serial variables
#if defined(NUM_SERIAL_CH_8) //8 channels serial protocol
#define RXBUFFER_SIZE 14
#else //16 channels serial protocol
#define RXBUFFER_SIZE 25
#endif
#define TXBUFFER_SIZE 12
volatile uint8_t rx_buff[RXBUFFER_SIZE];
volatile uint8_t rx_ok_buff[RXBUFFER_SIZE];
@@ -192,22 +90,23 @@ uint8_t cur_protocol[2];
uint8_t prev_protocol=0;
// Telemetry
#define MAX_PKT 27
uint8_t pkt[MAX_PKT];//telemetry receiving packets
#if defined(TELEMETRY)
uint8_t pkt[27];//telemetry receiving packets
uint8_t pktt[27];//telemetry receiving packets
volatile uint8_t tx_head;
volatile uint8_t tx_tail;
uint8_t v_lipo;
int16_t RSSI_dBm;
//const uint8_t RSSI_offset=72;//69 71.72 values db
uint8_t telemetry_link=0;
#include "telemetry.h"
uint8_t pktt[MAX_PKT];//telemetry receiving packets
volatile uint8_t tx_head;
volatile uint8_t tx_tail;
uint8_t v_lipo;
int16_t RSSI_dBm;
//const uint8_t RSSI_offset=72;//69 71.72 values db
uint8_t telemetry_link=0;
uint8_t telemetry_counter=0;
#endif
// Callback
typedef uint16_t (*void_function_t) (void);//pointer to a function with no parameters which return an uint16_t integer
void_function_t remote_callback = 0;
void CheckTimer(uint16_t (*cb)(void));
static void CheckTimer(uint16_t (*cb)(void));
// Init
void setup()
@@ -239,6 +138,9 @@ void setup()
Servo_data[THROTTLE]=PPM_MIN_100;
memcpy((void *)PPM_data,Servo_data, sizeof(Servo_data));
//Wait for every component to start
delay(100);
// Read status of bind button
if( (PINB & _BV(5)) == 0x00 )
BIND_BUTTON_FLAG_on; // If bind button pressed save the status for protocol id reset under hubsan
@@ -247,30 +149,42 @@ void setup()
// after this mode_select will be one of {0000, 0001, ..., 1111}
mode_select=0x0F - ( ( (PINB>>2)&0x07 ) | ( (PINC<<3)&0x08) );//encoder dip switches 1,2,4,8=>B2,B3,B4,C0
//**********************************
//mode_select=14; // here to test PPM
//mode_select=1; // here to test PPM
//**********************************
// Update LED
LED_OFF;
LED_OFF;
LED_SET_OUTPUT;
// Read or create protocol id
MProtocol_id=random_id(10,false);
MProtocol_id_master=MProtocol_id;
//Set power transmission flags
POWER_FLAG_on; //By default high power for everything
MProtocol_id_master=random_id(10,false);
//Init RF modules
#ifdef CC2500_INSTALLED
CC2500_Reset();
#endif
//Protocol and interrupts initialization
if(mode_select != MODE_SERIAL)
{ // PPM
cur_protocol[0]= PPM_prot[mode_select-1][0];
sub_protocol = PPM_prot[mode_select-1][1];
protocol_init(cur_protocol[0]);
mode_select--;
cur_protocol[0] = PPM_prot[mode_select].protocol;
sub_protocol = PPM_prot[mode_select].sub_proto;
RX_num = PPM_prot[mode_select].rx_num;
MProtocol_id = RX_num + MProtocol_id_master;
option = PPM_prot[mode_select].option;
if(PPM_prot[mode_select].power) POWER_FLAG_on;
if(PPM_prot[mode_select].autobind) AUTOBIND_FLAG_on;
mode_select++;
protocol_init();
//Configure PPM interrupt
EICRA |=(1<<ISC11); // The rising edge of INT1 pin D3 generates an interrupt request
EIMSK |= (1<<INT1); // INT1 interrupt enable
#if defined(TELEMETRY)
PPM_Telemetry_serial_init(); // Configure serial for telemetry
#endif
}
else
{ // Serial
@@ -287,11 +201,12 @@ void loop()
if(mode_select==MODE_SERIAL && IS_RX_FLAG_on) // Serial mode and something has been received
{
update_serial_data(); // Update protocol and data
update_aux_flags();
if(IS_CHANGE_PROTOCOL_FLAG_on)
{ // Protocol needs to be changed
LED_OFF; //led off during protocol init
module_reset(); //reset previous module
protocol_init(cur_protocol[0]&0x1F); //init new protocol
protocol_init(); //init new protocol
CHANGE_PROTOCOL_FLAG_off; //done
}
}
@@ -303,44 +218,53 @@ void loop()
Servo_data[i]=PPM_data[i];
sei(); // enable global int
}
update_aux_flags();
PPM_FLAG_off; // wait for next frame before update
}
update_led_status();
#if defined(TELEMETRY)
if(((cur_protocol[0]&0x1F)==MODE_FRSKY)||((cur_protocol[0]&0x1F)==MODE_HUBSAN))
if( ((cur_protocol[0]&0x1F)==MODE_FRSKY) || ((cur_protocol[0]&0x1F)==MODE_HUBSAN) || ((cur_protocol[0]&0x1F)==MODE_FRSKYX) )
frskyUpdate();
#endif
if (remote_callback != 0)
CheckTimer(remote_callback);
}
// Update led status based on binding and serial
void update_led_status(void)
// Update Servo_AUX flags based on servo AUX positions
static void update_aux_flags(void)
{
if(cur_protocol[0]==0)
{ // serial without valid protocol
if(blink<millis())
{
LED_TOGGLE;
Servo_AUX=0;
for(uint8_t i=0;i<8;i++)
if(Servo_data[AUX1+i]>PPM_SWITCH)
Servo_AUX|=1<<i;
}
// Update led status based on binding and serial
static void update_led_status(void)
{
if(blink<millis())
{
if(cur_protocol[0]==0) // No valid serial received at least once
blink+=BLINK_SERIAL_TIME; //blink slowly while waiting a valid serial input
}
}
else
if(remote_callback == 0)
LED_OFF;
else
if(IS_BIND_DONE_on)
LED_ON; //bind completed -> led on
if(remote_callback == 0)
{ // Invalid protocol
if(IS_LED_on) //flash to indicate invalid protocol
blink+=BLINK_BAD_PROTO_TIME_LOW;
else
blink+=BLINK_BAD_PROTO_TIME_HIGH;
}
else
if(blink<millis())
{
LED_TOGGLE;
blink+=BLINK_BIND_TIME; //blink fastly during binding
}
if(IS_BIND_DONE_on)
LED_OFF; //bind completed -> led on
else
blink+=BLINK_BIND_TIME; //blink fastly during binding
LED_TOGGLE;
}
}
// Protocol scheduler
void CheckTimer(uint16_t (*cb)(void))
static void CheckTimer(uint16_t (*cb)(void))
{
uint16_t next_callback;
uint32_t prev;
@@ -373,13 +297,14 @@ void CheckTimer(uint16_t (*cb)(void))
}
}
void protocol_init(uint8_t protocol)
// Protocol start
static void protocol_init()
{
uint16_t next_callback=100; // Default is immediate call back
uint16_t next_callback=0; // Default is immediate call back
remote_callback = 0;
set_rx_tx_addr(MProtocol_id);
blink=millis()+BLINK_BIND_TIME;
blink=millis();
if(IS_BIND_BUTTON_FLAG_on)
AUTOBIND_FLAG_on;
if(IS_AUTOBIND_FLAG_on)
@@ -387,10 +312,10 @@ void protocol_init(uint8_t protocol)
else
BIND_DONE;
CTRL1_on; //antenna RF3 by default
CTRL2_off; //antenna RF3 by default
CTRL1_on; //NRF24L01 antenna RF3 by default
CTRL2_off; //NRF24L01 antenna RF3 by default
switch(protocol) // Init the requested protocol
switch(cur_protocol[0]&0x1F) // Init the requested protocol
{
#if defined(FLYSKY_A7105_INO)
case MODE_FLYSKY:
@@ -491,6 +416,30 @@ void protocol_init(uint8_t protocol)
next_callback=initBAYANG();
remote_callback = BAYANG_callback;
break;
#endif
#if defined(ESKY_NRF24L01_INO)
case MODE_ESKY:
next_callback=initESKY();
remote_callback = ESKY_callback;
break;
#endif
#if defined(MT99XX_NRF24L01_INO)
case MODE_MT99XX:
next_callback=initMT99XX();
remote_callback = MT99XX_callback;
break;
#endif
#if defined(MJXQ_NRF24L01_INO)
case MODE_MJXQ:
next_callback=initMJXQ();
remote_callback = MJXQ_callback;
break;
#endif
#if defined(SHENQI_NRF24L01_INO)
case MODE_SHENQI:
next_callback=initSHENQI();
remote_callback = SHENQI_callback;
break;
#endif
}
@@ -506,7 +455,7 @@ void protocol_init(uint8_t protocol)
BIND_BUTTON_FLAG_off; // do not bind/reset id anymore even if protocol change
}
void update_serial_data()
static void update_serial_data()
{
if(rx_ok_buff[0]&0x20) //check range
RANGE_FLAG_on;
@@ -522,7 +471,6 @@ void update_serial_data()
POWER_FLAG_on; //power high
option=rx_ok_buff[2];
fine=option; // Update FrSky fine tuning
if( ((rx_ok_buff[0]&0x5F) != (cur_protocol[0]&0x5F)) || ( (rx_ok_buff[1]&0x7F) != cur_protocol[1] ) )
{ // New model has been selected
@@ -530,26 +478,15 @@ void update_serial_data()
cur_protocol[1] = rx_ok_buff[1]&0x7F; //store current protocol
CHANGE_PROTOCOL_FLAG_on; //change protocol
sub_protocol=(rx_ok_buff[1]>>4)& 0x07; //subprotocol no (0-7) bits 4-6
MProtocol_id=MProtocol_id_master+(rx_ok_buff[1]& 0x0F); //personalized RX bind + rx num // rx_num bits 0---3
RX_num=rx_ok_buff[1]& 0x0F;
MProtocol_id=MProtocol_id_master+RX_num; //personalized RX bind + rx num // rx_num bits 0---3
}
else
if( ((rx_ok_buff[0]&0x80)!=0) && ((cur_protocol[0]&0x80)==0) ) // Bind flag has been set
CHANGE_PROTOCOL_FLAG_on; //restart protocol with bind
cur_protocol[0] = rx_ok_buff[0]; //store current protocol
// decode channel values
#if defined(NUM_SERIAL_CH_8) //8 channels serial protocol
Servo_data[0]=rx_ok_buff[3]+((rx_ok_buff[11]&0xC0)<<2);
Servo_data[1]=rx_ok_buff[4]+((rx_ok_buff[11]&0x30)<<4);
Servo_data[2]=rx_ok_buff[5]+((rx_ok_buff[11]&0x0C)<<6);
Servo_data[3]=rx_ok_buff[6]+((rx_ok_buff[11]&0x03)<<8);
Servo_data[4]=rx_ok_buff[7]+((rx_ok_buff[12]&0xC0)<<2);
Servo_data[5]=rx_ok_buff[8]+((rx_ok_buff[12]&0x30)<<4);
Servo_data[6]=rx_ok_buff[9]+((rx_ok_buff[12]&0x0C)<<6);
Servo_data[7]=rx_ok_buff[10]+((rx_ok_buff[12]&0x03)<<8);
for(uint8_t i=0;i<8;i++)
Servo_data[i]=((Servo_data[i]*5)>>2)+860; //range 860-2140;
#else //16 channels serial protocol
// decode channel values
volatile uint8_t *p=rx_ok_buff+2;
uint8_t dec=-3;
for(uint8_t i=0;i<NUM_CHN;i++)
@@ -563,36 +500,32 @@ void update_serial_data()
p++;
Servo_data[i]=((((*((uint32_t *)p))>>dec)&0x7FF)*5)/8+860; //value range 860<->2140 -125%<->+125%
}
#endif
RX_FLAG_off; //data has been processed
}
void module_reset()
static void module_reset()
{
remote_callback = 0;
switch(prev_protocol)
{
case MODE_FLYSKY:
case MODE_HUBSAN:
A7105_Reset();
break;
case MODE_FRSKY:
case MODE_FRSKYX:
CC2500_Reset();
break;
case MODE_HISKY:
case MODE_V2X2:
case MODE_YD717:
case MODE_KN:
case MODE_SYMAX:
case MODE_SLT:
case MODE_CX10:
NRF24L01_Reset();
break;
case MODE_DSM2:
case MODE_DEVO:
CYRF_Reset();
break;
if(remote_callback)
{ // previous protocol loaded
remote_callback = 0;
switch(prev_protocol)
{
case MODE_FLYSKY:
case MODE_HUBSAN:
A7105_Reset();
break;
case MODE_FRSKY:
case MODE_FRSKYX:
CC2500_Reset();
break;
case MODE_DSM2:
case MODE_DEVO:
CYRF_Reset();
break;
default: // MODE_HISKY, MODE_V2X2, MODE_YD717, MODE_KN, MODE_SYMAX, MODE_SLT, MODE_CX10, MODE_CG023, MODE_BAYANG, MODE_ESKY, MODE_MT99XX, MODE_MJXQ, MODE_SHENQI
NRF24L01_Reset();
break;
}
}
}
@@ -647,8 +580,48 @@ uint16_t limit_channel_100(uint8_t ch)
return Servo_data[ch];
}
#if defined(TELEMETRY)
void Serial_write(uint8_t data)
{
cli(); // disable global int
if(++tx_head>=TXBUFFER_SIZE)
tx_head=0;
tx_buff[tx_head]=data;
sei(); // enable global int
UCSR0B |= (1<<UDRIE0);//enable UDRE interrupt
}
#endif
static void Mprotocol_serial_init()
{
#include <util/setbaud.h>
UBRR0H = UBRRH_VALUE;
UBRR0L = UBRRL_VALUE;
UCSR0A = 0 ; // Clear X2 bit
//Set frame format to 8 data bits, even parity, 2 stop bits
UCSR0C = (1<<UPM01)|(1<<USBS0)|(1<<UCSZ01)|(1<<UCSZ00);
while ( UCSR0A & (1 << RXC0) )//flush receive buffer
UDR0;
//enable reception and RC complete interrupt
UCSR0B = (1<<RXEN0)|(1<<RXCIE0);//rx enable and interrupt
UCSR0B |= (1<<TXEN0);//tx enable
}
#if defined(TELEMETRY)
static void PPM_Telemetry_serial_init()
{
//9600 bauds
UBRR0H = 0x00;
UBRR0L = 0x67;
UCSR0A = 0 ; // Clear X2 bit
//Set frame format to 8 data bits, none, 1 stop bit
UCSR0C = (1<<UCSZ01)|(1<<UCSZ00);
UCSR0B = (1<<TXEN0);//tx enable
}
#endif
// Convert 32b id to rx_tx_addr
void set_rx_tx_addr(uint32_t id)
static void set_rx_tx_addr(uint32_t id)
{ // Used by almost all protocols
rx_tx_addr[0] = (id >> 24) & 0xFF;
rx_tx_addr[1] = (id >> 16) & 0xFF;
@@ -657,42 +630,6 @@ void set_rx_tx_addr(uint32_t id)
rx_tx_addr[4] = 0xC1; // for YD717: always uses first data port
}
#if defined(TELEMETRY)
void Serial_write(uint8_t data)
{
uint8_t t=tx_head;
if(++t>=TXBUFFER_SIZE)
t=0;
tx_buff[t]=data;
tx_head=t;
UCSR0B |= (1<<UDRIE0);//enable UDRE interrupt
}
#endif
void Mprotocol_serial_init()
{
#if defined(NUM_SERIAL_CH_8) //8 channels serial protocol
#define BAUD 125000
#include <util/setbaud.h>
UBRR0H = UBRRH_VALUE;
UBRR0L = UBRRL_VALUE;
//Set frame format to 8 data bits, no parity, 1 stop bit
UCSR0C |= (1<<UCSZ01)|(1<<UCSZ00);
#else //16 channels serial protocol
#define BAUD 100000
#include <util/setbaud.h>
UBRR0H = UBRRH_VALUE;
UBRR0L = UBRRL_VALUE;
//Set frame format to 8 data bits, even parity, 2 stop bits
UCSR0C |= (1<<UPM01)|(1<<USBS0)|(1<<UCSZ01)|(1<<UCSZ00);
#endif
while ( UCSR0A & (1 << RXC0) )//flush receive buffer
UDR0;
//enable reception and RC complete interrupt
UCSR0B |= (1<<RXEN0)|(1<<RXCIE0);//rx enable and interrupt
UCSR0B |= (1<<TXEN0);//tx enable
}
static uint32_t random_id(uint16_t adress, uint8_t create_new)
{
uint32_t id;
@@ -724,6 +661,7 @@ static uint32_t random_id(uint16_t adress, uint8_t create_new)
/**************************/
/**************************/
//PPM
ISR(INT1_vect)
{ // Interrupt on PPM pin
static int8_t chan=-1;
@@ -742,62 +680,17 @@ ISR(INT1_vect)
else
if(chan!=-1) // need to wait for start of frame
{ //servo values between 500us and 2420us will end up here
PPM_data[chan] = Cur_TCNT1/2;
if(PPM_data[chan]<PPM_MIN) PPM_data[chan]=PPM_MIN;
else if(PPM_data[chan]>PPM_MAX) PPM_data[chan]=PPM_MAX;
uint16_t a = Cur_TCNT1>>1;
if(a<PPM_MIN) a=PPM_MIN;
else if(a>PPM_MAX) a=PPM_MAX;
PPM_data[chan]=a;
if(chan++>=NUM_CHN)
chan=-1; // don't accept any new channels
}
Prev_TCNT1+=Cur_TCNT1;
}
#if defined(TELEMETRY)
ISR(USART_UDRE_vect)
{ // Transmit interrupt
uint8_t t = tx_tail;
if(tx_head!=t)
{
if(++t>=TXBUFFER_SIZE)//head
t=0;
UDR0=tx_buff[t];
tx_tail=t;
}
if (t == tx_head)
UCSR0B &= ~(1<<UDRIE0); // Check if all data is transmitted . if yes disable transmitter UDRE interrupt
}
#endif
#if defined(NUM_SERIAL_CH_8) //8 channels serial protocol
ISR(USART_RX_vect)
{ // RX interrupt
static uint16_t crc = 0;
if(idx==0)
{ // Let's try to sync at this point
OCR1B=TCNT1+5000L; // timer for 2500us
TIFR1=(1<<OCF1B); // clear OCR1B match flag
TIMSK1 |=(1<<OCIE1B); // enable interrupt on compare B match
crc=0;
}
if(idx<RXBUFFER_SIZE-1)
{ // Store bytes in buffer and calculate crc as we go
rx_buff[idx]=UDR0;
crc = (crc<<8) ^ pgm_read_word(&CRCTable[((uint8_t)(crc>>8) ^ rx_buff[idx++]) & 0xFF]);
}
else
{ // A frame has been received and needs to be checked before giving it to main
TIMSK1 &=~(1<<OCIE1B); // disable interrupt on compare B match
if(UDR0==(uint8_t)(crc & 0xFF) && !IS_RX_FLAG_on)
{ //Good frame received and main has finished with previous buffer
for(idx=0;idx<RXBUFFER_SIZE;idx++)
rx_ok_buff[idx]=rx_buff[idx]; // Duplicate the buffer
RX_FLAG_on; //flag for main to process servo data
LED_ON;
}
idx=0;
}
}
#else //16 channels serial protocol
//Serial RX
ISR(USART_RX_vect)
{ // RX interrupt
if((UCSR0A&0x1C)==0) // Check frame error, data overrun and parity error
@@ -834,9 +727,26 @@ ISR(USART_RX_vect)
idx=0; // Error encountered discard full frame...
}
}
#endif
//Serial timer
ISR(TIMER1_COMPB_vect)
{ // Timer1 compare B interrupt
idx=0;
}
#if defined(TELEMETRY)
//Serial TX
ISR(USART_UDRE_vect)
{ // Transmit interrupt
uint8_t t = tx_tail;
if(tx_head!=t)
{
if(++t>=TXBUFFER_SIZE)//head
t=0;
UDR0=tx_buff[t];
tx_tail=t;
}
if (t == tx_head)
UCSR0B &= ~(1<<UDRIE0); // Check if all data is transmitted . if yes disable transmitter UDRE interrupt
}
#endif

