Merge pull request #291 from pascallanger/SPort_Send

New features
This commit is contained in:
pascallanger 2019-11-11 17:30:26 +01:00 committed by GitHub
commit f800b4f90b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
69 changed files with 2886 additions and 1701 deletions

View File

@ -11,7 +11,7 @@ env:
- BOARD="multi4in1:avr:multiatmega328p:bootloader=optiboot"
- BOARD="multi4in1:avr:multixmega32d4"
- BOARD="multi4in1:STM32F1:multistm32f103c:debug_option=none"
- BOARD="multi4in1:STM32F1:multistm32f103c:debug_option=native"
# - BOARD="multi4in1:STM32F1:multistm32f103c:debug_option=native"
- BOARD="multi4in1:STM32F1:multistm32f103c:debug_option=ftdi"
#
notifications:

View File

@ -21,9 +21,6 @@
#define AFHDS2A_RX_RXPACKET_SIZE 37
#define AFHDS2A_RX_NUMFREQ 16
static uint8_t afhds2a_rx_data_started;
static uint8_t afhds2a_rx_disable_lna;
enum {
AFHDS2A_RX_BIND1,
AFHDS2A_RX_BIND2,
@ -36,23 +33,22 @@ static void __attribute__((unused)) AFHDS2A_Rx_build_telemetry_packet()
uint8_t bitsavailable = 0;
uint8_t idx = 0;
pkt[idx++] = RX_LQI; // 0 - 130
pkt[idx++] = RX_RSSI;
pkt[idx++] = 0; // start channel
pkt[idx++] = 14; // number of channels in packet
packet_in[idx++] = RX_LQI; // 0 - 130
packet_in[idx++] = RX_RSSI;
packet_in[idx++] = 0; // start channel
packet_in[idx++] = 14; // number of channels in packet
// pack channels
for (uint8_t i = 0; i < 14; i++) {
uint16_t val = packet[9+i*2] | (packet[10+i*2] << 8);
uint32_t val = packet[9+i*2] | (packet[10+i*2] << 8);
if (val < 860)
val = 860;
else if (val > 2140)
val = 2140;
val -= 860;
// convert ppm (860-2140) to Multi (0-2047)
val = min(((val-860)<<3)/5, 2047);
bits |= ((uint32_t)val) << bitsavailable;
bits |= val << bitsavailable;
bitsavailable += 11;
while (bitsavailable >= 8) {
pkt[idx++] = bits & 0xff;
packet_in[idx++] = bits & 0xff;
bits >>= 8;
bitsavailable -= 8;
}
@ -71,9 +67,9 @@ uint16_t initAFHDS2A_Rx()
A7105_Init();
hopping_frequency_no = 0;
packet_count = 0;
afhds2a_rx_data_started = 0;
afhds2a_rx_disable_lna = IS_POWER_FLAG_on;
A7105_SetTxRxMode(afhds2a_rx_disable_lna ? TXRX_OFF : RX_EN);
rx_data_started = false;
rx_disable_lna = IS_POWER_FLAG_on;
A7105_SetTxRxMode(rx_disable_lna ? TXRX_OFF : RX_EN);
A7105_Strobe(A7105_RX);
if (IS_BIND_IN_PROGRESS) {
@ -103,9 +99,9 @@ uint16_t AFHDS2A_Rx_callback()
#ifndef FORCE_AFHDS2A_TUNING
A7105_AdjustLOBaseFreq(1);
#endif
if (afhds2a_rx_disable_lna != IS_POWER_FLAG_on) {
afhds2a_rx_disable_lna = IS_POWER_FLAG_on;
A7105_SetTxRxMode(afhds2a_rx_disable_lna ? TXRX_OFF : RX_EN);
if (rx_disable_lna != IS_POWER_FLAG_on) {
rx_disable_lna = IS_POWER_FLAG_on;
A7105_SetTxRxMode(rx_disable_lna ? TXRX_OFF : RX_EN);
}
switch(phase) {
@ -169,11 +165,11 @@ uint16_t AFHDS2A_Rx_callback()
if (memcmp(&packet[1], rx_id, 4) == 0 && memcmp(&packet[5], rx_tx_addr, 4) == 0) {
if (packet[0] == 0x58 && packet[37] == 0x00 && telemetry_link == 0) { // standard packet, send channels to TX
int rssi = min(A7105_ReadReg(A7105_1D_RSSI_THOLD),160);
RX_RSSI = map(rssi, 160, 8, 0, 100);
RX_RSSI = map16b(rssi, 160, 8, 0, 128);
AFHDS2A_Rx_build_telemetry_packet();
telemetry_link = 1;
}
afhds2a_rx_data_started = 1;
rx_data_started = true;
read_retry = 10; // hop to next channel
pps_counter++;
}
@ -194,7 +190,7 @@ uint16_t AFHDS2A_Rx_callback()
hopping_frequency_no = 0;
A7105_WriteReg(A7105_0F_PLL_I, hopping_frequency[hopping_frequency_no]);
A7105_Strobe(A7105_RX);
if (afhds2a_rx_data_started)
if (rx_data_started)
read_retry = 0;
else
read_retry = -127; // retry longer until first packet is catched

View File

@ -90,14 +90,14 @@ static void AFHDS2A_update_telemetry()
#ifdef AFHDS2A_FW_TELEMETRY
if (option & 0x80)
{// forward 0xAA and 0xAC telemetry to TX, skip rx and tx id to save space
pkt[0]= TX_RSSI;
packet_in[0]= TX_RSSI;
debug("T(%02X)=",packet[0]);
for(uint8_t i=9;i < AFHDS2A_RXPACKET_SIZE; i++)
{
pkt[i-8]=packet[i];
packet_in[i-8]=packet[i];
debug(" %02X",packet[i]);
}
pkt[29]=packet[0]; // 0xAA Normal telemetry, 0xAC Extended telemetry
packet_in[29]=packet[0]; // 0xAA Normal telemetry, 0xAC Extended telemetry
telemetry_link=2;
debugln("");
return;
@ -265,11 +265,15 @@ uint16_t ReadAFHDS2A()
A7105_ReadData(AFHDS2A_RXPACKET_SIZE);
if(packet[0] == 0xbc && packet[9] == 0x01)
{
uint8_t temp=AFHDS2A_EEPROM_OFFSET+RX_num*4;
uint8_t addr;
if(RX_num<16)
addr=AFHDS2A_EEPROM_OFFSET+RX_num*4;
else
addr=AFHDS2A_EEPROM_OFFSET2+(RX_num-16)*4;
for(uint8_t i=0; i<4; i++)
{
rx_id[i] = packet[5+i];
eeprom_write_byte((EE_ADDR)(temp+i),rx_id[i]);
eeprom_write_byte((EE_ADDR)(addr+i),rx_id[i]);
}
phase = AFHDS2A_BIND4;
packet_count++;
@ -317,6 +321,7 @@ uint16_t ReadAFHDS2A()
packet_type = AFHDS2A_PACKET_STICKS;
phase = AFHDS2A_DATA;
case AFHDS2A_DATA:
telemetry_set_input_sync(3850);
AFHDS2A_build_packet(packet_type);
if((A7105_ReadReg(A7105_00_MODE) & 0x01)) // Check if something has been received...
data_rx=0;
@ -331,7 +336,10 @@ uint16_t ReadAFHDS2A()
{
#ifdef FAILSAFE_ENABLE
if(!(packet_counter % 1569) && IS_FAILSAFE_VALUES_on)
{
packet_type = AFHDS2A_PACKET_FAILSAFE;
FAILSAFE_VALUES_off;
}
else
#endif
packet_type = AFHDS2A_PACKET_STICKS; // todo : check for settings changes
@ -345,7 +353,7 @@ uint16_t ReadAFHDS2A()
if(packet[0] == 0xAA || packet[0] == 0xAC)
{
if(!memcmp(&packet[1], rx_tx_addr, 4))
{ // Validate TX address
{ // TX address validated
#ifdef AFHDS2A_LQI_CH
if(packet[0]==0xAA && packet[9]!=0xFD)
{// Normal telemetry packet
@ -397,14 +405,15 @@ uint16_t initAFHDS2A()
{
phase = AFHDS2A_DATA_INIT;
//Read RX ID from EEPROM based on RX_num, RX_num must be uniq for each RX
uint8_t temp=AFHDS2A_EEPROM_OFFSET+RX_num*4;
uint8_t addr;
if(RX_num<16)
addr=AFHDS2A_EEPROM_OFFSET+RX_num*4;
else
addr=AFHDS2A_EEPROM_OFFSET2+(RX_num-16)*4;
for(uint8_t i=0;i<4;i++)
rx_id[i]=eeprom_read_byte((EE_ADDR)(temp+i));
rx_id[i]=eeprom_read_byte((EE_ADDR)(addr+i));
}
hopping_frequency_no = 0;
#if defined(AFHDS2A_FW_TELEMETRY) || defined(AFHDS2A_HUB_TELEMETRY)
init_frskyd_link_telemetry();
#endif
return 50000;
}
#endif

View File

@ -127,6 +127,7 @@ uint16_t ASSAN_callback()
phase=ASSAN_DATA2;
return 2000;
case ASSAN_DATA2:
telemetry_set_input_sync(12000);
case ASSAN_DATA3:
ASSAN_send_packet();
phase++; // DATA 3 or 4

View File

@ -181,7 +181,7 @@ static void __attribute__((unused)) BUGSMINI_make_address()
uint8_t start, length, index;
//read rxid
uint8_t base_adr=BUGSMINI_EEPROM_OFFSET+RX_num*2;
uint8_t base_adr=BUGSMINI_EEPROM_OFFSET+(RX_num&0x0F)*2;
uint8_t rxid_high = eeprom_read_byte((EE_ADDR)(base_adr+0));
uint8_t rxid_low = eeprom_read_byte((EE_ADDR)(base_adr+1));
@ -272,7 +272,7 @@ uint16_t BUGSMINI_callback()
if( NRF24L01_ReadReg(NRF24L01_07_STATUS) & _BV(NRF24L01_07_RX_DR))
{ // RX fifo data ready
XN297_ReadPayload(packet, BUGSMINI_RX_PAYLOAD_SIZE);
base_adr=BUGSMINI_EEPROM_OFFSET+RX_num*2;
base_adr=BUGSMINI_EEPROM_OFFSET+(RX_num&0x0F)*2;
eeprom_write_byte((EE_ADDR)(base_adr+0),packet[1]); // Save rxid in EEPROM
eeprom_write_byte((EE_ADDR)(base_adr+1),packet[2]); // Save rxid in EEPROM
NRF24L01_SetTxRxMode(TXRX_OFF);
@ -299,6 +299,7 @@ uint16_t BUGSMINI_callback()
phase = BUGSMINI_BIND1;
return BUGSMINI_PACKET_INTERVAL - BUGSMINI_WRITE_WAIT;
case BUGSMINI_DATA1:
telemetry_set_input_sync(BUGSMINI_PACKET_INTERVAL);
if( NRF24L01_ReadReg(NRF24L01_07_STATUS) & _BV(NRF24L01_07_RX_DR))
{ // RX fifo data ready => read only 12 bytes to not overwrite channel change flag
XN297_ReadPayload(packet, 12);
@ -375,9 +376,6 @@ uint16_t initBUGSMINI()
armed = 0;
arm_flags = BUGSMINI_FLAG_DISARM; // initial value from captures
arm_channel_previous = BUGSMINI_CH_SW_ARM;
#ifdef BUGS_HUB_TELEMETRY
init_frskyd_link_telemetry();
#endif
return BUGSMINI_INITIAL_WAIT;
}

View File

@ -283,7 +283,10 @@ uint16_t BAYANG_callback()
if(IS_BIND_DONE)
{
if(packet_count==0)
{
telemetry_set_input_sync((option & BAYANG_OPTION_FLAG_TELEMETRY)?5*BAYANG_PACKET_PERIOD:2*BAYANG_PACKET_PERIOD);
BAYANG_send_packet(0);
}
packet_count++;
#ifdef BAYANG_HUB_TELEMETRY
if (option & BAYANG_OPTION_FLAG_TELEMETRY)
@ -349,10 +352,6 @@ uint16_t initBAYANG(void)
BAYANG_initialize_txid();
BAYANG_init();
packet_count=0;
#ifdef BAYANG_HUB_TELEMETRY
init_frskyd_link_telemetry();
telemetry_lost=1; // do not send telemetry to TX right away until we have a TX_RSSI value to prevent warning message...
#endif
return BAYANG_INITIAL_WAIT+BAYANG_PACKET_PERIOD;
}

View File

@ -284,7 +284,7 @@ static void __attribute__((unused))BUGS_set_radio_data()
{
offset=BUGS_NUM_RFCHAN;
// Read radio_id from EEPROM
uint8_t base_adr=BUGS_EEPROM_OFFSET+RX_num*2;
uint8_t base_adr=BUGS_EEPROM_OFFSET+(RX_num&0x0F)*2;
uint16_t rxid=0;
for(uint8_t i=0; i<2; i++)
rxid|=eeprom_read_byte((EE_ADDR)(base_adr+i))<<(i*8);
@ -374,7 +374,7 @@ uint16_t ReadBUGS(void)
BIND_DONE;
// set radio_id
rxid = (packet[1] << 8) + packet[2];
base_adr=BUGS_EEPROM_OFFSET+RX_num*2;
base_adr=BUGS_EEPROM_OFFSET+(RX_num&0x0F)*2;
for(uint8_t i=0; i<2; i++)
eeprom_write_byte((EE_ADDR)(base_adr+i),rxid>>(i*8)); // Save rxid in EEPROM
BUGS_set_radio_data();
@ -385,6 +385,7 @@ uint16_t ReadBUGS(void)
break;
case BUGS_DATA_1:
telemetry_set_input_sync(BUGS_PACKET_PERIOD);
A7105_SetPower();
BUGS_build_packet(0);
A7105_WriteReg(A7105_03_FIFOI, BUGS_FIFO_SIZE_TX);
@ -437,7 +438,7 @@ uint16_t ReadBUGS(void)
uint16_t initBUGS(void)
{
uint16_t rxid=0;
uint8_t base_adr=BUGS_EEPROM_OFFSET+RX_num*2;
uint8_t base_adr=BUGS_EEPROM_OFFSET+(RX_num&0x0F)*2;
for(uint8_t i=0; i<2; i++)
rxid|=eeprom_read_byte((EE_ADDR)(base_adr+i))<<(i*8);
if(rxid==0xffff)
@ -456,9 +457,6 @@ uint16_t initBUGS(void)
armed = 0;
arm_flags = BUGS_FLAG_DISARM; // initial value from captures
arm_channel_previous = BUGS_CH_SW_ARM;
#ifdef BUGS_HUB_TELEMETRY
init_frskyd_link_telemetry();
#endif
return 10000;
}

View File

@ -406,9 +406,10 @@ uint16_t CABELL_callback()
if (IS_BIND_DONE)
{
CABELL_send_packet(0); // packet_period is set/adjusted in CABELL_send_packet
telemetry_set_input_sync(packet_period);
return packet_period;
}
if (bind_counter == 0)
else if (bind_counter == 0)
{
BIND_DONE;
CABELL_init(); // non-bind address
@ -429,10 +430,6 @@ uint16_t initCABELL(void)
else
bind_counter = CABELL_BIND_COUNT;
CABELL_init();
#if defined CABELL_HUB_TELEMETRY
init_frskyd_link_telemetry();
telemetry_lost=1; // do not send telemetry to TX right away until we have a TX_RSSI value to prevent warning message...
#endif
packet_period = CABELL_PACKET_PERIOD;

View File

@ -97,7 +97,7 @@ static inline uint8_t crtp_create_header(uint8_t port, uint8_t channel)
#define TX_ADDR_SIZE 5
// Timeout for callback in uSec, 10ms=10000us for Crazyflie
#define PACKET_PERIOD 10000
#define CFLIE_PACKET_PERIOD 10000
#define MAX_PACKET_SIZE 32 // CRTP is 32 bytes
@ -781,7 +781,8 @@ static uint16_t cflie_callback()
break;
case CFLIE_DATA:
// if (Model.proto_opts[PROTOOPTS_TELEMETRY] == TELEM_ON_CRTPLOG) {
telemetry_set_input_sync(CFLIE_PACKET_PERIOD);
// if (Model.proto_opts[PROTOOPTS_TELEMETRY] == TELEM_ON_CRTPLOG) {
// update_telemetry_crtplog();
// } else if (Model.proto_opts[PROTOOPTS_TELEMETRY] == TELEM_ON_ACKPKT) {
// update_telemetry_ackpkt();
@ -792,7 +793,7 @@ static uint16_t cflie_callback()
send_cmd_packet();
break;
}
return PACKET_PERIOD; // Packet at standard protocol interval
return CFLIE_PACKET_PERIOD; // Packet at standard protocol interval
}
// Generate address to use from TX id and manufacturer id (STM32 unique id)

View File

@ -138,7 +138,10 @@ static void __attribute__((unused)) CG023_init()
uint16_t CG023_callback()
{
if(IS_BIND_DONE)
{
telemetry_set_input_sync(packet_period);
CG023_send_packet(0);
}
else
{
if (bind_counter == 0)

View File

@ -229,6 +229,7 @@ uint16_t CX10_callback()
}
break;
case CX10_DATA:
telemetry_set_input_sync(packet_period);
CX10_Write_Packet(0);
break;
}

142
Multiprotocol/Convert.ino Normal file
View File

@ -0,0 +1,142 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
/************************/
/** Convert routines **/
/************************/
// Reverse a channel and store it
void reverse_channel(uint8_t num)
{
uint16_t val=2048-Channel_data[num];
if(val>=2048) val=2047;
Channel_data[num]=val;
}
// Channel value is converted to ppm 860<->2140 -125%<->+125% and 988<->2012 -100%<->+100%
uint16_t convert_channel_ppm(uint8_t num)
{
uint16_t val=Channel_data[num];
return (((val<<2)+val)>>3)+860; //value range 860<->2140 -125%<->+125%
}
// Channel value 100% is converted to 10bit values 0<->1023
uint16_t convert_channel_10b(uint8_t num)
{
uint16_t val=Channel_data[num];
val=((val<<2)+val)>>3;
if(val<=128) return 0;
if(val>=1152) return 1023;
return val-128;
}
// Channel value 100% is converted to 8bit values 0<->255
uint8_t convert_channel_8b(uint8_t num)
{
uint16_t val=Channel_data[num];
val=((val<<2)+val)>>5;
if(val<=32) return 0;
if(val>=288) return 255;
return val-32;
}
// Channel value 100% is converted to 8b with deadband
uint8_t convert_channel_8b_limit_deadband(uint8_t num,uint8_t min,uint8_t mid, uint8_t max, uint8_t deadband)
{
uint16_t val=limit_channel_100(num); // 204<->1844
uint16_t db_low=CHANNEL_MID-deadband, db_high=CHANNEL_MID+deadband; // 1024+-deadband
int32_t calc;
uint8_t out;
if(val>=db_low && val<=db_high)
return mid;
else if(val<db_low)
{
val-=CHANNEL_MIN_100;
calc=mid-min;
calc*=val;
calc/=(db_low-CHANNEL_MIN_100);
out=calc;
out+=min;
}
else
{
val-=db_high;
calc=max-mid;
calc*=val;
calc/=(CHANNEL_MAX_100-db_high+1);
out=calc;
out+=mid;
if(max>min) out++; else out--;
}
return out;
}
// Channel value 100% is converted to value scaled
int16_t convert_channel_16b_limit(uint8_t num,int16_t min,int16_t max)
{
int32_t val=limit_channel_100(num); // 204<->1844
val=(val-CHANNEL_MIN_100)*(max-min)/(CHANNEL_MAX_100-CHANNEL_MIN_100)+min;
return (uint16_t)val;
}
// Channel value -125%<->125% is scaled to 16bit value with no limit
int16_t convert_channel_16b_nolimit(uint8_t num, int16_t min, int16_t max)
{
int32_t val=Channel_data[num]; // 0<->2047
val=(val-CHANNEL_MIN_100)*(max-min)/(CHANNEL_MAX_100-CHANNEL_MIN_100)+min;
return (uint16_t)val;
}
// Channel value is converted sign + magnitude 8bit values
uint8_t convert_channel_s8b(uint8_t num)
{
uint8_t ch;
ch = convert_channel_8b(num);
return (ch < 128 ? 127-ch : ch);
}
// Channel value is limited to 100%
uint16_t limit_channel_100(uint8_t num)
{
if(Channel_data[num]>=CHANNEL_MAX_100)
return CHANNEL_MAX_100;
if (Channel_data[num]<=CHANNEL_MIN_100)
return CHANNEL_MIN_100;
return Channel_data[num];
}
// Channel value is converted for HK310
void convert_channel_HK310(uint8_t num, uint8_t *low, uint8_t *high)
{
uint16_t temp=0xFFFF-(3440+((Channel_data[num]*5)>>1))/3;
*low=(uint8_t)(temp&0xFF);
*high=(uint8_t)(temp>>8);
}
#ifdef FAILSAFE_ENABLE
// Failsafe value is converted for HK310
void convert_failsafe_HK310(uint8_t num, uint8_t *low, uint8_t *high)
{
uint16_t temp=0xFFFF-(3440+((Failsafe_data[num]*5)>>1))/3;
*low=(uint8_t)(temp&0xFF);
*high=(uint8_t)(temp>>8);
}
#endif
// Channel value for FrSky (PPM is multiplied by 1.5)
uint16_t convert_channel_frsky(uint8_t num)
{
uint16_t val=Channel_data[num];
return ((val*15)>>4)+1290;
}

View File

@ -258,6 +258,7 @@ static uint16_t __attribute__((unused)) CORONA_build_packet()
uint16_t ReadCORONA()
{
telemetry_set_input_sync(22000);
// Tune frequency if it has been changed
if ( prev_option != option )
{

View File

@ -113,7 +113,10 @@ static void __attribute__((unused)) DM002_init()
uint16_t DM002_callback()
{
if(IS_BIND_DONE)
{
telemetry_set_input_sync(DM002_PACKET_PERIOD);
DM002_send_packet(0);
}
else
{
if (bind_counter == 0)

View File

@ -230,7 +230,7 @@ static void __attribute__((unused)) DSM_update_channels()
if(sub_protocol==DSM_AUTO)
num_ch=12; // Force 12 channels in mode Auto
else
num_ch=option;
num_ch=option & 0x7F; // Remove the Max Throw flag
if(num_ch<4 || num_ch>12)
num_ch=6; // Default to 6 channels if invalid choice...
@ -273,8 +273,8 @@ static void __attribute__((unused)) DSM_build_data_packet(uint8_t upper)
/* Spektrum own remotes transmit normal values during bind and actually use this (e.g. Nano CP X) to
select the transmitter mode (e.g. computer vs non-computer radio), so always send normal output */
#ifdef DSM_THROTTLE_KILL_CH
if(CH_TAER[idx]==THROTTLE && kill_ch<=604)
{//Activate throttle kill only if DSM_THROTTLE_KILL_CH below -50%
if(idx==CH1 && kill_ch<=604)
{//Activate throttle kill only if channel is throttle and DSM_THROTTLE_KILL_CH below -50%
if(kill_ch<CHANNEL_MIN_100) // restrict val to 0...400
kill_ch=0;
else
@ -286,7 +286,10 @@ static void __attribute__((unused)) DSM_build_data_packet(uint8_t upper)
#ifdef DSM_MAX_THROW
value=Channel_data[CH_TAER[idx]]; // -100%..+100% => 1024..1976us and -125%..+125% => 904..2096us based on Redcon 6 channel DSM2 RX
#else
value=convert_channel_16b_nolimit(CH_TAER[idx],0x150,0x6B0); // -100%..+100% => 1100..1900us and -125%..+125% => 1000..2000us based on Redcon 6 channel DSM2 RX
if(option & 0x80)
value=Channel_data[CH_TAER[idx]]; // -100%..+100% => 1024..1976us and -125%..+125% => 904..2096us based on Redcon 6 channel DSM2 RX
else
value=convert_channel_16b_nolimit(CH_TAER[idx],0x150,0x6B0); // -100%..+100% => 1100..1900us and -125%..+125% => 1000..2000us based on Redcon 6 channel DSM2 RX
#endif
if(bits==10) value>>=1;
value |= (upper && i==0 ? 0x8000 : 0) | (idx << bits);
@ -363,12 +366,12 @@ static uint8_t __attribute__((unused)) DSM_Check_RX_packet()
uint16_t sum = 384 - 0x10;
for(uint8_t i = 1; i < 9; i++)
{
sum += pkt[i];
sum += packet_in[i];
if(i<5)
if(pkt[i] != (0xff ^ cyrfmfg_id[i-1]))
if(packet_in[i] != (0xff ^ cyrfmfg_id[i-1]))
result=0; // bad packet
}
if( pkt[9] != (sum>>8) && pkt[10] != (uint8_t)sum )
if( packet_in[9] != (sum>>8) && packet_in[10] != (uint8_t)sum )
result=0;
return result;
}
@ -417,12 +420,12 @@ uint16_t ReadDsm()
{ // data received with no errors
CYRF_WriteRegister(CYRF_07_RX_IRQ_STATUS, 0x80); // need to set RXOW before data read
len=CYRF_ReadRegister(CYRF_09_RX_COUNT);
if(len>MAX_PKT-2)
len=MAX_PKT-2;
CYRF_ReadDataPacketLen(pkt+1, len);
if(len>TELEMETRY_BUFFER_SIZE-2)
len=TELEMETRY_BUFFER_SIZE-2;
CYRF_ReadDataPacketLen(packet_in+1, len);
if(len==10 && DSM_Check_RX_packet())
{
pkt[0]=0x80;
packet_in[0]=0x80;
telemetry_link=1; // send received data on serial
phase++;
return 2000;
@ -452,6 +455,7 @@ uint16_t ReadDsm()
DSM_set_sop_data_crc();
return 10000;
case DSM_CH1_WRITE_A:
telemetry_set_input_sync(11000); // Always request 11ms spacing even if we don't use half of it in 22ms mode
case DSM_CH1_WRITE_B:
case DSM_CH2_WRITE_A:
case DSM_CH2_WRITE_B:
@ -502,10 +506,10 @@ uint16_t ReadDsm()
{ // good data (complete with no errors)
CYRF_WriteRegister(CYRF_07_RX_IRQ_STATUS, 0x80); // need to set RXOW before data read
len=CYRF_ReadRegister(CYRF_09_RX_COUNT);
if(len>MAX_PKT-2)
len=MAX_PKT-2;
CYRF_ReadDataPacketLen(pkt+1, len);
pkt[0]=CYRF_ReadRegister(CYRF_13_RSSI)&0x1F;// store RSSI of the received telemetry signal
if(len>TELEMETRY_BUFFER_SIZE-2)
len=TELEMETRY_BUFFER_SIZE-2;
CYRF_ReadDataPacketLen(packet_in+1, len);
packet_in[0]=CYRF_ReadRegister(CYRF_13_RSSI)&0x1F;// store RSSI of the received telemetry signal
telemetry_link=1;
}
CYRF_WriteRegister(CYRF_29_RX_ABORT, 0x20); // Abort RX operation

View File

@ -272,6 +272,7 @@ uint16_t devo_callback()
static uint8_t txState=0;
if (txState == 0)
{
telemetry_set_input_sync(2400);
txState = 1;
DEVO_BuildPacket();
CYRF_WriteDataPacket(packet);

View File

@ -287,7 +287,10 @@ uint16_t E01X_callback()
}
}
else
{
telemetry_set_input_sync(packet_period);
E01X_send_packet(0);
}
return packet_period;
}

View File

@ -151,7 +151,10 @@ uint8_t ESKY150_convert_2bit_channel(uint8_t num)
uint16_t ESKY150_callback()
{
if(IS_BIND_DONE)
{
telemetry_set_input_sync(ESKY150_SENDING_PACKET_PERIOD);
ESKY150_send_packet();
}
else
{
NRF24L01_WritePayload(packet, ESKY150_PAYLOADSIZE);

View File

@ -135,7 +135,10 @@ static void __attribute__((unused)) ESKY_send_packet(uint8_t bind)
uint16_t ESKY_callback()
{
if(IS_BIND_DONE)
{
telemetry_set_input_sync(ESKY_PACKET_PERIOD);
ESKY_send_packet(0);
}
else
{
ESKY_send_packet(1);

View File

@ -188,7 +188,10 @@ uint16_t FQ777_callback()
}
}
else
{
telemetry_set_input_sync(FQ777_PACKET_PERIOD);
FQ777_send_packet(0);
}
return FQ777_PACKET_PERIOD;
}

View File

@ -188,6 +188,7 @@ uint16_t FY326_callback()
return FY326_PACKET_CHKTIME;
break;
case FY326_DATA:
telemetry_set_input_sync(FY326_PACKET_PERIOD);
FY326_send_packet(0);
break;
}