View File

@@ -19,7 +19,7 @@
//---------------------------
#include "iface_nrf24l01.h"
void nrf_spi_write(uint8_t command)
static void nrf_spi_write(uint8_t command)
{
uint8_t n=8;
@@ -39,7 +39,7 @@ void nrf_spi_write(uint8_t command)
}
//VARIANT 2
uint8_t nrf_spi_read(void)
static uint8_t nrf_spi_read(void)
{
uint8_t result;
uint8_t i;
@@ -106,7 +106,7 @@ uint8_t NRF24L01_ReadReg(uint8_t reg)
return data;
}
void NRF24L01_ReadRegisterMulti(uint8_t reg, uint8_t * data, uint8_t length)
/*static void NRF24L01_ReadRegisterMulti(uint8_t reg, uint8_t * data, uint8_t length)
{
NRF_CSN_off;
nrf_spi_write(R_REGISTER | (REGISTER_MASK & reg));
@@ -114,8 +114,8 @@ void NRF24L01_ReadRegisterMulti(uint8_t reg, uint8_t * data, uint8_t length)
data[i] = nrf_spi_read();
NRF_CSN_on;
}
void NRF24L01_ReadPayload(uint8_t * data, uint8_t length)
*/
static void NRF24L01_ReadPayload(uint8_t * data, uint8_t length)
{
NRF_CSN_off;
nrf_spi_write(R_RX_PAYLOAD);
@@ -124,7 +124,7 @@ void NRF24L01_ReadPayload(uint8_t * data, uint8_t length)
NRF_CSN_on;
}
void NRF24L01_Strobe(uint8_t state)
static void NRF24L01_Strobe(uint8_t state)
{
NRF_CSN_off;
nrf_spi_write(state);
@@ -154,14 +154,15 @@ void NRF24L01_SetBitrate(uint8_t bitrate)
// Note that bitrate 250kbps (and bit RF_DR_LOW) is valid only
// for nRF24L01+. There is no way to programmatically tell it from
// older version, nRF24L01, but the older is practically phased out
// by Nordic, so we assume that we deal with with modern version.
// by Nordic, so we assume that we deal with modern version.
// Bit 0 goes to RF_DR_HIGH, bit 1 - to RF_DR_LOW
rf_setup = (rf_setup & 0xD7) | ((bitrate & 0x02) << 4) | ((bitrate & 0x01) << 3);
NRF24L01_WriteReg(NRF24L01_06_RF_SETUP, rf_setup);
}
void NRF24L01_SetPower_Value(uint8_t power)
/*
static void NRF24L01_SetPower_Value(uint8_t power)
{
uint8_t nrf_power = 0;
switch(power) {
@@ -179,7 +180,7 @@ void NRF24L01_SetPower_Value(uint8_t power)
rf_setup = (rf_setup & 0xF9) | ((nrf_power & 0x03) << 1);
NRF24L01_WriteReg(NRF24L01_06_RF_SETUP, rf_setup);
}
*/
void NRF24L01_SetPower()
{
uint8_t power=NRF_BIND_POWER;
@@ -254,44 +255,9 @@ uint8_t NRF24L01_packet_ack()
return PKT_PENDING;
}
//---------------------------
/*
void NRF24L01_spi_test(void)
{
unsigned long errors = 0;
unsigned long test = 0;
unsigned long time;
uint8_t test_data_r[5];
uint8_t test_data_w[5] = {0x01,0x02,0x03,0x04,0x05};
time = micros();
Serial.println("Testing SPI");
for(test=0; test < 2775600 ; test++) // should run for X mins.
{
NRF24L01_WriteRegisterMulti(NRF24L01_0B_RX_ADDR_P1, test_data_w, 5);
NRF24L01_ReadRegisterMulti(NRF24L01_0B_RX_ADDR_P1, test_data_r, 5);
if(0 != memcmp(test_data_r, test_data_w, sizeof(test_data_r))) errors++;
test_data_w[0] ++;
test_data_w[1] ++;
test_data_w[2] ++;
test_data_w[3] ++;
test_data_w[4] ++;
}
Serial.print("test "); Serial.print(test, HEX); Serial.print("\n");
Serial.print("errors "); Serial.print(errors, HEX); Serial.print("\n");
Serial.print("time "); Serial.print(micros()- time, DEC); Serial.print("\n");
// 124211960
// 90899216
}
*/
//---------------------------
///////////////
// XN297 emulation layer
uint8_t xn297_scramble_enabled;
uint8_t xn297_addr_len;
uint8_t xn297_tx_addr[5];
uint8_t xn297_rx_addr[5];
@@ -304,14 +270,21 @@ static const uint8_t xn297_scramble[] = {
0x1b, 0x5d, 0x19, 0x10, 0x24, 0xd3, 0xdc, 0x3f,
0x8e, 0xc5, 0x2f};
static const uint16_t xn297_crc_xorout[] = {
0x0000, 0x3448, 0x9BA7, 0x8BBB, 0x85E1, 0x3E8C, // 1st entry is missing, probably never needed
0x451E, 0x18E6, 0x6B24, 0xE7AB, 0x3828, 0x8148, // it's used for 3-byte address w/ 0 byte payload only
const uint16_t PROGMEM xn297_crc_xorout[] = {
0x0000, 0x3d5f, 0xa6f1, 0x3a23, 0xaa16, 0x1caf,
0x62b2, 0xe0eb, 0x0821, 0xbe07, 0x5f1a, 0xaf15,
0x4f0a, 0xad24, 0x5e48, 0xed34, 0x068c, 0xf2c9,
0x1852, 0xdf36, 0x129d, 0xb17c, 0xd5f5, 0x70d7,
0xb798, 0x5133, 0x67db, 0xd94e};
const uint16_t PROGMEM xn297_crc_xorout_scrambled[] = {
0x0000, 0x3448, 0x9BA7, 0x8BBB, 0x85E1, 0x3E8C,
0x451E, 0x18E6, 0x6B24, 0xE7AB, 0x3828, 0x814B,
0xD461, 0xF494, 0x2503, 0x691D, 0xFE8B, 0x9BA7,
0x8B17, 0x2920, 0x8B5F, 0x61B1, 0xD391, 0x7401,
0x2138, 0x129F, 0xB3A0, 0x2988};
uint8_t bit_reverse(uint8_t b_in)
static uint8_t bit_reverse(uint8_t b_in)
{
uint8_t b_out = 0;
for (uint8_t i = 0; i < 8; ++i)
@@ -322,7 +295,7 @@ uint8_t bit_reverse(uint8_t b_in)
return b_out;
}
uint16_t crc16_update(uint16_t crc, uint8_t a)
static uint16_t crc16_update(uint16_t crc, uint8_t a)
{
static const uint16_t polynomial = 0x1021;
@@ -362,16 +335,21 @@ void XN297_SetRXAddr(const uint8_t* addr, uint8_t len)
memcpy(buf, addr, len);
memcpy(xn297_rx_addr, addr, len);
for (uint8_t i = 0; i < xn297_addr_len; ++i)
buf[i] = xn297_rx_addr[i] ^ xn297_scramble[xn297_addr_len-i-1];
{
buf[i] = xn297_rx_addr[i];
if(xn297_scramble_enabled)
buf[i] ^= xn297_scramble[xn297_addr_len-i-1];
}
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, len-2);
NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, buf, 5);
}
void XN297_Configure(uint8_t flags)
void XN297_Configure(uint16_t flags)
{
xn297_scramble_enabled = !(flags & BV(XN297_UNSCRAMBLED));
xn297_crc = !!(flags & BV(NRF24L01_00_EN_CRC));
flags &= ~(BV(NRF24L01_00_EN_CRC) | BV(NRF24L01_00_CRCO));
NRF24L01_WriteReg(NRF24L01_00_CONFIG, flags);
NRF24L01_WriteReg(NRF24L01_00_CONFIG, flags & 0xFF);
}
void XN297_WritePayload(uint8_t* msg, uint8_t len)
@@ -387,12 +365,20 @@ void XN297_WritePayload(uint8_t* msg, uint8_t len)
buf[last++] = 0x55;
}
for (uint8_t i = 0; i < xn297_addr_len; ++i)
buf[last++] = xn297_tx_addr[xn297_addr_len-i-1] ^ xn297_scramble[i];
for (uint8_t i = 0; i < len; ++i) {
{
buf[last] = xn297_tx_addr[xn297_addr_len-i-1];
if(xn297_scramble_enabled)
buf[last] ^= xn297_scramble[i];
last++;
}
for (uint8_t i = 0; i < len; ++i)
{
// bit-reverse bytes in packet
uint8_t b_out = bit_reverse(msg[i]);
buf[last++] = b_out ^ xn297_scramble[xn297_addr_len+i];
buf[last] = b_out;
if(xn297_scramble_enabled)
buf[last] ^= xn297_scramble[xn297_addr_len+i];
last++;
}
if (xn297_crc)
{
@@ -400,7 +386,10 @@ void XN297_WritePayload(uint8_t* msg, uint8_t len)
uint16_t crc = 0xb5d2;
for (uint8_t i = offset; i < last; ++i)
crc = crc16_update(crc, buf[i]);
crc ^= xn297_crc_xorout[xn297_addr_len - 3 + len];
if(xn297_scramble_enabled)
crc ^= pgm_read_word(&xn297_crc_xorout_scrambled[xn297_addr_len - 3 + len]);
else
crc ^= pgm_read_word(&xn297_crc_xorout[xn297_addr_len - 3 + len]);
buf[last++] = crc >> 8;
buf[last++] = crc & 0xff;
}
@@ -409,9 +398,207 @@ void XN297_WritePayload(uint8_t* msg, uint8_t len)
void XN297_ReadPayload(uint8_t* msg, uint8_t len)
{
// TODO: if xn297_crc==1, check CRC before filling *msg
NRF24L01_ReadPayload(msg, len);
for(uint8_t i=0; i<len; i++)
msg[i] = bit_reverse(msg[i]) ^ bit_reverse(xn297_scramble[i+xn297_addr_len]);
{
msg[i] = bit_reverse(msg[i]);
if(xn297_scramble_enabled)
msg[i] ^= bit_reverse(xn297_scramble[i+xn297_addr_len]);
}
}
// End of XN297 emulation
///////////////
// LT8910 emulation layer
uint8_t LT8910_buffer[64];
uint8_t LT8910_buffer_start;
uint16_t LT8910_buffer_overhead_bits;
uint8_t LT8910_addr[8];
uint8_t LT8910_addr_size;
uint8_t LT8910_Preamble_Len;
uint8_t LT8910_Tailer_Len;
uint8_t LT8910_CRC_Initial_Data;
uint8_t LT8910_Flags;
#define LT8910_CRC_ON 6
#define LT8910_SCRAMBLE_ON 5
#define LT8910_PACKET_LENGTH_EN 4
#define LT8910_DATA_PACKET_TYPE_1 3
#define LT8910_DATA_PACKET_TYPE_0 2
#define LT8910_FEC_TYPE_1 1
#define LT8910_FEC_TYPE_0 0
void LT8910_Config(uint8_t preamble_len, uint8_t trailer_len, uint8_t flags, uint8_t crc_init)
{
//Preamble 1 to 8 bytes
LT8910_Preamble_Len=preamble_len;
//Trailer 4 to 18 bits
LT8910_Tailer_Len=trailer_len;
//Flags
// CRC_ON: 1 on, 0 off
// SCRAMBLE_ON: 1 on, 0 off
// PACKET_LENGTH_EN: 1 1st byte of payload is payload size
// DATA_PACKET_TYPE: 00 NRZ, 01 Manchester, 10 8bit/10bit line code, 11 interleave data type
// FEC_TYPE: 00 No FEC, 01 FEC13, 10 FEC23, 11 reserved
LT8910_Flags=flags;
//CRC init constant
LT8910_CRC_Initial_Data=crc_init;
}
void LT8910_SetChannel(uint8_t channel)
{
NRF24L01_WriteReg(NRF24L01_05_RF_CH, channel +2); //NRF24L01 is 2400+channel but LT8900 is 2402+channel
}
void LT8910_SetTxRxMode(enum TXRX_State mode)
{
if(mode == TX_EN)
{
//Switch to TX
NRF24L01_SetTxRxMode(TXRX_OFF);
NRF24L01_SetTxRxMode(TX_EN);
//Disable CRC
NRF24L01_WriteReg(NRF24L01_00_CONFIG, (1 << NRF24L01_00_PWR_UP));
}
else
if (mode == RX_EN)
{
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, 32);
//Switch to RX
NRF24L01_SetTxRxMode(TXRX_OFF);
NRF24L01_FlushRx();
NRF24L01_SetTxRxMode(RX_EN);
// Disable CRC
NRF24L01_WriteReg(NRF24L01_00_CONFIG, (1 << NRF24L01_00_PWR_UP) | (1 << NRF24L01_00_PRIM_RX) );
}
else
NRF24L01_SetTxRxMode(TXRX_OFF);
}
void LT8910_BuildOverhead()
{
uint8_t pos;
//Build overhead
//preamble
memset(LT8910_buffer,LT8910_addr[0]&0x01?0xAA:0x55,LT8910_Preamble_Len-1);
pos=LT8910_Preamble_Len-1;
//address
for(uint8_t i=0;i<LT8910_addr_size;i++)
{
LT8910_buffer[pos]=bit_reverse(LT8910_addr[i]);
pos++;
}
//trailer
memset(LT8910_buffer+pos,(LT8910_buffer[pos-1]&0x01)==0?0xAA:0x55,3);
LT8910_buffer_overhead_bits=pos*8+LT8910_Tailer_Len;
//nrf address length max is 5
pos+=LT8910_Tailer_Len/8;
LT8910_buffer_start=pos>5?5:pos;
}
void LT8910_SetAddress(uint8_t *address,uint8_t addr_size)
{
uint8_t addr[5];
//Address size (SyncWord) 2 to 8 bytes, 16/32/48/64 bits
LT8910_addr_size=addr_size;
memcpy(LT8910_addr,address,LT8910_addr_size);
//Build overhead
LT8910_BuildOverhead();
//Set NRF RX&TX address based on overhead content
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, LT8910_buffer_start-2);
for(uint8_t i=0;i<LT8910_buffer_start;i++) // reverse bytes order
addr[i]=LT8910_buffer[LT8910_buffer_start-i-1];
NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, addr,LT8910_buffer_start);
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, addr,LT8910_buffer_start);
}
uint8_t LT8910_ReadPayload(uint8_t* msg, uint8_t len)
{
uint8_t i,pos=0,shift,end,buffer[32];
unsigned int crc=LT8910_CRC_Initial_Data,a;
pos=LT8910_buffer_overhead_bits/8-LT8910_buffer_start;
end=pos+len+(LT8910_Flags&_BV(LT8910_PACKET_LENGTH_EN)?1:0)+(LT8910_Flags&_BV(LT8910_CRC_ON)?2:0);
//Read payload
NRF24L01_ReadPayload(buffer,end+1);
//Check address + trail
for(i=0;i<pos;i++)
if(LT8910_buffer[LT8910_buffer_start+i]!=buffer[i])
return 0; // wrong address...
//Shift buffer to remove trail bits
shift=LT8910_buffer_overhead_bits&0x7;
for(i=pos;i<end;i++)
{
a=(buffer[i]<<8)+buffer[i+1];
a<<=shift;
buffer[i]=(a>>8)&0xFF;
}
//Check len
if(LT8910_Flags&_BV(LT8910_PACKET_LENGTH_EN))
{
crc=crc16_update(crc,buffer[pos]);
if(bit_reverse(len)!=buffer[pos++])
return 0; // wrong len...
}
//Decode message
for(i=0;i<len;i++)
{
crc=crc16_update(crc,buffer[pos]);
msg[i]=bit_reverse(buffer[pos++]);
}
//Check CRC
if(LT8910_Flags&_BV(LT8910_CRC_ON))
{
if(buffer[pos++]!=((crc>>8)&0xFF)) return 0; // wrong CRC...
if(buffer[pos]!=(crc&0xFF)) return 0; // wrong CRC...
}
//Everything ok
return 1;
}
void LT8910_WritePayload(uint8_t* msg, uint8_t len)
{
unsigned int crc=LT8910_CRC_Initial_Data,a,mask;
uint8_t i, pos=0,tmp, buffer[64], pos_final,shift;
//Add packet len
if(LT8910_Flags&_BV(LT8910_PACKET_LENGTH_EN))
{
tmp=bit_reverse(len);
buffer[pos++]=tmp;
crc=crc16_update(crc,tmp);
}
//Add payload
for(i=0;i<len;i++)
{
tmp=bit_reverse(msg[i]);
buffer[pos++]=tmp;
crc=crc16_update(crc,tmp);
}
//Add CRC
if(LT8910_Flags&_BV(LT8910_CRC_ON))
{
buffer[pos++]=crc>>8;
buffer[pos++]=crc;
}
//Shift everything to fit behind the trailer (4 to 18 bits)
shift=LT8910_buffer_overhead_bits&0x7;
pos_final=LT8910_buffer_overhead_bits/8;
mask=~(0xFF<<(8-shift));
LT8910_buffer[pos_final+pos]=0xFF;
for(i=pos-1;i!=0xFF;i--)
{
a=buffer[i]<<(8-shift);
LT8910_buffer[pos_final+i]=(LT8910_buffer[pos_final+i]&mask>>8)|a>>8;
LT8910_buffer[pos_final+i+1]=(LT8910_buffer[pos_final+i+1]&mask)|a;
}
if(shift)
pos++;
//Send everything
NRF24L01_WritePayload(LT8910_buffer+LT8910_buffer_start,pos_final+pos-LT8910_buffer_start);
}
// End of LT8910 emulation

View File

@@ -0,0 +1,108 @@
#if defined(SHENQI_NRF24L01_INO)
#include "iface_nrf24l01.h"
const uint8_t PROGMEM SHENQI_Freq[] = {
50,50,20,60,30,40,
10,30,40,20,60,10,
50,20,50,40,10,60,
30,30,60,10,40,50,
20,10,60,20,50,30,
40,40,30,50,20,60,
10,10,20,30,40,50,
60,60,50,40,30,20,
10,60,10,50,30,40,
20,10,40,30,60,20 };
void SHENQI_init()
{
NRF24L01_Initialize();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowldgement on all data pipes
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps
NRF24L01_SetPower();
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x03); // 5 bytes rx/tx address
LT8910_Config(4, 8, _BV(LT8910_CRC_ON)|_BV(LT8910_PACKET_LENGTH_EN), 0xAA);
LT8910_SetChannel(2);
LT8910_SetAddress((uint8_t *)"\x9A\x9A\x9A\x9A",4);
LT8910_SetTxRxMode(RX_EN);
}
void SHENQI_send_packet()
{
packet[0]=0x00;
if(packet_count==0)
{
uint8_t bind_addr[4];
bind_addr[0]=0x9A;
bind_addr[1]=0x9A;
bind_addr[2]=rx_tx_addr[2];
bind_addr[3]=rx_tx_addr[3];
LT8910_SetAddress(bind_addr,4);
LT8910_SetChannel(2);
packet[1]=rx_tx_addr[1];
packet[2]=rx_tx_addr[0];
packet_period=2508;
}
else
{
LT8910_SetAddress(rx_tx_addr,4);
packet[1]=255-convert_channel_8b(RUDDER);
packet[2]=255-convert_channel_8b_scale(THROTTLE,0x60,0xA0);
uint8_t freq=pgm_read_byte_near(&SHENQI_Freq[hopping_frequency_no])+(rx_tx_addr[1]&0x0F);
LT8910_SetChannel(freq);
hopping_frequency_no++;
if(hopping_frequency_no==60)
hopping_frequency_no=0;
packet_period=1750;
}
// Send packet + 1 retransmit - not sure why but needed (not present on original TX...)
LT8910_WritePayload(packet,3);
while(NRF24L01_packet_ack()!=PKT_ACKED);
LT8910_WritePayload(packet,3);
packet_count++;
if(packet_count==7)
{
packet_count=0;
packet_period=3000;
}
// Set power
NRF24L01_SetPower();
}
uint16_t SHENQI_callback()
{
if(IS_BIND_DONE_on)
SHENQI_send_packet();
else
{
if( NRF24L01_ReadReg(NRF24L01_07_STATUS) & BV(NRF24L01_07_RX_DR))
{
if(LT8910_ReadPayload(packet, 3))
{
BIND_DONE;
rx_tx_addr[3]=packet[1];
rx_tx_addr[2]=packet[2];
LT8910_SetTxRxMode(TX_EN);
packet_period=14000;
}
NRF24L01_FlushRx();
}
}
return packet_period;
}
uint16_t initSHENQI()
{
BIND_IN_PROGRESS; // autobind protocol
SHENQI_init();
hopping_frequency_no = 0;
packet_count=0;
packet_period=100;
return 1000;
}
#endif

View File

@@ -12,6 +12,7 @@
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// Last sync with hexfet new_protocols/slt_nrf24l01.c dated 2015-02-13
#if defined(SLT_NRF24L01_INO)
@@ -30,7 +31,7 @@ enum {
SLT_DATA3
};
void SLT_init()
static void __attribute__((unused)) SLT_init()
{
NRF24L01_Initialize();
NRF24L01_WriteReg(NRF24L01_00_CONFIG, BV(NRF24L01_00_EN_CRC) | BV(NRF24L01_00_CRCO)); // 2-bytes CRC, radio off
@@ -46,7 +47,7 @@ void SLT_init()
NRF24L01_FlushRx();
}
static void SLT_init2()
static void __attribute__((unused)) SLT_init2()
{
NRF24L01_FlushTx();
packet_sent = 0;
@@ -56,7 +57,7 @@ static void SLT_init2()
NRF24L01_SetTxRxMode(TX_EN);
}
void SLT_set_tx_id(void)
static void __attribute__((unused)) SLT_set_tx_id(void)
{
// Frequency hopping sequence generation
for (uint8_t i = 0; i < 4; ++i)
@@ -67,7 +68,7 @@ void SLT_set_tx_id(void)
hopping_frequency[i*4 + 1] = (rx_tx_addr[i] >> 2) + base;
hopping_frequency[i*4 + 2] = (rx_tx_addr[i] >> 4) + (rx_tx_addr[next_i] & 0x03)*0x10 + base;
if (i*4 + 3 < SLT_NFREQCHANNELS) // guard for 16 channel
hopping_frequency[i*4 + 3] = (rx_tx_addr[i] >> 6) + (rx_tx_addr[next_i] & 0x0f)*0x04 + base;
hopping_frequency[i*4 + 3] = (rx_tx_addr[i] >> 6) + (rx_tx_addr[next_i] & 0x0f)*0x04 + base;
}
// unique
@@ -89,16 +90,16 @@ void SLT_set_tx_id(void)
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, rx_tx_addr, 4);
}
void wait_radio()
static void __attribute__((unused)) SLT_wait_radio()
{
if (packet_sent)
while (!(NRF24L01_ReadReg(NRF24L01_07_STATUS) & BV(NRF24L01_07_TX_DS))) ;
packet_sent = 0;
}
void send_data(uint8_t *data, uint8_t len)
static void __attribute__((unused)) SLT_send_data(uint8_t *data, uint8_t len)
{
wait_radio();
SLT_wait_radio();
NRF24L01_FlushTx();
NRF24L01_WriteReg(NRF24L01_07_STATUS, BV(NRF24L01_07_TX_DS) | BV(NRF24L01_07_RX_DR) | BV(NRF24L01_07_MAX_RT));
NRF24L01_WritePayload(data, len);
@@ -106,11 +107,11 @@ void send_data(uint8_t *data, uint8_t len)
packet_sent = 1;
}
void SLT_build_packet()
static void __attribute__((unused)) SLT_build_packet()
{
// aileron, elevator, throttle, rudder, gear, pitch
uint8_t e = 0; // byte where extension 2 bits for every 10-bit channel are packed
uint8_t ch[]={AILERON, ELEVATOR, THROTTLE, RUDDER};
const uint8_t ch[]={AILERON, ELEVATOR, THROTTLE, RUDDER};
for (uint8_t i = 0; i < 4; ++i) {
uint16_t v = convert_channel_10b(ch[i]);
packet[i] = v;
@@ -128,19 +129,20 @@ void SLT_build_packet()
hopping_frequency_no = 0;
}
static void send_bind_packet()
static void __attribute__((unused)) SLT_send_bind_packet()
{
wait_radio();
SLT_wait_radio();
BIND_IN_PROGRESS; // autobind protocol
NRF24L01_SetPower();
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, (uint8_t *)"\x7E\xB8\x63\xA9", 4);
NRF24L01_WriteReg(NRF24L01_05_RF_CH, 0x50);
send_data(rx_tx_addr, 4);
SLT_send_data(rx_tx_addr, 4);
// NB: we should wait until the packet's sent before changing TX address!
wait_radio();
SLT_wait_radio();
BIND_DONE;
NRF24L01_SetPower();
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, rx_tx_addr, 4);
}
@@ -156,24 +158,23 @@ uint16_t SLT_callback()
delay_us = 150;
break;
case SLT_BIND:
send_bind_packet();
SLT_send_bind_packet();
phase = SLT_DATA1;
delay_us = 19000;
BIND_DONE;
break;
case SLT_DATA1:
SLT_build_packet();
send_data(packet, 7);
SLT_send_data(packet, 7);
phase = SLT_DATA2;
delay_us = 1000;
break;
case SLT_DATA2:
send_data(packet, 7);
SLT_send_data(packet, 7);
phase = SLT_DATA3;
delay_us = 1000;
break;
case SLT_DATA3:
send_data(packet, 7);
SLT_send_data(packet, 7);
if (++counter >= 100)
{
counter = 0;
@@ -196,7 +197,6 @@ uint16_t initSLT()
SLT_init();
phase = SLT_INIT2;
SLT_set_tx_id();
BIND_IN_PROGRESS; // autobind protocol
return 50000;
}

View File

@@ -12,16 +12,13 @@
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// compatible with Syma X5C-1, X11, X11C, X12 and for sub protocol X5C Syma X5C (original), X2
// Last sync with hexfet new_protocols/cx10_nrf24l01.c dated 2015-09-28
#if defined(SYMAX_NRF24L01_INO)
#include "iface_nrf24l01.h"
/***
Main protocol compatible with Syma X5C-1, X11, X11C, X12.
SymaX5C protocol option compatible with Syma X5C (original) and X2.
***/
#define SYMAX_BIND_COUNT 345 // 1.5 seconds
#define SYMAX_FIRST_PACKET_DELAY 12000
#define SYMAX_PACKET_PERIOD 4000 // Timeout for callback in uSec
@@ -44,16 +41,7 @@ enum {
SYMAX_DATA
};
/*
http://www.deviationtx.com/forum/protocol-development/3768-syma-x5c-1-x11-x12?start=140
TX address Channel Sequence
S1 3B B6 00 00 A2 15 35 1D 3D
D1 9A E9 02 00 A2 14 34 1C 3C
D2 46 18 00 00 A2 11 21 31 41
*/
uint8_t SYMAX_checksum(uint8_t *data)
static uint8_t __attribute__((unused)) SYMAX_checksum(uint8_t *data)
{
uint8_t sum = data[0];
@@ -66,7 +54,7 @@ uint8_t SYMAX_checksum(uint8_t *data)
return sum + ( sub_protocol==SYMAX5C ? 0 : 0x55 );
}
void SYMAX_read_controls()
static void __attribute__((unused)) SYMAX_read_controls()
{
// Protocol is registered AETRF, that is
// Aileron is channel 1, Elevator - 2, Throttle - 3, Rudder - 4, Flip control - 5
@@ -75,25 +63,24 @@ void SYMAX_read_controls()
throttle = convert_channel_8b(THROTTLE);
rudder = convert_channel_s8b(RUDDER);
flags=0;
// Channel 5
if (Servo_data[AUX1] > PPM_SWITCH)
if (Servo_AUX1)
flags = SYMAX_FLAG_FLIP;
else
flags=0;
// Channel 7
if (Servo_data[AUX3] > PPM_SWITCH)
if (Servo_AUX3)
flags |= SYMAX_FLAG_PICTURE;
// Channel 8
if (Servo_data[AUX4] > PPM_SWITCH)
if (Servo_AUX4)
flags |= SYMAX_FLAG_VIDEO;
// Channel 9
if (Servo_data[AUX5] > PPM_SWITCH)
if (Servo_AUX5)
flags |= SYMAX_FLAG_HEADLESS;
}
#define X5C_CHAN2TRIM(X) ((((X) & 0x80 ? 0xff - (X) : 0x80 + (X)) >> 2) + 0x20)
void SYMAX_build_packet_x5c(uint8_t bind)
static void __attribute__((unused)) SYMAX_build_packet_x5c(uint8_t bind)
{
if (bind)
{
@@ -124,12 +111,12 @@ void SYMAX_build_packet_x5c(uint8_t bind)
packet[14] = (flags & SYMAX_FLAG_VIDEO ? 0x10 : 0x00)
| (flags & SYMAX_FLAG_PICTURE ? 0x08 : 0x00)
| (flags & SYMAX_FLAG_FLIP ? 0x01 : 0x00)
| 0x04;// (flags & SYMAX_FLAG_RATES ? 0x04 : 0x00);
| 0x04;// always high rates (bit 3 is rate control)
packet[15] = SYMAX_checksum(packet);
}
}
void SYMAX_build_packet(uint8_t bind)
static void __attribute__((unused)) SYMAX_build_packet(uint8_t bind)
{
if (bind)
{
@@ -151,7 +138,7 @@ void SYMAX_build_packet(uint8_t bind)
packet[2] = rudder;
packet[3] = aileron;
packet[4] = (flags & SYMAX_FLAG_VIDEO ? 0x80 : 0x00) | (flags & SYMAX_FLAG_PICTURE ? 0x40 : 0x00);
packet[5] = (elevator >> 2) | 0xc0; //always high rates (bit 7 is rate control) (flags & SYMAX_FLAG_RATES ? 0x80 : 0x00) | 0x40; // use trims to extend controls
packet[5] = (elevator >> 2) | 0xc0; //always high rates (bit 7 is rate control)
packet[6] = (rudder >> 2) | (flags & SYMAX_FLAG_FLIP ? 0x40 : 0x00);
packet[7] = (aileron >> 2) | (flags & SYMAX_FLAG_HEADLESS ? 0x80 : 0x00);
packet[8] = 0x00;
@@ -159,7 +146,7 @@ void SYMAX_build_packet(uint8_t bind)
packet[9] = SYMAX_checksum(packet);
}
void SYMAX_send_packet(uint8_t bind)
static void __attribute__((unused)) SYMAX_send_packet(uint8_t bind)
{
if (sub_protocol==SYMAX5C)
SYMAX_build_packet_x5c(bind);
@@ -180,7 +167,7 @@ void SYMAX_send_packet(uint8_t bind)
NRF24L01_SetPower(); // Set tx_power
}
static void symax_init()
static void __attribute__((unused)) symax_init()
{
NRF24L01_Initialize();
//
@@ -232,7 +219,7 @@ static void symax_init()
NRF24L01_WriteReg(NRF24L01_00_CONFIG, 0x0e); // power on
}
void symax_init1()
static void __attribute__((unused)) symax_init1()
{
// duplicate stock tx sending strange packet (effect unknown)
uint8_t first_packet[] = {0xf9, 0x96, 0x82, 0x1b, 0x20, 0x08, 0x08, 0xf2, 0x7d, 0xef, 0xff, 0x00, 0x00, 0x00, 0x00};
@@ -240,13 +227,6 @@ void symax_init1()
uint8_t chans_bind_x5c[] = {0x27, 0x1b, 0x39, 0x28, 0x24, 0x22, 0x2e, 0x36,
0x19, 0x21, 0x29, 0x14, 0x1e, 0x12, 0x2d, 0x18};
//uint8_t data_rx_tx_addr[] = {0x3b,0xb6,0x00,0x00,0xa2};
//uint8_t data_rx_tx_addr[] = {0x9A,0xe9,0x03,0x00,0xa2};//<<---- is ok
//uint8_t data_rx_tx_addr[] = {0x3b,0xb6,0x00,0x00,0xa2};//<<--- is ok
//uint8_t data_rx_tx_addr[] = {0x9A,0xe9,0x00,0x00,0xa2};
//uint8_t data_rx_tx_addr[] = {0x9A,0xe9,0x03,0x00,0xa2};//<<---- is ok
//uint8_t data_rx_tx_addr[] = {0x46,0x18,0x00,0x00,0xa2};
NRF24L01_FlushTx();
NRF24L01_WriteReg(NRF24L01_05_RF_CH, 0x08);
NRF24L01_WritePayload(first_packet, 15);
@@ -267,14 +247,12 @@ void symax_init1()
}
// channels determined by last byte of tx address
void symax_set_channels(uint8_t address)
static void __attribute__((unused)) symax_set_channels(uint8_t address)
{
static const uint8_t start_chans_1[] = {0x0a, 0x1a, 0x2a, 0x3a};
static const uint8_t start_chans_2[] = {0x2a, 0x0a, 0x42, 0x22};
static const uint8_t start_chans_3[] = {0x1a, 0x3a, 0x12, 0x32};
//static const uint8_t start_chans_4[] = {0x15, 0x35, 0x1d, 0x3d};
//static const uint8_t start_chans_5[] = {0x14, 0x34, 0x1c, 0x3c};
//static const uint8_t start_chans_6[] = {0x11, 0x21, 0x31, 0x41};
uint8_t laddress = address & 0x1f;
uint8_t i;
uint32_t *pchans = (uint32_t *)hopping_frequency; // avoid compiler warning
@@ -312,7 +290,7 @@ void symax_set_channels(uint8_t address)
*pchans = 0x39194121;
}
void symax_init2()
static void __attribute__((unused)) symax_init2()
{
uint8_t chans_data_x5c[] = {0x1d, 0x2f, 0x26, 0x3d, 0x15, 0x2b, 0x25, 0x24,
0x27, 0x2c, 0x1c, 0x3e, 0x39, 0x2d, 0x22};

337
Multiprotocol/Telemetry.ino Normal file
View File

@@ -0,0 +1,337 @@
//*************************************
// FrSky Telemetry serial code *
// By Midelic on RCGroups *
//*************************************
#if defined TELEMETRY
#if defined FRSKYX_CC2500_INO
#define SPORT_TELEMETRY
#endif
#if defined FRSKY_CC2500_INO
#define HUB_TELEMETRY
#endif
#if defined SPORT_TELEMETRY
#define SPORT_TELEMETRY
#define SPORT_TIME 12000
uint32_t last=0;
uint8_t sport_counter=0;
uint8_t RxBt=0;
uint8_t rssi;
uint8_t ADC2;
#endif
#if defined HUB_TELEMETRY
#define MAX_PKTX 10
uint8_t pktx[MAX_PKTX];
uint8_t index;
uint8_t prev_index;
uint8_t pass = 0;
#endif
#define USER_MAX_BYTES 6
uint8_t frame[18];
void frskySendStuffed()
{
Serial_write(0x7E);
for (uint8_t i = 0; i < 9; i++)
{
if ((frame[i] == 0x7e) || (frame[i] == 0x7d))
{
Serial_write(0x7D);
frame[i] ^= 0x20;
}
Serial_write(frame[i]);
}
Serial_write(0x7E);
}
void compute_RSSIdbm(){
RSSI_dBm = (((uint16_t)(pktt[len-2])*18)>>5);
if(pktt[len-2] >=128)
RSSI_dBm -= 82;
else
RSSI_dBm += 65;
}
void frsky_check_telemetry(uint8_t *pkt,uint8_t len)
{
if(pkt[1] != rx_tx_addr[3] || pkt[2] != rx_tx_addr[2] || len != pkt[0] + 3)
{//only packets with the required id and packet length
for(uint8_t i=3;i<6;i++)
pktt[i]=0;
return;
}
else
{
for (uint8_t i=3;i<len;i++)
pktt[i]=pkt[i];
telemetry_link=1;
if(pktt[6]>0)
telemetry_counter=(telemetry_counter+1)%32;
}
}
void frsky_link_frame()
{
frame[0] = 0xFE;
if ((cur_protocol[0]&0x1F)==MODE_FRSKY)
{
compute_RSSIdbm();
frame[1] = pktt[3];
frame[2] = pktt[4];
frame[3] = (uint8_t)RSSI_dBm;
frame[4] = pktt[5]*2;
}
else
if ((cur_protocol[0]&0x1F)==MODE_HUBSAN)
{
frame[1] = v_lipo*2; //v_lipo; common 0x2A=42/10=4.2V
frame[2] = frame[1];
frame[3] = 0x00;
frame[4] = (uint8_t)RSSI_dBm;
}
frame[5] = frame[6] = frame[7] = frame[8] = 0;
frskySendStuffed();
}
#if defined HUB_TELEMETRY
void frsky_user_frame()
{
uint8_t indexx = 0, c=0, j=8, n=0, i;
if(pktt[6]>0 && pktt[6]<=MAX_PKTX)
{//only valid hub frames
frame[0] = 0xFD;
frame[1] = 0;
frame[2] = pktt[7];
switch(pass)
{
case 0:
indexx=pktt[6];
for(i=0;i<indexx;i++)
{
if(pktt[j]==0x5E)
{
if(c++)
{
c=0;
n++;
j++;
}
}
pktx[i]=pktt[j++];
}
indexx = indexx-n;
pass=1;
case 1:
index=indexx;
prev_index = indexx;
if(index<USER_MAX_BYTES)
{
for(i=0;i<index;i++)
frame[i+3]=pktx[i];
pktt[6]=0;
pass=0;
}
else
{
index = USER_MAX_BYTES;
for(i=0;i<index;i++)
frame[i+3]=pktx[i];
pass=2;
}
break;
case 2:
index = prev_index - index;
prev_index=0;
if(index<MAX_PKTX-USER_MAX_BYTES) //10-6=4
for(i=0;i<index;i++)
frame[i+3]=pktx[USER_MAX_BYTES+i];
pass=0;
pktt[6]=0;
break;
default:
break;
}
if(!index)
return;
frame[1] = index;
frskySendStuffed();
}
else
pass=0;
}
#endif
#if defined SPORT_TELEMETRY
/* SPORT details serial
100K 8E2 normal-multiprotocol
-every 12ms-
1 2 3 4 5 6 7 8 9 CRC DESCR
7E 98 10 05 F1 20 23 0F 00 A6 SWR_ID
7E 98 10 01 F1 33 00 00 00 C9 RSSI_ID
7E 98 10 04 F1 58 00 00 00 A1 BATT_ID
7E BA 10 03 F1 E2 00 00 00 18 ADC2_ID
7E BA 10 03 F1 E2 00 00 00 18 ADC2_ID
7E BA 10 03 F1 E2 00 00 00 18 ADC2_ID
7E BA 10 03 F1 E2 00 00 00 18 ADC2_ID
7E BA 10 03 F1 E2 00 00 00 18 ADC2_ID
7E BA 10 03 F1 E2 00 00 00 18 ADC2_ID
Telemetry frames(RF) SPORT info 15 bytes
SPORT frame 6+3 bytes
[00] PKLEN 0E 0E 0E 0E
[01] TXID1 DD DD DD DD
[02] TXID2 6D 6D 6D 6D
[03] CONST 02 02 02 02
[04] RS/RB 2C D0 2C CE //D0;CE=2*RSSI;....2C = RX battery voltage(5V from Bec)
[05] ????? 03 10 21 32 //TX/RX telemetry hand-shake bytes
[06] NO.BT 00 00 06 03 //No.of valid SPORT frame bytes in the frame
[07] STRM1 00 00 7E 00
[08] STRM2 00 00 1A 00
[09] STRM3 00 00 10 00
[10] STRM4 03 03 03 03
[11] STRM5 F1 F1 F1 F1
[12] STRM6 D1 D1 D0 D0
[13] CHKSUM1
[14] CHKSUM2
*/
void sportSend(uint8_t *p)
{
uint16_t crc_s = 0;
Serial_write(0x7e);//+9
for (uint8_t i = 0; i < 9; i++)
{
if (i == 8)
p[i] = 0xff - crc_s;
if ((p[i] == 0x7e) || (p[i] == 0x7d))
{
Serial_write(0x7d);
Serial_write(0x20 ^ p[i]);
}
else
Serial_write(p[i]);
if (i>0)
{
crc_s += p[i]; //0-1FF
crc_s += crc_s >> 8; //0-100
crc_s &= 0x00ff;
}
}
}
void sportIdle()
{
Serial_write(0x7e);
}
void sportSendFrame()
{
//at the moment only SWR RSSI,RxBt and A2.
sport_counter = (sport_counter + 1) %9;
for (uint8_t i=5;i<8;i++)
frame[i]=0;
switch (sport_counter)
{
case 0: // SWR
frame[0] = 0x98;
frame[1] = 0x10;
frame[2] = 0x05;
frame[3] = 0xf1;
frame[4] = 0x20;//dummy values if swr 20230f00
frame[5] = 0x23;
frame[6] = 0x0F;
frame[7] = 0x00;
break;
case 1: // RSSI
frame[0] = 0x98;
frame[1] = 0x10;
frame[2] = 0x01;
frame[3] = 0xf1;
frame[4] = rssi;
break;
case 2: //BATT
frame[0] = 0x98;
frame[1] = 0x10;
frame[2] = 0x04;
frame[3] = 0xf1;
frame[4] = RxBt;//a1;
break;
case 3: //ADC2(A2)
frame[0] = 0x1A;
frame[1] = 0x10;
frame[2] = 0x03;
frame[3] = 0xf1;
frame[4] = ADC2;//a2;;
break;
default:
sportIdle();
return;
}
sportSend(frame);
}
void process_sport_data()//only for ADC2
{
uint8_t j=7;
if(pktt[6]>0 && pktt[6]<=USER_MAX_BYTES)
{
for(uint8_t i=0;i<6;i++)
if(pktt[j++]==0x03)
if(pktt[j]==0xF1)
{
ADC2=pktt[j+1];
break;
}
pktt[6]=0;//new frame
}
}
#endif
void frskyUpdate()
{
if(telemetry_link && (cur_protocol[0]&0x1F) != MODE_FRSKYX )
{
frsky_link_frame();
telemetry_link=0;
return;
}
#if defined HUB_TELEMETRY
if(!telemetry_link && (cur_protocol[0]&0x1F) != MODE_HUBSAN && (cur_protocol[0]&0x1F) != MODE_FRSKYX)
{
frsky_user_frame();
return;
}
#endif
#if defined SPORT_TELEMETRY
if ((cur_protocol[0]&0x1F)==MODE_FRSKYX)
{
if(telemetry_link)
{
process_sport_data();
if(pktt[4]>0x36)
rssi=pktt[4]/2;
else
RxBt=pktt[4];
telemetry_link=0;
}
uint32_t now = micros();
if ((now - last) > SPORT_TIME)
{
sportSendFrame();
last = now;
}
}
#endif
}
#endif