View File

@ -145,7 +145,7 @@ static void __attribute__((unused)) flysky_build_packet(uint8_t init)
for(i = 0; i < 8; i++)
{
uint16_t temp=convert_channel_ppm(CH_AETR[i]);
if(sub_protocol == CX20 && CH_AETR[i]==ELEVATOR)
if(sub_protocol == CX20 && i==CH2) //ELEVATOR
temp=3000-temp;
packet[5 + i*2]=temp&0xFF; //low byte of servo timing(1000-2000us)
packet[6 + i*2]=(temp>>8)&0xFF; //high byte of servo timing(1000-2000us)
@ -168,16 +168,13 @@ uint16_t ReadFlySky()
}
else
{
telemetry_set_input_sync(packet_period);
flysky_build_packet(0);
A7105_WriteData(21, hopping_frequency[hopping_frequency_no & 0x0F]);
A7105_SetPower();
}
hopping_frequency_no++;
if(sub_protocol==CX20)
return 3984;
else
return 1510; //1460 on deviation but not working with the latest V911 bricks... Turnigy 9X v2 is 1533, Flysky TX for 9XR/9XR Pro is 1510, V911 TX is 1490.
return packet_period;
}
const uint8_t PROGMEM tx_channels[8][4] = {
@ -235,6 +232,10 @@ uint16_t initFlySky()
}
hopping_frequency_no=0;
packet_count=0;
if(sub_protocol==CX20)
packet_period=3984;
else
packet_period=1510; //1460 on deviation but not working with the latest V911 bricks... Turnigy 9X v2 is 1533, Flysky TX for 9XR/9XR Pro is 1510, V911 TX is 1490.
if(IS_BIND_IN_PROGRESS)
bind_counter = FLYSKY_BIND_COUNT;
else

View File

@ -55,6 +55,7 @@ uint16_t ReadFlyzone()
if(phase>19)
{
phase=0;
telemetry_set_input_sync(20*1500);
flyzone_build_packet();
A7105_WriteData(8, hopping_frequency[0]);
A7105_SetPower();

View File

@ -13,169 +13,27 @@
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef ENABLE_PPM
void InitPPM()
{
for(uint8_t i=0;i<NUM_CHN;i++)
PPM_data[i]=PPM_MAX_100+PPM_MIN_100;
PPM_data[THROTTLE]=PPM_MIN_100*2;
}
#endif
void InitChannel()
{
for(uint8_t i=0;i<NUM_CHN;i++)
Channel_data[i]=1024;
#ifdef FAILSAFE_THROTTLE_LOW_VAL
Channel_data[THROTTLE]=(uint16_t)FAILSAFE_THROTTLE_LOW_VAL; //0=-125%, 204=-100%
#else
Channel_data[THROTTLE]=204;
#endif
}
/************************/
/** Convert routines **/
/************************/
// Convert channel 8b with limit and deadband
uint8_t convert_channel_8b_limit_deadband(uint8_t num,uint8_t min,uint8_t mid, uint8_t max, uint8_t deadband)
{
uint16_t val=limit_channel_100(num); // 204<->1844
uint16_t db_low=CHANNEL_MID-deadband, db_high=CHANNEL_MID+deadband; // 1024+-deadband
int32_t calc;
uint8_t out;
if(val>=db_low && val<=db_high)
return mid;
else if(val<db_low)
{
val-=CHANNEL_MIN_100;
calc=mid-min;
calc*=val;
calc/=(db_low-CHANNEL_MIN_100);
out=calc;
out+=min;
}
else
{
val-=db_high;
calc=max-mid;
calc*=val;
calc/=(CHANNEL_MAX_100-db_high+1);
out=calc;
out+=mid;
if(max>min) out++; else out--;
}
return out;
}
// Reverse a channel and store it
void reverse_channel(uint8_t num)
{
uint16_t val=2048-Channel_data[num];
if(val>=2048) val=2047;
Channel_data[num]=val;
}
// Channel value is converted to ppm 860<->2140 -125%<->+125% and 988<->2012 -100%<->+100%
uint16_t convert_channel_ppm(uint8_t num)
{
uint16_t val=Channel_data[num];
return (((val<<2)+val)>>3)+860; //value range 860<->2140 -125%<->+125%
}
// Channel value 100% is converted to 10bit values 0<->1023
uint16_t convert_channel_10b(uint8_t num)
{
uint16_t val=Channel_data[num];
val=((val<<2)+val)>>3;
if(val<=128) return 0;
if(val>=1152) return 1023;
return val-128;
}
// Channel value 100% is converted to 8bit values 0<->255
uint8_t convert_channel_8b(uint8_t num)
{
uint16_t val=Channel_data[num];
val=((val<<2)+val)>>5;
if(val<=32) return 0;
if(val>=288) return 255;
return val-32;
}
// Channel value 100% is converted to value scaled
int16_t convert_channel_16b_limit(uint8_t num,int16_t min,int16_t max)
{
int32_t val=limit_channel_100(num); // 204<->1844
val=(val-CHANNEL_MIN_100)*(max-min)/(CHANNEL_MAX_100-CHANNEL_MIN_100)+min;
return (uint16_t)val;
}
// Channel value -125%<->125% is scaled to 16bit value with no limit
int16_t convert_channel_16b_nolimit(uint8_t num, int16_t min, int16_t max)
{
int32_t val=Channel_data[num]; // 0<->2047
val=(val-CHANNEL_MIN_100)*(max-min)/(CHANNEL_MAX_100-CHANNEL_MIN_100)+min;
return (uint16_t)val;
}
// Channel value is converted sign + magnitude 8bit values
uint8_t convert_channel_s8b(uint8_t num)
{
uint8_t ch;
ch = convert_channel_8b(num);
return (ch < 128 ? 127-ch : ch);
}
// Channel value is limited to 100%
uint16_t limit_channel_100(uint8_t num)
{
if(Channel_data[num]>=CHANNEL_MAX_100)
return CHANNEL_MAX_100;
if (Channel_data[num]<=CHANNEL_MIN_100)
return CHANNEL_MIN_100;
return Channel_data[num];
}
// Channel value is converted for HK310
void convert_channel_HK310(uint8_t num, uint8_t *low, uint8_t *high)
{
uint16_t temp=0xFFFF-(3440+((Channel_data[num]*5)>>1))/3;
*low=(uint8_t)(temp&0xFF);
*high=(uint8_t)(temp>>8);
}
#ifdef FAILSAFE_ENABLE
// Failsafe value is converted for HK310
void convert_failsafe_HK310(uint8_t num, uint8_t *low, uint8_t *high)
{
uint16_t temp=0xFFFF-(3440+((Failsafe_data[num]*5)>>1))/3;
*low=(uint8_t)(temp&0xFF);
*high=(uint8_t)(temp>>8);
}
#endif
// Channel value for FrSky (PPM is multiplied by 1.5)
uint16_t convert_channel_frsky(uint8_t num)
{
uint16_t val=Channel_data[num];
return ((val*15)>>4)+1290;
}
/******************************/
/** FrSky D and X routines **/
/******************************/
#if defined(FRSKYX_CC2500_INO) || defined(FRSKYX_RX_CC2500_INO)
#if defined(FRSKYX_CC2500_INO) || defined(FRSKY_RX_CC2500_INO)
//**CRC**
const uint16_t PROGMEM frskyX_CRC_Short[]={
const uint16_t PROGMEM FrSkyX_CRC_Short[]={
0x0000, 0x1189, 0x2312, 0x329B, 0x4624, 0x57AD, 0x6536, 0x74BF,
0x8C48, 0x9DC1, 0xAF5A, 0xBED3, 0xCA6C, 0xDBE5, 0xE97E, 0xF8F7 };
static uint16_t __attribute__((unused)) frskyX_CRCTable(uint8_t val)
static uint16_t __attribute__((unused)) FrSkyX_CRCTable(uint8_t val)
{
uint16_t word ;
word = pgm_read_word(&frskyX_CRC_Short[val&0x0F]) ;
word = pgm_read_word(&FrSkyX_CRC_Short[val&0x0F]) ;
val /= 16 ;
return word ^ (0x1081 * val) ;
}
uint16_t frskyX_crc_x(uint8_t *data, uint8_t len)
uint16_t FrSkyX_crc(uint8_t *data, uint8_t len)
{
uint16_t crc = 0;
for(uint8_t i=0; i < len; i++)
crc = (crc<<8) ^ frskyX_CRCTable((uint8_t)(crc>>8) ^ *data++);
crc = (crc<<8) ^ FrSkyX_CRCTable((uint8_t)(crc>>8) ^ *data++);
return crc;
}
#endif
@ -189,7 +47,7 @@ enum {
FRSKY_DATA2,
FRSKY_DATA3,
FRSKY_DATA4,
FRSKY_DATA5
FRSKY_DATA5,
};
void Frsky_init_hop(void)

View File

@ -97,9 +97,6 @@ uint16_t initFrSky_2way()
{
Frsky_init_hop();
packet_count=0;
#if defined TELEMETRY
init_frskyd_link_telemetry();
#endif
if(IS_BIND_IN_PROGRESS)
{
frsky2way_init(1);
@ -156,15 +153,16 @@ uint16_t ReadFrSky_2way()
{
if (state == FRSKY_DATA1)
{
telemetry_set_input_sync(9000);
len = CC2500_ReadReg(CC2500_3B_RXBYTES | CC2500_READ_BURST) & 0x7F;
if (len && len<=(0x11+3))// 20bytes
{
CC2500_ReadData(pkt, len); //received telemetry packets
CC2500_ReadData(packet_in, len); //received telemetry packets
#if defined(TELEMETRY)
if(pkt[len-1] & 0x80)
if(packet_in[len-1] & 0x80)
{//with valid crc
packet_count=0;
frsky_check_telemetry(pkt,len); //check if valid telemetry packets and buffer them.
frsky_check_telemetry(packet_in,len); //check if valid telemetry packets and buffer them.
}
#endif
}
@ -177,7 +175,7 @@ uint16_t ReadFrSky_2way()
packet_count=0;
#if defined TELEMETRY
telemetry_link=0;//no link frames
pkt[6]=0;//no user frames.
packet_in[6]=0;//no user frames.
#endif
}
}

View File

@ -117,6 +117,7 @@ uint16_t ReadFRSKYV()
{
if(IS_BIND_DONE)
{ // Normal operation
telemetry_set_input_sync(9006);
uint8_t chan = FRSKYV_calc_channel();
CC2500_Strobe(CC2500_SIDLE);
if (option != prev_option)

View File

@ -1,373 +0,0 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(FRSKYX_RX_CC2500_INO)
#include "iface_cc2500.h"
#define FRSKYX_FCC_LENGTH (30+2)
#define FRSKYX_LBT_LENGTH (33+2)
enum {
FRSKYX_RX_TUNE_START,
FRSKYX_RX_TUNE_LOW,
FRSKYX_RX_TUNE_HIGH,
FRSKYX_RX_BIND,
FRSKYX_RX_DATA,
};
static uint8_t frskyx_rx_chanskip;
static uint8_t frskyx_rx_disable_lna;
static uint8_t frskyx_rx_data_started;
static int8_t frskyx_rx_finetune;
static void __attribute__((unused)) frskyx_rx_strobe_rx()
{
CC2500_Strobe(CC2500_SIDLE);
CC2500_Strobe(CC2500_SFRX);
CC2500_Strobe(CC2500_SRX);
}
static void __attribute__((unused)) FrSkyX_Rx_initialise() {
CC2500_Reset();
CC2500_WriteReg(CC2500_02_IOCFG0, 0x01);
CC2500_WriteReg(CC2500_18_MCSM0, 0x18);
CC2500_WriteReg(CC2500_07_PKTCTRL1, 0x04);
CC2500_WriteReg(CC2500_3E_PATABLE, 0xFF);
CC2500_WriteReg(CC2500_0C_FSCTRL0, 0);
CC2500_WriteReg(CC2500_0D_FREQ2, 0x5C);
CC2500_WriteReg(CC2500_13_MDMCFG1, 0x23);
CC2500_WriteReg(CC2500_14_MDMCFG0, 0x7A);
CC2500_WriteReg(CC2500_19_FOCCFG, 0x16);
CC2500_WriteReg(CC2500_1A_BSCFG, 0x6C);
CC2500_WriteReg(CC2500_1B_AGCCTRL2, 0x03);
CC2500_WriteReg(CC2500_1C_AGCCTRL1, 0x40);
CC2500_WriteReg(CC2500_1D_AGCCTRL0, 0x91);
CC2500_WriteReg(CC2500_21_FREND1, 0x56);
CC2500_WriteReg(CC2500_22_FREND0, 0x10);
CC2500_WriteReg(CC2500_23_FSCAL3, 0xA9);
CC2500_WriteReg(CC2500_24_FSCAL2, 0x0A);
CC2500_WriteReg(CC2500_25_FSCAL1, 0x00);
CC2500_WriteReg(CC2500_26_FSCAL0, 0x11);
CC2500_WriteReg(CC2500_29_FSTEST, 0x59);
CC2500_WriteReg(CC2500_2C_TEST2, 0x88);
CC2500_WriteReg(CC2500_2D_TEST1, 0x31);
CC2500_WriteReg(CC2500_2E_TEST0, 0x0B);
CC2500_WriteReg(CC2500_03_FIFOTHR, 0x07);
CC2500_WriteReg(CC2500_09_ADDR, 0x00);
switch (sub_protocol) {
case FRSKYX_FCC:
CC2500_WriteReg(CC2500_17_MCSM1, 0x0C);
CC2500_WriteReg(CC2500_0E_FREQ1, 0x76);
CC2500_WriteReg(CC2500_0F_FREQ0, 0x27);
CC2500_WriteReg(CC2500_06_PKTLEN, 0x1E);
CC2500_WriteReg(CC2500_08_PKTCTRL0, 0x01);
CC2500_WriteReg(CC2500_0B_FSCTRL1, 0x0A);
CC2500_WriteReg(CC2500_10_MDMCFG4, 0x7B);
CC2500_WriteReg(CC2500_11_MDMCFG3, 0x61);
CC2500_WriteReg(CC2500_12_MDMCFG2, 0x13);
CC2500_WriteReg(CC2500_15_DEVIATN, 0x51);
break;
case FRSKYX_LBT:
CC2500_WriteReg(CC2500_17_MCSM1, 0x0E);
CC2500_WriteReg(CC2500_0E_FREQ1, 0x80);
CC2500_WriteReg(CC2500_0F_FREQ0, 0x00);
CC2500_WriteReg(CC2500_06_PKTLEN, 0x23);
CC2500_WriteReg(CC2500_08_PKTCTRL0, 0x01);
CC2500_WriteReg(CC2500_0B_FSCTRL1, 0x08);
CC2500_WriteReg(CC2500_10_MDMCFG4, 0x7B);
CC2500_WriteReg(CC2500_11_MDMCFG3, 0xF8);
CC2500_WriteReg(CC2500_12_MDMCFG2, 0x03);
CC2500_WriteReg(CC2500_15_DEVIATN, 0x53);
break;
}
frskyx_rx_disable_lna = IS_POWER_FLAG_on;
CC2500_SetTxRxMode(frskyx_rx_disable_lna ? TXRX_OFF : RX_EN); // lna disable / enable
frskyx_rx_strobe_rx();
CC2500_WriteReg(CC2500_0A_CHANNR, 0); // bind channel
delayMicroseconds(1000); // wait for RX to activate
}
static void __attribute__((unused)) frskyx_rx_set_channel(uint8_t channel)
{
CC2500_WriteReg(CC2500_0A_CHANNR, hopping_frequency[channel]);
CC2500_WriteReg(CC2500_25_FSCAL1, calData[channel]);
frskyx_rx_strobe_rx();
}
static void __attribute__((unused)) frskyx_rx_calibrate()
{
frskyx_rx_strobe_rx();
for (unsigned c = 0; c < 47; c++)
{
CC2500_Strobe(CC2500_SIDLE);
CC2500_WriteReg(CC2500_0A_CHANNR, hopping_frequency[c]);
CC2500_Strobe(CC2500_SCAL);
delayMicroseconds(900);
calData[c] = CC2500_ReadReg(CC2500_25_FSCAL1);
}
}
static uint8_t __attribute__((unused)) frskyx_rx_check_crc()
{
uint8_t limit = packet_length - 4;
uint16_t lcrc = frskyX_crc_x(&packet[3], limit - 3); // computed crc
uint16_t rcrc = (packet[limit] << 8) | (packet[limit + 1] & 0xff); // received crc
return lcrc == rcrc;
}
static void __attribute__((unused)) frskyx_rx_build_telemetry_packet()
{
static uint16_t frskyx_rx_rc_chan[16];
uint16_t pxx_channel[8];
uint32_t bits = 0;
uint8_t bitsavailable = 0;
uint8_t idx = 0;
// decode PXX channels
pxx_channel[0] = ((packet[10] << 8) & 0xF00) | packet[9];
pxx_channel[1] = ((packet[11] << 4) & 0xFF0) | (packet[10] >> 4);
pxx_channel[2] = ((packet[13] << 8) & 0xF00) | packet[12];
pxx_channel[3] = ((packet[14] << 4) & 0xFF0) | (packet[13] >> 4);
pxx_channel[4] = ((packet[16] << 8) & 0xF00) | packet[15];
pxx_channel[5] = ((packet[17] << 4) & 0xFF0) | (packet[16] >> 4);
pxx_channel[6] = ((packet[19] << 8) & 0xF00) | packet[18];
pxx_channel[7] = ((packet[20] << 4) & 0xFF0) | (packet[19] >> 4);
for (unsigned i = 0; i < 8; i++) {
uint8_t shifted = (pxx_channel[i] & 0x800)>0;
uint16_t channel_value = pxx_channel[i] & 0x7FF;
if (channel_value < 64)
frskyx_rx_rc_chan[shifted ? i + 8 : i] = 0;
else
frskyx_rx_rc_chan[shifted ? i + 8 : i] = min(((channel_value - 64) << 4) / 15, 2047);
}
// buid telemetry packet
pkt[idx++] = RX_LQI;
pkt[idx++] = RX_RSSI;
pkt[idx++] = 0; // start channel
pkt[idx++] = 16; // number of channels in packet
// pack channels
for (int i = 0; i < 16; i++) {
bits |= ((uint32_t)frskyx_rx_rc_chan[i]) << bitsavailable;
bitsavailable += 11;
while (bitsavailable >= 8) {
pkt[idx++] = bits & 0xff;
bits >>= 8;
bitsavailable -= 8;
}
}
}
uint16_t initFrSkyX_Rx()
{
FrSkyX_Rx_initialise();
state = 0;
frskyx_rx_chanskip = 1;
hopping_frequency_no = 0;
frskyx_rx_data_started = 0;
frskyx_rx_finetune = 0;
telemetry_link = 0;
if (IS_BIND_IN_PROGRESS) {
phase = FRSKYX_RX_TUNE_START;
}
else {
uint16_t temp = FRSKYX_RX_EEPROM_OFFSET;
rx_tx_addr[0] = eeprom_read_byte((EE_ADDR)temp++);
rx_tx_addr[1] = eeprom_read_byte((EE_ADDR)temp++);
rx_tx_addr[2] = eeprom_read_byte((EE_ADDR)temp++);
frskyx_rx_finetune = eeprom_read_byte((EE_ADDR)temp++);
for(uint8_t ch = 0; ch < 47; ch++)
hopping_frequency[ch] = eeprom_read_byte((EE_ADDR)temp++);
frskyx_rx_calibrate();
CC2500_WriteReg(CC2500_18_MCSM0, 0x08); // FS_AUTOCAL = manual
CC2500_WriteReg(CC2500_09_ADDR, rx_tx_addr[0]); // set address
CC2500_WriteReg(CC2500_07_PKTCTRL1, 0x05); // check address
if (option == 0)
CC2500_WriteReg(CC2500_0C_FSCTRL0, frskyx_rx_finetune);
else
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
frskyx_rx_set_channel(hopping_frequency_no);
phase = FRSKYX_RX_DATA;
}
packet_length = (sub_protocol == FRSKYX_LBT) ? FRSKYX_LBT_LENGTH : FRSKYX_FCC_LENGTH;
return 1000;
}
uint16_t FrSkyX_Rx_callback()
{
static uint32_t pps_timer=0;
static uint8_t pps_counter=0;
static int8_t read_retry = 0;
static int8_t tune_low, tune_high;
uint8_t len, ch;
if ((prev_option != option) && (phase >= FRSKYX_RX_DATA)) {
if (option == 0)
CC2500_WriteReg(CC2500_0C_FSCTRL0, frskyx_rx_finetune);
else
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
prev_option = option;
}
if (frskyx_rx_disable_lna != IS_POWER_FLAG_on) {
frskyx_rx_disable_lna = IS_POWER_FLAG_on;
CC2500_SetTxRxMode(frskyx_rx_disable_lna ? TXRX_OFF : RX_EN);
}
len = CC2500_ReadReg(CC2500_3B_RXBYTES | CC2500_READ_BURST) & 0x7F;
switch(phase) {
case FRSKYX_RX_TUNE_START:
if (len >= packet_length) {
CC2500_ReadData(packet, packet_length);
if(packet[1] == 0x03 && packet[2] == 0x01) {
if(frskyx_rx_check_crc()) {
frskyx_rx_finetune = -127;
CC2500_WriteReg(CC2500_0C_FSCTRL0, frskyx_rx_finetune);
phase = FRSKYX_RX_TUNE_LOW;
frskyx_rx_strobe_rx();
return 1000;
}
}
}
frskyx_rx_finetune += 10;
CC2500_WriteReg(CC2500_0C_FSCTRL0, frskyx_rx_finetune);
frskyx_rx_strobe_rx();
return 18000;
case FRSKYX_RX_TUNE_LOW:
if (len >= packet_length) {
CC2500_ReadData(packet, packet_length);
if (frskyx_rx_check_crc()) {
tune_low = frskyx_rx_finetune;
frskyx_rx_finetune = 127;
CC2500_WriteReg(CC2500_0C_FSCTRL0, frskyx_rx_finetune);
phase = FRSKYX_RX_TUNE_HIGH;
frskyx_rx_strobe_rx();
return 1000;
}
}
frskyx_rx_finetune += 1;
CC2500_WriteReg(CC2500_0C_FSCTRL0, frskyx_rx_finetune);
frskyx_rx_strobe_rx();
return 18000;
case FRSKYX_RX_TUNE_HIGH:
if (len >= packet_length) {
CC2500_ReadData(packet, packet_length);
if (frskyx_rx_check_crc()) {
tune_high = frskyx_rx_finetune;
frskyx_rx_finetune = (tune_low + tune_high) / 2;
CC2500_WriteReg(CC2500_0C_FSCTRL0, (int8_t)frskyx_rx_finetune);
if(tune_low < tune_high)
phase = FRSKYX_RX_BIND;
else
phase = FRSKYX_RX_TUNE_START;
frskyx_rx_strobe_rx();
return 1000;
}
}
frskyx_rx_finetune -= 1;
CC2500_WriteReg(CC2500_0C_FSCTRL0, frskyx_rx_finetune);
frskyx_rx_strobe_rx();
return 18000;
case FRSKYX_RX_BIND:
if(len >= packet_length) {
CC2500_ReadData(packet, packet_length);
if (frskyx_rx_check_crc()) {
if (packet[5] <= 0x2D) {
for (ch = 0; ch < 5; ch++)
hopping_frequency[packet[5]+ch] = packet[6+ch];
state |= 1 << (packet[5] / 5);
}
}
if (state == 0x3ff) {
debugln("bind complete");
frskyx_rx_calibrate();
rx_tx_addr[0] = packet[3]; // TXID
rx_tx_addr[1] = packet[4]; // TXID
rx_tx_addr[2] = packet[12]; // RX #
CC2500_WriteReg(CC2500_18_MCSM0, 0x08); // FS_AUTOCAL = manual
CC2500_WriteReg(CC2500_09_ADDR, rx_tx_addr[0]); // set address
CC2500_WriteReg(CC2500_07_PKTCTRL1, 0x05); // check address
phase = FRSKYX_RX_DATA;
frskyx_rx_set_channel(hopping_frequency_no);
// store txid and channel list
uint16_t temp = FRSKYX_RX_EEPROM_OFFSET;
eeprom_write_byte((EE_ADDR)temp++, rx_tx_addr[0]);
eeprom_write_byte((EE_ADDR)temp++, rx_tx_addr[1]);
eeprom_write_byte((EE_ADDR)temp++, rx_tx_addr[2]);
eeprom_write_byte((EE_ADDR)temp++, frskyx_rx_finetune);
for (ch = 0; ch < 47; ch++)
eeprom_write_byte((EE_ADDR)temp++, hopping_frequency[ch]);
BIND_DONE;
}
frskyx_rx_strobe_rx();
}
return 1000;
case FRSKYX_RX_DATA:
if (len >= packet_length) {
CC2500_ReadData(packet, packet_length);
if (packet[1] == rx_tx_addr[0] && packet[2] == rx_tx_addr[1] && packet[6] == rx_tx_addr[2] && frskyx_rx_check_crc()) {
RX_RSSI = packet[packet_length-2];
if(RX_RSSI >= 128)
RX_RSSI -= 128;
else
RX_RSSI += 128;
// hop to next channel
frskyx_rx_chanskip = ((packet[4] & 0xC0) >> 6) | ((packet[5] & 0x3F) << 2);
hopping_frequency_no = (hopping_frequency_no + frskyx_rx_chanskip) % 47;
frskyx_rx_set_channel(hopping_frequency_no);
if(packet[7] == 0 && telemetry_link == 0) { // standard packet, send channels to TX
frskyx_rx_build_telemetry_packet();
telemetry_link = 1;
}
frskyx_rx_data_started = 1;
read_retry = 0;
pps_counter++;
}
}
// packets per second
if (millis() - pps_timer >= 1000) {
pps_timer = millis();
debugln("%d pps", pps_counter);
RX_LQI = pps_counter;
pps_counter = 0;
}
// skip channel if no packet received in time
if (read_retry++ >= 9) {
hopping_frequency_no = (hopping_frequency_no + frskyx_rx_chanskip) % 47;
frskyx_rx_set_channel(hopping_frequency_no);
if(frskyx_rx_data_started)
read_retry = 0;
else
read_retry = -50; // retry longer until first packet is catched
}
break;
}
return 1000;
}
#endif