View File

@@ -12,10 +12,11 @@
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// compatible with WLToys V2x2, JXD JD38x, JD39x, JJRC H6C, Yizhan Tarantula X6 ...
// Last sync with hexfet new_protocols/v202_nrf24l01.c dated 2015-03-15
#if defined(V2X2_NRF24L01_INO)
// compatible with WLToys V2x2, JXD JD38x, JD39x, JJRC H6C, Yizhan Tarantula X6 ...
#include "iface_nrf24l01.h"
@@ -73,9 +74,8 @@ static const uint8_t freq_hopping[][16] = {
{ 0x22, 0x27, 0x17, 0x39, 0x34, 0x28, 0x2B, 0x1D,
0x18, 0x2A, 0x21, 0x38, 0x10, 0x26, 0x20, 0x1F } // 03
};
//static uint8_t hopping_frequency[16];
void v202_init()
static void __attribute__((unused)) v202_init()
{
NRF24L01_Initialize();
@@ -103,14 +103,12 @@ void v202_init()
NRF24L01_WriteReg(NRF24L01_15_RX_PW_P4, V2X2_PAYLOADSIZE);
NRF24L01_WriteReg(NRF24L01_16_RX_PW_P5, V2X2_PAYLOADSIZE);
NRF24L01_WriteReg(NRF24L01_17_FIFO_STATUS, 0x00); // Just in case, no real bits to write here
uint8_t v2x2_rx_tx_addr[] = {0x66, 0x88, 0x68, 0x68, 0x68};
uint8_t rx_p1_addr[] = {0x88, 0x66, 0x86, 0x86, 0x86};
NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, v2x2_rx_tx_addr, 5);
NRF24L01_WriteRegisterMulti(NRF24L01_0B_RX_ADDR_P1, rx_p1_addr, 5);
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, v2x2_rx_tx_addr, 5);
NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, (uint8_t *)"\x66\x88\x68\x68\x68", 5);
NRF24L01_WriteRegisterMulti(NRF24L01_0B_RX_ADDR_P1, (uint8_t *)"\x88\x66\x86\x86\x86", 5);
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, (uint8_t *)"\x66\x88\x68\x68\x68", 5);
}
void V202_init2()
static void __attribute__((unused)) V202_init2()
{
NRF24L01_FlushTx();
packet_sent = 0;
@@ -121,7 +119,7 @@ void V202_init2()
//Done by TX_EN??? => NRF24L01_WriteReg(NRF24L01_00_CONFIG, BV(NRF24L01_00_EN_CRC) | BV(NRF24L01_00_CRCO) | BV(NRF24L01_00_PWR_UP));
}
void set_tx_id(void)
static void __attribute__((unused)) V2X2_set_tx_id(void)
{
uint8_t sum;
sum = rx_tx_addr[1] + rx_tx_addr[2] + rx_tx_addr[3];
@@ -136,7 +134,7 @@ void set_tx_id(void)
}
}
void add_pkt_checksum()
static void __attribute__((unused)) V2X2_add_pkt_checksum()
{
uint8_t sum = 0;
for (uint8_t i = 0; i < 15; ++i)
@@ -144,7 +142,7 @@ void add_pkt_checksum()
packet[15] = sum;
}
void send_packet(uint8_t bind)
static void __attribute__((unused)) V2X2_send_packet(uint8_t bind)
{
uint8_t flags2=0;
if (bind)
@@ -170,28 +168,25 @@ void send_packet(uint8_t bind)
packet[6] = 0x40; // roll
//Flags
flags=0;
// Channel 5
if (Servo_data[AUX1] > PPM_SWITCH)
flags |= V2X2_FLAG_FLIP;
if (Servo_AUX1) flags = V2X2_FLAG_FLIP;
// Channel 6
if (Servo_data[AUX2] > PPM_SWITCH)
flags |= V2X2_FLAG_LIGHT;
if (Servo_AUX2) flags |= V2X2_FLAG_LIGHT;
// Channel 7
if (Servo_data[AUX3] > PPM_SWITCH)
flags |= V2X2_FLAG_CAMERA;
if (Servo_AUX3) flags |= V2X2_FLAG_CAMERA;
// Channel 8
if (Servo_data[AUX4] > PPM_SWITCH)
flags |= V2X2_FLAG_VIDEO;
if (Servo_AUX4) flags |= V2X2_FLAG_VIDEO;
//Flags2
// Channel 9
if (Servo_data[AUX5] > PPM_SWITCH)
if (Servo_AUX5)
flags2 = V2X2_FLAG_HEADLESS;
// Channel 10
if (Servo_data[AUX6] > PPM_SWITCH)
if (Servo_AUX6)
flags2 |= V2X2_FLAG_MAG_CAL_X;
// Channel 11
if (Servo_data[AUX7] > PPM_SWITCH)
if (Servo_AUX7)
flags2 |= V2X2_FLAG_MAG_CAL_Y;
}
// TX id
@@ -205,7 +200,7 @@ void send_packet(uint8_t bind)
packet[13] = 0x00;
//
packet[14] = flags;
add_pkt_checksum();
V2X2_add_pkt_checksum();
packet_sent = 0;
uint8_t rf_ch = hopping_frequency[hopping_frequency_no >> 1];
@@ -213,7 +208,6 @@ void send_packet(uint8_t bind)
NRF24L01_WriteReg(NRF24L01_05_RF_CH, rf_ch);
NRF24L01_FlushTx();
NRF24L01_WritePayload(packet, V2X2_PAYLOADSIZE);
++packet_counter;
packet_sent = 1;
if (! hopping_frequency_no)
@@ -237,7 +231,7 @@ uint16_t ReadV2x2()
if (packet_sent && NRF24L01_packet_ack() != PKT_ACKED) {
return PACKET_CHKTIME;
}
send_packet(1);
V2X2_send_packet(1);
if (--counter == 0) {
phase = V202_DATA;
BIND_DONE;
@@ -247,7 +241,7 @@ uint16_t ReadV2x2()
if (packet_sent && NRF24L01_packet_ack() != PKT_ACKED) {
return PACKET_CHKTIME;
}
send_packet(0);
V2X2_send_packet(0);
break;
}
// Packet every 4ms
@@ -256,8 +250,6 @@ uint16_t ReadV2x2()
uint16_t initV2x2()
{
flags=0;
packet_counter = 0;
v202_init();
//
if (IS_AUTOBIND_FLAG_on)
@@ -267,7 +259,7 @@ uint16_t initV2x2()
}
else
phase = V202_INIT2_NO_BIND;
set_tx_id();
V2X2_set_tx_id();
return 50000;
}

View File

@@ -12,6 +12,7 @@
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// Last sync with hexfet new_protocols/yd717_nrf24l01.c dated 2015-09-28
#if defined(YD717_NRF24L01_INO)
@@ -23,7 +24,7 @@
#define YD717_PACKET_CHKTIME 500 // Time to wait if packet not yet acknowledged or timed out
// Stock tx fixed frequency is 0x3C. Receiver only binds on this freq.
#define RF_CHANNEL 0x3C
#define YD717_RF_CHANNEL 0x3C
#define YD717_FLAG_FLIP 0x0F
#define YD717_FLAG_LIGHT 0x80
@@ -32,7 +33,6 @@
#define YD717_FLAG_HEADLESS 0x10
#define YD717_PAYLOADSIZE 8 // receive data pipes set to this size, but unused
//#define YD717_MAX_PACKET_SIZE 9 // YD717 packets have 8-byte payload, Syma X4 is 9
enum {
YD717_INIT1 = 0,
@@ -41,7 +41,7 @@ enum {
YD717_DATA
};
void yd717_send_packet(uint8_t bind)
static void __attribute__((unused)) yd717_send_packet(uint8_t bind)
{
uint8_t rudder_trim, elevator_trim, aileron_trim;
if (bind)
@@ -93,23 +93,17 @@ void yd717_send_packet(uint8_t bind)
packet[6] = aileron_trim;
}
// Flags
flags=0;
// Channel 5
if (Servo_data[AUX1] > PPM_SWITCH)
flags = YD717_FLAG_FLIP;
else
flags=0;
if (Servo_AUX1) flags = YD717_FLAG_FLIP;
// Channel 6
if (Servo_data[AUX2] > PPM_SWITCH)
flags |= YD717_FLAG_LIGHT;
if (Servo_AUX2) flags |= YD717_FLAG_LIGHT;
// Channel 7
if (Servo_data[AUX3] > PPM_SWITCH)
flags |= YD717_FLAG_PICTURE;
if (Servo_AUX3) flags |= YD717_FLAG_PICTURE;
// Channel 8
if (Servo_data[AUX4] > PPM_SWITCH)
flags |= YD717_FLAG_VIDEO;
if (Servo_AUX4) flags |= YD717_FLAG_VIDEO;
// Channel 9
if (Servo_data[AUX5] > PPM_SWITCH)
flags |= YD717_FLAG_HEADLESS;
if (Servo_AUX5) flags |= YD717_FLAG_HEADLESS;
packet[7] = flags;
}
@@ -123,7 +117,7 @@ void yd717_send_packet(uint8_t bind)
{
packet[8] = packet[0]; // checksum
for(uint8_t i=1; i < 8; i++)
packet[8] += packet[i];
packet[8] += packet[i];
packet[8] = ~packet[8];
NRF24L01_WritePayload(packet, 9);
}
@@ -131,7 +125,7 @@ void yd717_send_packet(uint8_t bind)
NRF24L01_SetPower(); // Set tx_power
}
void yd717_init()
static void __attribute__((unused)) yd717_init()
{
NRF24L01_Initialize();
@@ -142,7 +136,7 @@ void yd717_init()
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x3F); // Enable all data pipes
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, 0x03); // 5-byte RX/TX address
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0x1A); // 500uS retransmit t/o, 10 tries
NRF24L01_WriteReg(NRF24L01_05_RF_CH, RF_CHANNEL); // Channel 3C
NRF24L01_WriteReg(NRF24L01_05_RF_CH, YD717_RF_CHANNEL); // Channel 3C
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps
NRF24L01_SetPower();
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
@@ -168,23 +162,24 @@ void yd717_init()
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, rx_tx_addr, 5);
}
void YD717_init1()
static void __attribute__((unused)) YD717_init1()
{
// for bind packets set address to prearranged value known to receiver
uint8_t bind_rx_tx_addr[] = {0x65, 0x65, 0x65, 0x65, 0x65};
if( sub_protocol==SYMAX2 )
for(uint8_t i=0; i < 5; i++)
uint8_t i;
if( sub_protocol==SYMAX4 )
for(i=0; i < 5; i++)
bind_rx_tx_addr[i] = 0x60;
else
if( sub_protocol==NIHUI )
for(uint8_t i=0; i < 5; i++)
for(i=0; i < 5; i++)
bind_rx_tx_addr[i] = 0x64;
NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, bind_rx_tx_addr, 5);
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, bind_rx_tx_addr, 5);
}
void YD717_init2()
static void __attribute__((unused)) YD717_init2()
{
// set rx/tx address for data phase
NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, rx_tx_addr, 5);
@@ -244,7 +239,6 @@ uint16_t yd717_callback()
uint16_t initYD717()
{
rx_tx_addr[4] = 0xC1; // always uses first data port
flags = 0;
yd717_init();
phase = YD717_INIT1;
BIND_IN_PROGRESS; // autobind protocol

256
Multiprotocol/_Config.h Normal file
View File

@@ -0,0 +1,256 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
/** Multiprotocol module configuration file ***/
//Uncomment your TX type
#define TX_ER9X //ER9X AETR (988<->2012µs)
//#define TX_DEVO7 //DEVO7 EATR (1120<->1920µs)
//#define TX_SPEKTRUM //Spektrum TAER (1100<->1900µs)
//#define TX_HISKY //HISKY AETR (1100<->1900µs)
//Uncomment to enable telemetry
#define TELEMETRY
//Comment if a module is not installed
#define A7105_INSTALLED
#define CYRF6936_INSTALLED
#define CC2500_INSTALLED
#define NFR24L01_INSTALLED
//Comment a protocol to exclude it from compilation
#ifdef A7105_INSTALLED
#define FLYSKY_A7105_INO
#define HUBSAN_A7105_INO
#endif
#ifdef CYRF6936_INSTALLED
#define DEVO_CYRF6936_INO
#define DSM2_CYRF6936_INO
#endif
#ifdef CC2500_INSTALLED
#define FRSKY_CC2500_INO
#define FRSKYX_CC2500_INO
#endif
#ifdef NFR24L01_INSTALLED
#define BAYANG_NRF24L01_INO
#define CG023_NRF24L01_INO
#define CX10_NRF24L01_INO
#define ESKY_NRF24L01_INO
#define HISKY_NRF24L01_INO
#define KN_NRF24L01_INO
#define SLT_NRF24L01_INO
#define SYMAX_NRF24L01_INO
#define V2X2_NRF24L01_INO
#define YD717_NRF24L01_INO
#define MT99XX_NRF24L01_INO
#define MJXQ_NRF24L01_INO
#define SHENQI_NRF24L01_INO
#endif
//Update this table to set which protocol and all associated settings are called for the corresponding dial number
const PPM_Parameters PPM_prot[15]= {
// Dial Protocol Sub protocol RX_Num Power Auto Bind Option
/* 1 */ {MODE_FLYSKY, Flysky , 0 , P_HIGH , NO_AUTOBIND , 0 },
/* 2 */ {MODE_HUBSAN, 0 , 0 , P_HIGH , NO_AUTOBIND , 0 },
/* 3 */ {MODE_FRSKY , 0 , 0 , P_HIGH , NO_AUTOBIND , 0xD7 }, // D7 fine tuning
/* 4 */ {MODE_HISKY , Hisky , 0 , P_HIGH , NO_AUTOBIND , 0 },
/* 5 */ {MODE_V2X2 , 0 , 0 , P_HIGH , NO_AUTOBIND , 0 },
/* 6 */ {MODE_DSM2 , DSM2 , 0 , P_HIGH , NO_AUTOBIND , 6 }, // 6 channels @ 11ms
/* 7 */ {MODE_DEVO , 0 , 0 , P_HIGH , NO_AUTOBIND , 0 },
/* 8 */ {MODE_YD717 , YD717 , 0 , P_HIGH , NO_AUTOBIND , 0 },
/* 9 */ {MODE_KN , WLTOYS , 0 , P_HIGH , NO_AUTOBIND , 0 },
/* 10 */ {MODE_SYMAX , SYMAX , 0 , P_HIGH , NO_AUTOBIND , 0 },
/* 11 */ {MODE_SLT , 0 , 0 , P_HIGH , NO_AUTOBIND , 0 },
/* 12 */ {MODE_CX10 , CX10_BLUE , 0 , P_HIGH , NO_AUTOBIND , 0 },
/* 13 */ {MODE_CG023 , CG023 , 0 , P_HIGH , NO_AUTOBIND , 0 },
/* 14 */ {MODE_BAYANG, 0 , 0 , P_HIGH , NO_AUTOBIND , 0 },
/* 15 */ {MODE_SYMAX , SYMAX5C , 0 , P_HIGH , NO_AUTOBIND , 0 }
};
/* Available protocols and associated sub protocols:
MODE_FLYSKY
Flysky
V9X9
V6X6
V912
MODE_HUBSAN
NONE
MODE_FRSKY
NONE
MODE_HISKY
Hisky
HK310
MODE_V2X2
NONE
MODE_DSM2
DSM2
DSMX
MODE_DEVO
NONE
MODE_YD717
YD717
SKYWLKR
SYMAX4
XINXUN
NIHUI
MODE_KN
WLTOYS
FEILUN
MODE_SYMAX
SYMAX
SYMAX5C
MODE_SLT
NONE
MODE_CX10
CX10_GREEN
CX10_BLUE
DM007
Q282
JC3015_1
JC3015_2
MK33041
Q242
MODE_CG023
CG023
YD829
H8_3D
MODE_BAYANG
NONE
MODE_FRSKYX
NONE
MODE_ESKY
NONE
MODE_MT99XX
MT99
H7
YZ
MODE_MJXQ
WLH08
X600
X800
H26D
MODE_SHENQI
NONE
RX_Num value between 0 and 15
Power P_HIGH or P_LOW
Auto Bind AUTOBIND or NO_AUTOBIND
Option value between 0 and 255. 0xD7 or 0x00 for Frsky fine tuning.
*/
//******************
//TX definitions with timing endpoints and channels order
// Turnigy PPM and channels
#if defined(TX_ER9X)
#define PPM_MAX 2140 // 125%
#define PPM_MIN 860 // 125%
#define PPM_MAX_100 2012 // 100%
#define PPM_MIN_100 988 // 100%
enum chan_order{
AILERON =0,
ELEVATOR,
THROTTLE,
RUDDER,
AUX1,
AUX2,
AUX3,
AUX4,
AUX5,
AUX6,
AUX7,
AUX8,
AUX9
};
#endif
// Devo PPM and channels
#if defined(TX_DEVO7)
#define PPM_MAX 2100 // 125%
#define PPM_MIN 900 // 125%
#define PPM_MAX_100 1920 // 100%
#define PPM_MIN_100 1120 // 100%
enum chan_order{
ELEVATOR=0,
AILERON,
THROTTLE,
RUDDER,
AUX1,
AUX2,
AUX3,
AUX4,
AUX5,
AUX6,
AUX7,
AUX8,
AUX9
};
#endif
// SPEKTRUM PPM and channels
#if defined(TX_SPEKTRUM)
#define PPM_MAX 2000 // 125%
#define PPM_MIN 1000 // 125%
#define PPM_MAX_100 1900 // 100%
#define PPM_MIN_100 1100 // 100%
enum chan_order{
THROTTLE=0,
AILERON,
ELEVATOR,
RUDDER,
AUX1,
AUX2,
AUX3,
AUX4,
AUX5,
AUX6,
AUX7,
AUX8,
AUX9
};
#endif
// HISKY
#if defined(TX_HISKY)
#define PPM_MAX 2000 // 125%
#define PPM_MIN 1000 // 125%
#define PPM_MAX_100 1900 // 100%
#define PPM_MIN_100 1100 // 100%
enum chan_order{
AILERON =0,
ELEVATOR,
THROTTLE,
RUDDER,
AUX1,
AUX2,
AUX3,
AUX4,
AUX5,
AUX6,
AUX7,
AUX8,
AUX9
};
#endif
#define PPM_MIN_COMMAND 1250
#define PPM_SWITCH 1550
#define PPM_MAX_COMMAND 1750
//Uncoment the desired serial speed
#define BAUD 100000
//#define BAUD 125000

View File

@@ -16,6 +16,16 @@
#ifndef _IFACE_CC2500_H_
#define _IFACE_CC2500_H_
enum {
FRSKY_BIND = 0,
FRSKY_BIND_DONE = 1000,
FRSKY_DATA1,
FRSKY_DATA2,
FRSKY_DATA3,
FRSKY_DATA4,
FRSKY_DATA5
};
enum {
CC2500_00_IOCFG2 = 0x00, // GDO2 output pin configuration
CC2500_01_IOCFG1 = 0x01, // GDO1 output pin configuration
@@ -146,4 +156,43 @@ enum {
//void CC2500_WriteData(u8 *packet, u8 length);
//void CC2500_ReadData(u8 *dpbuffer, int len);
//void CC2500_SetTxRxMode(enum TXRX_State);
const PROGMEM uint8_t cc2500_conf[][2]={
{ CC2500_02_IOCFG0, 0x06 },
{ CC2500_00_IOCFG2, 0x06 },
{ CC2500_17_MCSM1, 0x0c },
{ CC2500_18_MCSM0, 0x18 },
{ CC2500_06_PKTLEN, 0x19 },
{ CC2500_07_PKTCTRL1, 0x04 },
{ CC2500_08_PKTCTRL0, 0x05 },
{ CC2500_3E_PATABLE, 0xff },
{ CC2500_0B_FSCTRL1, 0x08 },
{ CC2500_0C_FSCTRL0, 0x00 }, // option
{ CC2500_0D_FREQ2, 0x5c },
{ CC2500_0E_FREQ1, 0x76 },
{ CC2500_0F_FREQ0, 0x27 },
{ CC2500_10_MDMCFG4, 0xAA },
{ CC2500_11_MDMCFG3, 0x39 },
{ CC2500_12_MDMCFG2, 0x11 },
{ CC2500_13_MDMCFG1, 0x23 },
{ CC2500_14_MDMCFG0, 0x7a },
{ CC2500_15_DEVIATN, 0x42 },
{ CC2500_19_FOCCFG, 0x16 },
{ CC2500_1A_BSCFG, 0x6c },
{ CC2500_1B_AGCCTRL2, 0x43 }, // bind ? 0x43 : 0x03
{ CC2500_1C_AGCCTRL1,0x40 },
{ CC2500_1D_AGCCTRL0,0x91 },
{ CC2500_21_FREND1, 0x56 },
{ CC2500_22_FREND0, 0x10 },
{ CC2500_23_FSCAL3, 0xa9 },
{ CC2500_24_FSCAL2, 0x0A },
{ CC2500_25_FSCAL1, 0x00 },
{ CC2500_26_FSCAL0, 0x11 },
{ CC2500_29_FSTEST, 0x59 },
{ CC2500_2C_TEST2, 0x88 },
{ CC2500_2D_TEST1, 0x31 },
{ CC2500_2E_TEST0, 0x0B },
{ CC2500_03_FIFOTHR, 0x07 },
{ CC2500_09_ADDR, 0x00 }
};
#endif

View File

@@ -83,13 +83,13 @@ void CYRF_SetTxRxMode(enum TXRX_State);
void CYRF_ConfigRFChannel(u8 ch);
void CYRF_SetPower(u8 power);
void CYRF_ConfigCRCSeed(u16 crc);
void CYRF_StartReceive();
static void CYRF_StartReceive();
void CYRF_ConfigSOPCode(const u8 *sopcodes);
void CYRF_ConfigDataCode(const u8 *datacodes, u8 len);
u8 CYRF_ReadRSSI(u32 dodummyread);
void CYRF_ReadDataPacket(u8 dpbuffer[]);
static u8 CYRF_ReadRSSI(u32 dodummyread);
static void CYRF_ReadDataPacket(u8 dpbuffer[]);
void CYRF_WriteDataPacket(const u8 dpbuffer[]);
void CYRF_WriteDataPacketLen(const u8 dpbuffer[], u8 len);
static void CYRF_WriteDataPacketLen(const u8 dpbuffer[], u8 len);
void CYRF_WriteRegister(u8 address, u8 data);
u8 CYRF_ReadRegister(u8 address);
void CYRF_WritePreamble(u32 preamble);

View File

@@ -102,18 +102,7 @@ enum {
#define REUSE_TX_PL 0xE3
//#define NOP 0xFF
/*
void NRF24L01_Initialize();
byte NRF24L01_WriteReg(byte reg, byte data);
byte NRF24L01_WriteRegisterMulti(byte reg, byte data[], byte length);
byte NRF24L01_WritePayload(byte *data, byte len);
byte NRF24L01_ReadReg(byte reg);
byte NRF24L01_ReadRegisterMulti(byte reg, byte data[], byte length);
byte NRF24L01_ReadPayload(byte *data, byte len);
// XN297 emulation layer
#define XN297_UNSCRAMBLED 8
byte NRF24L01_FlushTx();
byte NRF24L01_FlushRx();
byte NRF24L01_Activate(byte code);
*/
#endif

View File

@@ -1,69 +0,0 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
void frskySendStuffed(uint8_t frame[])
{
Serial_write(0x7E);
for (uint8_t i = 0; i < 9; i++) {
if ((frame[i] == 0x7e) || (frame[i] == 0x7d)) {
Serial_write(0x7D);
frame[i] ^= 0x20;
}
Serial_write(frame[i]);
}
Serial_write(0x7E);
}
void frskySendFrame()
{
uint8_t frame[9];
frame[0] = 0xfe;
if ((cur_protocol[0]&0x1F)==MODE_FRSKY)
{
compute_RSSIdbm();
frame[1] = pktt[3];
frame[2] = pktt[4];
frame[3] = (uint8_t)RSSI_dBm;
frame[4] = pktt[5]*2;//txrssi
frame[5] = frame[6] = frame[7] = frame[8] = 0;
}
else
if ((cur_protocol[0]&0x1F)==MODE_HUBSAN)
{
frame[1] = v_lipo*2;
frame[2] = 0;
frame[3] = 0x5A;//dummy value
frame[4] = 2 * 0x5A;//dummy value
frame[5] = frame[6] = frame[7] = frame[8] = 0;
}
frskySendStuffed(frame);
}
void frskyUpdate()
{
if(telemetry_link){
frskySendFrame();
telemetry_link=0;
}
}

View File

@@ -0,0 +1,412 @@
EESchema-LIBRARY Version 2.3 Date: 05/02/2016 16:56:43
#encoding utf-8
#
# +5V
#
DEF +5V #PWR 0 40 Y Y 1 F P
F0 "#PWR" 0 90 20 H I C CNN
F1 "+5V" 0 90 30 H V C CNN
F2 "~" 0 0 60 H V C CNN
F3 "~" 0 0 60 H V C CNN
DRAW
X +5V 1 0 0 0 U 20 20 0 0 W N
C 0 50 20 0 1 0 N
P 4 0 1 0 0 0 0 30 0 30 0 30 N
ENDDRAW
ENDDEF
#
# +BATT
#
DEF +BATT #PWR 0 0 Y Y 1 F P
F0 "#PWR" 0 -50 20 H I C CNN
F1 "+BATT" 0 100 30 H V C CNN
F2 "~" 0 0 60 H V C CNN
F3 "~" 0 0 60 H V C CNN
DRAW
X +BATT 1 0 0 0 U 20 20 0 0 w N
C 0 60 20 0 1 0 N
P 3 0 1 0 0 0 0 40 0 40 N
ENDDRAW
ENDDEF
#
# 3V3
#
DEF 3V3 #PWR 0 0 Y Y 1 F P
F0 "#PWR" 0 100 40 H I C CNN
F1 "3V3" 0 125 40 H V C CNN
F2 "~" 0 0 60 H V C CNN
F3 "~" 0 0 60 H V C CNN
DRAW
X 3V3 1 0 0 0 U 30 30 0 0 W N
P 2 0 1 0 0 60 0 0 N
P 6 0 1 0 0 60 20 40 0 90 -20 40 0 60 0 60 N
ENDDRAW
ENDDEF
#
# A7105
#
DEF A7105 U 0 40 Y Y 1 F N
F0 "U" 500 650 60 H V C CNN
F1 "A7105" 0 800 60 H V C CNN
F2 "~" 0 -400 60 H V C CNN
F3 "~" 0 -400 60 H V C CNN
DRAW
S 400 -800 -350 700 0 1 0 N
X 3V3 1 -650 550 300 R 70 70 1 1 I
X SCS 2 -650 400 300 R 70 70 1 1 I
X GND 3 -650 250 300 R 70 70 1 1 I
X SCK 4 -650 100 300 R 70 70 1 1 I
X SDIO 5 -650 -50 300 R 70 70 1 1 I
X GIO1 6 -650 -200 300 R 70 70 1 1 I
X GIO2 7 -650 -350 300 R 70 70 1 1 O
X RXEN 8 -650 -500 300 R 70 70 1 1 I
X TXEN 9 -650 -650 300 R 70 70 1 1 O
ENDDRAW
ENDDEF
#
# ATMEGA168A-A
#
DEF ATMEGA168A-A IC 0 40 Y Y 1 F N
F0 "IC" -750 1250 40 H V L BNN
F1 "ATMEGA168A-A" 400 -1400 40 H V L BNN
F2 "TQFP32" 0 0 30 H V C CIN
F3 "~" 0 0 60 H V C CNN
ALIAS ATMEGA48A-A ATMEGA48PA-A ATMEGA88A-A ATMEGA88PA-A ATMEGA168PA-A ATMEGA328-A ATMEGA328P-A
DRAW
S -750 1200 850 -1300 0 1 10 f
X (PCINT19/OC2B/INT1)PD3 1 1000 -800 150 L 40 40 1 1 B
X (PCINT20/XCK/T0)PD4 2 1000 -900 150 L 40 40 1 1 B
X GND 3 -900 -1200 150 R 40 40 1 1 W
X VCC 4 -900 1100 150 R 40 40 1 1 W
X GND 5 -900 -1100 150 R 40 40 1 1 W
X VCC 6 -900 1000 150 R 40 40 1 1 W
X (PCINT6/XTAL1/TOSC1)PB6 7 1000 500 150 L 40 40 1 1 B
X (PCINT7/XTAL2/TOSC2)PB7 8 1000 400 150 L 40 40 1 1 B
X (PCINT21/OC0B/T1)PD5 9 1000 -1000 150 L 40 40 1 1 B
X (PCINT22/OC0A/AIN0)PD6 10 1000 -1100 150 L 40 40 1 1 B
X AREF 20 -900 500 150 R 40 40 1 1 B
X (PCINT16/RXD)PD0 30 1000 -500 150 L 40 40 1 1 B
X (PCINT23/AIN1)PD7 11 1000 -1200 150 L 40 40 1 1 B
X GND 21 -900 -1000 150 R 40 40 1 1 W
X (PCINT17/TXD)PD1 31 1000 -600 150 L 40 40 1 1 B
X (PCINT0/CLKO/ICP1)PB0 12 1000 1100 150 L 40 40 1 1 B
X ADC7 22 -900 -350 150 R 40 40 1 1 N
X (PCINT18/INT0)PD2 32 1000 -700 150 L 40 40 1 1 B
X (PCINT1/OC1A)PB1 13 1000 1000 150 L 40 40 1 1 B
X (PCINT8/ADC0)PC0 23 1000 250 150 L 40 40 1 1 B
X (PCINT2/OC1B/~SS~)PB2 14 1000 900 150 L 40 40 1 1 B
X (PCINT9/ADC1)PC1 24 1000 150 150 L 40 40 1 1 B
X (PCINT3/OC2A/MOSI)PB3 15 1000 800 150 L 40 40 1 1 B
X (PCINT10/ADC2)PC2 25 1000 50 150 L 40 40 1 1 B
X (PCINT4/MISO)PB4 16 1000 700 150 L 40 40 1 1 B
X (PCINT11/ADC3)PC3 26 1000 -50 150 L 40 40 1 1 B
X (PCINT5/SCK)PB5 17 1000 600 150 L 40 40 1 1 B
X (PCINT12/SDA/ADC4)PC4 27 1000 -150 150 L 40 40 1 1 B
X AVCC 18 -900 800 150 R 40 40 1 1 W
X (PCINT14/SCL/ADC5)PC5 28 1000 -250 150 L 40 40 1 1 B
X ADC6 19 -900 -250 150 R 40 40 1 1 N
X (PCINT14/~RESET~)PC6 29 1000 -350 150 L 40 40 1 1 B
ENDDRAW
ENDDEF
#
# C
#
DEF C C 0 10 N Y 1 F N
F0 "C" 0 100 40 H V L CNN
F1 "C" 6 -85 40 H V L CNN
F2 "~" 38 -150 30 H V C CNN
F3 "~" 0 0 60 H V C CNN
$FPLIST
SM*
C?
C1-1
$ENDFPLIST
DRAW
P 2 0 1 20 -80 -30 80 -30 N
P 2 0 1 20 -80 30 80 30 N
X ~ 1 0 200 170 D 40 40 1 1 P
X ~ 2 0 -200 170 U 40 40 1 1 P
ENDDRAW
ENDDEF
#
# CC2500
#
DEF CC2500 U 0 40 Y Y 1 F N
F0 "U" 500 600 60 H V C CNN
F1 "CC2500" 0 700 60 H V C CNN
F2 "~" 0 -400 60 H V C CNN
F3 "~" 0 -400 60 H V C CNN
DRAW
S 400 -900 -350 650 0 1 0 N
X 3V3 1 -650 550 300 R 70 70 1 1 I
X SI 2 -650 400 300 R 70 70 1 1 I
X SCLK 3 -650 250 300 R 70 70 1 1 I
X SO 4 -650 100 300 R 70 70 1 1 I
X GDO2 5 -650 -50 300 R 70 70 1 1 I
X GND 6 -650 -200 300 R 70 70 1 1 I
X GDOo 7 -650 -350 300 R 70 70 1 1 I
X CSn 8 -650 -500 300 R 70 70 1 1 I
X PA_EN 9 -650 -650 300 R 70 70 1 1 I
X LNA_EN 10 -650 -800 300 R 70 70 1 1 I
ENDDRAW
ENDDEF
#
# CONN_2
#
DEF CONN_2 P 0 40 Y N 1 F N
F0 "P" -50 0 40 V V C CNN
F1 "CONN_2" 50 0 40 V V C CNN
F2 "~" 0 0 60 H V C CNN
F3 "~" 0 0 60 H V C CNN
DRAW
S -100 150 100 -150 0 1 0 N
X P1 1 -350 100 250 R 60 60 1 1 P I
X PM 2 -350 -100 250 R 60 60 1 1 P I
ENDDRAW
ENDDEF
#
# CONN_3X2
#
DEF CONN_3X2 P 0 40 Y N 1 F N
F0 "P" 0 250 50 H V C CNN
F1 "CONN_3X2" 0 50 40 V V C CNN
F2 "~" 0 0 60 H V C CNN
F3 "~" 0 0 60 H V C CNN
DRAW
S -100 200 100 -100 0 1 0 N
X 1 1 -400 150 300 R 60 60 1 1 P I
X 2 2 400 150 300 L 60 60 1 1 P I
X 3 3 -400 50 300 R 60 60 1 1 P I
X 4 4 400 50 300 L 60 60 1 1 P I
X 5 5 -400 -50 300 R 60 60 1 1 P I
X 6 6 400 -50 300 L 60 60 1 1 P I
ENDDRAW
ENDDEF
#
# CONN_5
#
DEF CONN_5 P 0 40 Y Y 1 F N
F0 "P" -50 0 50 V V C CNN
F1 "CONN_5" 50 0 50 V V C CNN
F2 "~" 0 0 60 H V C CNN
F3 "~" 0 0 60 H V C CNN
DRAW
S -100 250 100 -250 0 1 0 f
X ~ 1 -400 200 300 R 60 60 1 1 P I
X ~ 2 -400 100 300 R 60 60 1 1 P I
X ~ 3 -400 0 300 R 60 60 1 1 P I
X ~ 4 -400 -100 300 R 60 60 1 1 P I
X ~ 5 -400 -200 300 R 60 60 1 1 P I
ENDDRAW
ENDDEF
#
# CP1
#
DEF CP1 C 0 10 N N 1 F N
F0 "C" 50 100 50 H V L CNN
F1 "CP1" 50 -100 50 H V L CNN
F2 "~" 0 0 60 H V C CNN
F3 "~" 0 0 60 H V C CNN
$FPLIST
CP*
SM*
$ENDFPLIST
DRAW
T 0 -50 100 80 0 0 0 + Normal 0 C C
A 0 -200 180 563 1236 0 1 15 N 100 -50 -100 -50
P 4 0 1 15 -100 50 100 50 50 50 50 50 N
X ~ 1 0 200 150 D 40 40 1 1 P
X ~ 2 0 -200 180 U 40 40 1 1 P
ENDDRAW
ENDDEF
#
# CRYSTAL
#
DEF CRYSTAL X 0 40 N N 1 F N
F0 "X" 0 150 60 H V C CNN
F1 "CRYSTAL" 0 -150 60 H V C CNN
F2 "~" 0 0 60 H V C CNN
F3 "~" 0 0 60 H V C CNN
DRAW
P 2 0 1 16 -100 100 -100 -100 N
P 2 0 1 16 100 100 100 -100 N
P 5 0 1 12 -50 50 50 50 50 -50 -50 -50 -50 50 f
X 1 1 -300 -50 200 R 40 40 1 1 P
X 2 2 -300 50 200 R 40 40 1 1 P
X 3 3 300 50 200 L 40 40 1 1 P
X 4 4 300 -50 200 L 40 40 1 1 P
ENDDRAW
ENDDEF
#
# CYRF6936
#
DEF CYRF6936 U 0 40 Y Y 1 F N
F0 "U" 0 1000 60 H V C CNN
F1 "CYRF6936" 0 800 60 H V C CNN
F2 "~" 0 -400 60 H V C CNN
F3 "~" 0 -400 60 H V C CNN
DRAW
S 400 -800 -350 700 0 1 0 N
X 5.0V 1 -650 500 300 R 70 70 1 1 I
X NCS 2 -650 350 300 R 70 70 1 1 I
X SCK 4 -650 200 300 R 70 70 1 1 I
X GND 5 -650 50 300 R 70 70 1 1 I
X GND 6 -650 -100 300 R 70 70 1 1 I
X MOSI 8 -650 -250 300 R 70 70 1 1 I
X RST 9 -650 -400 300 R 70 70 1 1 I
X MISO 10 -650 -600 300 R 70 70 1 1 I
ENDDRAW
ENDDEF
#
# GND
#
DEF ~GND #PWR 0 0 Y Y 1 F P
F0 "#PWR" 0 0 30 H I C CNN
F1 "GND" 0 -70 30 H I C CNN
F2 "~" 0 0 60 H V C CNN
F3 "~" 0 0 60 H V C CNN
DRAW
P 4 0 1 0 -50 0 0 -50 50 0 -50 0 N
X GND 1 0 0 0 U 30 30 1 1 W N
ENDDRAW
ENDDEF
#
# HEX_DIP
#
DEF HEX_DIP SW 0 40 Y Y 1 F N
F0 "SW" 0 -350 60 H V C CNN
F1 "HEX_DIP" 0 350 60 H V C CNN
F2 "~" 0 0 60 H V C CNN
F3 "~" 0 0 60 H V C CNN
DRAW
S -200 250 200 -250 0 1 0 N
P 4 0 1 0 50 50 -50 0 50 -100 50 50 F
X 1 1 500 -150 300 L 50 50 1 1 O
X C 2 500 0 300 L 50 50 1 1 P
X 4 3 500 150 300 L 50 50 1 1 O
X 2 4 -500 150 300 R 50 50 1 1 O
X C 5 -500 0 300 R 50 50 1 1 P
X 8 6 -500 -150 300 R 50 50 1 1 O
ENDDRAW
ENDDEF
#
# JUMPER
#
DEF JUMPER JP 0 30 Y N 1 F N
F0 "JP" 0 150 60 H V C CNN
F1 "JUMPER" 0 -80 40 H V C CNN
F2 "~" 0 0 60 H V C CNN
F3 "~" 0 0 60 H V C CNN
DRAW
A 0 -26 125 1426 373 0 1 0 N -98 50 99 50
C -100 0 35 0 1 0 N
C 100 0 35 0 1 0 N
X 1 1 -300 0 165 R 60 60 0 1 P
X 2 2 300 0 165 L 60 60 0 1 P
ENDDRAW
ENDDEF
#
# LED
#
DEF LED D 0 40 Y N 1 F N
F0 "D" 0 100 50 H V C CNN
F1 "LED" 0 -100 50 H V C CNN
F2 "~" 0 0 60 H V C CNN
F3 "~" 0 0 60 H V C CNN
$FPLIST
LED-3MM
LED-5MM
LED-10MM
LED-0603
LED-0805
LED-1206
LEDV
$ENDFPLIST
DRAW
P 2 0 1 0 50 50 50 -50 N
P 3 0 1 0 -50 50 50 0 -50 -50 F
P 3 0 1 0 65 -40 110 -80 105 -55 N
P 3 0 1 0 80 -25 125 -65 120 -40 N
X A 1 -200 0 150 R 40 40 1 1 P
X K 2 200 0 150 L 40 40 1 1 P
ENDDRAW
ENDDEF
#
# NCP1117ST50T3G
#
DEF NCP1117ST50T3G U 0 30 Y Y 1 F N
F0 "U" 150 -196 40 H V C CNN
F1 "NCP1117ST50T3G" 0 200 40 H V C CNN
F2 "~" 0 0 60 H V C CNN
F3 "~" 0 0 60 H V C CNN
ALIAS NCP1117ST12T3G NCP1117ST15T3G NCP1117ST18T3G NCP1117ST20T3G NCP1117ST25T3G NCP1117ST285T3G NCP1117ST33T3G
$FPLIST
SOT223
$ENDFPLIST
DRAW
S -250 -150 250 150 0 1 10 f
X GND 1 0 -250 100 U 40 40 1 1 W
X VO 2 400 50 150 L 40 40 1 1 w
X VI 3 -400 50 150 R 40 40 1 1 W
ENDDRAW
ENDDEF
#
# NRF24L01
#
DEF NRF24L01 U 0 40 Y Y 1 F N
F0 "U" 500 650 60 H V C CNN
F1 "NRF24L01" 0 800 60 H V C CNN
F2 "~" 0 -400 60 H V C CNN
F3 "~" 0 -400 60 H V C CNN
DRAW
S 400 -650 -350 700 0 1 0 N
X GND 1 -650 550 300 R 70 70 1 1 I
X 3V3 2 -650 400 300 R 70 70 1 1 I
X CE 3 -650 250 300 R 70 70 1 1 I
X CSN 4 -650 100 300 R 70 70 1 1 I
X SCK 5 -650 -50 300 R 70 70 1 1 I
X MOSI 6 -650 -200 300 R 70 70 1 1 I
X MISO 7 -650 -350 300 R 70 70 1 1 I
X IRQ 8 -650 -500 300 R 70 70 1 1 N
ENDDRAW
ENDDEF
#
# R
#
DEF R R 0 0 N Y 1 F N
F0 "R" 80 0 40 V V C CNN
F1 "R" 7 1 40 V V C CNN
F2 "~" -70 0 30 V V C CNN
F3 "~" 0 0 30 H V C CNN
$FPLIST
R?
SM0603
SM0805
R?-*
SM1206
$ENDFPLIST
DRAW
S -40 150 40 -150 0 1 12 N
X ~ 1 0 250 100 D 60 60 1 1 P
X ~ 2 0 -250 100 U 60 60 1 1 P
ENDDRAW
ENDDEF
#
# SW_PUSH_4_Pin
#
DEF SW_PUSH_4_Pin SW 0 40 N N 1 F N
F0 "SW" 150 110 50 H V C CNN
F1 "SW_PUSH_4_Pin" 0 -200 50 H V C CNN
F2 "~" 0 0 60 H V C CNN
F3 "~" 0 0 60 H V C CNN
DRAW
S -170 50 170 60 0 1 0 N
P 4 0 1 0 -40 60 -30 90 30 90 40 60 N
X 1 1 -300 0 200 R 60 60 0 1 P I
X 3 3 300 0 200 L 60 60 0 1 P I
X 2 2 -300 -100 200 R 50 50 1 1 I I
X 4 4 300 -100 200 L 50 50 1 1 I I
ENDDRAW
ENDDEF
#
#End Library

View File

@@ -0,0 +1,248 @@
Cmp-Mod V01 Created by CvPcb (2013-07-07 BZR 4022)-stable date = 05/02/2016 14:40:56
BeginCmp
TimeStamp = /53C2AE5B;
Reference = C1;
ValeurCmp = 22uF;
IdModule = c_tant_B;
EndCmp
BeginCmp
TimeStamp = /53BC5DA8;
Reference = C2;
ValeurCmp = 0.1uF;
IdModule = SM0603_Capa;
EndCmp
BeginCmp
TimeStamp = /53C2AE76;
Reference = C3;
ValeurCmp = 22uF;
IdModule = c_tant_B;
EndCmp
BeginCmp
TimeStamp = /53BC62F4;
Reference = C4;
ValeurCmp = 18pF;
IdModule = SM0603_Capa;
EndCmp
BeginCmp
TimeStamp = /53BC631E;
Reference = C5;
ValeurCmp = 18pF;
IdModule = SM0603_Capa;
EndCmp
BeginCmp
TimeStamp = /53C2B150;
Reference = C6;
ValeurCmp = 22uF;
IdModule = c_tant_B;
EndCmp
BeginCmp
TimeStamp = /54845FE2;
Reference = C7;
ValeurCmp = 0.1uF;
IdModule = SM0603_Capa;
EndCmp
BeginCmp
TimeStamp = /53BC617C;
Reference = D1;
ValeurCmp = LED;
IdModule = LED-0603;
EndCmp
BeginCmp
TimeStamp = /53C2D9F8;
Reference = D2;
ValeurCmp = LED;
IdModule = LED-0603;
EndCmp
BeginCmp
TimeStamp = /53BC5C99;
Reference = IC1;
ValeurCmp = ATMEGA328-A;
IdModule = TQFP32;
EndCmp
BeginCmp
TimeStamp = /53FE5887;
Reference = JP1;
ValeurCmp = JUMPER;
IdModule = c_0603;
EndCmp
BeginCmp
TimeStamp = /53FE5896;
Reference = JP2;
ValeurCmp = JUMPER;
IdModule = c_0603;
EndCmp
BeginCmp
TimeStamp = /56B4E4E1;
Reference = JP3;
ValeurCmp = JUMPER;
IdModule = c_0603;
EndCmp
BeginCmp
TimeStamp = /56B4EFD5;
Reference = JP4;
ValeurCmp = JUMPER;
IdModule = c_0603;
EndCmp
BeginCmp
TimeStamp = /53C2DBCC;
Reference = P1;
ValeurCmp = ISP;
IdModule = pin_array_3x2;
EndCmp
BeginCmp
TimeStamp = /53FE5423;
Reference = P2;
ValeurCmp = CONN_5;
IdModule = MOLEX_4455_N2X5;
EndCmp
BeginCmp
TimeStamp = /56B4E4CA;
Reference = P3;
ValeurCmp = CONN_2;
IdModule = PIN_ARRAY_2X1;
EndCmp
BeginCmp
TimeStamp = /53BC5FEA;
Reference = R1;
ValeurCmp = 10K;
IdModule = SM0603_Resistor;
EndCmp
BeginCmp
TimeStamp = /53C2B990;
Reference = R2;
ValeurCmp = 2K2;
IdModule = SM0603_Resistor;
EndCmp
BeginCmp
TimeStamp = /53C2B99F;
Reference = R3;
ValeurCmp = 1K;
IdModule = SM0603_Resistor;
EndCmp
BeginCmp
TimeStamp = /53BC6125;
Reference = R4;
ValeurCmp = 1K;
IdModule = SM0603_Resistor;
EndCmp
BeginCmp
TimeStamp = /53C2B787;
Reference = R5;
ValeurCmp = 2K2;
IdModule = SM0603_Resistor;
EndCmp
BeginCmp
TimeStamp = /53C2D8C4;
Reference = R6;
ValeurCmp = 1K;
IdModule = SM0603_Resistor;
EndCmp
BeginCmp
TimeStamp = /54DCE006;
Reference = R7;
ValeurCmp = 2K2;
IdModule = SM0603_Resistor;
EndCmp
BeginCmp
TimeStamp = /56B4E6D8;
Reference = R8;
ValeurCmp = 470;
IdModule = SM0603_Resistor;
EndCmp
BeginCmp
TimeStamp = /54394777;
Reference = SW1;
ValeurCmp = HEX_DIP;
IdModule = DIP-6__300;
EndCmp
BeginCmp
TimeStamp = /56B4EC6E;
Reference = SW2;
ValeurCmp = BIND;
IdModule = SW_PUSH_6x4.5MM;
EndCmp
BeginCmp
TimeStamp = /56B4EC7B;
Reference = SW3;
ValeurCmp = RESET;
IdModule = Switch_SMT5mm;
EndCmp
BeginCmp
TimeStamp = /53C2ACE9;
Reference = U1;
ValeurCmp = NCP1117ST50T3G;
IdModule = SOT223;
EndCmp
BeginCmp
TimeStamp = /53C2AD08;
Reference = U2;
ValeurCmp = NCP1117ST33T3G;
IdModule = SOT223;
EndCmp
BeginCmp
TimeStamp = /53C2BF57;
Reference = U3;
ValeurCmp = CYRF6936;
IdModule = CYRF6936;
EndCmp
BeginCmp
TimeStamp = /53C2C184;
Reference = U4;
ValeurCmp = A7105;
IdModule = XL7105-D03B;
EndCmp
BeginCmp
TimeStamp = /53C2C24E;
Reference = U5;
ValeurCmp = NRF24L01;
IdModule = NRF24L01;
EndCmp
BeginCmp
TimeStamp = /53C2C3F4;
Reference = U6;
ValeurCmp = CC2500;
IdModule = header_10_2mm;
EndCmp
BeginCmp
TimeStamp = /53BC62D3;
Reference = X1;
ValeurCmp = 16MHz;
IdModule = crystal_FA238-TSX3225;
EndCmp
EndListe