View File

@ -19,20 +19,30 @@
#include "iface_cc2500.h"
uint8_t FrX_chanskip;
uint8_t FrX_send_seq ;
uint8_t FrX_receive_seq ;
uint8_t FrSkyX_chanskip;
uint8_t FrSkyX_TX_Seq, FrSkyX_TX_IN_Seq;
uint8_t FrSkyX_RX_Seq ;
#define FRX_FAILSAFE_TIMEOUT 1032
#ifdef SPORT_SEND
struct t_FrSkyX_TX_Frame
{
uint8_t count;
uint8_t payload[8];
} ;
// Store FrskyX telemetry
struct t_FrSkyX_TX_Frame FrSkyX_TX_Frames[4] ;
#endif
static void __attribute__((unused)) frskyX_set_start(uint8_t ch )
#define FrSkyX_FAILSAFE_TIMEOUT 1032
static void __attribute__((unused)) FrSkyX_set_start(uint8_t ch )
{
CC2500_Strobe(CC2500_SIDLE);
CC2500_WriteReg(CC2500_25_FSCAL1, calData[ch]);
CC2500_WriteReg(CC2500_0A_CHANNR, hopping_frequency[ch]);
}
static void __attribute__((unused)) frskyX_init()
static void __attribute__((unused)) FrSkyX_init()
{
FRSKY_init_cc2500((sub_protocol&2)?FRSKYXEU_cc2500_conf:FRSKYX_cc2500_conf); // LBT or FCC
//
@ -47,7 +57,7 @@ static void __attribute__((unused)) frskyX_init()
//#######END INIT########
}
static void __attribute__((unused)) frskyX_initialize_data(uint8_t adr)
static void __attribute__((unused)) FrSkyX_initialize_data(uint8_t adr)
{
CC2500_WriteReg(CC2500_0C_FSCTRL0,option); // Frequency offset hack
CC2500_WriteReg(CC2500_18_MCSM0, 0x8);
@ -55,7 +65,7 @@ static void __attribute__((unused)) frskyX_initialize_data(uint8_t adr)
CC2500_WriteReg(CC2500_07_PKTCTRL1,0x05);
}
static void __attribute__((unused)) frskyX_build_bind_packet()
static void __attribute__((unused)) FrSkyX_build_bind_packet()
{
packet[0] = (sub_protocol & 2 ) ? 0x20 : 0x1D ; // LBT or FCC
packet[1] = 0x03;
@ -75,7 +85,7 @@ static void __attribute__((unused)) frskyX_build_bind_packet()
//
uint8_t limit = (sub_protocol & 2 ) ? 31 : 28 ;
memset(&packet[13], 0, limit - 13);
uint16_t lcrc = frskyX_crc_x(&packet[3], limit-3);
uint16_t lcrc = FrSkyX_crc(&packet[3], limit-3);
//
packet[limit++] = lcrc >> 8;
packet[limit] = lcrc;
@ -84,14 +94,14 @@ static void __attribute__((unused)) frskyX_build_bind_packet()
// 0-2047, 0 = 817, 1024 = 1500, 2047 = 2182
//64=860,1024=1500,1984=2140//Taranis 125%
static uint16_t __attribute__((unused)) frskyX_scaleForPXX( uint8_t i )
static uint16_t __attribute__((unused)) FrSkyX_scaleForPXX( uint8_t i )
{ //mapped 860,2140(125%) range to 64,1984(PXX values);
uint16_t chan_val=convert_channel_frsky(i)-1226;
if(i>7) chan_val|=2048; // upper channels offset
return chan_val;
}
#ifdef FAILSAFE_ENABLE
static uint16_t __attribute__((unused)) frskyX_scaleForPXX_FS( uint8_t i )
static uint16_t __attribute__((unused)) FrSkyX_scaleForPXX_FS( uint8_t i )
{ //mapped 1,2046(125%) range to 64,1984(PXX values);
uint16_t chan_val=((Failsafe_data[i]*15)>>4)+64;
if(Failsafe_data[i]==FAILSAFE_CHANNEL_NOPULSES)
@ -103,8 +113,8 @@ static uint16_t __attribute__((unused)) frskyX_scaleForPXX_FS( uint8_t i )
}
#endif
#define FRX_FAILSAFE_TIME 1032
static void __attribute__((unused)) frskyX_data_frame()
#define FrSkyX_FAILSAFE_TIME 1032
static void __attribute__((unused)) FrSkyX_build_packet()
{
//0x1D 0xB3 0xFD 0x02 0x56 0x07 0x15 0x00 0x00 0x00 0x04 0x40 0x00 0x04 0x40 0x00 0x04 0x40 0x00 0x04 0x40 0x08 0x00 0x00 0x00 0x00 0x00 0x00 0x96 0x12
//
@ -116,29 +126,30 @@ static void __attribute__((unused)) frskyX_data_frame()
#ifdef FAILSAFE_ENABLE
static uint16_t failsafe_count=0;
static uint8_t FS_flag=0,failsafe_chan=0;
if (FS_flag == 0 && failsafe_count > FRX_FAILSAFE_TIME && chan_offset == 0 && IS_FAILSAFE_VALUES_on)
if (FS_flag == 0 && failsafe_count > FrSkyX_FAILSAFE_TIME && chan_offset == 0 && IS_FAILSAFE_VALUES_on)
{
FS_flag = 0x10;
failsafe_chan = 0;
} else if (FS_flag & 0x10 && failsafe_chan < (sub_protocol & 0x01 ? 8-1:16-1))
{
FS_flag = 0x10 | ((FS_flag + 2) & 0x0F); //10, 12, 14, 16, 18, 1A, 1C, 1E - failsafe packet
FS_flag = 0x10 | ((FS_flag + 2) & 0x0F); //10, 12, 14, 16, 18, 1A, 1C, 1E - failsafe packet
failsafe_chan ++;
} else if (FS_flag & 0x10)
{
FS_flag = 0;
failsafe_count = 0;
FAILSAFE_VALUES_off;
}
failsafe_count++;
#endif
packet[0] = (sub_protocol & 0x02 ) ? 0x20 : 0x1D ; // LBT or FCC
packet[0] = (sub_protocol & 0x02 ) ? 0x20 : 0x1D ; // LBT or FCC
packet[1] = rx_tx_addr[3];
packet[2] = rx_tx_addr[2];
packet[3] = 0x02;
//
packet[4] = (FrX_chanskip<<6)|hopping_frequency_no;
packet[5] = FrX_chanskip>>2;
packet[4] = (FrSkyX_chanskip<<6)|hopping_frequency_no;
packet[5] = FrSkyX_chanskip>>2;
packet[6] = RX_num;
//packet[7] = FLAGS 00 - standard packet
//10, 12, 14, 16, 18, 1A, 1C, 1E - failsafe packet
@ -150,78 +161,135 @@ static void __attribute__((unused)) frskyX_data_frame()
#endif
packet[8] = 0;
//
uint8_t startChan = chan_offset; for(uint8_t i = 0; i <12 ; i+=3)
uint8_t startChan = chan_offset;
for(uint8_t i = 0; i <12 ; i+=3)
{//12 bytes of channel data
#ifdef FAILSAFE_ENABLE
if( (FS_flag & 0x10) && ((failsafe_chan & 0x07) == (startChan & 0x07)) )
chan_0 = frskyX_scaleForPXX_FS(failsafe_chan);
chan_0 = FrSkyX_scaleForPXX_FS(failsafe_chan);
else
#endif
chan_0 = frskyX_scaleForPXX(startChan);
chan_0 = FrSkyX_scaleForPXX(startChan);
startChan++;
//
#ifdef FAILSAFE_ENABLE
if( (FS_flag & 0x10) && ((failsafe_chan & 0x07) == (startChan & 0x07)) )
chan_1 = frskyX_scaleForPXX_FS(failsafe_chan);
chan_1 = FrSkyX_scaleForPXX_FS(failsafe_chan);
else
#endif
chan_1 = frskyX_scaleForPXX(startChan);
chan_1 = FrSkyX_scaleForPXX(startChan);
startChan++;
//
packet[9+i] = lowByte(chan_0); //3 bytes*4
packet[9+i] = lowByte(chan_0); //3 bytes*4
packet[9+i+1]=(((chan_0>>8) & 0x0F)|(chan_1 << 4));
packet[9+i+2]=chan_1>>4;
}
packet[21] = (FrX_receive_seq << 4) | FrX_send_seq ;//8 at start
if(sub_protocol & 0x01 ) // in X8 mode send only 8ch every 9ms
if(sub_protocol & 0x01 ) //In X8 mode send only 8ch every 9ms
chan_offset = 0 ;
else
chan_offset^=0x08;
//sequence and send SPort
uint8_t limit = (sub_protocol & 2 ) ? 31 : 28 ;
for (uint8_t i=22;i<limit;i++)
packet[i]=0;
#if defined SPORT_POLLING
uint8_t idxs=0;
if(ok_to_send)
for (uint8_t i=23;i<limit;i++)
{//
if(sport_index==sport_idx)
{//no new data
ok_to_send=false;
break;
}
packet[i]=SportData[sport_index];
sport_index= (sport_index+1)& (MAX_SPORT_BUFFER-1);
idxs++;
packet[21] = FrSkyX_RX_Seq << 4; //TX=8 at startup
#ifdef SPORT_SEND
if (FrSkyX_TX_IN_Seq!=0xFF)
{//RX has replied at least once
if (FrSkyX_TX_IN_Seq & 0x08)
{//Request init
//debugln("Init");
FrSkyX_TX_Seq = 0 ;
for(uint8_t i=0;i<4;i++)
FrSkyX_TX_Frames[i].count=0; //Discard frames in current output buffer
}
packet[22]= idxs;
#ifdef DEBUG_SERIAL
for(uint8_t i=0;i<idxs;i++)
else if (FrSkyX_TX_IN_Seq & 0x04)
{//Retransmit the requested packet
debugln("Retry:%d",FrSkyX_TX_IN_Seq&0x03);
packet[21] |= FrSkyX_TX_IN_Seq&0x03;
packet[22] = FrSkyX_TX_Frames[FrSkyX_TX_IN_Seq&0x03].count;
for (uint8_t i=23;i<23+FrSkyX_TX_Frames[FrSkyX_TX_IN_Seq&0x03].count;i++)
packet[i] = FrSkyX_TX_Frames[FrSkyX_TX_IN_Seq&0x03].payload[i];
}
else if ( FrSkyX_TX_Seq != 0x08 )
{
Serial.print(packet[23+i],HEX);
Serial.print(" ");
if(FrSkyX_TX_Seq==FrSkyX_TX_IN_Seq)
{//Send packet from the incoming radio buffer
//debugln("Send:%d",FrSkyX_TX_Seq);
packet[21] |= FrSkyX_TX_Seq;
uint8_t nbr_bytes=0;
for (uint8_t i=23;i<limit;i++)
{
if(SportHead==SportTail)
break; //buffer empty
packet[i]=SportData[SportHead];
FrSkyX_TX_Frames[FrSkyX_TX_Seq].payload[i-23]=SportData[SportHead];
SportHead=(SportHead+1) & (MAX_SPORT_BUFFER-1);
nbr_bytes++;
}
packet[22]=nbr_bytes;
FrSkyX_TX_Frames[FrSkyX_TX_Seq].count=nbr_bytes;
if(nbr_bytes)
{//Check the buffer status
uint8_t used = SportTail;
if ( SportHead > SportTail )
used += MAX_SPORT_BUFFER - SportHead ;
else
used -= SportHead ;
if ( used < (MAX_SPORT_BUFFER>>1) )
{
DATA_BUFFER_LOW_off;
debugln("Ok buf:%d",used);
}
}
FrSkyX_TX_Seq = ( FrSkyX_TX_Seq + 1 ) & 0x03 ; //Next iteration send next packet
}
else
{//Not in sequence somehow, transmit what the receiver wants but why not asking for retransmit...
//debugln("RX_Seq:%d,TX:%d",FrSkyX_TX_IN_Seq,FrSkyX_TX_Seq);
packet[21] |= FrSkyX_TX_IN_Seq;
packet[22] = FrSkyX_TX_Frames[FrSkyX_TX_IN_Seq].count;
for (uint8_t i=23;i<23+FrSkyX_TX_Frames[FrSkyX_TX_IN_Seq].count;i++)
packet[i] = FrSkyX_TX_Frames[FrSkyX_TX_IN_Seq].payload[i-23];
}
}
Serial.println(" ");
#endif
#endif // SPORT_POLLING
else
packet[21] |= 0x08 ; //FrSkyX_TX_Seq=8 at startup
}
if(packet[22])
{//Debug
debug("SP: ");
for(uint8_t i=0;i<packet[22];i++)
debug("%02X ",packet[23+i]);
debugln("");
}
#else
packet[21] |= FrSkyX_TX_Seq ;//TX=8 at startup
if ( !(FrSkyX_TX_IN_Seq & 0xF8) )
FrSkyX_TX_Seq = ( FrSkyX_TX_Seq + 1 ) & 0x03 ; // Next iteration send next packet
#endif // SPORT_SEND
uint16_t lcrc = frskyX_crc_x(&packet[3], limit-3);
uint16_t lcrc = FrSkyX_crc(&packet[3], limit-3);
packet[limit++]=lcrc>>8;//high byte
packet[limit]=lcrc;//low byte
}
uint16_t ReadFrSkyX()
{
static bool transmit=true;
#ifdef DEBUG_SERIAL
static uint16_t fr_time=0;
#endif
switch(state)
{
default:
frskyX_set_start(47);
FrSkyX_set_start(47);
CC2500_SetPower();
CC2500_Strobe(CC2500_SFRX);
//
frskyX_build_bind_packet();
FrSkyX_build_bind_packet();
CC2500_Strobe(CC2500_SIDLE);
CC2500_WriteData(packet, packet[0]+1);
if(IS_BIND_DONE)
@ -230,73 +298,101 @@ uint16_t ReadFrSkyX()
state++;
return 9000;
case FRSKY_BIND_DONE:
frskyX_initialize_data(0);
FrSkyX_initialize_data(0);
hopping_frequency_no=0;
BIND_DONE;
state++;
state++; //FRSKY_DATA1
break;
case FRSKY_DATA1:
if ( prev_option != option )
{
CC2500_WriteReg(CC2500_0C_FSCTRL0,option); // Frequency offset hack
prev_option = option ;
}
CC2500_SetTxRxMode(TX_EN);
frskyX_set_start(hopping_frequency_no);
CC2500_SetPower();
CC2500_Strobe(CC2500_SFRX);
hopping_frequency_no = (hopping_frequency_no+FrX_chanskip)%47;
CC2500_Strobe(CC2500_SIDLE);
CC2500_WriteData(packet, packet[0]+1);
//
// frskyX_data_frame();
state++;
return 5200;
case FRSKY_DATA2:
CC2500_SetTxRxMode(RX_EN);
CC2500_Strobe(CC2500_SIDLE);
state++;
return 200;
case FRSKY_DATA3:
CC2500_Strobe(CC2500_SRX);
state++;
return 3100;
case FRSKY_DATA4:
case FRSKY_DATA5:
telemetry_set_input_sync(9000);
#if defined TELEMETRY
telemetry_link=1; //Send telemetry out anyway
#endif
len = CC2500_ReadReg(CC2500_3B_RXBYTES | CC2500_READ_BURST) & 0x7F;
if (len && (len<=(0x0E + 3))) //Telemetry frame is 17
if (len && (len<=(0x0E + 3))) //Telemetry frame is 17
{
packet_count=0;
CC2500_ReadData(pkt, len);
CC2500_ReadData(packet_in, len);
#if defined TELEMETRY
frsky_check_telemetry(pkt,len); //check if valid telemetry packets
//parse telemetry packets here
//The same telemetry function used by FrSky(D8).
frsky_check_telemetry(packet_in,len); //Check and parse telemetry packets
#endif
}
else
{
packet_count++;
//debugln("M %d",packet_count);
// restart sequence on missed packet - might need count or timeout instead of one missed
if(packet_count>100)
{//~1sec
// seq_last_sent = 0;
// seq_last_rcvd = 8;
FrX_send_seq = 0x08 ;
// FrX_receive_seq = 0 ;
FrSkyX_TX_Seq = 0x08 ; //Request init
FrSkyX_TX_IN_Seq = 0xFF ; //No sequence received yet
#ifdef SPORT_SEND
for(uint8_t i=0;i<4;i++)
FrSkyX_TX_Frames[i].count=0; //Discard frames in current output buffer
#endif
packet_count=0;
#if defined TELEMETRY
telemetry_lost=1;
telemetry_link=0; //Stop sending telemetry
#endif
}
CC2500_Strobe(CC2500_SFRX); //flush the RXFIFO
}
frskyX_data_frame();
if ( FrX_send_seq != 0x08 )
{
FrX_send_seq = ( FrX_send_seq + 1 ) & 0x03 ;
CC2500_Strobe(CC2500_SFRX); //Flush the RXFIFO
}
FrSkyX_build_packet();
state = FRSKY_DATA1;
#if not defined(FRSKYX_LBT)
return 500;
#endif // for LBT just continue to DATA1 right away
case FRSKY_DATA1:
if ( prev_option != option )
{
CC2500_WriteReg(CC2500_0C_FSCTRL0,option); //Frequency offset hack
prev_option = option ;
}
FrSkyX_set_start(hopping_frequency_no);
transmit=true;
#ifdef FRSKYX_LBT
CC2500_Strobe(CC2500_SIDLE);
delayMicroseconds(90); //Wait for the freq to stabilize
CC2500_Strobe(CC2500_SRX); //Acquire RSSI
state++;
return 500;
case FRSKY_DATA2:
uint8_t rssi;
rssi = CC2500_ReadReg(CC2500_34_RSSI | CC2500_READ_BURST); // 0.5 db/count, RSSI value read from the RSSI status register is a 2's complement number
if ((sub_protocol & 2) && rssi > 72 && rssi < 128) //LBT and RSSI between -36 and -8.5 dBm
{
transmit=false;
debugln("Busy %d %d",hopping_frequency_no,rssi);
}
#endif
CC2500_Strobe(CC2500_SIDLE);
CC2500_Strobe(CC2500_SFRX);
CC2500_SetTxRxMode(TX_EN);
CC2500_SetPower();
hopping_frequency_no = (hopping_frequency_no+FrSkyX_chanskip)%47;
if(transmit)
{
#ifdef DEBUG_SERIAL
uint16_t fr_cur=millis();
fr_time=fr_cur-fr_time;
if(fr_time!=9)
debugln("Bad timing: %d",fr_time);
fr_time=fr_cur;
#endif
CC2500_WriteData(packet, packet[0]+1);
}
state=FRSKY_DATA3;
return 5200;
case FRSKY_DATA3:
CC2500_SetTxRxMode(RX_EN);
CC2500_Strobe(CC2500_SIDLE);
state++;
return 200;
case FRSKY_DATA4:
CC2500_Strobe(CC2500_SRX);
state++;
return 3100;
}
return 1;
}
@ -306,34 +402,33 @@ uint16_t initFrSkyX()
set_rx_tx_addr(MProtocol_id_master);
Frsky_init_hop();
packet_count=0;
while(!FrX_chanskip)
FrX_chanskip=random(0xfefefefe)%47;
while(!FrSkyX_chanskip)
FrSkyX_chanskip=random(0xfefefefe)%47;
//for test***************
//rx_tx_addr[3]=0xB3;
//rx_tx_addr[2]=0xFD;
//************************
frskyX_init();
#if defined SPORT_POLLING
#ifdef INVERT_SERIAL
start_timer4() ;
#endif
#endif
//
FrSkyX_init();
if(IS_BIND_IN_PROGRESS)
{
state = FRSKY_BIND;
frskyX_initialize_data(1);
FrSkyX_initialize_data(1);
}
else
{
state = FRSKY_DATA1;
frskyX_initialize_data(0);
FrSkyX_initialize_data(0);
}
// seq_last_sent = 0;
// seq_last_rcvd = 8;
FrX_send_seq = 0x08 ;
FrX_receive_seq = 0 ;
FrSkyX_TX_Seq = 0x08 ; // Request init
FrSkyX_TX_IN_Seq = 0xFF ; // No sequence received yet
#ifdef SPORT_SEND
for(uint8_t i=0;i<4;i++)
FrSkyX_TX_Frames[i].count=0; // discard frames in current output buffer
SportHead=SportTail=0; // empty data buffer
#endif
FrSkyX_RX_Seq = 0 ; // Seq 0 to start with
return 10000;
}
#endif

View File

@ -0,0 +1,449 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(FRSKY_RX_CC2500_INO)
#include "iface_cc2500.h"
#define FRSKY_RX_D16FCC_LENGTH 32
#define FRSKY_RX_D16LBT_LENGTH 35
#define FRSKY_RX_D8_LENGTH 20
#define FRSKY_RX_FORMATS 3
enum
{
FRSKY_RX_D16FCC = 0,
FRSKY_RX_D16LBT,
FRSKY_RX_D8
};
enum {
FRSKY_RX_TUNE_START,
FRSKY_RX_TUNE_LOW,
FRSKY_RX_TUNE_HIGH,
FRSKY_RX_BIND,
FRSKY_RX_DATA,
};
const PROGMEM uint8_t frsky_rx_common_reg[][2] = {
{CC2500_02_IOCFG0, 0x01},
{CC2500_18_MCSM0, 0x18},
{CC2500_07_PKTCTRL1, 0x04},
{CC2500_3E_PATABLE, 0xFF},
{CC2500_0C_FSCTRL0, 0},
{CC2500_0D_FREQ2, 0x5C},
{CC2500_13_MDMCFG1, 0x23},
{CC2500_14_MDMCFG0, 0x7A},
{CC2500_19_FOCCFG, 0x16},
{CC2500_1A_BSCFG, 0x6C},
{CC2500_1B_AGCCTRL2, 0x03},
{CC2500_1C_AGCCTRL1, 0x40},
{CC2500_1D_AGCCTRL0, 0x91},
{CC2500_21_FREND1, 0x56},
{CC2500_22_FREND0, 0x10},
{CC2500_23_FSCAL3, 0xA9},
{CC2500_24_FSCAL2, 0x0A},
{CC2500_25_FSCAL1, 0x00},
{CC2500_26_FSCAL0, 0x11},
{CC2500_29_FSTEST, 0x59},
{CC2500_2C_TEST2, 0x88},
{CC2500_2D_TEST1, 0x31},
{CC2500_2E_TEST0, 0x0B},
{CC2500_03_FIFOTHR, 0x07},
{CC2500_09_ADDR, 0x00},
};
const PROGMEM uint8_t frsky_rx_d16fcc_reg[][2] = {
{CC2500_17_MCSM1, 0x0C},
{CC2500_0E_FREQ1, 0x76},
{CC2500_0F_FREQ0, 0x27},
{CC2500_06_PKTLEN, 0x1E},
{CC2500_08_PKTCTRL0, 0x01},
{CC2500_0B_FSCTRL1, 0x0A},
{CC2500_10_MDMCFG4, 0x7B},
{CC2500_11_MDMCFG3, 0x61},
{CC2500_12_MDMCFG2, 0x13},
{CC2500_15_DEVIATN, 0x51},
};
const PROGMEM uint8_t frsky_rx_d16lbt_reg[][2] = {
{CC2500_17_MCSM1, 0x0E},
{CC2500_0E_FREQ1, 0x80},
{CC2500_0F_FREQ0, 0x00},
{CC2500_06_PKTLEN, 0x23},
{CC2500_08_PKTCTRL0, 0x01},
{CC2500_0B_FSCTRL1, 0x08},
{CC2500_10_MDMCFG4, 0x7B},
{CC2500_11_MDMCFG3, 0xF8},
{CC2500_12_MDMCFG2, 0x03},
{CC2500_15_DEVIATN, 0x53},
};
const PROGMEM uint8_t frsky_rx_d8_reg[][2] = {
{CC2500_17_MCSM1, 0x0C},
{CC2500_0E_FREQ1, 0x76},
{CC2500_0F_FREQ0, 0x27},
{CC2500_06_PKTLEN, 0x19},
{CC2500_08_PKTCTRL0, 0x05},
{CC2500_0B_FSCTRL1, 0x08},
{CC2500_10_MDMCFG4, 0xAA},
{CC2500_11_MDMCFG3, 0x39},
{CC2500_12_MDMCFG2, 0x11},
{CC2500_15_DEVIATN, 0x42},
};
static uint8_t frsky_rx_chanskip;
static int8_t frsky_rx_finetune;
static uint8_t frsky_rx_format;
static void __attribute__((unused)) frsky_rx_strobe_rx()
{
CC2500_Strobe(CC2500_SIDLE);
CC2500_Strobe(CC2500_SFRX);
CC2500_Strobe(CC2500_SRX);
}
static void __attribute__((unused)) frsky_rx_initialise_cc2500() {
const uint8_t frsky_rx_length[] = { FRSKY_RX_D16FCC_LENGTH, FRSKY_RX_D16LBT_LENGTH, FRSKY_RX_D8_LENGTH };
packet_length = frsky_rx_length[frsky_rx_format];
CC2500_Reset();
CC2500_Strobe(CC2500_SIDLE);
for (uint8_t i = 0; i < sizeof(frsky_rx_common_reg) / 2; i++)
CC2500_WriteReg(pgm_read_byte_near(&frsky_rx_common_reg[i][0]), pgm_read_byte_near(&frsky_rx_common_reg[i][1]));
switch (frsky_rx_format) {
case FRSKY_RX_D16FCC:
for (uint8_t i = 0; i < sizeof(frsky_rx_d16fcc_reg) / 2; i++)
CC2500_WriteReg(pgm_read_byte_near(&frsky_rx_d16fcc_reg[i][0]), pgm_read_byte_near(&frsky_rx_d16fcc_reg[i][1]));
break;
case FRSKY_RX_D16LBT:
for (uint8_t i = 0; i < sizeof(frsky_rx_d16lbt_reg) / 2; i++)
CC2500_WriteReg(pgm_read_byte_near(&frsky_rx_d16lbt_reg[i][0]), pgm_read_byte_near(&frsky_rx_d16lbt_reg[i][1]));
break;
case FRSKY_RX_D8:
for (uint8_t i = 0; i < sizeof(frsky_rx_d8_reg) / 2; i++)
CC2500_WriteReg(pgm_read_byte_near(&frsky_rx_d8_reg[i][0]), pgm_read_byte_near(&frsky_rx_d8_reg[i][1]));
CC2500_WriteReg(CC2500_07_PKTCTRL1, 0x05); // always check address
CC2500_WriteReg(CC2500_09_ADDR, 0x03); // bind address
CC2500_WriteReg(CC2500_23_FSCAL3, 0x89);
break;
}
CC2500_WriteReg(CC2500_0A_CHANNR, 0); // bind channel
rx_disable_lna = IS_POWER_FLAG_on;
CC2500_SetTxRxMode(rx_disable_lna ? TXRX_OFF : RX_EN); // lna disable / enable
frsky_rx_strobe_rx();
delayMicroseconds(1000); // wait for RX to activate
}
static void __attribute__((unused)) frsky_rx_set_channel(uint8_t channel)
{
CC2500_WriteReg(CC2500_0A_CHANNR, hopping_frequency[channel]);
if(frsky_rx_format == FRSKY_RX_D8)
CC2500_WriteReg(CC2500_23_FSCAL3, 0x89);
CC2500_WriteReg(CC2500_25_FSCAL1, calData[channel]);
frsky_rx_strobe_rx();
}
static void __attribute__((unused)) frsky_rx_calibrate()
{
frsky_rx_strobe_rx();
for (unsigned c = 0; c < 47; c++)
{
CC2500_Strobe(CC2500_SIDLE);
CC2500_WriteReg(CC2500_0A_CHANNR, hopping_frequency[c]);
CC2500_Strobe(CC2500_SCAL);
delayMicroseconds(900);
calData[c] = CC2500_ReadReg(CC2500_25_FSCAL1);
}
}
static uint8_t __attribute__((unused)) frskyx_rx_check_crc()
{
// check D8 checksum
if (frsky_rx_format == FRSKY_RX_D8)
return (packet[packet_length-1] & 0x80) == 0x80; // check CRC_OK flag in status byte 2
// check D16 checksum
uint8_t limit = packet_length - 4;
uint16_t lcrc = FrSkyX_crc(&packet[3], limit - 3); // computed crc
uint16_t rcrc = (packet[limit] << 8) | (packet[limit + 1] & 0xff); // received crc
return lcrc == rcrc;
}
static void __attribute__((unused)) frsky_rx_build_telemetry_packet()
{
uint16_t raw_channel[8];
uint32_t bits = 0;
uint8_t bitsavailable = 0;
uint8_t idx = 0;
uint8_t i;
if (frsky_rx_format == FRSKY_RX_D16FCC || frsky_rx_format == FRSKY_RX_D16LBT) {
// decode D16 channels
raw_channel[0] = ((packet[10] << 8) & 0xF00) | packet[9];
raw_channel[1] = ((packet[11] << 4) & 0xFF0) | (packet[10] >> 4);
raw_channel[2] = ((packet[13] << 8) & 0xF00) | packet[12];
raw_channel[3] = ((packet[14] << 4) & 0xFF0) | (packet[13] >> 4);
raw_channel[4] = ((packet[16] << 8) & 0xF00) | packet[15];
raw_channel[5] = ((packet[17] << 4) & 0xFF0) | (packet[16] >> 4);
raw_channel[6] = ((packet[19] << 8) & 0xF00) | packet[18];
raw_channel[7] = ((packet[20] << 4) & 0xFF0) | (packet[19] >> 4);
for (i = 0; i < 8; i++) {
// ignore failsafe channels
if(packet[7] != 0x10+(i<<1)) {
uint8_t shifted = (raw_channel[i] & 0x800)>0;
uint16_t channel_value = raw_channel[i] & 0x7FF;
if (channel_value < 64)
rx_rc_chan[shifted ? i + 8 : i] = 0;
else
rx_rc_chan[shifted ? i + 8 : i] = min(((channel_value - 64) << 4) / 15, 2047);
}
}
}
else {
// decode D8 channels
raw_channel[0] = ((packet[10] & 0x0F) << 8 | packet[6]);
raw_channel[1] = ((packet[10] & 0xF0) << 4 | packet[7]);
raw_channel[2] = ((packet[11] & 0x0F) << 8 | packet[8]);
raw_channel[3] = ((packet[11] & 0xF0) << 4 | packet[9]);
raw_channel[4] = ((packet[16] & 0x0F) << 8 | packet[12]);
raw_channel[5] = ((packet[16] & 0xF0) << 4 | packet[13]);
raw_channel[6] = ((packet[17] & 0x0F) << 8 | packet[14]);
raw_channel[7] = ((packet[17] & 0xF0) << 4 | packet[15]);
for (i = 0; i < 8; i++) {
if (raw_channel[i] < 1290)
raw_channel[i] = 1290;
rx_rc_chan[i] = min(((raw_channel[i] - 1290) << 4) / 15, 2047);
}
}
// buid telemetry packet
packet_in[idx++] = RX_LQI;
packet_in[idx++] = RX_RSSI;
packet_in[idx++] = 0; // start channel
packet_in[idx++] = frsky_rx_format == FRSKY_RX_D8 ? 8 : 16; // number of channels in packet
// pack channels
for (i = 0; i < packet_in[3]; i++) {
bits |= ((uint32_t)rx_rc_chan[i]) << bitsavailable;
bitsavailable += 11;
while (bitsavailable >= 8) {
packet_in[idx++] = bits & 0xff;
bits >>= 8;
bitsavailable -= 8;
}
}
}
uint16_t initFrSky_Rx()
{
state = 0;
frsky_rx_chanskip = 1;
hopping_frequency_no = 0;
rx_data_started = false;
frsky_rx_finetune = 0;
telemetry_link = 0;
if (IS_BIND_IN_PROGRESS) {
frsky_rx_format = FRSKY_RX_D8;
frsky_rx_initialise_cc2500();
phase = FRSKY_RX_TUNE_START;
}
else {
uint16_t temp = FRSKY_RX_EEPROM_OFFSET;
frsky_rx_format = eeprom_read_byte((EE_ADDR)temp++) % FRSKY_RX_FORMATS;
rx_tx_addr[0] = eeprom_read_byte((EE_ADDR)temp++);
rx_tx_addr[1] = eeprom_read_byte((EE_ADDR)temp++);
rx_tx_addr[2] = eeprom_read_byte((EE_ADDR)temp++);
frsky_rx_finetune = eeprom_read_byte((EE_ADDR)temp++);
for (uint8_t ch = 0; ch < 47; ch++)
hopping_frequency[ch] = eeprom_read_byte((EE_ADDR)temp++);
frsky_rx_initialise_cc2500();
frsky_rx_calibrate();
CC2500_WriteReg(CC2500_18_MCSM0, 0x08); // FS_AUTOCAL = manual
CC2500_WriteReg(CC2500_09_ADDR, rx_tx_addr[0]); // set address
CC2500_WriteReg(CC2500_07_PKTCTRL1, 0x05); // check address
if (option == 0)
CC2500_WriteReg(CC2500_0C_FSCTRL0, frsky_rx_finetune);
else
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
frsky_rx_set_channel(hopping_frequency_no);
phase = FRSKY_RX_DATA;
}
return 1000;
}
uint16_t FrSky_Rx_callback()
{
static uint32_t pps_timer=0;
static uint8_t pps_counter=0;
static int8_t read_retry = 0;
static int8_t tune_low, tune_high;
uint8_t len, ch;
if ((prev_option != option) && (phase >= FRSKY_RX_DATA)) {
if (option == 0)
CC2500_WriteReg(CC2500_0C_FSCTRL0, frsky_rx_finetune);
else
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
prev_option = option;
}
if (rx_disable_lna != IS_POWER_FLAG_on) {
rx_disable_lna = IS_POWER_FLAG_on;
CC2500_SetTxRxMode(rx_disable_lna ? TXRX_OFF : RX_EN);
}
len = CC2500_ReadReg(CC2500_3B_RXBYTES | CC2500_READ_BURST) & 0x7F;
switch(phase) {
case FRSKY_RX_TUNE_START:
if (len >= packet_length) {
CC2500_ReadData(packet, packet_length);
if(packet[1] == 0x03 && packet[2] == 0x01) {
if(frskyx_rx_check_crc()) {
frsky_rx_finetune = -127;
CC2500_WriteReg(CC2500_0C_FSCTRL0, frsky_rx_finetune);
phase = FRSKY_RX_TUNE_LOW;
frsky_rx_strobe_rx();
return 1000;
}
}
}
frsky_rx_format = (frsky_rx_format + 1) % FRSKY_RX_FORMATS; // switch to next format (D16FCC, D16LBT, D8)
frsky_rx_initialise_cc2500();
frsky_rx_finetune += 10;
CC2500_WriteReg(CC2500_0C_FSCTRL0, frsky_rx_finetune);
frsky_rx_strobe_rx();
return 18000;
case FRSKY_RX_TUNE_LOW:
if (len >= packet_length) {
CC2500_ReadData(packet, packet_length);
if (frskyx_rx_check_crc()) {
tune_low = frsky_rx_finetune;
frsky_rx_finetune = 127;
CC2500_WriteReg(CC2500_0C_FSCTRL0, frsky_rx_finetune);
phase = FRSKY_RX_TUNE_HIGH;
frsky_rx_strobe_rx();
return 1000;
}
}
frsky_rx_finetune += 1;
CC2500_WriteReg(CC2500_0C_FSCTRL0, frsky_rx_finetune);
frsky_rx_strobe_rx();
return 18000;
case FRSKY_RX_TUNE_HIGH:
if (len >= packet_length) {
CC2500_ReadData(packet, packet_length);
if (frskyx_rx_check_crc()) {
tune_high = frsky_rx_finetune;
frsky_rx_finetune = (tune_low + tune_high) / 2;
CC2500_WriteReg(CC2500_0C_FSCTRL0, (int8_t)frsky_rx_finetune);
if(tune_low < tune_high)
phase = FRSKY_RX_BIND;
else
phase = FRSKY_RX_TUNE_START;
frsky_rx_strobe_rx();
return 1000;
}
}
frsky_rx_finetune -= 1;
CC2500_WriteReg(CC2500_0C_FSCTRL0, frsky_rx_finetune);
frsky_rx_strobe_rx();
return 18000;
case FRSKY_RX_BIND:
if(len >= packet_length) {
CC2500_ReadData(packet, packet_length);
if (frskyx_rx_check_crc()) {
if (packet[5] <= 0x2D) {
for (ch = 0; ch < 5; ch++)
hopping_frequency[packet[5]+ch] = packet[6+ch];
state |= 1 << (packet[5] / 5);
}
}
if (state == 0x3ff) {
debugln("bind complete");
frsky_rx_calibrate();
rx_tx_addr[0] = packet[3]; // TXID
rx_tx_addr[1] = packet[4]; // TXID
rx_tx_addr[2] = packet[12]; // RX # (D16)
CC2500_WriteReg(CC2500_18_MCSM0, 0x08); // FS_AUTOCAL = manual
CC2500_WriteReg(CC2500_09_ADDR, rx_tx_addr[0]); // set address
CC2500_WriteReg(CC2500_07_PKTCTRL1, 0x05); // check address
phase = FRSKY_RX_DATA;
frsky_rx_set_channel(hopping_frequency_no);
// store format, finetune setting, txid, channel list
uint16_t temp = FRSKY_RX_EEPROM_OFFSET;
eeprom_write_byte((EE_ADDR)temp++, frsky_rx_format);
eeprom_write_byte((EE_ADDR)temp++, rx_tx_addr[0]);
eeprom_write_byte((EE_ADDR)temp++, rx_tx_addr[1]);
eeprom_write_byte((EE_ADDR)temp++, rx_tx_addr[2]);
eeprom_write_byte((EE_ADDR)temp++, frsky_rx_finetune);
for (ch = 0; ch < 47; ch++)
eeprom_write_byte((EE_ADDR)temp++, hopping_frequency[ch]);
BIND_DONE;
}
frsky_rx_strobe_rx();
}
return 1000;
case FRSKY_RX_DATA:
if (len >= packet_length) {
CC2500_ReadData(packet, packet_length);
if (packet[1] == rx_tx_addr[0] && packet[2] == rx_tx_addr[1] && frskyx_rx_check_crc() && (frsky_rx_format == FRSKY_RX_D8 || packet[6] == rx_tx_addr[2])) {
RX_RSSI = packet[packet_length-2];
if(RX_RSSI >= 128)
RX_RSSI -= 128;
else
RX_RSSI += 128;
// hop to next channel
if (frsky_rx_format == FRSKY_RX_D16FCC || frsky_rx_format == FRSKY_RX_D16LBT)
frsky_rx_chanskip = ((packet[4] & 0xC0) >> 6) | ((packet[5] & 0x3F) << 2);
hopping_frequency_no = (hopping_frequency_no + frsky_rx_chanskip) % 47;
frsky_rx_set_channel(hopping_frequency_no);
if (telemetry_link == 0) { // send channels to TX
frsky_rx_build_telemetry_packet();
telemetry_link = 1;
}
rx_data_started = true;
read_retry = 0;
pps_counter++;
}
}
// packets per second
if (millis() - pps_timer >= 1000) {
pps_timer = millis();
debugln("%d pps", pps_counter);
RX_LQI = pps_counter;
pps_counter = 0;
}
// skip channel if no packet received in time
if (read_retry++ >= 9) {
hopping_frequency_no = (hopping_frequency_no + frsky_rx_chanskip) % 47;
frsky_rx_set_channel(hopping_frequency_no);
if(rx_data_started)
read_retry = 0;
else
read_retry = -50; // retry longer until first packet is catched
}
break;
}
return 1000;
}
#endif