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,644 @@
(export (version D)
(design
(source "C:\\Documents and Settings\\Steve\\My Documents\\Multipro-tx\\MultiproV2.3d\\Multipro-txV2-3d.sch")
(date "05/02/2016 16:35:59")
(tool "eeschema (2013-07-07 BZR 4022)-stable"))
(components
(comp (ref IC1)
(value ATMEGA328-A)
(footprint TQFP32)
(libsource (lib atmel) (part ATMEGA328-A))
(sheetpath (names /) (tstamps /))
(tstamp 53BC5C99))
(comp (ref C2)
(value 0.1uF)
(libsource (lib device) (part C))
(sheetpath (names /) (tstamps /))
(tstamp 53BC5DA8))
(comp (ref R1)
(value 10K)
(libsource (lib device) (part R))
(sheetpath (names /) (tstamps /))
(tstamp 53BC5FEA))
(comp (ref R4)
(value 1K)
(libsource (lib device) (part R))
(sheetpath (names /) (tstamps /))
(tstamp 53BC6125))
(comp (ref D1)
(value LED)
(libsource (lib device) (part LED))
(sheetpath (names /) (tstamps /))
(tstamp 53BC617C))
(comp (ref X1)
(value 16MHz)
(libsource (lib device) (part CRYSTAL))
(sheetpath (names /) (tstamps /))
(tstamp 53BC62D3))
(comp (ref C4)
(value 18pF)
(libsource (lib device) (part C))
(sheetpath (names /) (tstamps /))
(tstamp 53BC62F4))
(comp (ref C5)
(value 18pF)
(libsource (lib device) (part C))
(sheetpath (names /) (tstamps /))
(tstamp 53BC631E))
(comp (ref U1)
(value NCP1117ST50T3G)
(libsource (lib regul) (part NCP1117ST50T3G))
(sheetpath (names /) (tstamps /))
(tstamp 53C2ACE9))
(comp (ref U2)
(value NCP1117ST33T3G)
(libsource (lib regul) (part NCP1117ST50T3G))
(sheetpath (names /) (tstamps /))
(tstamp 53C2AD08))
(comp (ref C1)
(value 22uF)
(libsource (lib device) (part CP1))
(sheetpath (names /) (tstamps /))
(tstamp 53C2AE5B))
(comp (ref C3)
(value 22uF)
(libsource (lib device) (part CP1))
(sheetpath (names /) (tstamps /))
(tstamp 53C2AE76))
(comp (ref C6)
(value 22uF)
(libsource (lib device) (part CP1))
(sheetpath (names /) (tstamps /))
(tstamp 53C2B150))
(comp (ref R5)
(value 2K2)
(libsource (lib device) (part R))
(sheetpath (names /) (tstamps /))
(tstamp 53C2B787))
(comp (ref R2)
(value 2K2)
(libsource (lib device) (part R))
(sheetpath (names /) (tstamps /))
(tstamp 53C2B990))
(comp (ref R3)
(value 1K)
(libsource (lib device) (part R))
(sheetpath (names /) (tstamps /))
(tstamp 53C2B99F))
(comp (ref U3)
(value CYRF6936)
(libsource (lib device) (part CYRF6936))
(sheetpath (names /) (tstamps /))
(tstamp 53C2BF57))
(comp (ref U4)
(value A7105)
(libsource (lib device) (part A7105))
(sheetpath (names /) (tstamps /))
(tstamp 53C2C184))
(comp (ref U5)
(value NRF24L01)
(libsource (lib device) (part NRF24L01))
(sheetpath (names /) (tstamps /))
(tstamp 53C2C24E))
(comp (ref U6)
(value CC2500)
(libsource (lib device) (part CC2500))
(sheetpath (names /) (tstamps /))
(tstamp 53C2C3F4))
(comp (ref R6)
(value 1K)
(libsource (lib device) (part R))
(sheetpath (names /) (tstamps /))
(tstamp 53C2D8C4))
(comp (ref D2)
(value LED)
(libsource (lib device) (part LED))
(sheetpath (names /) (tstamps /))
(tstamp 53C2D9F8))
(comp (ref P1)
(value ISP)
(libsource (lib conn) (part CONN_3X2))
(sheetpath (names /) (tstamps /))
(tstamp 53C2DBCC))
(comp (ref P2)
(value CONN_5)
(libsource (lib conn) (part CONN_5))
(sheetpath (names /) (tstamps /))
(tstamp 53FE5423))
(comp (ref JP2)
(value JUMPER)
(libsource (lib device) (part JUMPER))
(sheetpath (names /) (tstamps /))
(tstamp 53FE5887))
(comp (ref JP4)
(value JUMPER)
(libsource (lib device) (part JUMPER))
(sheetpath (names /) (tstamps /))
(tstamp 53FE5896))
(comp (ref SW1)
(value HEX_DIP)
(libsource (lib device) (part HEX_DIP))
(sheetpath (names /) (tstamps /))
(tstamp 54394777))
(comp (ref C7)
(value 0.1uF)
(libsource (lib device) (part C))
(sheetpath (names /) (tstamps /))
(tstamp 54845FE2))
(comp (ref R7)
(value 2K2)
(libsource (lib device) (part R))
(sheetpath (names /) (tstamps /))
(tstamp 54DCE006))
(comp (ref P3)
(value CONN_2)
(libsource (lib conn) (part CONN_2))
(sheetpath (names /) (tstamps /))
(tstamp 56B4E4CA))
(comp (ref JP3)
(value JUMPER)
(libsource (lib device) (part JUMPER))
(sheetpath (names /) (tstamps /))
(tstamp 56B4E4E1))
(comp (ref R8)
(value 470)
(libsource (lib device) (part R))
(sheetpath (names /) (tstamps /))
(tstamp 56B4E6D8))
(comp (ref SW2)
(value BIND)
(libsource (lib device) (part SW_PUSH_4_PIN))
(sheetpath (names /) (tstamps /))
(tstamp 56B4EC6E))
(comp (ref SW3)
(value RESET)
(libsource (lib device) (part SW_PUSH_4_PIN))
(sheetpath (names /) (tstamps /))
(tstamp 56B4EC7B))
(comp (ref JP1)
(value JUMPER)
(libsource (lib device) (part JUMPER))
(sheetpath (names /) (tstamps /))
(tstamp 56B4EFD5)))
(libparts
(libpart (lib device) (part A7105)
(fields
(field (name Reference) U)
(field (name Value) A7105)
(field (name Footprint) ~)
(field (name Datasheet) ~))
(pins
(pin (num 1) (name 3V3) (type input))
(pin (num 2) (name SCS) (type input))
(pin (num 3) (name GND) (type input))
(pin (num 4) (name SCK) (type input))
(pin (num 5) (name SDIO) (type input))
(pin (num 6) (name GIO1) (type input))
(pin (num 7) (name GIO2) (type output))
(pin (num 8) (name RXEN) (type input))
(pin (num 9) (name TXEN) (type output))))
(libpart (lib device) (part C)
(description "Condensateur non polarise")
(footprints
(fp SM*)
(fp C?)
(fp C1-1))
(fields
(field (name Reference) C)
(field (name Value) C)
(field (name Footprint) ~)
(field (name Datasheet) ~))
(pins
(pin (num 1) (name ~) (type passive))
(pin (num 2) (name ~) (type passive))))
(libpart (lib device) (part CC2500)
(fields
(field (name Reference) U)
(field (name Value) CC2500)
(field (name Footprint) ~)
(field (name Datasheet) ~))
(pins
(pin (num 1) (name 3V3) (type input))
(pin (num 2) (name SI) (type input))
(pin (num 3) (name SCLK) (type input))
(pin (num 4) (name SO) (type input))
(pin (num 5) (name GDO2) (type input))
(pin (num 6) (name GND) (type input))
(pin (num 7) (name GDOo) (type input))
(pin (num 8) (name CSn) (type input))
(pin (num 9) (name PA_EN) (type input))
(pin (num 10) (name LNA_EN) (type input))))
(libpart (lib device) (part CP1)
(description "Condensateur polarise")
(footprints
(fp CP*)
(fp SM*))
(fields
(field (name Reference) C)
(field (name Value) CP1)
(field (name Footprint) ~)
(field (name Datasheet) ~))
(pins
(pin (num 1) (name ~) (type passive))
(pin (num 2) (name ~) (type passive))))
(libpart (lib device) (part CRYSTAL)
(fields
(field (name Reference) X)
(field (name Value) CRYSTAL)
(field (name Footprint) ~)
(field (name Datasheet) ~))
(pins
(pin (num 1) (name 1) (type passive))
(pin (num 2) (name 2) (type passive))
(pin (num 3) (name 3) (type passive))
(pin (num 4) (name 4) (type passive))))
(libpart (lib device) (part CYRF6936)
(fields
(field (name Reference) U)
(field (name Value) CYRF6936)
(field (name Footprint) ~)
(field (name Datasheet) ~))
(pins
(pin (num 1) (name 5.0V) (type input))
(pin (num 2) (name NCS) (type input))
(pin (num 4) (name SCK) (type input))
(pin (num 5) (name GND) (type input))
(pin (num 6) (name GND) (type input))
(pin (num 8) (name MOSI) (type input))
(pin (num 9) (name RST) (type input))
(pin (num 10) (name MISO) (type input))))
(libpart (lib device) (part HEX_DIP)
(fields
(field (name Reference) SW)
(field (name Value) HEX_DIP)
(field (name Footprint) ~)
(field (name Datasheet) ~))
(pins
(pin (num 1) (name 1) (type output))
(pin (num 2) (name C) (type passive))
(pin (num 3) (name 4) (type output))
(pin (num 4) (name 2) (type output))
(pin (num 5) (name C) (type passive))
(pin (num 6) (name 8) (type output))))
(libpart (lib device) (part JUMPER)
(fields
(field (name Reference) JP)
(field (name Value) JUMPER)
(field (name Footprint) ~)
(field (name Datasheet) ~))
(pins
(pin (num 1) (name 1) (type passive))
(pin (num 2) (name 2) (type passive))))
(libpart (lib device) (part LED)
(footprints
(fp LED-3MM)
(fp LED-5MM)
(fp LED-10MM)
(fp LED-0603)
(fp LED-0805)
(fp LED-1206)
(fp LEDV))
(fields
(field (name Reference) D)
(field (name Value) LED)
(field (name Footprint) ~)
(field (name Datasheet) ~))
(pins
(pin (num 1) (name A) (type passive))
(pin (num 2) (name K) (type passive))))
(libpart (lib device) (part NRF24L01)
(fields
(field (name Reference) U)
(field (name Value) NRF24L01)
(field (name Footprint) ~)
(field (name Datasheet) ~))
(pins
(pin (num 1) (name GND) (type input))
(pin (num 2) (name 3V3) (type input))
(pin (num 3) (name CE) (type input))
(pin (num 4) (name CSN) (type input))
(pin (num 5) (name SCK) (type input))
(pin (num 6) (name MOSI) (type input))
(pin (num 7) (name MISO) (type input))
(pin (num 8) (name IRQ) (type NotConnected))))
(libpart (lib device) (part R)
(description Resistance)
(footprints
(fp R?)
(fp SM0603)
(fp SM0805)
(fp R?-*)
(fp SM1206))
(fields
(field (name Reference) R)
(field (name Value) R)
(field (name Footprint) ~)
(field (name Datasheet) ~))
(pins
(pin (num 1) (name ~) (type passive))
(pin (num 2) (name ~) (type passive))))
(libpart (lib device) (part SW_PUSH_4_Pin)
(description "Push Button 4 Pin")
(fields
(field (name Reference) SW)
(field (name Value) SW_PUSH_4_Pin)
(field (name Footprint) ~)
(field (name Datasheet) ~))
(pins
(pin (num 1) (name 1) (type passive))
(pin (num 2) (name 2) (type input))
(pin (num 3) (name 3) (type passive))
(pin (num 4) (name 4) (type input))))
(libpart (lib conn) (part CONN_2)
(description "Symbole general de connecteur")
(fields
(field (name Reference) P)
(field (name Value) CONN_2)
(field (name Footprint) ~)
(field (name Datasheet) ~))
(pins
(pin (num 1) (name P1) (type passive))
(pin (num 2) (name PM) (type passive))))
(libpart (lib conn) (part CONN_3X2)
(description "Symbole general de connecteur")
(fields
(field (name Reference) P)
(field (name Value) CONN_3X2)
(field (name Footprint) ~)
(field (name Datasheet) ~))
(pins
(pin (num 1) (name 1) (type passive))
(pin (num 2) (name 2) (type passive))
(pin (num 3) (name 3) (type passive))
(pin (num 4) (name 4) (type passive))
(pin (num 5) (name 5) (type passive))
(pin (num 6) (name 6) (type passive))))
(libpart (lib conn) (part CONN_5)
(description "Symbole general de connecteur")
(fields
(field (name Reference) P)
(field (name Value) CONN_5)
(field (name Footprint) ~)
(field (name Datasheet) ~))
(pins
(pin (num 1) (name ~) (type passive))
(pin (num 2) (name ~) (type passive))
(pin (num 3) (name ~) (type passive))
(pin (num 4) (name ~) (type passive))
(pin (num 5) (name ~) (type passive))))
(libpart (lib regul) (part NCP1117ST50T3G)
(description "NCP1117ST50T3G, 1A Low drop-out regulator, Fixed Output 5V, SOT223")
(docs http://www.onsemi.com/pub_link/Collateral/NCP1117-D.PDF)
(footprints
(fp SOT223))
(fields
(field (name Reference) U)
(field (name Value) NCP1117ST50T3G)
(field (name Footprint) ~)
(field (name Datasheet) ~))
(pins
(pin (num 1) (name GND) (type power_in))
(pin (num 2) (name VO) (type power_out))
(pin (num 3) (name VI) (type power_in))))
(libpart (lib atmel) (part ATMEGA168A-A)
(description "ATMEGA168A, TQFP32, 16k Flash, 1kB SRAM, 512B EEPROM")
(docs http://www.atmel.com/dyn/resources/prod_documents/doc8271.pdf)
(fields
(field (name Reference) IC)
(field (name Value) ATMEGA168A-A)
(field (name Footprint) TQFP32)
(field (name Datasheet) ~))
(pins
(pin (num 1) (name "(PCINT19/OC2B/INT1)PD3") (type BiDi))
(pin (num 2) (name "(PCINT20/XCK/T0)PD4") (type BiDi))
(pin (num 3) (name GND) (type power_in))
(pin (num 4) (name VCC) (type power_in))
(pin (num 5) (name GND) (type power_in))
(pin (num 6) (name VCC) (type power_in))
(pin (num 7) (name "(PCINT6/XTAL1/TOSC1)PB6") (type BiDi))
(pin (num 8) (name "(PCINT7/XTAL2/TOSC2)PB7") (type BiDi))
(pin (num 9) (name "(PCINT21/OC0B/T1)PD5") (type BiDi))
(pin (num 10) (name "(PCINT22/OC0A/AIN0)PD6") (type BiDi))
(pin (num 11) (name "(PCINT23/AIN1)PD7") (type BiDi))
(pin (num 12) (name "(PCINT0/CLKO/ICP1)PB0") (type BiDi))
(pin (num 13) (name "(PCINT1/OC1A)PB1") (type BiDi))
(pin (num 14) (name "(PCINT2/OC1B/~SS~)PB2") (type BiDi))
(pin (num 15) (name "(PCINT3/OC2A/MOSI)PB3") (type BiDi))
(pin (num 16) (name "(PCINT4/MISO)PB4") (type BiDi))
(pin (num 17) (name "(PCINT5/SCK)PB5") (type BiDi))
(pin (num 18) (name AVCC) (type power_in))
(pin (num 19) (name ADC6) (type NotConnected))
(pin (num 20) (name AREF) (type BiDi))
(pin (num 21) (name GND) (type power_in))
(pin (num 22) (name ADC7) (type NotConnected))
(pin (num 23) (name "(PCINT8/ADC0)PC0") (type BiDi))
(pin (num 24) (name "(PCINT9/ADC1)PC1") (type BiDi))
(pin (num 25) (name "(PCINT10/ADC2)PC2") (type BiDi))
(pin (num 26) (name "(PCINT11/ADC3)PC3") (type BiDi))
(pin (num 27) (name "(PCINT12/SDA/ADC4)PC4") (type BiDi))
(pin (num 28) (name "(PCINT14/SCL/ADC5)PC5") (type BiDi))
(pin (num 29) (name "(PCINT14/~RESET~)PC6") (type BiDi))
(pin (num 30) (name "(PCINT16/RXD)PD0") (type BiDi))
(pin (num 31) (name "(PCINT17/TXD)PD1") (type BiDi))
(pin (num 32) (name "(PCINT18/INT0)PD2") (type BiDi)))))
(libraries
(library (logical device)
(uri "C:\\Program Files\\KiCad\\share\\library\\device.lib"))
(library (logical conn)
(uri "C:\\Program Files\\KiCad\\share\\library\\conn.lib"))
(library (logical regul)
(uri "C:\\Program Files\\KiCad\\share\\library\\regul.lib"))
(library (logical atmel)
(uri "C:\\Program Files\\KiCad\\share\\library\\atmel.lib")))
(nets
(net (code 1) (name GND)
(node (ref P2) (pin 4))
(node (ref C7) (pin 2))
(node (ref SW1) (pin 5))
(node (ref SW1) (pin 2))
(node (ref C5) (pin 2))
(node (ref C4) (pin 1))
(node (ref X1) (pin 4))
(node (ref SW3) (pin 4))
(node (ref SW3) (pin 3))
(node (ref SW2) (pin 4))
(node (ref SW2) (pin 3))
(node (ref D1) (pin 2))
(node (ref R3) (pin 2))
(node (ref U6) (pin 6))
(node (ref U5) (pin 1))
(node (ref U4) (pin 3))
(node (ref U3) (pin 6))
(node (ref U3) (pin 5))
(node (ref C3) (pin 2))
(node (ref C1) (pin 2))
(node (ref U2) (pin 1))
(node (ref U1) (pin 1))
(node (ref C6) (pin 2))
(node (ref IC1) (pin 21))
(node (ref IC1) (pin 5))
(node (ref IC1) (pin 3))
(node (ref X1) (pin 2))
(node (ref C2) (pin 2))
(node (ref D2) (pin 2))
(node (ref P1) (pin 6)))
(net (code 2) (name "")
(node (ref D2) (pin 1))
(node (ref R6) (pin 2)))
(net (code 3) (name 3V3)
(node (ref R5) (pin 2))
(node (ref U6) (pin 1))
(node (ref U5) (pin 2))
(node (ref C7) (pin 1))
(node (ref U4) (pin 1))
(node (ref U2) (pin 2))
(node (ref IC1) (pin 18))
(node (ref IC1) (pin 6))
(node (ref P1) (pin 2))
(node (ref IC1) (pin 4))
(node (ref R1) (pin 1))
(node (ref C6) (pin 1)))
(net (code 4) (name /CC25_CSN)
(node (ref IC1) (pin 11))
(node (ref U6) (pin 8)))
(net (code 5) (name /MISO)
(node (ref U3) (pin 10))
(node (ref IC1) (pin 10))
(node (ref U5) (pin 7))
(node (ref U6) (pin 4)))
(net (code 6) (name /SCK)
(node (ref IC1) (pin 2))
(node (ref U4) (pin 4))
(node (ref U6) (pin 3))
(node (ref U3) (pin 4))
(node (ref U5) (pin 5)))
(net (code 7) (name /MOSI)
(node (ref U5) (pin 6))
(node (ref IC1) (pin 9))
(node (ref U6) (pin 2))
(node (ref U4) (pin 5))
(node (ref U3) (pin 8)))
(net (code 8) (name +5V)
(node (ref U2) (pin 3))
(node (ref U1) (pin 2))
(node (ref C3) (pin 1))
(node (ref U3) (pin 1))
(node (ref R6) (pin 1)))
(net (code 9) (name /D11)
(node (ref P1) (pin 4))
(node (ref SW1) (pin 4))
(node (ref IC1) (pin 15)))
(net (code 10) (name /RESET)
(node (ref IC1) (pin 29))
(node (ref SW3) (pin 1))
(node (ref P1) (pin 5))
(node (ref R1) (pin 2))
(node (ref SW3) (pin 2)))
(net (code 11) (name /D12)
(node (ref P1) (pin 1))
(node (ref IC1) (pin 16))
(node (ref SW1) (pin 3)))
(net (code 12) (name "")
(node (ref U4) (pin 7))
(node (ref U4) (pin 8)))
(net (code 13) (name "")
(node (ref U4) (pin 6))
(node (ref U4) (pin 9)))
(net (code 14) (name /A7105_CSN)
(node (ref IC1) (pin 32))
(node (ref U4) (pin 2)))
(net (code 15) (name /CC25_LANEN)
(node (ref U6) (pin 5))
(node (ref U6) (pin 10)))
(net (code 16) (name /CC25_PAEN)
(node (ref U6) (pin 9))
(node (ref U6) (pin 7)))
(net (code 17) (name /NRF_CE)
(node (ref R5) (pin 1))
(node (ref U5) (pin 3)))
(net (code 18) (name /NRF_CSN)
(node (ref U5) (pin 4))
(node (ref IC1) (pin 12)))
(net (code 19) (name "")
(node (ref R8) (pin 1))
(node (ref P3) (pin 2))
(node (ref JP3) (pin 2)))
(net (code 20) (name /PPM_IN)
(node (ref JP2) (pin 1))
(node (ref P2) (pin 1))
(node (ref R2) (pin 2)))
(net (code 21) (name "")
(node (ref JP3) (pin 1))
(node (ref P2) (pin 5)))
(net (code 22) (name "")
(node (ref JP4) (pin 2))
(node (ref P3) (pin 1)))
(net (code 23) (name "")
(node (ref JP2) (pin 2))
(node (ref R7) (pin 1)))
(net (code 24) (name "")
(node (ref R3) (pin 1))
(node (ref JP1) (pin 2)))
(net (code 25) (name /RX)
(node (ref IC1) (pin 30))
(node (ref R7) (pin 2)))
(net (code 26) (name "")
(node (ref P2) (pin 2))
(node (ref JP4) (pin 1)))
(net (code 27) (name /TX)
(node (ref IC1) (pin 31))
(node (ref R8) (pin 2)))
(net (code 28) (name /CYRF_RST)
(node (ref IC1) (pin 28))
(node (ref U3) (pin 9)))
(net (code 29) (name /CYRF_CSN)
(node (ref U3) (pin 2))
(node (ref IC1) (pin 13)))
(net (code 30) (name /A0)
(node (ref IC1) (pin 23))
(node (ref SW1) (pin 6)))
(net (code 31) (name /D10)
(node (ref SW1) (pin 1))
(node (ref IC1) (pin 14)))
(net (code 32) (name /xtl2)
(node (ref X1) (pin 1))
(node (ref IC1) (pin 8))
(node (ref C5) (pin 1)))
(net (code 33) (name /xtl1)
(node (ref IC1) (pin 7))
(node (ref X1) (pin 3))
(node (ref C4) (pin 2)))
(net (code 34) (name "")
(node (ref D1) (pin 1))
(node (ref SW2) (pin 1))
(node (ref SW2) (pin 2))
(node (ref R4) (pin 2)))
(net (code 35) (name /A3)
(node (ref IC1) (pin 26)))
(net (code 36) (name /D3)
(node (ref IC1) (pin 1))
(node (ref R2) (pin 1))
(node (ref JP1) (pin 1)))
(net (code 37) (name /A4)
(node (ref IC1) (pin 27)))
(net (code 38) (name /A2)
(node (ref IC1) (pin 25)))
(net (code 39) (name /A1)
(node (ref IC1) (pin 24)))
(net (code 40) (name /A6)
(node (ref IC1) (pin 19)))
(net (code 41) (name /A7)
(node (ref IC1) (pin 22)))
(net (code 42) (name /PB5)
(node (ref P1) (pin 3))
(node (ref IC1) (pin 17))
(node (ref R4) (pin 1)))
(net (code 43) (name "")
(node (ref IC1) (pin 20))
(node (ref C2) (pin 1)))
(net (code 44) (name "")
(node (ref U5) (pin 8)))
(net (code 45) (name /BATT)
(node (ref C1) (pin 1))
(node (ref P2) (pin 3))
(node (ref U1) (pin 3)))))

View File

@@ -0,0 +1,41 @@
update=04/02/2016 18:14:57
last_client=pcbnew
[pcbnew]
version=1
LastNetListRead=Multipro-txV2-3d.net
UseCmpFile=1
PadDrill=0.750000000000
PadDrillOvalY=0.750000000000
PadSizeH=1.250000000000
PadSizeV=1.250000000000
PcbTextSizeV=1.500000000000
PcbTextSizeH=1.500000000000
PcbTextThickness=0.300000000000
ModuleTextSizeV=1.000000000000
ModuleTextSizeH=1.000000000000
ModuleTextSizeThickness=0.150000000000
SolderMaskClearance=0.000000000000
SolderMaskMinWidth=0.000000000000
DrawSegmentWidth=0.400000000000
BoardOutlineThickness=0.100000000000
ModuleOutlineThickness=0.150000000000
[pcbnew/libraries]
LibDir=../Multipro-txV2
LibName1=sockets
LibName2=connect
LibName3=discret
LibName4=pin_array
LibName5=divers
LibName6=smd_capacitors
LibName7=smd_resistors
LibName8=smd_crystal&oscillator
LibName9=smd_dil
LibName10=smd_transistors
LibName11=libcms
LibName12=display
LibName13=led
LibName14=dip_sockets
LibName15=pga_sockets
LibName16=valves
LibName17=Logo
LibName18=LogoBsilk

File diff suppressed because it is too large Load Diff

BIN
PCB v2.3d/PCB_v2.3d.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 172 KiB

35
PCB v2.3d/Readme.txt Normal file
View File

@@ -0,0 +1,35 @@
These are KiCad files and you are free to do what you will with them. KiCad is a good, free, and fairly
easy to learn. Build your own BOM and gerber files.
This is a variant of the Multipro V2.3c circuit design. It is basicly the same as the 2.3c board as far
as component placement goes. What's changed is the added resistors for the serial protocol and also
the addition of solder jumpers on the bottom of the board for the various options to connect the TX, RX, and PPM
lines through them. See below for more detail.
The schematic has been updated to reflect the added components and jumper pads as well as cleaned
up a little. As it sits now, the .net file loads without any complaints and DRC checks pass.
The jumpers, and how they are used:
There are four solder type jumpers on the bottom side of the board near the lower left corner when the
bottom of the board is facing towards you. The silkscreen shows which jumper is which. These four jumpers
enable the board to be configured in several ways as explaned below.
(J-1) Use (PPM V/V) if the incoming PPM signal is at a higher voltage level, leave open if ~~5V.
(J-2) Use (Jumper 2) to connect the incomming PPM signal to the RX pin on the processor
(J-3) Short (TELEM) only if you have done a telemetry mod to your radio, leave open if not needed. When
connected, pin 2 of the two pin header (P3) is also connected.
(J-4) Use (MOD) only to connect the transmitter pin 2 to pin 1 of the two pin header (P3).
The direction this project is going, it is most likely J-2 will be the only one needing to be shorted for
the serial method of sending model protocols.
These files are submitted without any guarentee of accureacy or suitability for any intended use. I am strictly
an amature with time on his hands. Although I have done all I know to make it correct, things outside of my
knowledge base are beyond my control. Do not use untested equipment around persons not familiar with the hazards
of remote controlled vehicals.

Binary file not shown.

After

Width:  |  Height:  |  Size: 224 KiB

324
Protocols_Details.md Normal file
View File

@@ -0,0 +1,324 @@
#Protocols details
**You'll find below a detailed description of every supported protocols sorted by RF modules.**
Legend:
- Extended limits supported: -125%..+125% can be used and will be transmitted. Otherwise the default is -100%..+100% only.
- Autobind protocol: you do not need to press the bind button at power up to bind, this is done automatically.
***
#A7105 RF Module
##FLYSKY
Extended limits supported
CH1|CH2|CH3|CH4|CH5|CH6|CH7|CH8
---|---|---|---|---|---|---|---
A|E|T|R|CH5|CH6|CH7|CH8
###Sub_protocol V9X9
CH5|CH6|CH7|CH8
---|---|---|---
FLIP|LIGHT|PICTURE|VIDEO
###Sub_protocol V6X6
CH5|CH6|CH7|CH8|CH9|CH10|CH11|CH12
---|---|---|---|---|---|---|---
FLIP|LIGHT|PICTURE|VIDEO|HEADLESS|RTH|XCAL|YCAL
###Sub_protocol V912
CH5|CH6
---|---
BTMBTN|TOPBTN
##HUBSAN
Models: Hubsan H102D, H107/L/C/D and Hubsan H107P/C+/D+
Autobind protocol
Telemetry enabled for battery voltage and TX RSSI
Option=vTX frequency (H107D) 5645 - 5900 MHz
CH1|CH2|CH3|CH4|CH5|CH6|CH7|CH8|CH9
---|---|---|---|---|---|---|---|---
A|E|T|R|FLIP|LIGHT|PICTURE|VIDEO|HEADLESS
***
#CC2500 RF Module
##FRSKY
Extended limits supported
Telemetry enabled for A0, A1, RSSI, TSSI and Hub
Option=fine frequency tuning, usually 0 or -41 based on the manufacturer boards
CH1|CH2|CH3|CH4|CH5|CH6|CH7|CH8
---|---|---|---|---|---|---|---
CH1|CH2|CH3|CH4|CH5|CH6|CH7|CH8
##FRSKYX
Models: FrSky receivers X4R, X6R and X8R.
Extended limits supported
Telemetry enabled for A1 (RxBatt), A2, RSSI
Option=fine frequency tuning, usually 0 or -41 based on the manufacturer boards
CH1|CH2|CH3|CH4|CH5|CH6|CH7|CH8|CH9|CH10|CH11|CH12|CH13|CH14|CH15|CH16
---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----
CH1|CH2|CH3|CH4|CH5|CH6|CH7|CH8|CH9|CH10|CH11|CH12|CH13|CH14|CH15|CH16
***
#CYRF6936 RF Module
##DEVO
Extended limits supported
CH1|CH2|CH3|CH4|CH5|CH6|CH7|CH8
---|---|---|---|---|---|---|---
CH1|CH2|CH3|CH4|CH5|CH6|CH7|CH8
##DSM2
Extended limits supported
option=number of channels and frame rate:
- 0 : 4 channels @22ms
- 1 : 5 channels @22ms
- 2 : 6 channels @22ms
- 3 : 7 channels @22ms
- 4 : 4 channels @11ms
- 5 : 5 channels @11ms
- 6 : 6 channels @11ms
- 7 : 7 channels @11ms
- 8 : 8 channels @22ms
- 9 : 9 channels @22ms
- 10 : 10 channels @22ms
- 11 : 11 channels @22ms
- 12 : 12 channels @22ms
6 is usually giving the best results with most of the RX.
CH1|CH2|CH3|CH4|CH5|CH6|CH7|CH8|CH9|CH10|CH11|CH12
---|---|---|---|---|---|---|---|---|----|----|----
A|E|T|R|CH5|CH6|CH7|CH8|CH9|CH10|CH11|CH12
###Sub_protocol DSMX
Same as above
***
#NRF24L01 RF Module
##BAYANG
Models: EAchine H8(C) mini, BayangToys X6/X7/X9, JJRC JJ850, Floureon H101 ...
Autobind protocol
CH1|CH2|CH3|CH4|CH5|CH6|CH7|CH8|CH9|CH10
---|---|---|---|---|---|---|---|---|----
A|E|T|R|FLIP|RTH|PICTURE|VIDEO|HEADLESS|INVERTED
##CG023
Models: EAchine CG023/CG031/3D X4
Autobind protocol
CH1|CH2|CH3|CH4|CH5|CH6|CH7|CH8|CH9
---|---|---|---|---|---|---|---|---
A|E|T|R|FLIP|LIGHT|PICTURE|VIDEO|HEADLESS
###Sub_protocol YD829
Models: Attop YD-822/YD-829/YD-829C ...
CH5|CH6|CH7|CH8|CH9
---|---|---|---|---
FLIP||PICTURE|VIDEO|HEADLESS
###Sub_protocol H8_3D
Models: EAchine H8 mini 3D, JJRC H20/H22
CH5|CH6|CH7|CH8|CH9
---|---|---|---|---
FLIP|LIGTH|OPT1|OPT2|CAL
JJRC H20: OPT1=Headless, OPT2=RTH
JJRC H22: OPT1=RTH, OPT2=180/360° flip mode
H8 3D: OPT1=RTH + headless, OPT2=180/360° flip mode
CAL: calibrate accelerometers
##CX10
Extended limits supported
Autobind protocol
CH1|CH2|CH3|CH4|CH5|CH6
---|---|---|---|---|---
A|E|T|R|FLIP|RATE
Rate: -100%=rate 1, 0%=rate 2, +100%=rate 3
###Sub_protocol GREEN
Models: Cheerson CX-10 green pcb
Same channels assignement as above.
###Sub_protocol BLUE
Models: Cheerson CX-10 blue pcb & some newer red pcb, CX-10A, CX-10C, CX11, CX12, Floureon FX10, JJRC DHD D1
CH5|CH6|CH7|CH8
---|---|---|---
FLIP|RATE|PICTURE|VIDEO
Rate: -100%=rate 1, 0%=rate 2, +100%=rate 3 or headless for CX-10A
###Sub_protocol DM007
CH5|CH6|CH7|CH8|CH9
---|---|---|---|---
FLIP|MODE|PICTURE|VIDEO|HEADLESS
###Sub_protocol Q282 and Q242
CH5|CH6|CH7|CH8|CH9|CH10|CH11|CH12
---|---|---|---|---|---|---|---
FLIP|LED|PICTURE|VIDEO|HEADLESS|RTH|XCAL|YCAL
Model: JXD 509 is using Q282 with CH12=Start/Stop motors
###Sub_protocol JC3015_1
CH5|CH6|CH7|CH8
---|---|---|---
FLIP|MODE|PICTURE|VIDEO
###Sub_protocol JC3015_2
CH5|CH6|CH7|CH8
---|---|---|---
FLIP|MODE|LED|DFLIP
###Sub_protocol MK33041
CH5|CH6|CH7|CH8|CH9|CH10
---|---|---|---|---|---
FLIP|MODE|PICTURE|VIDEO|HEADLESS|RTH
##ESKY
CH1|CH2|CH3|CH4|CH5|CH6
---|---|---|---|---|---
A|E|T|R|GYRO|PITCH
##HISKY
CH1|CH2|CH3|CH4|CH5|CH6|CH7|CH8
---|---|---|---|---|---|---|---
A|E|T|R|GEAR|PITCH|GYRO|CH8
GYRO: -100%=6G, +100%=3G
###HK310
Models: RX HK-3000, HK3100 and XY3000 (TX are HK-300, HK-310 and TL-3C)
CH1|CH2|CH3|CH4|CH5|CH6|CH7|CH8
---|---|---|---|---|---|---|---
|||T|R|AUX|T_FSAFE|R_FSAFE|AUX_FSAFE
##KN
CH1|CH2|CH3|CH4|CH5|CH6|CH7|CH8|CH9|CH10|CH11
---|---|---|---|---|---|---|---|---|----|----
A|E|T|R|DR|THOLD|IDLEUP|GYRO|Ttrim|Atrim|Etrim
Dual Rate: +100%=full range, Throttle Hold: +100%=hold, Idle Up: +100%=3D, GYRO: -100%=6G, +100%=3G
###Sub_protocol WLTOYS
###Sub_protocol FEILUN
Same channels assignement as above.
##MJXQ
Autobind protocol
CH1|CH2|CH3|CH4|CH5|CH6|CH7|CH8|CH9|CH10|CH11|CH12|CH13
---|---|---|---|---|---|---|---|---|---|---|---|---
A|E|T|R|FLIP|LED|PICTURE|VIDEO|HEADLESS|RTH|AUTOFLIP|PAN|TILT
###Sub_protocol WLH08
###Sub_protocol X600
###Sub_protocol X800
###Sub_protocol H26D
##MT99XX
Autobind protocol
CH1|CH2|CH3|CH4|CH5|CH6|CH7|CH8|CH9
---|---|---|---|---|---|---|---|---
A|E|T|R|FLIP|LED|PICTURE|VIDEO|HEADLESS
###Sub_protocol MT
Models: MT99xx
###Sub_protocol H7
Models: Eachine H7, Cheerson CX023
###Sub_protocol YZ
Model: Yi Zhan i6S
Only one model can be flown at the same time since the ID is hardcoded.
##Shenqi
Autobind protocol
Model: Shenqiwei 1/20 Mini Motorcycle
CH1|CH2|CH3|CH4
---|---|---|---
| |T|R
Throttle +100%=full forward,0%=stop,-100%=full backward.
##SLT
Autobind protocol
CH1|CH2|CH3|CH4|CH5|CH6
---|---|---|---|---|---
A|E|T|R|GEAR|PITCH
##Symax
Autobind protocol
CH1|CH2|CH3|CH4|CH5|CH6|CH7|CH8|CH9
---|---|---|---|---|---|---|---|---
A|E|T|R|FLIP||PICTURE|VIDEO|HEADLESS
###Sub_protocol SYMAX
Models: Syma X5C-1/X11/X11C/X12
###Sub_protocol SYMAX5C
Model: Syma X5C (original) and X2
##V2X2
Models: WLToys V202/252/272, JXD 385/388, JJRC H6C, Yizhan Tarantula X6 ...
CH1|CH2|CH3|CH4|CH5|CH6|CH7|CH8|CH9|CH10|CH11
---|---|---|---|---|---|---|---|---|----|----
A|E|T|R|FLIP|LIGHT|PICTURE|VIDEO|HEADLESS|MAG_CAL_X|MAG_CAL_Y
PICTURE: also automatic Missile Launcher and Hoist in one direction
VIDEO: also Sprayer, Bubbler, Missile Launcher(1), and Hoist in the other dir
##YD717
Autobind protocol
CH1|CH2|CH3|CH4|CH5|CH6|CH7|CH8|CH9
---|---|---|---|---|---|---|---|---
A|E|T|R|FLIP|LIGHT|PICTURE|VIDEO|HEADLESS
###Sub_protocol YD717
###Sub_protocol SKYWLKR
###Sub_protocol SYMAX4
###Sub_protocol XINXUN
###Sub_protocol NIHUI
Same channels assignement as above.