View File

@ -208,6 +208,7 @@ uint16_t GD00X_callback()
if(--bind_counter==0)
BIND_DONE;
GD00X_send_packet();
telemetry_set_input_sync(packet_period);
return packet_period;
}

View File

@ -139,6 +139,7 @@ uint16_t GW008_callback()
return 5000;
break;
case GW008_DATA:
telemetry_set_input_sync(GW008_PACKET_PERIOD);
GW008_send_packet(0);
break;
}

View File

@ -177,7 +177,10 @@ static void __attribute__((unused)) H8_3D_init()
uint16_t H8_3D_callback()
{
if(IS_BIND_DONE)
{
telemetry_set_input_sync(packet_period);
H8_3D_send_packet(0);
}
else
{
if (bind_counter == 0)

View File

@ -0,0 +1,385 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(HOTT_CC2500_INO)
#include "iface_cc2500.h"
//#define HOTT_FORCE_ID // Force ID of original dump
#define HOTT_TX_PACKET_LEN 50
#define HOTT_RX_PACKET_LEN 22
#define HOTT_PACKET_PERIOD 10000
#define HOTT_NUM_RF_CHANNELS 75
#define HOTT_COARSE 0
enum {
HOTT_START = 0x00,
HOTT_CAL = 0x01,
HOTT_DATA1 = 0x02,
HOTT_RX1 = 0x03,
HOTT_RX2 = 0x04,
};
#define HOTT_FREQ0_VAL 0x6E
// Some important initialization parameters, all others are either default,
// or not important in the context of transmitter
// FIFOTHR 00
// SYNC1 D3
// SYNC0 91
// PKTLEN 32 - Packet length, 50 bytes
// PKTCTRL1 04 - APPEND_STATUS on=RSSI+LQI, all other are receive parameters - irrelevant
// PKTCTRL0 44 - whitening, use FIFO, use CRC, fixed packet length
// ADDR 00
// CHANNR 10
// FSCTRL1 09 - IF
// FSCTRL0 00 - zero freq offset
// FREQ2 5C - synthesizer frequencyfor 26MHz crystal
// FREQ1 6C
// FREQ0 B9
// MDMCFG4 2D -
// MDMCFG3 3B -
// MDMCFG2 73 - disable DC blocking, MSK, no Manchester code, 32 bits sync word
// MDMCFG1 A3 - FEC enable, 4 preamble bytes, CHANSPC_E - 03
// MDMCFG0 AA - CHANSPC_M - AA
// DEVIATN 47 -
// MCSM2 07 -
// MCSM1 00 - always use CCA, go to IDLE when done
// MCSM0 08 - disable autocalibration, PO_TIMEOUT - 64, no pin radio control, no forcing XTAL to stay in SLEEP
// FOCCFG 1D
const PROGMEM uint8_t HOTT_init_values[] = {
/* 00 */ 0x2F, 0x2E, 0x2F, 0x00, 0xD3, 0x91, 0x32, 0x04,
/* 08 */ 0x44, 0x00, 0x00, 0x09, 0x00, 0x5C, 0x6C, HOTT_FREQ0_VAL + HOTT_COARSE,
/* 10 */ 0x2D, 0x3B, 0x73, 0xA3, 0xAA, 0x47, 0x07, 0x00,
/* 18 */ 0x08, 0x1D, 0x1C, 0xC7, 0x09, 0xF0, 0x87, 0x6B,
/* 20 */ 0xF0, 0xB6, 0x10, 0xEA, 0x0A, 0x00, 0x11
};
static void __attribute__((unused)) HOTT_rf_init()
{
CC2500_Strobe(CC2500_SIDLE);
for (uint8_t i = 0; i < 39; ++i)
CC2500_WriteReg(i, pgm_read_byte_near(&HOTT_init_values[i]));
prev_option = option;
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
CC2500_SetTxRxMode(TX_EN);
CC2500_SetPower();
}
static void __attribute__((unused)) HOTT_tune_chan()
{
CC2500_Strobe(CC2500_SIDLE);
CC2500_WriteReg(CC2500_0A_CHANNR, (rf_ch_num+1)*3);
CC2500_Strobe(CC2500_SCAL);
}
static void __attribute__((unused)) HOTT_tune_chan_fast()
{
CC2500_Strobe(CC2500_SIDLE);
CC2500_WriteReg(CC2500_0A_CHANNR, (rf_ch_num+1)*3);
CC2500_WriteReg(CC2500_25_FSCAL1, calData[rf_ch_num]);
}
static void __attribute__((unused)) HOTT_tune_freq()
{
if ( prev_option != option )
{
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
CC2500_WriteReg(CC2500_0F_FREQ0, HOTT_FREQ0_VAL + HOTT_COARSE);
prev_option = option ;
phase = HOTT_START; // Restart the tune process if option is changed to get good tuned values
}
}
const uint8_t PROGMEM HOTT_hop[][HOTT_NUM_RF_CHANNELS]=
{ { 48, 37, 16, 62, 9, 50, 42, 22, 68, 0, 55, 35, 21, 74, 1, 56, 31, 20, 70, 11, 45, 32, 24, 71, 8, 54, 38, 26, 61, 13, 53, 30, 15, 65, 7, 52, 34, 28, 60, 3, 47, 39, 18, 69, 2, 49, 44, 23, 72, 5, 51, 43, 19, 64, 12, 46, 33, 17, 67, 6, 58, 36, 29, 73, 14, 57, 41, 25, 63, 4, 59, 40, 27, 66, 10 },
{ 50, 23, 5, 34, 67, 53, 22, 12, 39, 62, 51, 21, 10, 33, 63, 59, 16, 1, 43, 66, 49, 19, 8, 30, 71, 47, 24, 2, 35, 68, 45, 25, 14, 41, 74, 55, 18, 4, 32, 61, 54, 17, 11, 31, 72, 52, 28, 6, 38, 65, 46, 15, 9, 40, 60, 48, 26, 3, 37, 70, 58, 29, 0, 36, 64, 56, 20, 7, 42, 69, 57, 27, 13, 44, 73 },
{ 73, 51, 39, 18, 9, 64, 56, 34, 16, 12, 66, 58, 36, 25, 11, 61, 47, 40, 15, 8, 71, 50, 43, 20, 6, 62, 54, 42, 19, 3, 63, 46, 44, 29, 14, 72, 49, 33, 22, 5, 69, 57, 30, 21, 10, 70, 45, 35, 26, 7, 65, 59, 31, 28, 1, 67, 48, 32, 24, 0, 60, 55, 41, 17, 2, 74, 52, 38, 27, 4, 68, 53, 37, 23, 13 },
{ 52, 60, 40, 21, 14, 50, 72, 41, 23, 13, 59, 61, 39, 16, 6, 58, 66, 33, 17, 5, 55, 64, 43, 20, 12, 54, 74, 35, 29, 3, 46, 63, 37, 22, 10, 48, 65, 31, 27, 9, 49, 73, 38, 24, 11, 56, 70, 32, 15, 1, 51, 71, 44, 18, 8, 45, 67, 36, 25, 7, 57, 62, 34, 28, 2, 53, 69, 42, 19, 4, 47, 68, 30, 26, 0 },
{ 50, 16, 34, 6, 71, 51, 24, 40, 7, 68, 57, 27, 33, 14, 70, 55, 26, 30, 5, 74, 47, 28, 44, 11, 67, 49, 15, 32, 9, 61, 52, 22, 37, 13, 66, 59, 18, 42, 3, 62, 46, 29, 31, 12, 60, 48, 19, 38, 1, 72, 58, 17, 36, 4, 64, 53, 21, 39, 0, 63, 56, 20, 41, 2, 65, 45, 25, 35, 10, 69, 54, 23, 43, 8, 73 },
{ 55, 38, 12, 62, 23, 52, 44, 3, 66, 18, 54, 36, 10, 74, 16, 56, 42, 9, 70, 17, 58, 33, 5, 69, 20, 50, 40, 1, 63, 24, 53, 37, 13, 65, 15, 48, 34, 4, 61, 22, 57, 31, 6, 64, 26, 46, 35, 11, 72, 21, 47, 30, 7, 68, 29, 45, 32, 8, 60, 19, 49, 43, 2, 67, 27, 51, 39, 0, 71, 28, 59, 41, 14, 73, 25 },
{ 70, 32, 18, 10, 58, 69, 38, 22, 2, 54, 67, 36, 19, 12, 57, 62, 34, 20, 14, 52, 63, 41, 15, 3, 51, 73, 42, 28, 6, 48, 60, 43, 29, 5, 45, 64, 31, 17, 4, 56, 65, 35, 26, 13, 53, 61, 37, 23, 1, 49, 68, 40, 16, 9, 47, 71, 39, 25, 7, 50, 66, 33, 24, 8, 59, 72, 44, 27, 11, 46, 74, 30, 21, 0, 55 },
{ 6, 45, 71, 27, 44, 10, 46, 74, 22, 32, 0, 55, 69, 21, 33, 4, 50, 66, 18, 38, 7, 57, 62, 19, 36, 1, 48, 70, 20, 40, 8, 47, 68, 15, 43, 2, 58, 61, 26, 42, 3, 56, 72, 23, 34, 14, 54, 67, 16, 37, 5, 59, 64, 24, 30, 12, 52, 65, 25, 39, 13, 49, 73, 17, 31, 9, 53, 60, 28, 35, 11, 51, 63, 29, 41 },
{ 31, 65, 50, 20, 13, 37, 66, 45, 23, 5, 32, 69, 54, 19, 7, 39, 74, 52, 27, 1, 42, 64, 53, 22, 4, 43, 70, 58, 16, 3, 40, 71, 57, 17, 0, 35, 63, 56, 18, 9, 44, 72, 51, 21, 6, 33, 67, 46, 25, 11, 30, 73, 55, 15, 8, 36, 62, 48, 24, 10, 41, 60, 49, 29, 14, 34, 61, 47, 26, 2, 38, 68, 59, 28, 12 },
{ 67, 22, 49, 36, 13, 64, 28, 57, 37, 6, 65, 29, 46, 39, 3, 70, 26, 45, 35, 1, 62, 24, 58, 34, 10, 68, 19, 53, 33, 4, 66, 21, 52, 31, 7, 74, 18, 47, 32, 5, 61, 16, 51, 38, 8, 72, 23, 55, 30, 12, 73, 17, 59, 44, 0, 60, 15, 50, 43, 14, 63, 27, 48, 42, 11, 71, 20, 54, 41, 9, 69, 25, 56, 40, 2 },
{ 19, 38, 14, 66, 57, 18, 44, 7, 74, 48, 23, 30, 6, 71, 58, 26, 32, 5, 61, 46, 20, 34, 0, 68, 45, 24, 36, 1, 70, 50, 27, 33, 10, 63, 52, 16, 42, 9, 65, 51, 15, 41, 11, 64, 53, 22, 37, 3, 60, 56, 28, 35, 4, 67, 49, 17, 39, 13, 69, 54, 25, 43, 2, 73, 55, 21, 31, 8, 62, 47, 29, 40, 12, 72, 59 },
{ 4, 52, 64, 28, 44, 14, 46, 74, 16, 32, 11, 50, 68, 27, 36, 0, 47, 70, 26, 34, 13, 57, 61, 18, 38, 6, 56, 62, 19, 40, 5, 58, 67, 17, 31, 12, 54, 63, 22, 33, 3, 53, 72, 21, 41, 10, 48, 66, 15, 35, 7, 45, 60, 20, 37, 9, 51, 69, 25, 42, 2, 59, 71, 24, 39, 1, 55, 65, 23, 30, 8, 49, 73, 29, 43 },
{ 44, 66, 19, 1, 56, 35, 62, 20, 4, 54, 39, 70, 24, 5, 55, 31, 74, 26, 12, 58, 32, 60, 17, 10, 45, 37, 63, 22, 3, 50, 33, 64, 16, 7, 51, 34, 61, 21, 8, 48, 38, 68, 29, 0, 46, 36, 72, 28, 14, 49, 42, 69, 25, 6, 57, 43, 65, 18, 2, 52, 30, 71, 23, 13, 47, 41, 67, 15, 9, 53, 40, 73, 27, 11, 59 },
{ 12, 16, 36, 46, 69, 6, 20, 44, 58, 62, 11, 19, 34, 48, 71, 1, 18, 42, 50, 74, 3, 25, 31, 47, 65, 0, 24, 33, 45, 72, 2, 23, 35, 56, 64, 10, 22, 38, 49, 63, 7, 26, 37, 51, 70, 14, 21, 30, 53, 67, 5, 15, 40, 52, 66, 9, 17, 39, 55, 60, 13, 27, 41, 54, 73, 4, 28, 32, 57, 61, 8, 29, 43, 59, 68 },
{ 63, 42, 18, 2, 57, 71, 34, 22, 10, 48, 67, 36, 25, 4, 46, 60, 31, 28, 6, 47, 74, 37, 15, 0, 55, 65, 32, 24, 12, 56, 66, 40, 27, 14, 52, 62, 38, 19, 3, 50, 73, 33, 29, 11, 53, 61, 35, 16, 7, 58, 72, 41, 26, 5, 59, 69, 30, 20, 9, 51, 68, 44, 23, 1, 49, 70, 39, 17, 8, 54, 64, 43, 21, 13, 45 },
{ 52, 1, 71, 17, 36, 47, 7, 64, 26, 32, 53, 5, 60, 20, 42, 57, 2, 66, 18, 34, 56, 4, 63, 24, 35, 46, 13, 72, 22, 30, 48, 0, 67, 21, 39, 50, 3, 74, 16, 31, 59, 14, 61, 23, 37, 45, 6, 65, 19, 44, 51, 11, 62, 27, 41, 55, 9, 68, 15, 38, 58, 8, 70, 29, 40, 54, 10, 69, 28, 33, 49, 12, 73, 25, 43 }
};
const uint16_t PROGMEM HOTT_hop_val[] = { 0xC06B, 0xC34A, 0xDB24, 0x8E09, 0x272E, 0x217F, 0x155B, 0xEDE8, 0x1D31, 0x0986, 0x56F7, 0x6454, 0xC42D, 0x01D2, 0xC253, 0x1180 };
static void __attribute__((unused)) HOTT_init()
{
packet[0] = pgm_read_word_near( &HOTT_hop_val[num_ch] );
packet[1] = pgm_read_word_near( &HOTT_hop_val[num_ch] )>>8;
for(uint8_t i=0; i<HOTT_NUM_RF_CHANNELS; i++)
hopping_frequency[i]=pgm_read_byte_near( &HOTT_hop[num_ch][i] );
#ifdef HOTT_FORCE_ID
memcpy(rx_tx_addr,"\x7C\x94\x00\x0D\x50",5);
#endif
memset(&packet[30],0xFF,9);
packet[39]=0x07; // unknown and constant
if(IS_BIND_IN_PROGRESS)
{
packet[28] = 0x80; // unknown 0x80 when bind starts then when RX replies start normal, 0x89/8A/8B/8C/8D/8E during normal packets
packet[29] = 0x02; // unknown 0x02 when bind starts then when RX replies cycle in sequence 0x1A/22/2A/0A/12, 0x02 during normal packets
memset(&packet[40],0xFA,5);
memcpy(&packet[45],rx_tx_addr,5);
}
else
{
packet[28] = 0x8C; // unknown 0x80 when bind starts then when RX replies start normal, 0x89/8A/8B/8C/8D/8E during normal packets, 0x0F->config menu
packet[29] = 0x02; // unknown 0x02 when bind starts then when RX replies cycle in sequence 0x1A/22/2A/0A/12, 0x02 during normal packets, 0x01->config menu, 0x0A->no more RX telemetry
memcpy(&packet[40],rx_tx_addr,5);
uint8_t addr=HOTT_EEPROM_OFFSET+RX_num*5;
for(uint8_t i=0;i<5;i++)
packet[45+i]=eeprom_read_byte((EE_ADDR)(addr+i));
}
}
static void __attribute__((unused)) HOTT_data_packet()
{
packet[2] = hopping_frequency_no;
packet[3] = 0x00; // used for failsafe but may also be used for additional channels
#ifdef FAILSAFE_ENABLE
static uint8_t failsafe_count=0;
if(IS_FAILSAFE_VALUES_on && IS_BIND_DONE)
{
failsafe_count++;
if(failsafe_count>=3)
{
FAILSAFE_VALUES_off;
failsafe_count=0;
}
}
else
failsafe_count=0;
#endif
// Channels value are PPM*2, -100%=1100µs, +100%=1900µs, order TAER
uint16_t val;
for(uint8_t i=4;i<28;i+=2)
{
val=Channel_data[(i-4)>>1];
val=(((val<<2)+val)>>2)+860*2; // value range 860<->2140 *2 <-> -125%<->+125%
#ifdef FAILSAFE_ENABLE
if(failsafe_count==1)
{ // first failsafe packet
packet[3]=0x40;
uint16_t fs=Failsafe_data[(i-4)>>1];
if( fs == FAILSAFE_CHANNEL_HOLD || fs == FAILSAFE_CHANNEL_NOPULSES)
val|=0x8000; // channel hold flag
else
{
val=(((fs<<2)+fs)>>2)+860*2; // value range 860<->2140 *2 <-> -125%<->+125%
val|=0x4000; // channel specific position flag
}
}
else if(failsafe_count==2)
{ // second failsafe packet=timing?
packet[3]=0x50;
if(i==4)
val=2;
else
val=0;
}
#endif
packet[i] = val;
packet[i+1] = val>>8;
}
#ifdef HOTT_FW_TELEMETRY
static uint8_t prev_SerialRX_val=0;
if(HoTT_SerialRX && HoTT_SerialRX_val >= 0xD7 && HoTT_SerialRX_val <= 0xDF)
{
if(prev_SerialRX_val!=HoTT_SerialRX_val)
{
prev_SerialRX_val=HoTT_SerialRX_val;
packet[28] = HoTT_SerialRX_val; // send the touch being pressed only once
}
else
packet[28] = 0xDF; // no touch pressed
packet[29] = 0x01; // 0x01->config menu
}
else
{
packet[28] = 0x8C; // unknown 0x80 when bind starts then when RX replies start normal, 0x89/8A/8B/8C/8D/8E during normal packets, 0x0F->config menu
packet[29] = 0x02; // unknown 0x02 when bind starts then when RX replies cycle in sequence 0x1A/22/2A/0A/12, 0x02 during normal packets, 0x01->config menu, 0x0A->no more RX telemetry
}
#endif
CC2500_SetTxRxMode(TX_EN);
CC2500_SetPower();
CC2500_WriteReg(CC2500_06_PKTLEN, 0x32);
CC2500_WriteData(packet, HOTT_TX_PACKET_LEN);
#if 0
debug("RF:%02X P:",rf_ch_num);
for(uint8_t i=0;i<HOTT_TX_PACKET_LEN;i++)
debug(" %02X",packet[i]);
debugln("");
#endif
hopping_frequency_no++;
hopping_frequency_no %= HOTT_NUM_RF_CHANNELS;
rf_ch_num=hopping_frequency[hopping_frequency_no];
}
uint16_t ReadHOTT()
{
#ifdef HOTT_FW_TELEMETRY
static uint8_t pps_counter=0;
#endif
switch(phase)
{
case HOTT_START:
rf_ch_num = 0;
HOTT_tune_chan();
phase = HOTT_CAL;
return 2000;
case HOTT_CAL:
calData[rf_ch_num]=CC2500_ReadReg(CC2500_25_FSCAL1);
if (++rf_ch_num < HOTT_NUM_RF_CHANNELS)
HOTT_tune_chan();
else
{
hopping_frequency_no = 0;
rf_ch_num=hopping_frequency[hopping_frequency_no];
counter = 0;
phase = HOTT_DATA1;
}
return 2000;
/* Work cycle: 10ms */
case HOTT_DATA1:
//TX
telemetry_set_input_sync(HOTT_PACKET_PERIOD);
HOTT_tune_freq();
HOTT_tune_chan_fast();
HOTT_data_packet();
phase = HOTT_RX1;
return 4500;
case HOTT_RX1:
//RX
CC2500_SetTxRxMode(RX_EN);
CC2500_WriteReg(CC2500_06_PKTLEN, HOTT_RX_PACKET_LEN);
CC2500_Strobe(CC2500_SRX);
phase = HOTT_RX2;
return 4500;
case HOTT_RX2:
//Telemetry
len = CC2500_ReadReg(CC2500_3B_RXBYTES | CC2500_READ_BURST) & 0x7F;
if (len==HOTT_RX_PACKET_LEN+2)
{
CC2500_ReadData(packet_in, len);
if(memcmp(rx_tx_addr,packet_in,5)==0)
{ // TX ID matches
if(IS_BIND_IN_PROGRESS)
{
debug("B:");
for(uint8_t i=0;i<HOTT_RX_PACKET_LEN;i++)
debug(" %02X", packet_in[i]);
debugln("");
uint8_t addr=HOTT_EEPROM_OFFSET+RX_num*5;
for(uint8_t i=0; i<5; i++)
eeprom_write_byte((EE_ADDR)(addr+i),packet_in[5+i]);
BIND_DONE;
HOTT_init();
}
#ifdef HOTT_FW_TELEMETRY
else
{ //Telemetry
// [0..4] = TXID
// [5..9] = RXID
// [10] = 0x40 bind, 0x00 normal, 0x80 config menu
// [11] = telmetry pages. For sensors 0x00 to 0x04, for config mennu 0x00 to 0x12.
// Normal telem page 0 = 0x00, 0x33, 0x34, 0x46, 0x64, 0x33, 0x0A, 0x00, 0x00, 0x00
// = 0x55, 0x32, 0x38, 0x55, 0x64, 0x32, 0xD0, 0x07, 0x00, 0x55
// Page 0 [12] = [21] = ??
// Page 0 [13] = RX_Voltage*10 in V
// Page 0 [14] = Temperature-20 in °C
// Page 0 [15] = RX_RSSI
// Page 0 [16] = RX_LQI ??
// Page 0 [17] = RX_STR ??
// Page 0 [18,19] = [19]*256+[18]=max lost packet time in ms, max value seems 2s=0x7D0
// Page 0 [20] = 0x00 ??
// Config menu consists of the different telem pages put all together
// Page X [12] = seems like all the telem pages with the same value are going together to make the full config menu text. Seen so far 'a', 'b', 'c', 'd'
// Page X [13..21] = 9 ascii chars to be displayed, char is highlighted when ascii|0x80
// Screen display is 21 characters large which means that once the first 21 chars are filled go to the begining of the next line
// Menu commands are sent through TX packets:
// packet[28]= 0xXF=>no key press, 0xXD=>down, 0xXB=>up, 0xX9=>enter, 0xXE=>right, 0xX7=>left with X=0 or D
// packet[29]= 0xX1/0xX9 with X=0 or X counting 0,1,1,2,2,..,9,9
TX_RSSI = packet_in[22];
if(TX_RSSI >=128)
TX_RSSI -= 128;
else
TX_RSSI += 128;
// Reduce telemetry to 14 bytes
packet_in[0]= TX_RSSI;
packet_in[1]= TX_LQI;
debug("T=");
for(uint8_t i=10;i < HOTT_RX_PACKET_LEN; i++)
{
packet_in[i-8]=packet_in[i];
debug(" %02X",packet_in[i]);
}
debugln("");
telemetry_link=2;
}
pps_counter++;
#endif
}
}
#ifdef HOTT_FW_TELEMETRY
packet_count++;
if(packet_count>=100)
{
TX_LQI=pps_counter;
pps_counter=packet_count=0;
}
#endif
CC2500_Strobe(CC2500_SFRX); //Flush the RXFIFO
phase=HOTT_DATA1;
return 1000;
}
return 0;
}
uint16_t initHOTT()
{
num_ch=random(0xfefefefe)%16;
HOTT_init();
HOTT_rf_init();
packet_count=0;
#ifdef HOTT_FW_TELEMETRY
HoTT_SerialRX_val=0;
HoTT_SerialRX=false;
#endif
phase = HOTT_START;
return 10000;
}
#endif