401
README.md
View File

@@ -1,13 +1,13 @@
# DIY-Multiprotocol-TX-Module
Multiprotocol is a TX module which enables any TX to control lot of different models available on the market.
Multiprotocol is a 2.4GHz transmitter which enables any TX to control lot of different models available on the market.
The source code is partly based on the Deviation TX project, thanks to all the developpers for their great job on protocols.
[Main thread on RCGROUPS for additional information](http://www.rcgroups.com/forums/showthread.php?t=2165676)
[Forum link on RCGROUPS](http://www.rcgroups.com/forums/showthread.php?t=2165676) for additional information or requesting a new protocol integration.
![Screenshot](http://static.rcgroups.net/forums/attachments/4/0/8/5/8/3/t7952733-114-thumb-P4100002.JPG?d=1433910155) ![Screenshot](http://static.rcgroups.net/forums/attachments/4/0/8/5/8/3/t7952734-189-thumb-P4100003.JPG?d=1433910159)
**If you are looking at downloading the latest compiled version (hex file), it's under [Release](https://github.com/pascallanger/DIY-Multiprotocol-TX-Module/releases) on the top menu.**
**To download the latest compiled version (hex file), click on [Release](https://github.com/pascallanger/DIY-Multiprotocol-TX-Module/releases) on the top menu.**
##Contents
@@ -17,7 +17,7 @@ The source code is partly based on the Deviation TX project, thanks to all the d
[Hardware](https://github.com/pascallanger/DIY-Multiprotocol-TX-Module#hardware)
[Compilation and programmation](https://github.com/pascallanger/DIY-Multiprotocol-TX-Module#compilation)
[Compilation and programmation](https://github.com/pascallanger/DIY-Multiprotocol-TX-Module#compilation-and-programmation)
[Troubleshooting](https://github.com/pascallanger/DIY-Multiprotocol-TX-Module#troubleshooting)
@@ -26,12 +26,23 @@ The source code is partly based on the Deviation TX project, thanks to all the d
###Using standard PPM output (trainer port)
The multiprotocol TX module can be used on any TX with a trainer port.
Channels order is AETR by default but can be changed in the source code.
Channels order is AETR by default but can be changed in the _Config.h.
The protocol selection is done via a dip switch or a rotary dip switch for access to up to 15 different protocols.
The protocol selection is done via a dip switch, rotary dip switch or scsi ID selector.
![Screenshot](http://media.digikey.com/photos/CTS%20Photos/206-4,%20206-4ST_sml.jpg)
![Screenshot](http://media.digikey.com/photos/Grayhill%20Photos/94HBB16T_sml.jpg)
![Screenshot](http://static.rcgroups.net/forums/attachments/1/1/5/4/3/7/t8637216-7-thumb-SCSI%20ID%20selector.jpg?d=1453737244)
You can access to up to 15 different protocols and associated settings.
Settings per selection are located in _Config.h:
- Protocol and type: many main protocols have variants
- RX Num: number your different RXs and make sure only one model will react to the commands
- Power: High or low, enables to lower the power setting of your TX (indoor for example).
- Option: -127..+127 allowing to set specific protocol options. Like for Hubsan to set the video frequency.
- Autobind: Yes or No. At the model selection (or power applied to the TX) a bind sequence will be initiated
###Using a serial output
The multiprotocol TX module takes full advantage of being used on a Turnigy 9X, 9XR, 9XR Pro, Taranis, 9Xtreme, AR9X, ... running [er9x or ersky9X](https://github.com/MikeBland/mbtx/tree/next). (A version for OpenTX is being looked at)
@@ -50,18 +61,33 @@ Options are:
Notes:
- Using this solution does not need any modification of the TX since it uses the TX module slot PPM pin for serial transfer.
- There are 2 versions of serial protocol either 8 or 16 channels. 16 channels is the latest version. Make sure to use the right version based on your version of er9x/ersky9x.
- Channels order is AETR by default but can be changed in the source code.
- There are 2 versions of serial protocol either 8 or 16 channels. 16 channels is the latest and only available version going forward. Make sure to use the right version based on your version of er9x/ersky9x.
- Channels order is AETR by default but can be changed in _Config.h.
###Telemetry
Telemetry is available for er9x and ersky9x TXs.
There are only 2 protocols so far supporting telemetry: Hubsan and Frsky.
To enable telemetry on Turnigy 9X or 9XR you need to modify your TX following one of the Frsky mod like this [one](http://blog.oscarliang.net/turnigy-9x-advance-mod/).
There are 3 protocols supporting telemetry: Hubsan, FrSky and FrSkyX.
Enabling telemetry on 9XR PRO and may be other TXs does not require any hardware modifications. The additional required serial pin is already available on the TX back module pins.
Hubsan displays the battery voltage and TX RSSI.
Once the TX is telemetry enabled, it just needs to be configured on the model as usual.
FrSky displays full telemetry (A0, A1, RX RSSI, TX RSSI and Hub).
FrSkyX displays basic telemetry (A1, A2 and RX RSSI).
### If used in PPM mode
Telemetry is available as a serial 9600 8 n 1 output on the TX pin of the Atmega328p using the FRSky hub format.
You can connect it to your TX if it is telemetry enabled or use a bluetooth adapter (HC05/HC06) along with an app on your phone/tablet ([app example](https://play.google.com/store/apps/details?id=biz.onomato.frskydash&hl=fr)) to display telemetry information and setup alerts.
### If used in Serial mode
Telemetry is built in for er9x and ersky9x TXs.
To enable telemetry on a Turnigy 9X or 9XR you need to modify your TX following one of the Frsky mod like this [one](http://blog.oscarliang.net/turnigy-9x-advance-mod/).
Enabling telemetry on a 9XR PRO and may be other TXs does not require any hardware modifications. The additional required serial pin is already available on the TX back module pins.
Once the TX is telemetry enabled, it just needs to be configured on the model (see er9x/ersky9x documentation).
##Protocols
@@ -72,231 +98,125 @@ There are little chances to get a duplicated ID.
It's possible to generate a new ID using bind button on the Hubsan protocol during power up.
###Bind
To bind a model in:
1. PPM Mode:
- press the bind button, apply power and then release.
2. Serial Mode:
- use the GUI, access the model protocol page and long press on Bind.
- press the bind button, apply power and then release will request a bind of the loaded model protocol. Note that the bind button is only effective at power up and not when the protocol is changed on the fly.
To bind a model in PPM Mode press the physical bind button, apply power and then release.
In Serial Mode you have 2 options:
- use the GUI, access the model protocol page and long press on Bind. This operation can be done at anytime.
- press the physical bind button, apply power and then release. It will request a bind of the first loaded model protocol.
Notes:
- the physical bind button is only effective at power up. Pressing the button later has no effects.
- a bind in progress is indicated by the LED fast blinking. Make sure to bind during this period.
###Protocol selection
####Using the dial for PPM input
PPM is only allowing access to a subset of existing protocols & sub_protocols.
The default association dial position / protocol is listed below.
PPM is only allowing access to a subset of existing protocols.
The protocols, subprotocols and all other settings can be personalized by modifying the **_Config.h** file.
Dial|Protocol|Sub_protocol|RF Module
----|--------|------------|---------
0|Select serial||
1|FLYSKY|Flysky|A7105
2|HUBSAN|-|A7105
3|FRSKY|-|CC2500
4|HISKY|Hisky|NRF24L01
5|V2X2|-|NRF24L01
6|DSM2|DSM2|CYRF6936
7|DEVO|-|CYRF6936
8|YD717|YD717|NRF24L01
9|KN|-|NRF24L01
10|SYMAX|SYMAX|NRF24L01
11|SLT|-|NRF24L01
12|CX10|CX10_BLUE|NRF24L01
13|CG023|CG023|NRF24L01
14|BAYANG|-|NRF24L01
15|SYMAX|SYMAX5C|NRF24L01
The default association dial position / protocol in every release is listed below.
Notes:
Dial|Protocol|Sub_protocol|RX Num|Power|Auto Bind|Option|RF Module
----|--------|------------|------|-----|---------|------|---------
0|Select serial||||||
1|FLYSKY|Flysky|0|High|No|0|A7105
2|HUBSAN|-|0|High|No|0|A7105
3|FRSKY|-|0|High|No|-41|CC2500
4|HISKY|Hisky|0|High|No|0|NRF24L01
5|V2X2|-|0|High|No|0|NRF24L01
6|DSM2|DSM2|0|High|No|6|CYRF6936
7|DEVO|-|0|High|No|0|CYRF6936
8|YD717|YD717|0|High|No|0|NRF24L01
9|KN|WLTOYS|0|High|No|0|NRF24L01
10|SYMAX|SYMAX|0|High|No|0|NRF24L01
11|SLT|-|0|High|No|0|NRF24L01
12|CX10|BLUE|0|High|No|0|NRF24L01
13|CG023|CG023|0|High|No|0|NRF24L01
14|BAYANG|-|0|High|No|0|NRF24L01
15|SYMAX|SYMAX5C|0|High|No|0|NRF24L01
Note:
- The dial selection must be done before the power is applied.
- The protocols and subprotocols accessible by the dial can be personalized by modifying the source code.
####Using serial input with er9x/ersky9x
Serial is allowing access to all existing protocols & sub_protocols listed below.
Protocol|Sub_protocol|RF Module
--------|------------|---------
Flysky||A7105
#####A7105 RF module
Protocol|Sub_protocol
--------|------------
Flysky|
|Flysky
|V9x9
|V6x6
|V912
Hubsan||A7105
Frsky||CC2500
Hisky||NRF24L01
|Hisky
|HK310
V2x2||NRF24L01
DSM2||CYRF6936
Hubsan|
#####CC2500 RF module
Protocol|Sub_protocol
--------|------------
FrSky|
FrSkyX|
#####CYRF6936 RF module
Protocol|Sub_protocol
--------|------------
DSM2|
|DSM2
|DSMX
Devo||CYRF6936
YD717||NRF24L01
Devo|
#####NRF24L01 RF module
Protocol|Sub_protocol
--------|------------
Hisky|
|Hisky
|HK310
V2x2|
YD717|
|YD717
|SKYWLKR
|SYMAX2
|SYMAX4
|XINXUN
|NIHUI
KN||NRF24L01
SymaX||NRF24L01
KN|
|WLTOYS
|FEILUN
SymaX|
|SYMAX
|SYMAX5C
SLT||NRF24L01
CX10||NRF24L01
|CX10_GREEN
|CX10_BLUE
SLT|
CX10|
|GREEN
|BLUE
|DM007
CG023||NRF24L01
|Q282
|JC3015_1
|JC3015_2
|MK33041
|Q242
CG023|
|CG023
|YD829
|H8_3D
Bayang||NRF24L01
Bayang|
FrskyX||CC2500
ESky|
MT99XX|
|MT
|H7
|YZ
MJXQ|
|WLH08
|X600
|X800
|H26D
Shenqi|
Note:
- The dial should be set to 0 for serial. Which means all protocol selection pins should be left unconnected.
###Protocol details
Extended limits supported: -125%..+125% can be used and will be transmitted. Otherwise the default is -100%..+100% only.
Autobind protocol: you do not need to press the bind button at power up to bind, this is done automatically.
####BAYANG
Autobind protocol
CH1|CH2|CH3|CH4|CH5|CH6|CH7|CH8|CH9|CH10|CH11|CH12|CH13|CH14|CH15|CH16
---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----
A|E|T|R|FLIP|HEADLESS|RTH
####CG023
Autobind protocol
CH1|CH2|CH3|CH4|CH5|CH6|CH7|CH8|CH9|CH10|CH11|CH12|CH13|CH14|CH15|CH16
---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----
A|E|T|R|FLIP|LIGHT|PICTURE|VIDEO|HEADLESS
#####Sub_protocol YD829
CH5|CH6|CH7|CH8|CH9
---|---|---|---|---
FLIP||PICTURE|VIDEO|HEADLESS
#####Sub_protocol H8_3D
CH5|CH6|CH7|CH8|CH9
---|---|---|---|---
FLIP|HEADLESS|RTH
RTH on H8_3D is 180/360 flip mode
Both sticks bottom left: calibrate accelerometers
####CX10
Extended limits supported
CH1|CH2|CH3|CH4|CH5|CH6|CH7|CH8|CH9|CH10|CH11|CH12|CH13|CH14|CH15|CH16
---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----
A|E|T|R|FLIP|MODE|PICTURE|VIDEO|HEADLESS
MODE: +100%=mode3 or headless for CX-10A, -100%=mode1, 0%=mode2
####DEVO
Extended limits supported
CH1|CH2|CH3|CH4|CH5|CH6|CH7|CH8|CH9|CH10|CH11|CH12|CH13|CH14|CH15|CH16
---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----
CH1|CH2|CH3|CH4|CH5|CH6|CH7|CH8
####DSM2
Extended limits supported
CH1|CH2|CH3|CH4|CH5|CH6|CH7|CH8|CH9|CH10|CH11|CH12|CH13|CH14|CH15|CH16
---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----
A|E|T|R|CH5|CH6|CH7|CH8
####FLYSKY
Extended limits supported
CH1|CH2|CH3|CH4|CH5|CH6|CH7|CH8|CH9|CH10|CH11|CH12|CH13|CH14|CH15|CH16
---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----
A|E|T|R|CH5|CH6|CH7|CH8
#####Sub_protocol V9X9
CH5|CH6|CH7|CH8
---|---|---|---
UNK|LIGHT|PICTURE|VIDEO
#####Sub_protocol V6X6
CH5|CH6|CH7|CH8|CH9|CH10|CH11|CH12
---|---|---|---|---|---|---|---
FLIP|LIGHT|PICTURE|VIDEO|HEADLESS|RTH|XCAL|YCAL
#####Sub_protocol V912
CH5|CH6
---|---
BTMBTN|TOPBTN
####FRSKY
Extended limits supported
Telemetry enabled for A0, A1, RSSI
Option=fine frequency tuning, usually 0 or -41 based on the manufacturer boards
CH1|CH2|CH3|CH4|CH5|CH6|CH7|CH8|CH9|CH10|CH11|CH12|CH13|CH14|CH15|CH16
---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----
CH1|CH2|CH3|CH4|CH5|CH6|CH7|CH8
####HISKY
CH1|CH2|CH3|CH4|CH5|CH6|CH7|CH8|CH9|CH10|CH11|CH12|CH13|CH14|CH15|CH16
---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----
A|E|T|R|GEAR|PITCH|GYRO|CH8
GYRO: -100%=6G, +100%=3G
####HK310
CH1|CH2|CH3|CH4|CH5|CH6|CH7|CH8|CH9|CH10|CH11|CH12|CH13|CH14|CH15|CH16
---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----
|||T|R|AUX|T_FSAFE|R_FSAFE|AUX_FSAFE
####HUBSAN
Autobind protocol
Telemetry enabled for battery voltage only
Option=vTX frequency (H107D) 5645 - 5900 MHz
CH1|CH2|CH3|CH4|CH5|CH6|CH7|CH8|CH9|CH10|CH11|CH12|CH13|CH14|CH15|CH16
---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----
A|E|T|R|FLIP|LIGHT||VIDEO
####KN
CH1|CH2|CH3|CH4|CH5|CH6|CH7|CH8|CH9|CH10|CH11|CH12|CH13|CH14|CH15|CH16
---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----
A|E|T|R|DR|THOLD|IDLEUP|GYRO3
GYRO3: -100%=6G, +100%=3G
####SLT
Autobind protocol
CH1|CH2|CH3|CH4|CH5|CH6|CH7|CH8|CH9|CH10|CH11|CH12|CH13|CH14|CH15|CH16
---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----
A|E|T|R|GEAR|PITCH
####Symax
Autobind protocol
CH1|CH2|CH3|CH4|CH5|CH6|CH7|CH8|CH9|CH10|CH11|CH12|CH13|CH14|CH15|CH16
---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----
A|E|T|R|FLIP||PICTURE|VIDEO|HEADLESS
####V2X2
CH1|CH2|CH3|CH4|CH5|CH6|CH7|CH8|CH9|CH10|CH11|CH12|CH13|CH14|CH15|CH16
---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----
A|E|T|R|FLIP|LIGHT|PICTURE|VIDEO|HEADLESS|MAG_CAL_X|MAG_CAL_Y
####YD717
Autobind protocol
CH1|CH2|CH3|CH4|CH5|CH6|CH7|CH8|CH9|CH10|CH11|CH12|CH13|CH14|CH15|CH16
---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----
A|E|T|R|FLIP|LIGHT|PICTURE|VIDEO|HEADLESS
###Protocols details
**Check the [Protocols_Details.md](./Protocols_Details.md) file for a detailed description of every protocols with channels assignements.**
##Hardware
@@ -311,24 +231,39 @@ RF modules can be installed for protocols need only. Example: if you only need t
You also need some [antennas](http://www.banggood.com/2_4GHz-3dBi-RP-SMA-Connector-Booster-Wireless-Antenna-Modem-Router-p-979407.html) and [cables](http://www.banggood.com/10cm-PCI-UFL-IPX-to-RPSMA-Female-Jack-Pigtail-Cable-p-924933.html).
###Microcontroller
The main program is running on an ATMEGA328 running @16MHz and 3.3V.
An [Arduino pro mini](http://www.banggood.com/Wholesale-New-Ver-Pro-Mini-ATMEGA328-328p-5V-16MHz-Arduino-Compatible-Nano-Size-p-68534.html) can be used to build your own Multimodule.
###Board
The main program is running on an ATMEGA328p running @16MHz and 3.3V.
An [Arduino pro mini 16Mhz/5V](http://www.banggood.com/Wholesale-New-Ver-Pro-Mini-ATMEGA328-328p-5V-16MHz-Arduino-Compatible-Nano-Size-p-68534.html) powered at 3.3V (yes it works) can be used to build your own Multimodule. An Arduino Mini based on Atmega328p can also be used.
Using stripboard:
![Screenshot](http://static.rcgroups.net/forums/attachments/4/0/8/5/8/3/t8214655-87-thumb-uploadfromtaptalk1405598143749.jpg?d=1441459923)
![Screenshot](http://static.rcgroups.net/forums/attachments/4/0/8/5/8/3/t8214656-102-thumb-uploadfromtaptalk1405598152484.jpg?d=1441459924)
Using a [home made PCB](http://www.rcgroups.com/forums/showpost.php?p=32645328&postcount=1621):
![Screenshot](http://static.rcgroups.net/forums/attachments/1/1/5/4/3/7/t8226719-72-thumb-IMG_20150715_230024065.jpg?d=1441816456)
![Screenshot](http://static.rcgroups.net/forums/attachments/1/1/5/4/3/7/t8226720-197-thumb-IMG_20150715_230603155.jpg?d=1441816457)
![Screenshot](http://static.rcgroups.net/forums/attachments/1/1/5/4/3/7/t8226719-72-thumb-IMG_20150715_230024065.jpg?d=1441816456)
or build your own board using SMD components and an associated PCB:
or build your own board using [SMD components](http://www.rcgroups.com/forums/showpost.php?p=31064232&postcount=1020) and an [associated PCB v2.3c](https://oshpark.com/shared_projects/MaGYDg0y):
![Screenshot](http://static.rcgroups.net/forums/attachments/4/0/8/5/8/3/t7566755-3-thumb-i.png?d=1423810885)
![Screenshot](http://static.rcgroups.net/forums/attachments/4/0/8/5/8/3/t7952726-108-thumb-image-62c29cf2.jpg?d=1433909893)
![Screenshot](http://static.rcgroups.net/forums/attachments/4/0/8/5/8/3/t7952733-114-thumb-P4100002.JPG?d=1433910155) ![Screenshot](http://static.rcgroups.net/forums/attachments/4/0/8/5/8/3/t7952734-189-thumb-P4100003.JPG?d=1433910159)
If you build this PCB v2.3c and want to enable serial mode for er9x/ersky9x, you have to do [this mod](http://static.rcgroups.net/forums/attachments/4/0/8/5/8/3/a8667856-242-multi.jpg).
**[New PCB v2.3d!](https://github.com/pascallanger/DIY-Multiprotocol-TX-Module/tree/master/PCB%20v2.3d) available**
Repository includes Kicad files of schematic and pcb. This is a variant of the Multipro V2.3c circuit design. It is basicly the same as the 2.3c board as far as component placement goes. What's changed is the added resistors for the serial protocol and also
the addition of solder jumpers on the bottom of the board for the various options to connect the TX, RX, and PPM
lines through them.
![Screenshot](https://644db4de3505c40a0444-327723bce298e3ff5813fb42baeefbaa.ssl.cf1.rackcdn.com/b637193364a5e228dc8ab6ad90c0ca3c.png)
![Screenshot](https://644db4de3505c40a0444-327723bce298e3ff5813fb42baeefbaa.ssl.cf1.rackcdn.com/97b87a89b75785d70b354e5b033f5209.png)
[OSH Park link](https://oshpark.com/shared_projects/Ztus1ah8) if you want to order.
###Schematic
![Screenshot](http://static.rcgroups.net/forums/attachments/4/0/8/5/8/3/a8443844-119-multiprotocol_diagram_rotary_serial_2.jpg)
@@ -345,24 +280,43 @@ You can 3D print your box (details [here](http://www.rcgroups.com/forums/showpos
##Compilation and programmation
###Toolchain
Arduino 1.6.5
Multiprotocol source can be compiled using the Arduino IDE.
Compilation of the code posted here works. So if it doesn't for you this is a problem with your setup, please double check everything before asking.
The currently supported Arduino version is [1.6.7](https://www.arduino.cc/download_handler.php?f=/arduino-1.6.7-windows.exe).
Multiprotocol.ino header can be modified to compile with/without some protocols, change protocols/sub_protocols associated with dial for PPM input, different channel orders, different channels timing, 8 or 16 channels serial protocol, Telemetry or not, ...
Download the [zip file](https://github.com/pascallanger/DIY-Multiprotocol-TX-Module/archive/master.zip) of this repository, unzip it in a folder, navigate to the Multiprotocol directory and then click on Multiprotocol.ino. The Arduino environment will appear and the Multiprotocol project will be loaded.
[_Config.h file](https://github.com/pascallanger/DIY-Multiprotocol-TX-Module/blob/master/Multiprotocol/_Config.h) must be modified to select which protocols will be available, change protocols/sub_protocols/settings associated with dial for PPM input, different TX channel orders and timing, Telemetry or not, ...
Notes:
- Make sure to select "Arduino Pro or Pro Mini, ATmega328 (5V,16MHz)" before compiling.
- Compilation of the code posted here works. So if it doesn't for you this is a problem with your setup, please double check everything before asking.
###Upload the code using ISP (In System Programming)
It is recommended to use an external programmer like [USBASP](http://www.banggood.com/USBASP-USBISP-3_3-5V-AVR-Downloader-Programmer-With-ATMEGA8-ATMEGA128-p-934425.html) to upload the code in the Atmega328. The programmer should be set to 3.3V or nothing to not supply any over voltage to the multimodule and avoid any damages.
The dial must be set to 0 before flashing!
From the Arduino environment, you can use this shortcut to compile and upload to the module: Skecth->Upload Using Programmer (Ctrl+Maj+U)
To flash the latest provided hex file under [Release](https://github.com/pascallanger/DIY-Multiprotocol-TX-Module/releases), you can use a tool like [AVR Burn-O-Mat](http://avr8-burn-o-mat.aaabbb.de/), set the microcontroller to m328p and flash it.
###Upload the code using FTDI (USB serial to TTL)
Use this method only for Arduino Pro Mini boards with bootloader.
Use an external FTDI adapter like [this one](http://www.banggood.com/FT232RL-FTDI-USB-To-TTL-Serial-Converter-Adapter-Module-For-Arduino-p-917226.html).
The programmer should be set to 3.3V or nothing to not supply any over voltage to the multimodule and avoid any damages.
From the Arduino environment, you can use Upload button which will compile and upload to the module: Skecth->Upload (Ctrl+U)
To upload the latest provided hex file under [Release](https://github.com/pascallanger/DIY-Multiprotocol-TX-Module/releases), you can use a tool like [XLoader](http://russemotto.com/xloader/), set the microcontroller to Atmega328 and upload it.
###Set fuses
Use a tool like [AVR Burn-O-Mat](http://avr8-burn-o-mat.aaabbb.de/) to set the fuses of the Atmega328 to:
- Low Fuse 0xFF
- High Fuse 0xD2
- Extended Fuse 0x05
- Extended Fuse 0x05 (or 0xFD which is the same)
This will make sure your ATMEGA328 is well configured and the global TX ID is not erased at each updates.
@@ -370,18 +324,25 @@ This will make sure your ATMEGA328 is well configured and the global TX ID is no
###LED status
- off: program not running or a protocol selected with the associated module not installed.
- flash: invalid protocol selected (excluded from compilation or invalid protocol number)
- slow blink: serial has been selected but no valid signal has been seen on the RX pin.
- fast blink: bind in progress.
- on: normal operation.
###Protocol selection
####Input Mode - PPM
- The protocol/mode selection must be done before the power is applied.
- Connect 1 to 4 of the selection protocol pins to GND.
####Input Mode - Serial
- Make sure you have done the mods to the v2.3c PCB by adding the 2.2k and 470 ohm resistors as indicated in the [Board section] (https://github.com/pascallanger/DIY-Multiprotocol-TX-Module#board).
- Leave all 4 selection pins unconnected.
###Bind
Make sure to follow this procedure: press the bind button, apply power and then release it after 1sec. The LED should be blinking fast indicating a bind status and then fixed on. It's normal that the LED turns off when you press the bind button, this behavior is not controlled by the Atmega328.
Make sure to follow this procedure: press the bind button, apply power and then release it after 1sec. The LED should be blinking fast indicating a bind status and then fixed on when the bind period is over. It's normal that the LED turns off when you press the bind button, this behavior is not controlled by the Atmega328.
For serial, the preffered method is to bind via the GUI protocol page.
###Protocol selection
For serial, leave all 4 selection pins unconnected.
For PPM, connect 1 to 4 of the selection protocol pins to GND.
The protocol/mode selection must be done before the power is applied.
It migth happen that your module is always binding at power up. If this is the case, there is a big chance that you are using an Arduino Pro Mini with an external status LED. To work around this issue connect a 10K resistor between D13 and 3.3V.
###Report issues
You can report your problem using the [GitHub issue](https://github.com/pascallanger/DIY-Multiprotocol-TX-Module/issues) system or go to the [Main thread on RCGROUPS](http://www.rcgroups.com/forums/showthread.php?t=2165676) to ask your question.