View File

@ -123,8 +123,8 @@ static void __attribute__((unused)) build_ch_data()
for (i = 0; i< 8; i++) {
j=CH_AETR[i];
temp=convert_channel_16b_limit(j,0,1000);
if (j == THROTTLE) // It is clear that hisky's throttle stick is made reversely, so I adjust it here on purpose
temp = 1000 -temp;
if (j == CH3) // It is clear that hisky's throttle stick is made reversely, so I adjust it here on purpose
temp = 1000 - temp;
if (j == CH7)
temp = temp < 400 ? 0 : 3; // Gyro mode, 0 - 6 axis, 3 - 3 axis
packet[i] = (uint8_t)(temp&0xFF);
@ -151,6 +151,7 @@ uint16_t hisky_cb()
phase=6;
break;
case 7: // build packet
telemetry_set_input_sync(5000);
#ifdef FAILSAFE_ENABLE
if(IS_FAILSAFE_VALUES_on && hopping_frequency_no==0)
{ // send failsafe every 100ms
@ -159,6 +160,7 @@ uint16_t hisky_cb()
convert_failsafe_HK310(CH5, &packet[4],&packet[5]);
packet[7]=0xAA;
packet[8]=0x5A;
FAILSAFE_VALUES_off;
}
else
#endif
@ -216,6 +218,7 @@ uint16_t hisky_cb()
break;
case 7:
//Build normal packet
telemetry_set_input_sync(9000);
build_ch_data();
break;
case 8:

View File

@ -259,6 +259,7 @@ uint16_t ReadHITEC()
case HITEC_PREP:
if ( prev_option == option )
{ // No user frequency change
telemetry_set_input_sync(HITEC_PACKET_PERIOD);
HITEC_change_chan_fast();
hopping_frequency_no++;
if(hopping_frequency_no>=rf_ch_num)
@ -285,14 +286,14 @@ uint16_t ReadHITEC()
return HITEC_RX1_TIMING;
case HITEC_RX2:
uint8_t len=CC2500_ReadReg(CC2500_3B_RXBYTES | CC2500_READ_BURST) & 0x7F;
if(len && len<MAX_PKT)
if(len && len<TELEMETRY_BUFFER_SIZE)
{ // Something has been received
CC2500_ReadData(pkt, len);
if( (pkt[len-1] & 0x80) && pkt[0]==len-3 && pkt[1]==rx_tx_addr[1] && pkt[2]==rx_tx_addr[2] && pkt[3]==rx_tx_addr[3])
CC2500_ReadData(packet_in, len);
if( (packet_in[len-1] & 0x80) && packet_in[0]==len-3 && packet_in[1]==rx_tx_addr[1] && packet_in[2]==rx_tx_addr[2] && packet_in[3]==rx_tx_addr[3])
{ //valid crc && length ok && tx_id ok
debug("RX:l=%d",len);
for(uint8_t i=0;i<len;i++)
debug(",%02X",pkt[i]);
debug(",%02X",packet_in[i]);
if(IS_BIND_IN_PROGRESS)
{
if(len==13) // Bind packets have a length of 13
@ -300,17 +301,17 @@ uint16_t ReadHITEC()
debug(",bind");
boolean check=true;
for(uint8_t i=5;i<=10;i++)
if(pkt[i]!=i%10) check=false;
if((pkt[4]&0xF0)==0x70 && check)
if(packet_in[i]!=i%10) check=false;
if((packet_in[4]&0xF0)==0x70 && check)
{
bind_phase=pkt[4]+1;
bind_phase=packet_in[4]+1;
if(bind_phase==0x7B)
bind_counter=164; // in dumps the RX stops to reply at 0x7B so wait a little and exit
}
}
}
else
if( len==15 && pkt[4]==0 && pkt[12]==0 )
if( len==15 && packet_in[4]==0 && packet_in[12]==0 )
{ // Valid telemetry packets
// no station:
// 0C,1C,A1,2B,00,00,00,00,00,00,00,8D,00,64,8E -> 00 8D=>RX battery voltage 0x008D/28=5.03V
@ -323,40 +324,40 @@ uint16_t ReadHITEC()
// 0C,1C,A1,2B,00,16,00,00,00,00,00,16,00,2C,8E
// 0C,1C,A1,2B,00,17,00,00,00,42,44,17,00,48,8D -> 42=>temperature3 0x42-0x28=26°C,44=>temperature4 0x44-0x28=28°C
// 0C,1C,A1,2B,00,18,00,00,00,00,00,18,00,50,92
debug(",telem,%02x",pkt[14]&0x7F);
debug(",telem,%02x",packet_in[14]&0x7F);
#if defined(HITEC_FW_TELEMETRY) || defined(HITEC_HUB_TELEMETRY)
TX_RSSI = pkt[13];
TX_RSSI = packet_in[13];
if(TX_RSSI >=128)
TX_RSSI -= 128;
else
TX_RSSI += 128;
TX_LQI = pkt[14]&0x7F;
TX_LQI = packet_in[14]&0x7F;
#endif
#if defined(HITEC_FW_TELEMETRY)
if(sub_protocol==OPT_FW)
{
// 8 bytes telemetry packets => see at the end of this file how to fully decode it
pkt[0]=TX_RSSI; // TX RSSI
pkt[1]=TX_LQI; // TX LQI
uint8_t offset=pkt[5]==0?1:0;
packet_in[0]=TX_RSSI; // TX RSSI
packet_in[1]=TX_LQI; // TX LQI
uint8_t offset=packet_in[5]==0?1:0;
for(uint8_t i=5;i < 11; i++)
pkt[i-3]=pkt[i+offset]; // frame number followed by 5 bytes of data
packet_in[i-3]=packet_in[i+offset]; // frame number followed by 5 bytes of data
telemetry_link=2; // telemetry forward available
}
#endif
#if defined(HITEC_HUB_TELEMETRY)
if(sub_protocol==OPT_HUB)
{
switch(pkt[5]) // telemetry frame number
switch(packet_in[5]) // telemetry frame number
{
case 0x00:
v_lipo1 = (pkt[10])<<5 | (pkt[11])>>3; // calculation in float is volt=(pkt[10]<<8+pkt[11])/28
v_lipo1 = (packet_in[10])<<5 | (packet_in[11])>>3; // calculation in float is volt=(packet_in[10]<<8+packet_in[11])/28
break;
case 0x11:
v_lipo1 = (pkt[9])<<5 | (pkt[10])>>3; // calculation in float is volt=(pkt[9]<<8+pkt[10])/28
v_lipo1 = (packet_in[9])<<5 | (packet_in[10])>>3; // calculation in float is volt=(packet_in[9]<<8+packet_in[10])/28
break;
case 0x18:
v_lipo2 = (pkt[6])<<5 | (pkt[7])>>3; // calculation in float is volt=(pkt[6]<<8+pkt[7])/10
v_lipo2 = (packet_in[6])<<5 | (packet_in[7])>>3; // calculation in float is volt=(packet_in[6]<<8+packet_in[7])/10
break;
}
telemetry_link=1; // telemetry hub available
@ -391,10 +392,6 @@ uint16_t initHITEC()
rx_tx_addr[3]=0x6A;
memcpy((void *)hopping_frequency,(void *)"\x00\x3A\x4A\x32\x0C\x58\x2A\x10\x26\x20\x08\x60\x68\x70\x78\x80\x88\x56\x5E\x66\x6E",HITEC_NUM_FREQUENCE);
#endif
#if defined(HITEC_HUB_TELEMETRY)
if(sub_protocol==OPT_HUB)
init_frskyd_link_telemetry();
#endif
phase = HITEC_START;
return 10000;
}

View File

@ -242,9 +242,12 @@ uint16_t HONTAI_callback()
}
}
else
{
telemetry_set_input_sync(packet_period);
HONTAI_send_packet(0);
}
return sub_protocol == FQ777_951 ? FQ777_951_PACKET_PERIOD : HONTAI_PACKET_PERIOD;
return packet_period;
}
uint16_t initHONTAI()
@ -253,6 +256,7 @@ uint16_t initHONTAI()
bind_counter = HONTAI_BIND_COUNT;
HONTAI_initialize_txid();
HONTAI_init();
packet_period = sub_protocol == FQ777_951 ? FQ777_951_PACKET_PERIOD : HONTAI_PACKET_PERIOD;
return HONTAI_INITIAL_WAIT;
}
#endif

View File

@ -376,6 +376,7 @@ uint16_t ReadHubsan()
case DATA_4:
case DATA_5:
if( txState == 0) { // send packet
telemetry_set_input_sync(10000);
#ifdef HUBSAN_HUB_TELEMETRY
rfMode = A7105_TX;
#endif
@ -464,9 +465,6 @@ uint16_t initHubsan()
}
packet_count=0;
bind_phase=0;
#ifdef HUBSAN_HUB_TELEMETRY
init_frskyd_link_telemetry();
#endif
return 10000;
}

View File

@ -201,7 +201,8 @@ uint16_t ReadJ6Pro()
cyrf_datainit();
phase = J6PRO_CHAN_1;
case J6PRO_CHAN_1:
//Keep transmit power updated
telemetry_set_input_sync(24550);
//Keep transmit power updated
CYRF_SetPower(0x28);
j6pro_build_data_packet();
//return 3400;

View File

@ -86,6 +86,7 @@ static void __attribute__((unused)) KF606_init()
uint16_t KF606_callback()
{
telemetry_set_input_sync(KF606_PACKET_PERIOD);
if(IS_BIND_IN_PROGRESS)
if(--bind_counter==0)
{

View File

@ -279,12 +279,14 @@ uint16_t initKN()
packet_period = KN_WL_SENDING_PACKET_PERIOD;
bind_counter = KN_WL_BIND_COUNT;
packet_count = KN_WL_PACKET_SEND_COUNT;
seed = KN_WL_PACKET_SEND_COUNT * KN_WL_SENDING_PACKET_PERIOD;
}
else
{
packet_period = KN_FX_SENDING_PACKET_PERIOD;
bind_counter = KN_FX_BIND_COUNT;
packet_count = KN_FX_PACKET_SEND_COUNT;
seed = KN_FX_PACKET_SEND_COUNT * KN_FX_SENDING_PACKET_PERIOD;
}
kn_init();
phase = IS_BIND_IN_PROGRESS ? KN_PHASE_PRE_BIND : KN_PHASE_PRE_SEND;
@ -318,6 +320,7 @@ uint16_t kn_callback()
case KN_PHASE_SENDING:
if(packet_sent >= packet_count)
{
telemetry_set_input_sync(seed);
packet_sent = 0;
hopping_frequency_no++;
if(hopping_frequency_no >= KN_RF_CH_COUNT) hopping_frequency_no = 0;

View File

@ -327,7 +327,10 @@ static void __attribute__((unused)) MJXQ_initialize_txid()
uint16_t MJXQ_callback()
{
if(IS_BIND_DONE)
{
telemetry_set_input_sync(MJXQ_PACKET_PERIOD);
MJXQ_send_packet(0);
}
else
{
if (bind_counter == 0)

View File

@ -222,7 +222,10 @@ static void __attribute__((unused)) MT99XX_initialize_txid()
uint16_t MT99XX_callback()
{
if(IS_BIND_DONE)
{
telemetry_set_input_sync(packet_period);
MT99XX_send_packet();
}
else
{
if (bind_counter == 0)

View File

@ -52,6 +52,7 @@
52,ZSX,280
53,Flyzone,FZ-410
54,Scanner
55,FrskyX_RX,FCC,EU_LBT
55,Frsky_RX
56,AFHDS2A_RX
57,HoTT
63,XN_DUMP,250K,1M,2M

View File

@ -0,0 +1,303 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(MULTI_NAMES)
const char STR_FLYSKY[] ="FlySky";
const char STR_HUBSAN[] ="Hubsan";
const char STR_FRSKYD[] ="FrSky D";
const char STR_HISKY[] ="Hisky";
const char STR_V2X2[] ="V2x2";
const char STR_DSM[] ="DSM";
const char STR_DEVO[] ="Devo";
const char STR_YD717[] ="YD717";
const char STR_KN[] ="KN";
const char STR_SYMAX[] ="SymaX";
const char STR_SLT[] ="SLT";
const char STR_CX10[] ="CX10";
const char STR_CG023[] ="CG023";
const char STR_BAYANG[] ="Bayang";
const char STR_FRSKYX[] ="FrSky X";
const char STR_ESKY[] ="ESky";
const char STR_MT99XX[] ="MT99XX";
const char STR_MJXQ[] ="MJXq";
const char STR_SHENQI[] ="Shenqi";
const char STR_FY326[] ="FY326";
const char STR_SFHSS[] ="SFHSS";
const char STR_J6PRO[] ="J6 Pro";
const char STR_FQ777[] ="FQ777";
const char STR_ASSAN[] ="Assan";
const char STR_FRSKYV[] ="FrSky V";
const char STR_HONTAI[] ="Hontai";
const char STR_AFHDS2A[] ="FSky 2A";
const char STR_Q2X2[] ="Q2x2";
const char STR_WK2x01[] ="Walkera";
const char STR_Q303[] ="Q303";
const char STR_GW008[] ="GW008";
const char STR_DM002[] ="DM002";
const char STR_CABELL[] ="Cabell";
const char STR_ESKY150[] ="Esky150";
const char STR_H8_3D[] ="H8 3D";
const char STR_CORONA[] ="Corona";
const char STR_CFLIE[] ="CFlie";
const char STR_HITEC[] ="Hitec";
const char STR_WFLY[] ="WFly";
const char STR_BUGS[] ="Bugs";
const char STR_BUGSMINI[] ="BugMini";
const char STR_TRAXXAS[] ="Traxxas";
const char STR_NCC1701[] ="NCC1701";
const char STR_E01X[] ="E01X";
const char STR_V911S[] ="V911S";
const char STR_GD00X[] ="GD00X";
const char STR_V761[] ="V761";
const char STR_KF606[] ="KF606";
const char STR_REDPINE[] ="Redpine";
const char STR_POTENSIC[] ="Potensi";
const char STR_ZSX[] ="ZSX";
const char STR_FLYZONE[] ="FlyZone";
const char STR_SCANNER[] ="Scanner";
const char STR_FRSKY_RX[] ="FrSkyRX";
const char STR_AFHDS2A_RX[] ="FS2A_RX";
const char STR_HOTT[] ="HoTT";
const char STR_XN297DUMP[] ="XN297DP";
const char STR_SUBTYPE_FLYSKY[] = "\x04""Std\0""V9x9""V6x6""V912""CX20";
const char STR_SUBTYPE_HUBSAN[] = "\x04""H107""H301""H501";
const char STR_SUBTYPE_FRSKYX[] = "\x07""D16\0 ""D16 8ch""LBT(EU)""LBT 8ch";
const char STR_SUBTYPE_HISKY[] = "\x05""Std\0 ""HK310";
const char STR_SUBTYPE_V2X2[] = "\x06""Std\0 ""JXD506";
const char STR_SUBTYPE_DSM[] = "\x06""2 22ms""2 11ms""X 22ms""X 11ms";
const char STR_SUBTYPE_DEVO[] = "\x04""8ch\0""10ch""12ch""6ch\0""7ch\0";
const char STR_SUBTYPE_YD717[] = "\x07""Std\0 ""SkyWlkr""Syma X4""XINXUN\0""NIHUI\0 ";
const char STR_SUBTYPE_KN[] = "\x06""WLtoys""FeiLun";
const char STR_SUBTYPE_SYMAX[] = "\x03""Std""X5C";
const char STR_SUBTYPE_SLT[] = "\x06""V1_6ch""V2_8ch""Q100\0 ""Q200\0 ""MR100\0";
const char STR_SUBTYPE_CX10[] = "\x07""Green\0 ""Blue\0 ""DM007\0 ""-\0 ""JC3015a""JC3015b""MK33041";
const char STR_SUBTYPE_CG023[] = "\x05""Std\0 ""YD829";
const char STR_SUBTYPE_BAYANG[] = "\x07""Std\0 ""H8S3D\0 ""X16 AH\0""IRDrone""DHD D4";
const char STR_SUBTYPE_MT99[] = "\x06""MT99\0 ""H7\0 ""YZ\0 ""LS\0 ""FY805";
const char STR_SUBTYPE_MJXQ[] = "\x07""WLH08\0 ""X600\0 ""X800\0 ""H26D\0 ""E010\0 ""H26WH\0 ""Phoenix";
const char STR_SUBTYPE_FY326[] = "\x05""Std\0 ""FY319";
const char STR_SUBTYPE_HONTAI[] = "\x07""Std\0 ""JJRC X1""X5C1\0 ""FQ_951";
const char STR_SUBTYPE_AFHDS2A[] = "\x08""PWM,IBUS""PPM,IBUS""PWM,SBUS""PPM,SBUS";
const char STR_SUBTYPE_Q2X2[] = "\x04""Q222""Q242""Q282";
const char STR_SUBTYPE_WK2x01[] = "\x06""WK2801""WK2401""W6_5_1""W6_6_1""W6_HeL""W6_HeI";
const char STR_SUBTYPE_Q303[] = "\x06""Std\0 ""CX35\0 ""CX10D\0""CX10WD";
const char STR_SUBTYPE_CABELL[] = "\x07""V3\0 ""V3 Telm""-\0 ""-\0 ""-\0 ""-\0 ""F-Safe\0""Unbind\0";
const char STR_SUBTYPE_H83D[] = "\x07""Std\0 ""H20H\0 ""H20Mini""H30Mini";
const char STR_SUBTYPE_CORONA[] = "\x05""V1\0 ""V2\0 ""FD V3";
const char STR_SUBTYPE_HITEC[] = "\x07""Optima\0""Opt Hub""Minima\0";
const char STR_SUBTYPE_BUGS_MINI[] = "\x06""Std\0 ""Bugs3H";
const char STR_SUBTYPE_TRAXXAS[] = "\x04""6519";
const char STR_SUBTYPE_E01X[] = "\x05""E012\0""E015\0""E016H";
const char STR_SUBTYPE_GD00X[] = "\x05""GD_V1""GD_V2";
const char STR_SUBTYPE_REDPINE[] = "\x04""Fast""Slow";
const char STR_SUBTYPE_POTENSIC[] = "\x03""A20";
const char STR_SUBTYPE_ZSX[] = "\x07""280JJRC";
const char STR_SUBTYPE_FLYZONE[] = "\x05""FZ410";
const char STR_SUBTYPE_XN297DUMP[] = "\x07""250Kbps""1Mbps\0 ""2Mbps\0 ";
enum
{
OPTION_NONE,
OPTION_OPTION,
OPTION_RFTUNE,
OPTION_VIDFREQ,
OPTION_FIXEDID,
OPTION_TELEM,
OPTION_SRVFREQ,
OPTION_MAXTHR,
OPTION_RFCHAN
};
#define NO_SUBTYPE nullptr
const mm_protocol_definition multi_protocols[] = {
// Protocol number, Protocol String, Number of sub_protocols, Sub_protocol strings, Option type
#if defined(FLYSKY_A7105_INO)
{PROTO_FLYSKY, STR_FLYSKY, 5, STR_SUBTYPE_FLYSKY, OPTION_NONE },
#endif
#if defined(HUBSAN_A7105_INO)
{PROTO_HUBSAN, STR_HUBSAN, 3, STR_SUBTYPE_HUBSAN, OPTION_VIDFREQ },
#endif
#if defined(FRSKYD_CC2500_INO)
{PROTO_FRSKYD, STR_FRSKYD, 0, NO_SUBTYPE, OPTION_RFTUNE },
#endif
#if defined(HISKY_NRF24L01_INO)
{PROTO_HISKY, STR_HISKY, 2, STR_SUBTYPE_HISKY, OPTION_NONE },
#endif
#if defined(V2X2_NRF24L01_INO)
{PROTO_V2X2, STR_V2X2, 2, STR_SUBTYPE_V2X2, OPTION_NONE },
#endif
#if defined(DSM_CYRF6936_INO)
{PROTO_DSM, STR_DSM, 4, STR_SUBTYPE_DSM, OPTION_MAXTHR },
#endif
#if defined(DEVO_CYRF6936_INO)
{PROTO_DEVO, STR_DEVO, 5, STR_SUBTYPE_DEVO, OPTION_FIXEDID },
#endif
#if defined(YD717_NRF24L01_INO)
{PROTO_YD717, STR_YD717, 5, STR_SUBTYPE_YD717, OPTION_NONE },
#endif
#if defined(KN_NRF24L01_INO)
{PROTO_KN, STR_KN, 2, STR_SUBTYPE_KN, OPTION_NONE },
#endif
#if defined(SYMAX_NRF24L01_INO)
{PROTO_SYMAX, STR_SYMAX, 2, STR_SUBTYPE_SYMAX, OPTION_NONE },
#endif
#if defined(SLT_NRF24L01_INO)
{PROTO_SLT, STR_SLT, 5, STR_SUBTYPE_SLT, OPTION_NONE },
#endif
#if defined(CX10_NRF24L01_INO)
{PROTO_CX10, STR_CX10, 7, STR_SUBTYPE_CX10, OPTION_NONE },
#endif
#if defined(CG023_NRF24L01_INO)
{PROTO_CG023, STR_CG023, 2, STR_SUBTYPE_CG023, OPTION_NONE },
#endif
#if defined(BAYANG_NRF24L01_INO)
{PROTO_BAYANG, STR_BAYANG, 5, STR_SUBTYPE_BAYANG, OPTION_TELEM },
#endif
#if defined(FRSKYX_CC2500_INO)
{PROTO_FRSKYX, STR_FRSKYX, 4, STR_SUBTYPE_FRSKYX, OPTION_RFTUNE },
#endif
#if defined(ESKY_NRF24L01_INO)
{PROTO_ESKY, STR_ESKY, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(MT99XX_NRF24L01_INO)
{PROTO_MT99XX, STR_MT99XX, 5, STR_SUBTYPE_MT99, OPTION_NONE },
#endif
#if defined(MJXQ_NRF24L01_INO)
{PROTO_MJXQ, STR_MJXQ, 7, STR_SUBTYPE_MJXQ, OPTION_RFTUNE },
#endif
#if defined(SHENQI_NRF24L01_INO)
{PROTO_SHENQI, STR_SHENQI, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(FY326_NRF24L01_INO)
{PROTO_FY326, STR_FY326, 2, STR_SUBTYPE_FY326, OPTION_NONE },
#endif
#if defined(SFHSS_CC2500_INO)
{PROTO_SFHSS, STR_SFHSS, 0, NO_SUBTYPE, OPTION_RFTUNE },
#endif
#if defined(J6PRO_CYRF6936_INO)
{PROTO_J6PRO, STR_J6PRO, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(FQ777_NRF24L01_INO)
{PROTO_FQ777, STR_FQ777, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(ASSAN_NRF24L01_INO)
{PROTO_ASSAN, STR_ASSAN, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(FRSKYV_CC2500_INO)
{PROTO_FRSKYV, STR_FRSKYV, 0, NO_SUBTYPE, OPTION_RFTUNE },
#endif
#if defined(HONTAI_NRF24L01_INO)
{PROTO_HONTAI, STR_HONTAI, 4, STR_SUBTYPE_HONTAI, OPTION_NONE },
#endif
#if defined(AFHDS2A_A7105_INO)
{PROTO_AFHDS2A, STR_AFHDS2A, 4, STR_SUBTYPE_AFHDS2A, OPTION_SRVFREQ },
#endif
#if defined(CX10_NRF24L01_INO)
{PROTO_Q2X2, STR_Q2X2, 3, STR_SUBTYPE_Q2X2, OPTION_NONE },
#endif
#if defined(WK2x01_CYRF6936_INO)
{PROTO_WK2x01, STR_WK2x01, 6, STR_SUBTYPE_WK2x01, OPTION_NONE },
#endif
#if defined(Q303_NRF24L01_INO)
{PROTO_Q303, STR_Q303, 4, STR_SUBTYPE_Q303, OPTION_NONE },
#endif
#if defined(GW008_NRF24L01_INO)
{PROTO_GW008, STR_GW008, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(DM002_NRF24L01_INO)
{PROTO_DM002, STR_DM002, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(CABELL_NRF24L01_INO)
{PROTO_CABELL, STR_CABELL, 8, STR_SUBTYPE_CABELL, OPTION_OPTION },
#endif
#if defined(ESKY150_NRF24L01_INO)
{PROTO_ESKY150, STR_ESKY150, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(H8_3D_NRF24L01_INO)
{PROTO_H8_3D, STR_H8_3D, 4, STR_SUBTYPE_H83D, OPTION_NONE },
#endif
#if defined(CORONA_CC2500_INO)
{PROTO_CORONA, STR_CORONA, 3, STR_SUBTYPE_CORONA, OPTION_RFTUNE },
#endif
#if defined(CFLIE_NRF24L01_INO)
{PROTO_CFLIE, STR_CFLIE, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(HITEC_CC2500_INO)
{PROTO_HITEC, STR_HITEC, 3, STR_SUBTYPE_HITEC, OPTION_RFTUNE },
#endif
#if defined(WFLY_CYRF6936_INO)
{PROTO_WFLY, STR_WFLY, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(BUGS_A7105_INO)
{PROTO_BUGS, STR_BUGS, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(BUGSMINI_NRF24L01_INO)
{PROTO_BUGSMINI, STR_BUGSMINI, 2, STR_SUBTYPE_BUGS_MINI, OPTION_NONE },
#endif
#if defined(TRAXXAS_CYRF6936_INO)
{PROTO_TRAXXAS, STR_TRAXXAS, 1, STR_SUBTYPE_TRAXXAS, OPTION_NONE },
#endif
#if defined(NCC1701_NRF24L01_INO)
{PROTO_NCC1701, STR_NCC1701, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(E01X_NRF24L01_INO)
{PROTO_E01X, STR_E01X, 3, STR_SUBTYPE_E01X, OPTION_OPTION },
#endif
#if defined(V911S_NRF24L01_INO)
{PROTO_V911S, STR_V911S, 0, NO_SUBTYPE, OPTION_RFTUNE },
#endif
#if defined(GD00X_NRF24L01_INO)
{PROTO_GD00X, STR_GD00X, 2, STR_SUBTYPE_GD00X, OPTION_RFTUNE },
#endif
#if defined(V761_NRF24L01_INO)
{PROTO_V761, STR_V761, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(KF606_NRF24L01_INO)
{PROTO_KF606, STR_KF606, 0, NO_SUBTYPE, OPTION_RFTUNE },
#endif
#if defined(REDPINE_CC2500_INO)
{PROTO_REDPINE, STR_REDPINE, 2, STR_SUBTYPE_REDPINE, OPTION_RFTUNE },
#endif
#if defined(POTENSIC_NRF24L01_INO)
{PROTO_POTENSIC, STR_POTENSIC, 1, STR_SUBTYPE_POTENSIC, OPTION_NONE },
#endif
#if defined(ZSX_NRF24L01_INO)
{PROTO_ZSX, STR_ZSX, 1, STR_SUBTYPE_ZSX, OPTION_NONE },
#endif
#if defined(FLYZONE_A7105_INO)
{PROTO_FLYZONE, STR_FLYZONE, 1, STR_SUBTYPE_FLYZONE, OPTION_NONE },
#endif
#if defined(SCANNER_CC2500_INO)
{PROTO_SCANNER, STR_SCANNER, 0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(FRSKY_RX_CC2500_INO)
{PROTO_FRSKY_RX, STR_FRSKY_RX, 0, NO_SUBTYPE, OPTION_RFTUNE },
#endif
#if defined(AFHDS2A_RX_A7105_INO)
{PROTO_AFHDS2A_RX, STR_AFHDS2A_RX,0, NO_SUBTYPE, OPTION_NONE },
#endif
#if defined(HOTT_CC2500_INO)
{PROTO_HOTT, STR_HOTT, 0, NO_SUBTYPE, OPTION_RFTUNE },
#endif
#if defined(XN297DUMP_NRF24L01_INO)
{PROTO_XN297DUMP, STR_XN297DUMP, 3, STR_SUBTYPE_XN297DUMP, OPTION_RFCHAN },
#endif
{0x00, nullptr, 0, nullptr, 0 }
};
#endif

View File

@ -17,9 +17,9 @@
// Version
//******************
#define VERSION_MAJOR 1
#define VERSION_MINOR 2
#define VERSION_REVISION 1
#define VERSION_PATCH_LEVEL 86
#define VERSION_MINOR 3
#define VERSION_REVISION 0
#define VERSION_PATCH_LEVEL 43
//******************
// Protocols
@ -81,8 +81,9 @@ enum PROTOCOLS
PROTO_ZSX = 52, // =>NRF24L01
PROTO_FLYZONE = 53, // =>A7105
PROTO_SCANNER = 54, // =>CC2500
PROTO_FRSKYX_RX = 55, // =>CC2500
PROTO_FRSKY_RX = 55, // =>CC2500
PROTO_AFHDS2A_RX= 56, // =>A7105
PROTO_HOTT = 57, // =>CC2500
PROTO_XN297DUMP = 63, // =>NRF24L01
};
@ -290,11 +291,6 @@ enum TRAXXAS
{
RX6519 = 0,
};
enum FRSKYX_RX
{
FRSKYX_FCC = 0,
FRSKYX_LBT
};
#define NONE 0
#define P_HIGH 1
@ -304,17 +300,16 @@ enum FRSKYX_RX
struct PPM_Parameters
{
uint8_t protocol : 6;
uint8_t sub_proto : 3;
uint8_t rx_num : 4;
uint8_t power : 1;
uint8_t autobind : 1;
uint8_t protocol;
uint8_t sub_proto : 3;
uint8_t rx_num : 6;
uint8_t power : 1;
uint8_t autobind : 1;
int8_t option;
uint32_t chan_order;
};
// Telemetry
enum MultiPacketTypes
{
MULTI_TELEMETRY_STATUS = 1,
@ -323,13 +318,14 @@ enum MultiPacketTypes
MULTI_TELEMETRY_DSM = 4,
MULTI_TELEMETRY_DSMBIND = 5,
MULTI_TELEMETRY_AFHDS2A = 6,
MULTI_TELEMETRY_CONFIG = 7,
MULTI_TELEMETRY_REUSE_1 = 7,
MULTI_TELEMETRY_SYNC = 8,
MULTI_TELEMETRY_SPORT_POLLING = 9,
MULTI_TELEMETRY_REUSE_2 = 9,
MULTI_TELEMETRY_HITEC = 10,
MULTI_TELEMETRY_SCANNER = 11,
MULTI_TELEMETRY_AFHDS2A_AC = 12,
MULTI_TELEMETRY_RX_CHANNELS = 13,
MULTI_TELEMETRY_HOTT = 14,
};
// Macros
@ -390,6 +386,7 @@ enum MultiPacketTypes
#define TX_RX_PAUSE_on protocol_flags2 |= _BV(4)
#define IS_TX_RX_PAUSE_on ( ( protocol_flags2 & _BV(4) ) !=0 )
#define IS_TX_PAUSE_on ( ( protocol_flags2 & (_BV(4)|_BV(3)) ) !=0 )
#define IS_TX_PAUSE_off ( ( protocol_flags2 & (_BV(4)|_BV(3)) ) ==0 )
//Signal OK
#define INPUT_SIGNAL_off protocol_flags2 &= ~_BV(5)
#define INPUT_SIGNAL_on protocol_flags2 |= _BV(5)
@ -405,6 +402,24 @@ enum MultiPacketTypes
#define WAIT_BIND_on protocol_flags2 |= _BV(7)
#define IS_WAIT_BIND_on ( ( protocol_flags2 & _BV(7) ) !=0 )
#define IS_WAIT_BIND_off ( ( protocol_flags2 & _BV(7) ) ==0 )
//Incoming telemetry data buffer
#define DATA_BUFFER_LOW_off protocol_flags3 &= ~_BV(0)
#define DATA_BUFFER_LOW_on protocol_flags3 |= _BV(0)
#define IS_DATA_BUFFER_LOW_on ( ( protocol_flags3 & _BV(0) ) !=0 )
#define IS_DATA_BUFFER_LOW_off ( ( protocol_flags3 & _BV(0) ) ==0 )
#define SEND_MULTI_STATUS_off protocol_flags3 &= ~_BV(1)
#define SEND_MULTI_STATUS_on protocol_flags3 |= _BV(1)
#define IS_SEND_MULTI_STATUS_on ( ( protocol_flags3 & _BV(1) ) !=0 )
#define IS_SEND_MULTI_STATUS_off ( ( protocol_flags3 & _BV(1) ) ==0 )
#define DISABLE_CH_MAP_off protocol_flags3 &= ~_BV(2)
#define DISABLE_CH_MAP_on protocol_flags3 |= _BV(2)
#define IS_DISABLE_CH_MAP_on ( ( protocol_flags3 & _BV(2) ) !=0 )
#define IS_DISABLE_CH_MAP_off ( ( protocol_flags3 & _BV(2) ) ==0 )
#define DISABLE_TELEM_off protocol_flags3 &= ~_BV(3)
#define DISABLE_TELEM_on protocol_flags3 |= _BV(3)
#define IS_DISABLE_TELEM_on ( ( protocol_flags3 & _BV(3) ) !=0 )
#define IS_DISABLE_TELEM_off ( ( protocol_flags3 & _BV(3) ) ==0 )
// Failsafe
#define FAILSAFE_CHANNEL_HOLD 2047
@ -576,82 +591,86 @@ enum {
#define AFHDS2A_EEPROM_OFFSET 50 // RX ID, 4 bytes per model id, end is 50+64=114
#define BUGS_EEPROM_OFFSET 114 // RX ID, 2 bytes per model id, end is 114+32=146
#define BUGSMINI_EEPROM_OFFSET 146 // RX ID, 2 bytes per model id, end is 146+32=178
#define FRSKYX_RX_EEPROM_OFFSET 178 // (3) TX ID + (1) freq_tune + (47) channels, 51 bytes, end is 178+51=229
#define AFHDS2A_RX_EEPROM_OFFSET 229 // (4) TX ID + (16) channels, 20 bytes, end is 229+20=249
//#define CONFIG_EEPROM_OFFSET 210 // Current configuration of the multimodule
#define FRSKY_RX_EEPROM_OFFSET 178 // (1) format + (3) TX ID + (1) freq_tune + (47) channels, 52 bytes, end is 178+52=230
#define AFHDS2A_RX_EEPROM_OFFSET 230 // (4) TX ID + (16) channels, 20 bytes, end is 230+20=250
#define AFHDS2A_EEPROM_OFFSET2 250 // RX ID, 4 bytes per model id, end is 250+192=442
#define HOTT_EEPROM_OFFSET 442 // RX ID, 5 bytes per model id, end is 320+442=762
//#define CONFIG_EEPROM_OFFSET 762 // Current configuration of the multimodule
//****************************************
//*** MULTI protocol serial definition ***
//****************************************
/*
**************************
***************************
16 channels serial protocol
**************************
***************************
Serial: 100000 Baud 8e2 _ xxxx xxxx p --
Total of 26 bytes
Stream[0] = 0x55 sub_protocol values are 0..31 Stream contains channels
Stream[0] = 0x54 sub_protocol values are 32..63 Stream contains channels
Stream[0] = 0x57 sub_protocol values are 0..31 Stream contains failsafe
Stream[0] = 0x56 sub_protocol values are 32..63 Stream contains failsafe
header
Total of 26 bytes for protocol V1, variable length 27..36 for protocol V2
Stream[0] = header
0x55 sub_protocol values are 0..31 Stream contains channels
0x54 sub_protocol values are 32..63 Stream contains channels
0x57 sub_protocol values are 0..31 Stream contains failsafe
0x56 sub_protocol values are 32..63 Stream contains failsafe
Stream[1] = sub_protocol|BindBit|RangeCheckBit|AutoBindBit;
sub_protocol is 0..31 (bits 0..4), value should be added with 32 if Stream[0] = 0x54
=> Reserved 0
Flysky 1
Hubsan 2
FrskyD 3
Hisky 4
V2x2 5
DSM 6
Devo 7
YD717 8
KN 9
SymaX 10
SLT 11
CX10 12
CG023 13
Bayang 14
FrskyX 15
ESky 16
MT99XX 17
MJXQ 18
SHENQI 19
FY326 20
SFHSS 21
J6PRO 22
FQ777 23
ASSAN 24
FrskyV 25
HONTAI 26
OpenLRS 27
AFHDS2A 28
Q2X2 29
WK2x01 30
Q303 31
GW008 32
DM002 33
CABELL 34
ESKY150 35
H8_3D 36
CORONA 37
CFlie 38
Hitec 39
WFLY 40
BUGS 41
BUGSMINI 42
TRAXXAS 43
NCC1701 44
E01X 45
V911S 46
GD00X 47
V761 48
KF606 49
REDPINE 50
POTENSIC 51
ZSX 52
FLYZONE 53
SCANNER 54
FRSKYX_RX 55
sub_protocol is 0..31 (bits 0..4), value should be added with 32 if Stream[0] = 0x54 | 0x56
Reserved 0
Flysky 1
Hubsan 2
FrskyD 3
Hisky 4
V2x2 5
DSM 6
Devo 7
YD717 8
KN 9
SymaX 10
SLT 11
CX10 12
CG023 13
Bayang 14
FrskyX 15
ESky 16
MT99XX 17
MJXQ 18
SHENQI 19
FY326 20
SFHSS 21
J6PRO 22
FQ777 23
ASSAN 24
FrskyV 25
HONTAI 26
OpenLRS 27
AFHDS2A 28
Q2X2 29
WK2x01 30
Q303 31
GW008 32
DM002 33
CABELL 34
ESKY150 35
H8_3D 36
CORONA 37
CFlie 38
Hitec 39
WFLY 40
BUGS 41
BUGSMINI 42
TRAXXAS 43
NCC1701 44
E01X 45
V911S 46
GD00X 47
V761 48
KF606 49
REDPINE 50
POTENSIC 51
ZSX 52
FLYZONE 53
SCANNER 54
FRSKY_RX 55
AFHDS2A_RX 56
HOTT 57
BindBit=> 0x80 1=Bind/0=No
AutoBindBit=> 0x40 1=Yes /0=No
RangeCheck=> 0x20 1=Yes /0=No
@ -793,9 +812,6 @@ Serial: 100000 Baud 8e2 _ xxxx xxxx p --
RED_SLOW 1
sub_protocol==TRAXXAS
RX6519 0
sub_protocol==FRSKYX_RX
FCC 0
LBT 1
Power value => 0x80 0=High/1=Low
Stream[3] = option_protocol;
@ -810,6 +826,14 @@ Serial: 100000 Baud 8e2 _ xxxx xxxx p --
Values are concatenated to fit in 22 bytes like in SBUS protocol.
Failsafe values have exactly the same range/values than normal channels except the extremes where
0=no pulse, 2047=hold. If failsafe is not set or RX then failsafe packets should not be sent.
Stream[26] = sub_protocol bits 6 & 7|RxNum bits 4 & 5|Telemetry_Invert 3|Future_Use 2|Disable_Telemetry 1|Disable_CH_Mapping 0
sub_protocol is 0..255 (bits 0..5 + bits 6..7)
RxNum value is 0..63 (bits 0..3 + bits 4..5)
Telemetry_Invert => 0x08 0=normal, 1=invert
Future_Use => 0x04 0= , 1=
Disable_Telemetry => 0x02 0=enable, 1=disable
Disable_CH_Mapping => 0x01 0=enable, 1=disable
Stream[27.. 35] = between 0 and 9 bytes for additional protocol data
*/
/*
Multimodule Status
@ -829,7 +853,9 @@ Serial: 100000 Baud 8e2 _ xxxx xxxx p --
0x04 = Protocol is valid
0x08 = Module is in binding mode
0x10 = Module waits a bind event to load the protocol
0x20 = Failsafe supported by currently running protocol
0x20 = Current protocol supports failsafe
0x40 = Current protocol supports disable channel mapping
0x80 = Data buffer is almost full
[3] major
[4] minor
[5] revision
@ -863,19 +889,36 @@ Serial: 100000 Baud 8e2 _ xxxx xxxx p --
[4] Flags
0x01 = Input signal detected
0x02 = Serial mode enabled
0x04 = protocol is valid
0x08 = module is in binding mode
0x10 = module waits a bind event to load the protocol
0x20 = current protocol supports failsafe
0x04 = Protocol is valid
0x08 = Module is in binding mode
0x10 = Module waits a bind event to load the protocol
0x20 = Current protocol supports failsafe
0x40 = Current protocol supports disable channel mapping
0x80 = Data buffer is almost full
[5] major
[6] minor
[7] revision
[8] patchlevel,
version of multi code, should be displayed as major.minor.revision.patchlevel
[8] patchlevel
version of multi code, should be displayed as major.minor.revision.patchlevel
[9] channel order: CH4|CH3|CH2|CH1 with CHx value A=0,E=1,T=2,R=3
[10] Next valid protocol number, can be used to skip invalid protocols
[11] Prev valid protocol number, can be used to skip invalid protocols
[12..18] Protocol name [7], not null terminated if prototcol len == 7
[19>>4] Option text to be displayed:
OPTION_NONE 0
OPTION_OPTION 1
OPTION_RFTUNE 2
OPTION_VIDFREQ 3
OPTION_FIXEDID 4
OPTION_TELEM 5
OPTION_SRVFREQ 6
OPTION_MAXTHR 7
OPTION_RFCHAN 8
[19&0x0F] Number of sub protocols
[20..27] Sub protocol name [8], not null terminated if sub prototcol len == 8
more information can be added by specifing a longer length of the type, the TX will just ignore these bytes
Type 0x02 Frksy S.port telemetry
Type 0x03 Frsky Hub telemetry
@ -896,6 +939,19 @@ Serial: 100000 Baud 8e2 _ xxxx xxxx p --
data[0] = RSSI value
data[1-28] telemetry data
Type 0x08 Input synchronisation
Informs the TX about desired rate and current delay
length: 4
data[0-1] Desired refresh rate in ??s
data[2-3] Time (??s) between last serial servo input received and servo input needed (lateness), TX should adjust its
sending time to minimise this value.
data[4] Interval of this message in ms
data[5] Input delay target in 10??s
Note that there are protocols (AFHDS2A) that have a refresh rate that is smaller than the maximum achievable
refresh rate via the serial protocol, in this case, the TX should double the rate and also subract this
refresh rate from the input lag if the input lag is more than the desired refresh rate.
The remote should try to get to zero of (inputdelay+target*10).
Type 0x0A Hitec telemetry data
length: 8
data[0] = TX RSSI value
@ -922,4 +978,12 @@ Serial: 100000 Baud 8e2 _ xxxx xxxx p --
data[3] = number of channels to follow
data[4-]= packed channels data, 11 bit per channel
Type 0x0E HoTT telemetry
length: 14
data[0] = TX_RSSI
data[1] = TX_LQI
data[2] = type
data[3] = page
data[4-13] = data
*/

View File

@ -55,11 +55,8 @@
#include <SPI.h>
#include <EEPROM.h>
HardwareTimer HWTimer2(2);
#if defined SPORT_POLLING
#ifdef INVERT_TELEMETRY
HardwareTimer HWTimer4(4);
#endif
#endif
HardwareTimer HWTimer3(3);
void PPM_decode();
void ISR_COMPB();
extern "C"
@ -76,7 +73,7 @@ uint32_t blink=0,last_signal=0;
//
uint16_t counter;
uint8_t channel;
uint8_t packet[40];
uint8_t packet[50];
#define NUM_CHN 16
// Servo data
@ -98,7 +95,11 @@ uint16_t packet_period;
uint8_t packet_count;
uint8_t packet_sent;
uint8_t packet_length;
uint8_t hopping_frequency[50];
#ifdef HOTT_CC2500_INO
uint8_t hopping_frequency[75];
#else
uint8_t hopping_frequency[50];
#endif
uint8_t *hopping_frequency_ptr;
uint8_t hopping_frequency_no=0;
uint8_t rf_ch_num;
@ -116,6 +117,8 @@ uint8_t num_ch;
#ifdef CC2500_INSTALLED
#ifdef SCANNER_CC2500_INO
uint8_t calData[255];
#elif defined(HOTT_CC2500_INO)
uint8_t calData[75];
#else
uint8_t calData[50];
#endif
@ -134,14 +137,14 @@ uint8_t num_ch;
#endif
//Channel mapping for protocols
const uint8_t CH_AETR[]={AILERON, ELEVATOR, THROTTLE, RUDDER, CH5, CH6, CH7, CH8, CH9, CH10, CH11, CH12, CH13, CH14, CH15, CH16};
const uint8_t CH_TAER[]={THROTTLE, AILERON, ELEVATOR, RUDDER, CH5, CH6, CH7, CH8, CH9, CH10, CH11, CH12, CH13, CH14, CH15, CH16};
const uint8_t CH_RETA[]={RUDDER, ELEVATOR, THROTTLE, AILERON, CH5, CH6, CH7, CH8, CH9, CH10, CH11, CH12, CH13, CH14, CH15, CH16};
const uint8_t CH_EATR[]={ELEVATOR, AILERON, THROTTLE, RUDDER, CH5, CH6, CH7, CH8, CH9, CH10, CH11, CH12, CH13, CH14, CH15, CH16};
uint8_t CH_AETR[]={AILERON, ELEVATOR, THROTTLE, RUDDER, CH5, CH6, CH7, CH8, CH9, CH10, CH11, CH12, CH13, CH14, CH15, CH16};
uint8_t CH_TAER[]={THROTTLE, AILERON, ELEVATOR, RUDDER, CH5, CH6, CH7, CH8, CH9, CH10, CH11, CH12, CH13, CH14, CH15, CH16};
//uint8_t CH_RETA[]={RUDDER, ELEVATOR, THROTTLE, AILERON, CH5, CH6, CH7, CH8, CH9, CH10, CH11, CH12, CH13, CH14, CH15, CH16};
uint8_t CH_EATR[]={ELEVATOR, AILERON, THROTTLE, RUDDER, CH5, CH6, CH7, CH8, CH9, CH10, CH11, CH12, CH13, CH14, CH15, CH16};
// Mode_select variables
uint8_t mode_select;
uint8_t protocol_flags=0,protocol_flags2=0;
uint8_t protocol_flags=0,protocol_flags2=0,protocol_flags3=0;
#ifdef ENABLE_PPM
// PPM variable
@ -166,15 +169,21 @@ uint8_t RX_num;
//Serial RX variables
#define BAUD 100000
#define RXBUFFER_SIZE 26
#define RXBUFFER_SIZE 36 // 26+1+9
volatile uint8_t rx_buff[RXBUFFER_SIZE];
volatile uint8_t rx_ok_buff[RXBUFFER_SIZE];
volatile uint8_t discard_frame = 0;
volatile bool discard_frame = false;
volatile uint8_t rx_idx=0, rx_len=0;
// Telemetry
#define MAX_PKT 30
uint8_t pkt[MAX_PKT];//telemetry receiving packets
#define TELEMETRY_BUFFER_SIZE 30
uint8_t packet_in[TELEMETRY_BUFFER_SIZE];//telemetry receiving packets
#if defined(TELEMETRY)
#ifdef MULTI_SYNC
uint16_t last_serial_input=0;
uint16_t inputRefreshRate=0;
#endif
#ifdef INVERT_TELEMETRY
#if not defined(ORANGE_TX) && not defined(STM32_BOARD)
// enable bit bash for serial
@ -182,8 +191,7 @@ uint8_t pkt[MAX_PKT];//telemetry receiving packets
#endif
#define INVERT_SERIAL 1
#endif
uint8_t pass = 0;
uint8_t pktt[MAX_PKT];//telemetry receiving packets
uint8_t telemetry_in_buffer[TELEMETRY_BUFFER_SIZE];//telemetry receiving packets
#ifdef BASH_SERIAL
// For bit-bashed serial output
#define TXBUFFER_SIZE 192
@ -210,12 +218,34 @@ uint8_t pkt[MAX_PKT];//telemetry receiving packets
uint8_t telemetry_link=0;
uint8_t telemetry_counter=0;
uint8_t telemetry_lost;
#ifdef SPORT_POLLING
#ifdef SPORT_SEND
#define MAX_SPORT_BUFFER 64
uint8_t SportData[MAX_SPORT_BUFFER];
bool ok_to_send = false;
uint8_t sport_idx = 0;
uint8_t sport_index = 0;
uint8_t SportHead=0, SportTail=0;
#endif
//RX protocols
#if defined(AFHDS2A_RX_A7105_INO) || defined(FRSKY_RX_CC2500_INO)
bool rx_data_started;
bool rx_disable_lna;
uint16_t rx_rc_chan[16];
#endif
//Multi names
#ifdef MULTI_NAMES
struct mm_protocol_definition {
uint8_t protocol;
const char *ProtoString;
uint8_t nbrSubProto;
const char *SubProtoString;
uint8_t optionType;
};
extern const mm_protocol_definition multi_protocols[];
uint8_t multi_protocols_index=0xFF;
#endif
#ifdef HOTT_FW_TELEMETRY
uint8_t HoTT_SerialRX_val=0;
bool HoTT_SerialRX=false;
#endif
#endif // TELEMETRY
@ -300,7 +330,6 @@ void setup()
pinMode(S4_pin,INPUT_PULLUP);
//Random pins
pinMode(PB0, INPUT_ANALOG); // set up pin for analog input
pinMode(PB1, INPUT_ANALOG); // set up pin for analog input
//Timers
init_HWTimer(); //0.5us
@ -399,9 +428,15 @@ void setup()
#endif
// Set default channels' value
InitChannel();
for(uint8_t i=0;i<NUM_CHN;i++)
Channel_data[i]=1024;
Channel_data[THROTTLE]=0; //0=-125%, 204=-100%
#ifdef ENABLE_PPM
InitPPM();
// Set default PPMs' value
for(uint8_t i=0;i<NUM_CHN;i++)
PPM_data[i]=PPM_MAX_100+PPM_MIN_100;
PPM_data[THROTTLE]=PPM_MIN_100*2;
#endif
// Update LED
@ -412,10 +447,13 @@ void setup()
modules_reset();
#ifndef ORANGE_TX
//Init the seed with a random value created from watchdog timer for all protocols requiring random values
#ifdef STM32_BOARD
randomSeed((uint32_t)analogRead(PB0) << 10 | analogRead(PB1));
uint32_t seed=0;
for(uint8_t i=0;i<4;i++)
seed=(seed<<8) | (analogRead(PB0)& 0xFF);
randomSeed(seed);
#else
//Init the seed with a random value created from watchdog timer for all protocols requiring random values
randomSeed(random_value());
#endif
#endif
@ -476,6 +514,11 @@ void setup()
if (protocol==PROTO_HITEC)
option = FORCE_HITEC_TUNING; // Use config-defined tuning value for HITEC
else
#endif
#if defined(FORCE_HOTT_TUNING) && defined(HOTT_CC2500_INO)
if (protocol==PROTO_HOTT)
option = FORCE_HOTT_TUNING; // Use config-defined tuning value for HOTT
else
#endif
option = (uint8_t)PPM_prot_line->option; // Use radio-defined option value
@ -529,88 +572,78 @@ void setup()
// Protocol scheduler
void loop()
{
uint16_t next_callback,diff=0xFFFF;
uint16_t next_callback, diff;
uint8_t count=0;
while(1)
{
if(remote_callback==0 || IS_WAIT_BIND_on || diff>2*200)
{
do
while(remote_callback==0 || IS_WAIT_BIND_on || IS_INPUT_SIGNAL_off)
if(!Update_All())
{
Update_All();
}
while(remote_callback==0 || IS_WAIT_BIND_on);
}
#ifndef STM32_BOARD
if( (TIFR1 & OCF1A_bm) != 0)
{
cli(); // Disable global int due to RW of 16 bits registers
OCR1A=TCNT1; // Callback should already have been called... Use "now" as new sync point.
sei(); // Enable global int
}
else
while((TIFR1 & OCF1A_bm) == 0); // Wait before callback
#else
if((TIMER2_BASE->SR & TIMER_SR_CC1IF)!=0)
{
debugln("Callback miss");
cli();
OCR1A = TCNT1;
sei();
}
else
while((TIMER2_BASE->SR & TIMER_SR_CC1IF )==0); // Wait before callback
#endif
do
{
TX_MAIN_PAUSE_on;
tx_pause();
if(IS_INPUT_SIGNAL_on && remote_callback!=0)
next_callback=remote_callback();
else
next_callback=2000; // No PPM/serial signal check again in 2ms...
TX_MAIN_PAUSE_off;
tx_resume();
while(next_callback>4000)
{ // start to wait here as much as we can...
next_callback-=2000; // We will wait below for 2ms
cli(); // Disable global int due to RW of 16 bits registers
OCR1A += 2000*2 ; // set compare A for callback
#ifndef STM32_BOARD
TIFR1=OCF1A_bm; // clear compare A=callback flag
#else
TIMER2_BASE->SR = 0x1E5F & ~TIMER_SR_CC1IF; // Clear Timer2/Comp1 interrupt flag
#endif
sei(); // enable global int
if(Update_All()) // Protocol changed?
{
next_callback=0; // Launch new protocol ASAP
break;
}
#ifndef STM32_BOARD
while((TIFR1 & OCF1A_bm) == 0); // wait 2ms...
#else
while((TIMER2_BASE->SR & TIMER_SR_CC1IF)==0);//2ms wait
#endif
OCR1A=TCNT1; // Callback should already have been called... Use "now" as new sync point.
sei(); // Enable global int
}
TX_MAIN_PAUSE_on;
tx_pause();
next_callback=remote_callback()<<1;
TX_MAIN_PAUSE_off;
tx_resume();
cli(); // Disable global int due to RW of 16 bits registers
OCR1A+=next_callback; // Calc when next_callback should happen
#ifndef STM32_BOARD
TIFR1=OCF1A_bm; // Clear compare A=callback flag
#else
TIMER2_BASE->SR = 0x1E5F & ~TIMER_SR_CC1IF; // Clear Timer2/Comp1 interrupt flag
#endif
diff=OCR1A-TCNT1; // Calc the time difference
sei(); // Enable global int
if((diff&0x8000) && !(next_callback&0x8000))
{ // Negative result=callback should already have been called...
debugln("Short CB:%d",next_callback);
}
else
{
if(IS_RX_FLAG_on || IS_PPM_FLAG_on)
{ // Serial or PPM is waiting...
if(++count>10)
{ //The protocol does not leave enough time for an update so forcing it
count=0;
debugln("Force update");
Update_All();
}
}
#ifndef STM32_BOARD
while((TIFR1 & OCF1A_bm) == 0)
#else
while((TIMER2_BASE->SR & TIMER_SR_CC1IF )==0)
#endif
{
if(diff>900*2)
{ //If at least 1ms is available update values
if((diff&0x8000) && !(next_callback&0x8000))
{//Should never get here...
debugln("!!!BUG!!!");
break;
}
count=0;
Update_All();
#ifdef DEBUG_SERIAL
if(TIMER2_BASE->SR & TIMER_SR_CC1IF )
debugln("Long update");
#endif
if(remote_callback==0)
break;
cli(); // Disable global int due to RW of 16 bits registers
diff=OCR1A-TCNT1; // Calc the time difference
sei(); // Enable global int
}
}
// at this point we have a maximum of 4ms in next_callback
next_callback *= 2 ;
cli(); // Disable global int due to RW of 16 bits registers
OCR1A+= next_callback ; // set compare A for callback
#ifndef STM32_BOARD
TIFR1=OCF1A_bm; // clear compare A=callback flag
#else
TIMER2_BASE->SR = 0x1E5F & ~TIMER_SR_CC1IF; // Clear Timer2/Comp1 interrupt flag
#endif
diff=OCR1A-TCNT1; // compare timer and comparator
sei(); // enable global int
}
while(diff&0x8000); // Callback did not took more than requested time for next callback
// so we can launch Update_All before next callback
}
}
uint8_t Update_All()
bool Update_All()
{
#ifdef ENABLE_SERIAL
#ifdef CHECK_FOR_BOOTLOADER
@ -664,13 +697,14 @@ uint8_t Update_All()
update_led_status();
#if defined(TELEMETRY)
#if ( !( defined(MULTI_TELEMETRY) || defined(MULTI_STATUS) ) )
if( (protocol == PROTO_FRSKYX_RX) || (protocol == PROTO_SCANNER) || (protocol==PROTO_FRSKYD) || (protocol==PROTO_BAYANG) || (protocol==PROTO_NCC1701) || (protocol==PROTO_BUGS) || (protocol==PROTO_BUGSMINI) || (protocol==PROTO_HUBSAN) || (protocol==PROTO_AFHDS2A) || (protocol==PROTO_FRSKYX) || (protocol==PROTO_DSM) || (protocol==PROTO_CABELL) || (protocol==PROTO_HITEC))
if( (protocol == PROTO_FRSKY_RX) || (protocol == PROTO_SCANNER) || (protocol==PROTO_FRSKYD) || (protocol==PROTO_BAYANG) || (protocol==PROTO_NCC1701) || (protocol==PROTO_BUGS) || (protocol==PROTO_BUGSMINI) || (protocol==PROTO_HUBSAN) || (protocol==PROTO_AFHDS2A) || (protocol==PROTO_FRSKYX) || (protocol==PROTO_DSM) || (protocol==PROTO_CABELL) || (protocol==PROTO_HITEC) || (protocol==PROTO_HOTT))
#endif
TelemetryUpdate();
if(IS_DISABLE_TELEM_off)
TelemetryUpdate();
#endif
#ifdef ENABLE_BIND_CH
if(IS_AUTOBIND_FLAG_on && IS_BIND_CH_PREV_off && Channel_data[BIND_CH-1]>CHANNEL_MAX_COMMAND && Channel_data[THROTTLE]<(CHANNEL_MIN_100+50))
{ // Autobind is on and BIND_CH went up and Throttle is low
if(IS_AUTOBIND_FLAG_on && IS_BIND_CH_PREV_off && Channel_data[BIND_CH-1]>CHANNEL_MAX_COMMAND)
{ // Autobind is on and BIND_CH went up
CHANGE_PROTOCOL_FLAG_on; //reload protocol
BIND_IN_PROGRESS; //enable bind
BIND_CH_PREV_on;
@ -691,9 +725,9 @@ uint8_t Update_All()
if(IS_CHANGE_PROTOCOL_FLAG_on)
{ // Protocol needs to be changed or relaunched for bind
protocol_init(); //init new protocol
return 1;
return true;
}
return 0;
return false;
}
#if defined(FAILSAFE_ENABLE) && defined(ENABLE_PPM)
@ -751,7 +785,10 @@ static void update_led_status(void)
{
if(IS_INPUT_SIGNAL_on)
if(millis()-last_signal>70)
{
INPUT_SIGNAL_off; //no valid signal (PPM or Serial) received for 70ms
debugln("No input signal");
}
if(blink<millis())
{
if(IS_INPUT_SIGNAL_off)
@ -893,9 +930,7 @@ inline void tx_resume()
{
#ifdef TELEMETRY
// Resume telemetry by enabling transmitter interrupt
#ifndef SPORT_POLLING
if(!IS_TX_PAUSE_on)
#endif
if(IS_TX_PAUSE_off)
{
#ifdef ORANGE_TX
cli() ;
@ -929,10 +964,14 @@ static void protocol_init()
// reset telemetry
#ifdef TELEMETRY
#ifdef MULTI_SYNC
inputRefreshRate = 0; // Don't do it unless the protocol asks for it
#endif
#ifdef MULTI_NAMES
multi_protocols_index = 0xFF;
#endif
tx_pause();
pass=0;
telemetry_link=0;
telemetry_lost=1;
init_frskyd_link_telemetry();
#ifdef BASH_SERIAL
TIMSK0 = 0 ; // Stop all timer 0 interrupts
#ifdef INVERT_SERIAL
@ -949,6 +988,11 @@ static void protocol_init()
#endif
TX_RX_PAUSE_off;
TX_MAIN_PAUSE_off;
tx_resume();
#if defined(AFHDS2A_RX_A7105_INO) || defined(FRSKY_RX_CC2500_INO)
for(uint8_t ch=0; ch<16; ch++)
rx_rc_chan[ch] = 1024;
#endif
#endif
//Set global ID and rx_tx_addr
@ -958,14 +1002,13 @@ static void protocol_init()
#ifdef FAILSAFE_ENABLE
FAILSAFE_VALUES_off;
#endif
DATA_BUFFER_LOW_off;
blink=millis();
PE1_on; //NRF24L01 antenna RF3 by default
PE2_off; //NRF24L01 antenna RF3 by default
debugln("Protocol selected: %d, sub proto %d, rxnum %d, option %d", protocol, sub_protocol, RX_num, option);
switch(protocol) // Init the requested protocol
{
#ifdef A7105_INSTALLED
@ -1070,6 +1113,14 @@ static void protocol_init()
remote_callback = ReadHITEC;
break;
#endif
#if defined(HOTT_CC2500_INO)
case PROTO_HOTT:
PE1_off; //antenna RF2
PE2_on;
next_callback = initHOTT();
remote_callback = ReadHOTT;
break;
#endif
#if defined(SCANNER_CC2500_INO)
case PROTO_SCANNER:
PE1_off;
@ -1078,12 +1129,12 @@ static void protocol_init()
remote_callback = Scanner_callback;
break;
#endif
#if defined(FRSKYX_RX_CC2500_INO)
case PROTO_FRSKYX_RX:
#if defined(FRSKY_RX_CC2500_INO)
case PROTO_FRSKY_RX:
PE1_off;
PE2_on; //antenna RF2
next_callback = initFrSkyX_Rx();
remote_callback = FrSkyX_Rx_callback;
next_callback = initFrSky_Rx();
remote_callback = FrSky_Rx_callback;
break;
#endif
#endif
@ -1370,6 +1421,33 @@ static void protocol_init()
#endif
#endif
}
debugln("Protocol selected: %d, sub proto %d, rxnum %d, option %d", protocol, sub_protocol, RX_num, option);
#ifdef MULTI_NAMES
uint8_t index=0;
while(multi_protocols[index].protocol != 0)
{
if(multi_protocols[index].protocol==protocol)
{
multi_protocols_index=index;
SEND_MULTI_STATUS_on;
#ifdef DEBUG_SERIAL
debug("Proto=%s",multi_protocols[multi_protocols_index].ProtoString);
uint8_t nbr=multi_protocols[multi_protocols_index].nbrSubProto;
debug(", nbr_sub=%d, Sub=",nbr);
if(nbr && (sub_protocol&0x07)<nbr)
{
uint8_t len=multi_protocols[multi_protocols_index].SubProtoString[0];
uint8_t offset=len*(sub_protocol&0x07)+1;
for(uint8_t j=0;j<len;j++)
debug("%c",multi_protocols[multi_protocols_index].SubProtoString[j+offset]);
}
debugln(", Opt=%d",multi_protocols[multi_protocols_index].optionType);
#endif
break;
}
index++;
}
#endif
}
#if defined(WAIT_FOR_BIND) && defined(ENABLE_BIND_CH)
@ -1401,8 +1479,18 @@ static void protocol_init()
void update_serial_data()
{
static bool prev_ch_mapping=false;
#if defined(TELEMETRY) && defined(INVERT_TELEMETRY_TX)
#ifdef INVERT_TELEMETRY
static bool prev_inv_telem=true;
#else
static bool prev_inv_telem=false;
#endif
#endif
RX_DONOTUPDATE_on;
RX_FLAG_off; //data is being processed
#ifdef SAMSON // Extremely dangerous, do not enable this unless you know what you are doing...
if( rx_ok_buff[0]==0x55 && (rx_ok_buff[1]&0x1F)==PROTO_FRSKYD && rx_ok_buff[2]==0x7F && rx_ok_buff[24]==217 && rx_ok_buff[25]==202 )
{//proto==FRSKYD+sub==7+rx_num==7+CH15==73%+CH16==73%
@ -1410,6 +1498,11 @@ void update_serial_data()
memcpy((void*)(rx_ok_buff+4),(void*)(rx_ok_buff+4+11),11); // reassign channels 9-16 to 1-8
}
#endif
#ifdef BONI // Extremely dangerous, do not enable this!!! This is really for a special case...
if(CH14_SW)
rx_ok_buff[2]=(rx_ok_buff[2]&0xF0)|((rx_ok_buff[2]+1)&0x0F);
#endif
if(rx_ok_buff[1]&0x20) //check range
RANGE_FLAG_on;
else
@ -1426,54 +1519,112 @@ void update_serial_data()
//Forced frequency tuning values for CC2500 protocols
#if defined(FORCE_FRSKYD_TUNING) && defined(FRSKYD_CC2500_INO)
if(protocol==PROTO_FRSKYD)
option=FORCE_FRSKYD_TUNING; // Use config-defined tuning value for FrSkyD
option=FORCE_FRSKYD_TUNING; // Use config-defined tuning value for FrSkyD
else
#endif
#if defined(FORCE_FRSKYV_TUNING) && defined(FRSKYV_CC2500_INO)
if(protocol==PROTO_FRSKYV)
option=FORCE_FRSKYV_TUNING; // Use config-defined tuning value for FrSkyV
option=FORCE_FRSKYV_TUNING; // Use config-defined tuning value for FrSkyV
else
#endif
#if defined(FORCE_FRSKYX_TUNING) && defined(FRSKYX_CC2500_INO)
if(protocol==PROTO_FRSKYX)
option=FORCE_FRSKYX_TUNING; // Use config-defined tuning value for FrSkyX
option=FORCE_FRSKYX_TUNING; // Use config-defined tuning value for FrSkyX
else
#endif
#if defined(FORCE_SFHSS_TUNING) && defined(SFHSS_CC2500_INO)
if (protocol==PROTO_SFHSS)
option=FORCE_SFHSS_TUNING; // Use config-defined tuning value for SFHSS
option=FORCE_SFHSS_TUNING; // Use config-defined tuning value for SFHSS
else
#endif
#if defined(FORCE_CORONA_TUNING) && defined(CORONA_CC2500_INO)
if (protocol==PROTO_CORONA)
option=FORCE_CORONA_TUNING; // Use config-defined tuning value for CORONA
option=FORCE_CORONA_TUNING; // Use config-defined tuning value for CORONA
else
#endif
#if defined(FORCE_REDPINE_TUNING) && defined(REDPINE_CC2500_INO)
if (protocol==PROTO_REDPINE)
option=FORCE_REDPINE_TUNING; // Use config-defined tuning value for REDPINE
option=FORCE_REDPINE_TUNING; // Use config-defined tuning value for REDPINE
else
#endif
#if defined(FORCE_HITEC_TUNING) && defined(HITEC_CC2500_INO)
if (protocol==PROTO_HITEC)
option=FORCE_HITEC_TUNING; // Use config-defined tuning value for HITEC
option=FORCE_HITEC_TUNING; // Use config-defined tuning value for HITEC
else
#endif
option=rx_ok_buff[3]; // Use radio-defined option value
#if defined(FORCE_HOTT_TUNING) && defined(HOTT_CC2500_INO)
if (protocol==PROTO_HOTT)
option=FORCE_HOTT_TUNING; // Use config-defined tuning value for HOTT
else
#endif
option=rx_ok_buff[3]; // Use radio-defined option value
#ifdef FAILSAFE_ENABLE
bool failsafe=false;
if(rx_ok_buff[0]&0x02)
{ // Packet contains failsafe instead of channels
failsafe=true;
rx_ok_buff[0]&=0xFD; //remove the failsafe flag
FAILSAFE_VALUES_on; //failsafe data has been received
rx_ok_buff[0]&=0xFD; // Remove the failsafe flag
FAILSAFE_VALUES_on; // Failsafe data has been received
debugln("Failsafe received");
}
#endif
#ifdef BONI
if(CH14_SW)
rx_ok_buff[2]=(rx_ok_buff[2]&0xF0)|((rx_ok_buff[2]+1)&0x0F); // Extremely dangerous, do not enable this!!! This is really for a special case...
#endif
DISABLE_CH_MAP_off;
DISABLE_TELEM_off;
if(rx_len>26)
{//Additional flag received at the end
rx_ok_buff[0]=(rx_ok_buff[26]&0xF0) | (rx_ok_buff[0]&0x0F); // Additional protocol numbers and RX_Num available -> store them in rx_ok_buff[0]
if(rx_ok_buff[26]&0x02)
DISABLE_TELEM_on;
if(rx_ok_buff[26]&0x01)
DISABLE_CH_MAP_on;
#if defined(TELEMETRY) && defined(INVERT_TELEMETRY_TX)
if(((rx_ok_buff[26]&0x08)!=0) ^ prev_inv_telem)
{ //value changed
if(rx_ok_buff[26]&0x08)
{ // Invert telemetry
debugln("Invert telem %d,%d",rx_ok_buff[26]&0x01,prev_inv_telem);
#if defined (ORANGE_TX)
PORTC.PIN3CTRL |= 0x40 ;
#elif defined (STM32_BOARD)
TX_INV_on;
RX_INV_on;
#endif
}
else
{ // Normal telemetry
debugln("Normal telem %d,%d",rx_ok_buff[26]&0x01,prev_inv_telem);
#if defined (ORANGE_TX)
PORTC.PIN3CTRL &= 0xBF ;
#elif defined (STM32_BOARD)
TX_INV_off;
RX_INV_off;
#endif
}
prev_inv_telem=rx_ok_buff[26]&0x08;
}
#endif
}
if(prev_ch_mapping!=IS_DISABLE_CH_MAP_on)
{
prev_ch_mapping=IS_DISABLE_CH_MAP_on;
if(IS_DISABLE_CH_MAP_on)
{
for(uint8_t i=0;i<4;i++)
CH_AETR[i]=CH_TAER[i]=CH_EATR[i]=i;
debugln("DISABLE_CH_MAP_on");
}
else
{
CH_AETR[0]=AILERON;CH_AETR[1]=ELEVATOR;CH_AETR[2]=THROTTLE;CH_AETR[3]=RUDDER;
CH_TAER[0]=THROTTLE;CH_TAER[1]=AILERON;CH_TAER[2]=ELEVATOR;CH_TAER[3]=RUDDER;
CH_EATR[0]=ELEVATOR;CH_EATR[1]=AILERON;CH_EATR[2]=THROTTLE;CH_EATR[3]=RUDDER;
debugln("DISABLE_CH_MAP_off");
}
}
if( (rx_ok_buff[0] != cur_protocol[0]) || ((rx_ok_buff[1]&0x5F) != (cur_protocol[1]&0x5F)) || ( (rx_ok_buff[2]&0x7F) != (cur_protocol[2]&0x7F) ) )
{ // New model has been selected
CHANGE_PROTOCOL_FLAG_on; //change protocol
@ -1482,9 +1633,15 @@ void update_serial_data()
BIND_IN_PROGRESS; //launch bind right away if in autobind mode or bind is set
else
BIND_DONE;
protocol=(rx_ok_buff[0]==0x55?0:32) + (rx_ok_buff[1]&0x1F); //protocol no (0-63) bits 4-6 of buff[1] and bit 0 of buf[0]
protocol=rx_ok_buff[1]&0x1F; //protocol no (0-31)
if(!(rx_ok_buff[0]&1))
protocol+=32; //protocol no (0-63)
if(rx_len>26)
protocol|=rx_ok_buff[26]&0xC0; //protocol no (0-255)
sub_protocol=(rx_ok_buff[2]>>4)& 0x07; //subprotocol no (0-7) bits 4-6
RX_num=rx_ok_buff[2]& 0x0F; // rx_num bits 0---3
RX_num=rx_ok_buff[2]& 0x0F; //rx_num no (0-15)
if(rx_len>26)
RX_num|=rx_ok_buff[26]&0x30; //rx_num no (0-63)
}
else
if( ((rx_ok_buff[1]&0x80)!=0) && ((cur_protocol[1]&0x80)==0) ) // Bind flag has been set
@ -1528,6 +1685,57 @@ void update_serial_data()
#endif
Channel_data[i]=temp; //value range 0..2047, 0=-125%, 2047=+125%
}
#ifdef HOTT_FW_TELEMETRY
HoTT_SerialRX=false;
#endif
if(rx_len>27)
{ // Data available for the current protocol
#ifdef SPORT_SEND
if(protocol==PROTO_FRSKYX && rx_len==35)
{//Protocol waiting for 8 bytes
#define BYTE_STUFF 0x7D
#define STUFF_MASK 0x20
//debug("SPort_in: ");
SportData[SportTail]=0x7E;
SportTail = (SportTail+1) & (MAX_SPORT_BUFFER-1);
SportData[SportTail]=rx_ok_buff[27]&0x1F;
SportTail = (SportTail+1) & (MAX_SPORT_BUFFER-1);
for(uint8_t i=28;i<28+7;i++)
{
if(rx_ok_buff[i]==BYTE_STUFF)
{//stuff
SportData[SportTail]=BYTE_STUFF;
SportTail = (SportTail+1) & (MAX_SPORT_BUFFER-1);
SportData[SportTail]=rx_ok_buff[i]^STUFF_MASK;
}
else
SportData[SportTail]=rx_ok_buff[i];
//debug("%02X ",SportData[SportTail]);
SportTail = (SportTail+1) & (MAX_SPORT_BUFFER-1);
}
uint8_t used = SportTail;
if ( SportHead > SportTail )
used += MAX_SPORT_BUFFER - SportHead ;
else
used -= SportHead ;
if ( used >= MAX_SPORT_BUFFER-(MAX_SPORT_BUFFER>>2) )
{
DATA_BUFFER_LOW_on;
SEND_MULTI_STATUS_on; //Send Multi Status ASAP to inform the TX
debugln("Low buf=%d,h=%d,t=%d",used,SportHead,SportTail);
}
}
#endif //SPORT_SEND
#ifdef HOTT_FW_TELEMETRY
if(protocol==PROTO_HOTT && rx_len==28)
{//Protocol waiting for 1 byte
HoTT_SerialRX_val=rx_ok_buff[27];
HoTT_SerialRX=true;
}
#endif
}
RX_DONOTUPDATE_off;
#ifdef ORANGE_TX
cli();
@ -1535,8 +1743,13 @@ void update_serial_data()
UCSR0B &= ~_BV(RXCIE0); // RX interrupt disable
#endif
if(IS_RX_MISSED_BUFF_on) // If the buffer is still valid
{ memcpy((void*)rx_ok_buff,(const void*)rx_buff,RXBUFFER_SIZE);// Duplicate the buffer
RX_FLAG_on; // data to be processed next time...
{
if(rx_idx>=26 && rx_idx<RXBUFFER_SIZE)
{
rx_len=rx_idx;
memcpy((void*)rx_ok_buff,(const void*)rx_buff,rx_len);// Duplicate the buffer
RX_FLAG_on; // Data to be processed next time...
}
RX_MISSED_BUFF_off;
}
#ifdef ORANGE_TX
@ -1544,10 +1757,6 @@ void update_serial_data()
#else
UCSR0B |= _BV(RXCIE0) ; // RX interrupt enable
#endif
#ifdef FAILSAFE_ENABLE
if(failsafe)
debugln("RX_FS:%d,%d,%d,%d",Failsafe_data[0],Failsafe_data[1],Failsafe_data[2],Failsafe_data[3]);
#endif
}
void modules_reset()
@ -1616,9 +1825,7 @@ void modules_reset()
USART2_BASE->CR1 |= USART_CR1_PCE_BIT;
}
usart3_begin(100000,SERIAL_8E2);
#ifndef SPORT_POLLING
USART3_BASE->CR1 &= ~ USART_CR1_RE; //disable receive
#endif
USART3_BASE->CR1 &= ~ USART_CR1_RE; //disable receive
USART2_BASE->CR1 &= ~ USART_CR1_TE; //disable transmit
#else
//ATMEGA328p
@ -1674,14 +1881,24 @@ void modules_reset()
TIMER2_BASE->ARR = 0xFFFF; // Count until 0xFFFF
HWTimer2.setMode(TIMER_CH1, TIMER_OUTPUT_COMPARE); // Main scheduler
HWTimer2.setMode(TIMER_CH2, TIMER_OUTPUT_COMPARE); // Serial check
//HWTimer2.setMode(TIMER_CH2, TIMER_OUTPUT_COMPARE); // Serial check
TIMER2_BASE->SR = 0x1E5F & ~TIMER_SR_CC2IF; // Clear Timer2/Comp2 interrupt flag
HWTimer2.attachInterrupt(TIMER_CH2,ISR_COMPB); // Assign function to Timer2/Comp2 interrupt
//HWTimer2.attachInterrupt(TIMER_CH2,ISR_COMPB); // Assign function to Timer2/Comp2 interrupt
TIMER2_BASE->DIER &= ~TIMER_DIER_CC2IE; // Disable Timer2/Comp2 interrupt
HWTimer2.refresh(); // Refresh the timer's count, prescale, and overflow
HWTimer2.resume();
HWTimer3.pause(); // Pause the timer3 while we're configuring it
TIMER3_BASE->PSC = 35; // 36-1;for 72 MHZ /0.5sec/(35+1)
TIMER3_BASE->ARR = 0xFFFF; // Count until 0xFFFF
HWTimer3.setMode(TIMER_CH2, TIMER_OUTPUT_COMPARE); // Serial check
TIMER3_BASE->SR = 0x1E5F & ~TIMER_SR_CC2IF; // Clear Timer3/Comp2 interrupt flag
HWTimer3.attachInterrupt(TIMER_CH2,ISR_COMPB); // Assign function to Timer3/Comp2 interrupt
TIMER3_BASE->DIER &= ~TIMER_DIER_CC2IE; // Disable Timer3/Comp2 interrupt
HWTimer3.refresh(); // Refresh the timer's count, prescale, and overflow
HWTimer3.resume();
}
#endif
@ -1762,10 +1979,16 @@ void pollBoot()
#if defined(TELEMETRY)
void PPM_Telemetry_serial_init()
{
if( (protocol==PROTO_FRSKYD) || (protocol==PROTO_HUBSAN) || (protocol==PROTO_AFHDS2A) || (protocol==PROTO_BAYANG)|| (protocol==PROTO_NCC1701) || (protocol==PROTO_CABELL) || (protocol==PROTO_HITEC) || (protocol==PROTO_BUGS) || (protocol==PROTO_BUGSMINI))
if( (protocol==PROTO_FRSKYD) || (protocol==PROTO_HUBSAN) || (protocol==PROTO_AFHDS2A) || (protocol==PROTO_BAYANG)|| (protocol==PROTO_NCC1701) || (protocol==PROTO_CABELL) || (protocol==PROTO_HITEC) || (protocol==PROTO_BUGS) || (protocol==PROTO_BUGSMINI)
#ifdef TELEMETRY_FRSKYX_TO_FRSKYD
|| (protocol==PROTO_FRSKYX)
#endif
)
initTXSerial( SPEED_9600 ) ;
if(protocol==PROTO_FRSKYX)
initTXSerial( SPEED_57600 ) ;
#ifndef TELEMETRY_FRSKYX_TO_FRSKYD
if(protocol==PROTO_FRSKYX)
initTXSerial( SPEED_57600 ) ;
#endif
if(protocol==PROTO_DSM)
initTXSerial( SPEED_125K ) ;
}
@ -1885,77 +2108,83 @@ static uint32_t random_id(uint16_t address, uint8_t create_new)
ISR(USART_RX_vect)
#endif
{ // RX interrupt
static uint8_t idx=0;
#ifdef ORANGE_TX
if((USARTC0.STATUS & 0x1C)==0) // Check frame error, data overrun and parity error
if((USARTC0.STATUS & 0x1C)==0) // Check frame error, data overrun and parity error
#elif defined STM32_BOARD
if((USART2_BASE->SR & USART_SR_RXNE) && (USART2_BASE->SR &0x0F)==0)
#else
UCSR0B &= ~_BV(RXCIE0) ; // RX interrupt disable
UCSR0B &= ~_BV(RXCIE0) ; // RX interrupt disable
sei() ;
if((UCSR0A&0x1C)==0) // Check frame error, data overrun and parity error
if((UCSR0A&0x1C)==0) // Check frame error, data overrun and parity error
#endif
{ // received byte is ok to process
if(idx==0||discard_frame==1)
if(rx_idx==0||discard_frame==true)
{ // Let's try to sync at this point
idx=0;discard_frame=0;
RX_MISSED_BUFF_off; // If rx_buff was good it's not anymore...
RX_MISSED_BUFF_off; // If rx_buff was good it's not anymore...
rx_idx=0;discard_frame=false;
rx_buff[0]=UDR0;
#ifdef FAILSAFE_ENABLE
if((rx_buff[0]&0xFC)==0x54) // If 1st byte is 0x54, 0x55, 0x56 or 0x57 it looks ok
if((rx_buff[0]&0xFC)==0x54) // If 1st byte is 0x54, 0x55, 0x56 or 0x57 it looks ok
#else
if((rx_buff[0]&0xFE)==0x54) // If 1st byte is 0x54 or 0x55 it looks ok
if((rx_buff[0]&0xFE)==0x54) // If 1st byte is 0x54 or 0x55 it looks ok
#endif
{
TX_RX_PAUSE_on;
tx_pause();
#if defined STM32_BOARD
TIMER2_BASE->CCR2=TIMER2_BASE->CNT+(6500L); // Full message should be received within timer of 3250us
TIMER2_BASE->SR = 0x1E5F & ~TIMER_SR_CC2IF; // Clear Timer2/Comp2 interrupt flag
TIMER2_BASE->DIER |= TIMER_DIER_CC2IE; // Enable Timer2/Comp2 interrupt
TIMER3_BASE->CCR2=TIMER3_BASE->CNT + 500; // Next byte should show up within 250us (1 byte = 120us)
TIMER3_BASE->SR = 0x1E5F & ~TIMER_SR_CC2IF; // Clear Timer3/Comp2 interrupt flag
TIMER3_BASE->DIER |= TIMER_DIER_CC2IE; // Enable Timer3/Comp2 interrupt
#else
OCR1B = TCNT1+(6500L) ; // Full message should be received within timer of 3250us
TIFR1 = OCF1B_bm ; // clear OCR1B match flag
SET_TIMSK1_OCIE1B ; // enable interrupt on compare B match
TX_RX_PAUSE_on;
tx_pause();
cli(); // Disable global int due to RW of 16 bits registers
OCR1B = TCNT1 + 500; // Next byte should show up within 250us (1 byte = 120us)
sei(); // Enable global int
TIFR1 = OCF1B_bm ; // clear OCR1B match flag
SET_TIMSK1_OCIE1B ; // enable interrupt on compare B match
#endif
idx++;
rx_idx++;
}
}
else
{
rx_buff[idx++]=UDR0; // Store received byte
if(idx>=RXBUFFER_SIZE)
{ // A full frame has been received
if(!IS_RX_DONOTUPDATE_on)
{ //Good frame received and main is not working on the buffer
memcpy((void*)rx_ok_buff,(const void*)rx_buff,RXBUFFER_SIZE);// Duplicate the buffer
RX_FLAG_on; // flag for main to process servo data
}
else
RX_MISSED_BUFF_on; // notify that rx_buff is good
discard_frame=1; // start again
if(rx_idx>=RXBUFFER_SIZE)
{
discard_frame=true; // Too many bytes being received...
debugln("RX frame too long");
}
else
{
rx_buff[rx_idx++]=UDR0; // Store received byte
#if defined STM32_BOARD
TIMER3_BASE->CCR2=TIMER3_BASE->CNT + 500; // Next byte should show up within 250us (1 byte = 120us)
#else
cli(); // Disable global int due to RW of 16 bits registers
OCR1B = TCNT1 + 500; // Next byte should show up within 250us (1 byte = 120us)
sei(); // Enable global int
#endif
}
}
}
else
{
idx=UDR0; // Dummy read
discard_frame=1; // Error encountered discard full frame...
rx_idx=UDR0; // Dummy read
rx_idx=0;
discard_frame=true; // Error encountered discard full frame...
debugln("Bad frame RX");
}
if(discard_frame==1)
if(discard_frame==true)
{
#ifdef STM32_BOARD
TIMER2_BASE->DIER &= ~TIMER_DIER_CC2IE; // Disable Timer2/Comp2 interrupt
TIMER3_BASE->DIER &= ~TIMER_DIER_CC2IE; // Disable Timer3/Comp2 interrupt
#else
CLR_TIMSK1_OCIE1B; // Disable interrupt on compare B match
CLR_TIMSK1_OCIE1B; // Disable interrupt on compare B match
TX_RX_PAUSE_off;
tx_resume();
#endif
TX_RX_PAUSE_off;
tx_resume();
}
#if not defined (ORANGE_TX) && not defined (STM32_BOARD)
cli() ;
UCSR0B |= _BV(RXCIE0) ; // RX interrupt enable
UCSR0B |= _BV(RXCIE0) ; // RX interrupt enable
#endif
}
@ -1965,17 +2194,38 @@ static uint32_t random_id(uint16_t address, uint8_t create_new)
#elif defined STM32_BOARD
void ISR_COMPB()
#else
ISR(TIMER1_COMPB_vect, ISR_NOBLOCK )
ISR(TIMER1_COMPB_vect)
#endif
{ // Timer1 compare B interrupt
discard_frame=1;
#ifdef STM32_BOARD
TIMER2_BASE->DIER &= ~TIMER_DIER_CC2IE; // Disable Timer2/Comp2 interrupt
debugln("Bad frame timer");
#else
CLR_TIMSK1_OCIE1B; // Disable interrupt on compare B match
if(rx_idx>=26 && rx_idx<RXBUFFER_SIZE)
{
// A full frame has been received
if(!IS_RX_DONOTUPDATE_on)
{ //Good frame received and main is not working on the buffer
rx_len=rx_idx;
memcpy((void*)rx_ok_buff,(const void*)rx_buff,rx_idx); // Duplicate the buffer
RX_FLAG_on; // Flag for main to process data
}
else
RX_MISSED_BUFF_on; // Notify that rx_buff is good
#ifdef MULTI_SYNC
cli();
last_serial_input=TCNT1;
sei();
#endif
}
#ifdef DEBUG_SERIAL
else
debugln("RX frame too short");
#endif
discard_frame=true;
#ifdef STM32_BOARD
TIMER3_BASE->DIER &= ~TIMER_DIER_CC2IE; // Disable Timer3/Comp2 interrupt
#else
CLR_TIMSK1_OCIE1B; // Disable interrupt on compare B match
TX_RX_PAUSE_off;
tx_resume();
#endif
tx_resume();
}
#endif //ENABLE_SERIAL

View File

@ -197,6 +197,7 @@ uint16_t NCC_callback()
phase = NCC_BIND_TX2;
return NCC_PACKET_INTERVAL - NCC_WRITE_WAIT;
case NCC_TX3:
telemetry_set_input_sync(NCC_PACKET_INTERVAL);
if( NRF24L01_ReadReg(NRF24L01_07_STATUS) & _BV(NRF24L01_07_RX_DR))
{ // RX fifo data ready
NRF24L01_ReadPayload(packet, NCC_RX_PACKET_LEN);
@ -268,9 +269,6 @@ uint16_t initNCC(void)
hopping_frequency_no=4; // start with bind
NCC_init();
phase=NCC_BIND_TX1;
#ifdef NCC1701_HUB_TELEMETRY
init_frskyd_link_telemetry();
#endif
return 10000;
}

View File

@ -109,6 +109,7 @@ uint16_t POTENSIC_callback()
BIND_DONE;
XN297_SetTXAddr(rx_tx_addr,5);
}
telemetry_set_input_sync(POTENSIC_PACKET_PERIOD);
POTENSIC_send_packet();
return POTENSIC_PACKET_PERIOD;
}

View File

@ -354,7 +354,10 @@ static void __attribute__((unused)) Q303_initialize_txid()
uint16_t Q303_callback()
{
if(IS_BIND_DONE)
{
telemetry_set_input_sync(packet_period);
Q303_send_packet(0);
}
else
{
if (bind_counter == 0)

View File

@ -125,6 +125,7 @@ static uint16_t ReadREDPINE()
}
else
{
telemetry_set_input_sync(packet_period);
CC2500_SetTxRxMode(TX_EN);
REDPINE_set_channel(hopping_frequency_no);
CC2500_SetPower();
@ -133,10 +134,7 @@ static uint16_t ReadREDPINE()
CC2500_Strobe(CC2500_SIDLE);
hopping_frequency_no = (hopping_frequency_no + 1) % 49;
CC2500_WriteData(packet, REDPINE_PACKET_SIZE);
if (sub_protocol==0)
return REDPINE_LOOPTIME_FAST*100;
else
return REDPINE_LOOPTIME_SLOW*1000;
return packet_period;
}
return 1;
}
@ -235,6 +233,11 @@ static uint16_t initREDPINE()
}
hopping_frequency[49] = 0; // Last channel is the bind channel at hop 0
if (sub_protocol==0)
packet_period = REDPINE_LOOPTIME_FAST*100;
else
packet_period = REDPINE_LOOPTIME_SLOW*1000;
bind_counter=REDPINE_BIND;
REDPINE_init(sub_protocol);
CC2500_SetTxRxMode(TX_EN); // enable PA

View File

@ -173,8 +173,8 @@ static void __attribute__((unused)) SFHSS_build_data_packet()
else
{ //Use channel value
ch[i]=(ch[i]>>1)+2560;
if(CH_AETR[ch_offset+i]==THROTTLE && ch[i]<3072) // Throttle
ch[i]+=1024;
//if(IS_DISABLE_CH_MAP_off && ch_offset+i==CH3 && ch[i]<3072) // Throttle
// ch[i]+=1024;
}
}
}
@ -235,6 +235,7 @@ uint16_t ReadSFHSS()
#define SFHSS_PACKET_PERIOD 6800
#define SFHSS_DATA2_TIMING 1625 // Adjust this value between 1600 and 1650 if your RX(s) are not operating properly
case SFHSS_DATA1:
telemetry_set_input_sync(6800);
SFHSS_build_data_packet();
SFHSS_send_packet();
phase = SFHSS_DATA2;

View File

@ -63,6 +63,8 @@ void SHENQI_send_packet()
}
else
{
if(packet_count==1)
telemetry_set_input_sync(3000+2508+6*1750);
LT8900_SetAddress(rx_tx_addr,4);
packet[1]=255-convert_channel_8b(RUDDER);
packet[2]=255-convert_channel_16b_limit(THROTTLE,0x60,0xA0);
@ -91,7 +93,9 @@ void SHENQI_send_packet()
uint16_t SHENQI_callback()
{
if(IS_BIND_DONE)
{
SHENQI_send_packet();
}
else
{
if( NRF24L01_ReadReg(NRF24L01_07_STATUS) & _BV(NRF24L01_07_RX_DR))

View File

@ -141,7 +141,7 @@ static void __attribute__((unused)) SLT_build_packet()
for (uint8_t i = 0; i < 4; ++i)
{
uint16_t v = convert_channel_10b(CH_AETR[i]);
if(sub_protocol>SLT_V2 && (CH_AETR[i]==THROTTLE || CH_AETR[i]==ELEVATOR) )
if(sub_protocol>SLT_V2 && (i==CH2 || i==CH3) )
v=1023-v; // reverse throttle and elevator channels for Q100/Q200/MR100 protocols
packet[i] = v;
e = (e >> 2) | (uint8_t) ((v >> 2) & 0xC0);
@ -213,6 +213,7 @@ uint16_t SLT_callback()
switch (phase)
{
case SLT_BUILD:
telemetry_set_input_sync(sub_protocol==SLT_V1?20000:13730);
SLT_build_packet();
phase++;
return SLT_TIMING_BUILD;

View File

@ -18,13 +18,11 @@
#include "iface_cc2500.h"
#define SCAN_MAX_RADIOCHANNEL 249 // 2483 MHz
#define SCAN_CHANNEL_LOCK_TIME 210 // with precalibration, channel requires only 90 usec for synthesizer to settle
#define SCAN_CHANNEL_LOCK_TIME 90 // with precalibration, channel requires only 90 usec for synthesizer to settle
#define SCAN_AVERAGE_INTVL 20
#define SCAN_MAX_COUNT 5
#define SCAN_MAX_COUNT 10
#define SCAN_CHANS_PER_PACKET 5
static uint8_t scan_tlm_index;
enum ScanStates {
SCAN_CHANNEL_CHANGE = 0,
SCAN_GET_RSSI = 1,
@ -90,56 +88,53 @@ static int __attribute__((unused)) Scanner_scan_rssi()
rssi_rel = rssi - 128; // relative power levels 0-127 (equals -137 to -72 dBm)
}
else {
rssi_rel = rssi + 128; // relativ power levels 128-255 (equals -73 to -10 dBm)
rssi_rel = rssi + 128; // relative power levels 128-255 (equals -73 to -10 dBm)
}
return rssi_rel;
}
uint16_t Scanner_callback()
{
static uint8_t max_count, max_rssi;
uint8_t rssi;
switch (phase)
{
case SCAN_CHANNEL_CHANGE:
if(telemetry_link == 0) {
max_count = 0;
max_rssi = 0;
rf_ch_num++;
if (rf_ch_num >= (SCAN_MAX_RADIOCHANNEL + 1))
rf_ch_num = 0;
if (scan_tlm_index++ == 0)
pkt[0] = rf_ch_num; // start channel for telemetry packet
Scanner_scan_next();
phase = SCAN_GET_RSSI;
}
return SCAN_CHANNEL_LOCK_TIME;
case SCAN_GET_RSSI:
rssi = Scanner_scan_rssi();
if(rssi >= max_rssi) {
max_rssi = rssi;
pkt[scan_tlm_index] = rssi;
}
max_count++;
if(max_count > SCAN_MAX_COUNT) {
phase = SCAN_CHANNEL_CHANGE;
if (scan_tlm_index == SCAN_CHANS_PER_PACKET)
{
// send data to TX
telemetry_link = 1;
scan_tlm_index = 0;
}
uint8_t rssi,max_rssi;
//!!!Blocking mode protocol!!!
TX_MAIN_PAUSE_off;
tx_resume();
while(1)
{ //Start
packet_in[0] = rf_ch_num; // start channel for telemetry packet
for(uint8_t i=0;i<SCAN_CHANS_PER_PACKET;i++)
{
Scanner_scan_next(); // set channel
delayMicroseconds(SCAN_CHANNEL_LOCK_TIME); // wait for freq to adjust
max_rssi = 0;
for(uint8_t j=0;j<SCAN_MAX_COUNT;j++)
{
rssi = Scanner_scan_rssi();
if(rssi >= max_rssi) max_rssi = rssi;
delayMicroseconds(SCAN_AVERAGE_INTVL); // wait before next read
}
packet_in[i+1] = max_rssi;
//next channel
rf_ch_num++;
if (rf_ch_num >= (SCAN_MAX_RADIOCHANNEL + 1))
rf_ch_num = 0;
}
telemetry_link = 1;
do
{
if(Update_All())
return 1000; // protocol has changed, give back the control to main
}
while(telemetry_link == 1);
}
return SCAN_AVERAGE_INTVL;
return 0;
}
uint16_t initScanner(void)
{
rf_ch_num = SCAN_MAX_RADIOCHANNEL;
scan_tlm_index = 0;
rf_ch_num = 0;
telemetry_link = 0;
phase = SCAN_CHANNEL_CHANGE;
Scanner_cc2500_init();
CC2500_Strobe(CC2500_SRX);
Scanner_calibrate();

View File

@ -359,6 +359,7 @@ uint16_t symax_callback()
}
break;
case SYMAX_DATA:
telemetry_set_input_sync(SYMAX_PACKET_PERIOD);
SYMAX_send_packet(0);
break;
}

View File

@ -162,6 +162,7 @@ uint16_t ReadTRAXXAS()
TRAXXAS_cyrf_data_config();
phase++;
case TRAXXAS_DATA:
telemetry_set_input_sync(13940);
TRAXXAS_send_data_packet();
break;
}

File diff suppressed because it is too large Load Diff

View File

@ -264,6 +264,7 @@ uint16_t ReadV2x2()
case V202_DATA:
if (packet_sent && NRF24L01_packet_ack() != PKT_ACKED)
return V2X2_PACKET_CHKTIME;
telemetry_set_input_sync(V2X2_PACKET_PERIOD);
V2X2_send_packet(0);
break;
}

View File

@ -174,6 +174,7 @@ uint16_t V761_callback()
}
return 15730;
case V761_DATA:
telemetry_set_input_sync(V761_PACKET_PERIOD);
V761_send_packet();
break;
}

View File

@ -111,7 +111,10 @@ static void __attribute__((unused)) V911S_initialize_txid()
uint16_t V911S_callback()
{
if(IS_BIND_DONE)
{
telemetry_set_input_sync(V911S_PACKET_PERIOD);
V911S_send_packet(0);
}
else
{
if (bind_counter == 0)

View File

@ -104,6 +104,11 @@
#error "The SFHSS forced frequency tuning value is outside of the range -127..127."
#endif
#endif
#ifdef FORCE_HOTT_TUNING
#if ( FORCE_HOTT_TUNING < -127 ) || ( FORCE_HOTT_TUNING > 127 )
#error "The HOTT forced frequency tuning value is outside of the range -127..127."
#endif
#endif
//A7105
#ifdef FORCE_AFHDS2A_TUNING
#if ( FORCE_AFHDS2A_TUNING < -300 ) || ( FORCE_AFHDS2A_TUNING > 300 )
@ -179,6 +184,7 @@
#ifndef CYRF6936_INSTALLED
#undef DEVO_CYRF6936_INO
#undef DSM_CYRF6936_INO
#undef HOTT_CC2500_INO
#undef J6PRO_CYRF6936_INO
#undef WFLY_CYRF6936_INO
#undef WK2x01_CYRF6936_INO
@ -194,7 +200,8 @@
#undef HITEC_CC2500_INO
#undef XN297L_CC2500_EMU
#undef SCANNER_CC2500_INO
#undef FRSKYX_RX_CC2500_INO
#undef FRSKY_RX_CC2500_INO
#undef HOTT_CC2500_INO
#endif
#ifndef NRF24L01_INSTALLED
#undef BAYANG_NRF24L01_INO
@ -247,16 +254,17 @@
#undef NCC1701_HUB_TELEMETRY
#undef HUB_TELEMETRY
#undef SPORT_TELEMETRY
#undef SPORT_POLLING
#undef SPORT_SEND
#undef DSM_TELEMETRY
#undef MULTI_STATUS
#undef MULTI_TELEMETRY
#undef SCANNER_TELEMETRY
#undef SCANNER_CC2500_INO
#undef FRSKYX_RX_TELEMETRY
#undef FRSKYX_RX_CC2500_INO
#undef FRSKY_RX_TELEMETRY
#undef FRSKY_RX_CC2500_INO
#undef AFHDS2A_RX_TELEMETRY
#undef AFHDS2A_RX_A7105_INO
#undef HOTT_FW_TELEMETRY
#else
#if defined(MULTI_TELEMETRY) && defined(MULTI_STATUS)
#error You should choose either MULTI_TELEMETRY or MULTI_STATUS but not both.
@ -265,9 +273,9 @@
#undef SCANNER_TELEMETRY
#undef SCANNER_CC2500_INO
#endif
#if not defined(FRSKYX_RX_CC2500_INO) || not defined(FRSKYX_RX_TELEMETRY)
#undef FRSKYX_RX_TELEMETRY
#undef FRSKYX_RX_CC2500_INO
#if not defined(FRSKY_RX_CC2500_INO) || not defined(FRSKY_RX_TELEMETRY)
#undef FRSKY_RX_TELEMETRY
#undef FRSKY_RX_CC2500_INO
#endif
#if not defined(AFHDS2A_RX_A7105_INO) || not defined(AFHDS2A_RX_TELEMETRY)
#undef AFHDS2A_RX_TELEMETRY
@ -301,24 +309,34 @@
#endif
#if not defined(FRSKYX_CC2500_INO)
#undef SPORT_TELEMETRY
#undef SPORT_POLLING
#undef SPORT_SEND
#endif
#if not defined (SPORT_TELEMETRY) || not defined (STM32_BOARD)
#undef SPORT_POLLING
#endif
#if defined SPORT_POLLING && not defined INVERT_TELEMETRY
#error SPORT_POLLING has been defined but not INVERT_TELEMETRY. They should be both enabled to work.
#if not defined (SPORT_TELEMETRY)
#undef SPORT_SEND
#endif
#if not defined(DSM_CYRF6936_INO)
#undef DSM_TELEMETRY
#endif
#if not defined(DSM_TELEMETRY) && not defined(SPORT_TELEMETRY) && not defined(HUB_TELEMETRY) && not defined(HUBSAN_HUB_TELEMETRY) && not defined(BUGS_HUB_TELEMETRY) && not defined(NCC1701_HUB_TELEMETRY) && not defined(BAYANG_HUB_TELEMETRY) && not defined(CABELL_HUB_TELEMETRY) && not defined(AFHDS2A_HUB_TELEMETRY) && not defined(AFHDS2A_FW_TELEMETRY) && not defined(MULTI_TELEMETRY) && not defined(MULTI_STATUS) && not defined(HITEC_HUB_TELEMETRY) && not defined(HITEC_FW_TELEMETRY) && not defined(SCANNER_TELEMETRY) && not defined(FRSKYX_RX_TELEMETRY)
#if not defined(HOTT_CC2500_INO)
#undef HOTT_FW_TELEMETRY
#endif
#if not defined(HOTT_FW_TELEMETRY) && not defined(DSM_TELEMETRY) && not defined(SPORT_TELEMETRY) && not defined(HUB_TELEMETRY) && not defined(HUBSAN_HUB_TELEMETRY) && not defined(BUGS_HUB_TELEMETRY) && not defined(NCC1701_HUB_TELEMETRY) && not defined(BAYANG_HUB_TELEMETRY) && not defined(CABELL_HUB_TELEMETRY) && not defined(AFHDS2A_HUB_TELEMETRY) && not defined(AFHDS2A_FW_TELEMETRY) && not defined(MULTI_TELEMETRY) && not defined(MULTI_STATUS) && not defined(HITEC_HUB_TELEMETRY) && not defined(HITEC_FW_TELEMETRY) && not defined(SCANNER_TELEMETRY) && not defined(FRSKY_RX_TELEMETRY) && not defined(AFHDS2A_RX_TELEMETRY)
#undef TELEMETRY
#undef INVERT_TELEMETRY
#undef SPORT_POLLING
#endif
#endif
#ifdef SPORT_TELEMETRY
#define SPORT_SEND
#endif
#if not defined(MULTI_TELEMETRY)
#if not defined(STM32_BOARD)
#undef MULTI_SYNC
#endif
#undef MULTI_NAMES
#endif
//Make sure TX is defined correctly
#ifndef AILERON
#error You must select a correct channel order.

View File

@ -194,25 +194,25 @@ uint16_t ReadWFLY()
debugln("L=%02X",len)
if(len==0x10)
{
CYRF_ReadDataPacketLen(pkt, len);
CYRF_ReadDataPacketLen(packet_in, len);
debug("RX=");
for(uint8_t i=0;i<0x0F;i++)
{
debug(" %02X",pkt[i]);
if(pkt[i]==packet[i])
debug(" %02X",packet_in[i]);
if(packet_in[i]==packet[i])
check++; // Verify quickly the content
sum+=pkt[i];
sum+=packet_in[i];
}
debugln(" %02X",pkt[15]);
if(sum==pkt[15] && check>=10)
debugln(" %02X",packet_in[15]);
if(sum==packet_in[15] && check>=10)
{ // Good packet received
if(pkt[2]==0x64)
if(packet_in[2]==0x64)
{ // Switch to normal mode
BIND_DONE;
phase=WFLY_PREP_DATA;
return 10000;
}
memcpy((void *)packet,(void *)pkt,0x10); // Send back to the RX what we've just received with no modifications
memcpy((void *)packet,(void *)packet_in,0x10); // Send back to the RX what we've just received with no modifications
}
phase=WFLY_BIND_TX;
return 200;
@ -232,6 +232,7 @@ uint16_t ReadWFLY()
packet_count=0;
phase++;
case WFLY_DATA:
telemetry_set_input_sync(5371);
start=micros();
while ((uint8_t)((uint8_t)micros()-(uint8_t)start) < 200)
if((CYRF_ReadRegister(CYRF_02_TX_CTRL) & 0x80) == 0x00)

View File

@ -435,6 +435,7 @@ uint16_t WK_cb()
{
if (packet_sent == 0)
{
telemetry_set_input_sync(2800);
packet_sent = 1;
if(sub_protocol == WK2801)
WK_BuildPacket_2801();

View File

@ -176,6 +176,10 @@ static void __attribute__((unused)) XN297Dump_overflow()
static uint16_t XN297Dump_callback()
{
static uint32_t time=0;
//!!!Blocking mode protocol!!!
TX_MAIN_PAUSE_off;
tx_resume();
while(1)
{
if(option==0xFF && bind_counter>XN297DUMP_PERIOD_SCAN)

View File

@ -155,7 +155,10 @@ static void __attribute__((unused)) yd717_init()
uint16_t yd717_callback()
{
if(IS_BIND_DONE)
{
telemetry_set_input_sync(YD717_PACKET_PERIOD);
yd717_send_packet(0);
}
else
{
if (bind_counter == 0)

View File

@ -80,6 +80,7 @@ static void __attribute__((unused)) ZSX_init()
uint16_t ZSX_callback()
{
telemetry_set_input_sync(ZSX_PACKET_PERIOD);
if(IS_BIND_IN_PROGRESS)
if(--bind_counter==0)
{

View File

@ -54,7 +54,7 @@
/*** AUTO BIND ***/ // Also referred as "Bind on powerup"
/*****************/
//Bind from channel enables you to bind when a specified channel is going from low to high. This feature is only active
// if you specify AUTOBIND in PPM mode or set AutoBind to YES for serial mode. It also requires that the throttle channel is low.
// if you specify AUTOBIND in PPM mode or set AutoBind to YES for serial mode.
//Comment to globaly disable the bind feature from a channel.
#define ENABLE_BIND_CH
//Set the channel number used for bind. Default is 16.
@ -87,17 +87,18 @@
//#define ORANGE_TX_BLUE
/** CC2500 Fine Frequency Tuning **/
//For optimal performance the CC2500 RF module used by the FrSkyD, FrSkyV, FrSkyX, SFHSS, CORONA, Redpine and Hitec protocols needs to be tuned for each protocol.
//Initial tuning should be done via the radio menu with a genuine FrSky/Futaba/CORONA/Hitec/Redpine receiver.
//For optimal performance the CC2500 RF module used by the CORONA, FrSkyD, FrSkyV, FrSkyX, Hitec, HoTT, SFHSS and Redpine protocols needs to be tuned for each protocol.
//Initial tuning should be done via the radio menu with a genuine CORONA/FrSky/Hitec/HoTT/Futaba/Redpine receiver.
//Once a good tuning value is found it can be set here and will override the radio's 'option' setting for all existing and new models which use that protocol.
//For more information: https://github.com/pascallanger/DIY-Multiprotocol-TX-Module/tree/master/docs/Frequency_Tuning.md
//Uncomment the lines below (remove the "//") and set an appropriate value (replace the "0") to enable. Valid range is -127 to +127.
//#define FORCE_CORONA_TUNING 0
//#define FORCE_FRSKYD_TUNING 0
//#define FORCE_FRSKYV_TUNING 0
//#define FORCE_FRSKYX_TUNING 0
//#define FORCE_SFHSS_TUNING 0
//#define FORCE_CORONA_TUNING 0
//#define FORCE_HITEC_TUNING 0
//#define FORCE_HOTT_TUNING 0
//#define FORCE_REDPINE_TUNING 0
/** A7105 Fine Frequency Tuning **/
@ -176,8 +177,9 @@
#define FRSKYD_CC2500_INO
#define FRSKYV_CC2500_INO
#define FRSKYX_CC2500_INO
#define FRSKYX_RX_CC2500_INO
#define FRSKY_RX_CC2500_INO
#define HITEC_CC2500_INO
#define HOTT_CC2500_INO
#define SCANNER_CC2500_INO
#define SFHSS_CC2500_INO
#define REDPINE_CC2500_INO
@ -222,6 +224,12 @@
/*** PROTOCOLS SETTINGS ***/
/***************************/
//FrSkyX specific setting
//-----------------------
//EU LBT setting: if commented the TX will not check if a channel is busy before transmitting.
//!!! Work in progress !!! it's currently known to cause telemerty issues. Enable only if you know what you are doing.
//#define FRSKYX_LBT
//DSM specific settings
//---------------------
//The DSM protocol is using by default the Spektrum throw of 1100..1900us @100% and 1000..2000us @125%.
@ -258,24 +266,31 @@
//Comment to invert the polarity of the output telemetry serial signal.
//This function takes quite some flash space and processor power on an atmega.
//For OpenTX it must be uncommented.
//On a 9XR_PRO running ersky9x both commented and uncommented will work depending on the radio setting Invert COM1 under the Telemetry menu.
//On other addon/replacement boards like the 9xtreme board or the Ar9x board running ersky9x, you need to uncomment the line below.
//For a Taranis/T16 with an external module it must be uncommented. For a T16 internal module it must be commented.
//A 9XR_PRO running erskyTX will work with both commented and uncommented depending on the radio setting Invert COM1 under the Telemetry menu.
//On other addon/replacement boards like the 9xtreme board or the Ar9x board running erskyTX, you need to uncomment the line below.
//For er9x it depends if you have an inveter mod or not on the telemetry pin. If you don't have an inverter comment this line.
//=>OpenTX 2.3.2 with a STM32 or OrangeRX module this setting can be ignored.
#define INVERT_TELEMETRY
//For STM32 and OrangeRX modules, comment to prevent the TX from forcing the serial telemetry polarity normal/invert.
#define INVERT_TELEMETRY_TX
//Comment if you don't want to send Multi status telemetry frames (Protocol available, Bind in progress, version...)
//Use with er9x/erksy9x, for OpenTX MULTI_TELEMETRY below is preferred instead
//Uncomment if you want to send Multi status telemetry frames (Protocol available, Bind in progress, version...)
//Use with er9x/erskyTX, for OpenTX you must select MULTI_TELEMETRY below
//#define MULTI_STATUS
//Uncomment to send Multi status and allow OpenTX to autodetect the telemetry format
//Supported by OpenTX version 2.2 RC9 and newer. NOT supported by er9x/ersky9x use MULTI_STATUS instead.
//Sends Multi status and allow OpenTX to autodetect the telemetry format. Comment to disable.
//Supported by OpenTX version 2.2 RC9 and newer. NOT supported by er9x/erskyTX use MULTI_STATUS instead.
#define MULTI_TELEMETRY
//Send to OpenTX the current protocol and subprotocol names. Comment to disable.
#define MULTI_NAMES
//Work in progress: Sync OpenTX frames with the current protocol timing. This feature is only available on the STM32 module. Uncomment to enable.
//#define MULTI_SYNC
//Comment a line to disable a specific protocol telemetry
#define DSM_TELEMETRY // Forward received telemetry packet directly to TX to be decoded by er9x, ersky9x and OpenTX
#define SPORT_TELEMETRY // Use FrSkyX SPORT format to send telemetry to TX
#define AFHDS2A_FW_TELEMETRY // Forward received telemetry packet directly to TX to be decoded by ersky9x and OpenTX
#define DSM_TELEMETRY // Forward received telemetry packet directly to TX to be decoded by er9x, erskyTX and OpenTX
#define SPORT_TELEMETRY // Use FrSkyX format to send/receive telemetry
#define AFHDS2A_FW_TELEMETRY // Forward received telemetry packet directly to TX to be decoded by erskyTX and OpenTX
#define AFHDS2A_HUB_TELEMETRY // Use FrSkyD Hub format to send basic telemetry to TX like er9x
#define HUB_TELEMETRY // Use FrSkyD Hub format to send telemetry to TX
#define BAYANG_HUB_TELEMETRY // Use FrSkyD Hub format to send telemetry to TX
@ -283,18 +298,12 @@
#define HUBSAN_HUB_TELEMETRY // Use FrSkyD Hub format to send telemetry to TX
#define NCC1701_HUB_TELEMETRY // Use FrSkyD Hub format to send telemetry to TX
#define CABELL_HUB_TELEMETRY // Use FrSkyD Hub format to send telemetry to TX
#define HITEC_HUB_TELEMETRY // Use FrSkyD Hub format to send basic telemetry to the radios which can decode it like er9x, ersky9x and OpenTX
#define HITEC_FW_TELEMETRY // Under development: Forward received telemetry packets to be decoded by ersky9x and OpenTX
#define HITEC_HUB_TELEMETRY // Use FrSkyD Hub format to send basic telemetry to the radios which can decode it like er9x, erskyTX and OpenTX
#define HITEC_FW_TELEMETRY // Forward received telemetry packets to be decoded by erskyTX and OpenTX
#define SCANNER_TELEMETRY // Forward spectrum scanner data to TX
#define FRSKYX_RX_TELEMETRY // Forward channels data to TX
#define FRSKY_RX_TELEMETRY // Forward channels data to TX
#define AFHDS2A_RX_TELEMETRY // Forward channels data to TX
//SPORT_POLLING is an implementation of the same polling routine as XJT module for sport telemetry bidirectional communication.
//This is useful for passing sport control frames from TX to RX(ex: changing Betaflight PID or VTX channels on the fly using LUA scripts with OpentX).
//Using this feature requires to uncomment INVERT_TELEMETRY as this TX output on telemetry pin only inverted signal.
//!!!! This is a work in progress!!! Do not enable unless you want to test and report
//#define SPORT_POLLING
#define HOTT_FW_TELEMETRY // Forward received telemetry packets to be decoded by erskyTX and OpenTX
/****************************/
/*** SERIAL MODE SETTINGS ***/
@ -345,6 +354,10 @@
// The default value is 16 to receive all possible channels but you might want to filter some "bad" channels from the PPM frame like the ones above 6 on the Walkera PL0811.
#define MAX_PPM_CHANNELS 16
/** Telemetry **/
//Send simple FrSkyX telemetry using the FrSkyD telemetry format
#define TELEMETRY_FRSKYX_TO_FRSKYD
/** Rotary Switch Protocol Selector Settings **/
//The table below indicates which protocol to run when a specific position on the rotary switch has been selected.
//All fields and values are explained below. Everything is configurable from here like in the Serial mode.
@ -550,9 +563,8 @@ const PPM_Parameters PPM_prot[14*NBR_BANKS]= {
CH_8
EU_16
EU_8
PROTO_FRSKYX_RX
FRSKYX_FCC
FRSKYX_LBT
PROTO_FRSKY_RX
NONE
PROTO_FY326
FY326
FY319
@ -578,6 +590,8 @@ const PPM_Parameters PPM_prot[14*NBR_BANKS]= {
JJRCX1
X5C1
FQ777_951
PROTO_HOTT
NONE
PROTO_HUBSAN
H107
H301

View File

@ -29,7 +29,7 @@ Here are detailed descriptions of every supported protocols (sorted by RF module
## Protocol selection in PPM mode
The protocol selection is based on 2 parameters:
* selection switch: this is the rotary switch on the module numbered from 0 to 15
- switch position 0 is to select the Serial mode for er9x/ersky9x/OpenTX radio
- switch position 0 is to select the Serial mode for er9x/erskyTX/OpenTX radio
- switch position 15 is to select the bank
- switch position 1..14 will select the protocol 1..14 in the bank *X*
* banks are used to increase the amount of accessible protocols by the switch. There are up to 5 banks giving acces to up to 70 protocol entries (5 * 14). To modify or verify which bank is currenlty active do the following:
@ -56,7 +56,7 @@ Notes:
Serial mode is selected by placing the rotary switch to position 0 before power on of the radio.
You've upgraded the module but the radio does not display the name of the protocol you are loking for:
* ersky9x:
* erskyTX:
- Place the file [Multi.txt](https://raw.githubusercontent.com/pascallanger/DIY-Multiprotocol-TX-Module/master/Multiprotocol/Multi.txt) (which is part of the MPM source files) on the root of your SD card.
- If the entry still does not appear or is broken, [upgrade](https://openrcforums.com/forum/viewtopic.php?f=7&t=4676) to version R222d2 or newer.
* OpenTX:
@ -84,6 +84,7 @@ CFlie|38|CFlie||||||||NRF24L01|
[ESky150](Protocols_Details.md#ESKY150---35)|35|ESKY150||||||||NRF24L01|
[Flysky](Protocols_Details.md#FLYSKY---1)|1|Flysky|V9x9|V6x6|V912|CX20||||A7105|
[Flysky AFHDS2A](Protocols_Details.md#FLYSKY-AFHDS2A---28)|28|PWM_IBUS|PPM_IBUS|PWM_SBUS|PPM_SBUS|||||A7105|
[Flysky AFHDS2A RX](Protocols_Details.md#FLYSKY-AFHDS2A-RX---56)|56|||||||||A7105|
[Flyzone](Protocols_Details.md#FLYZONE---53)|53|FZ410||||||||A7105|
[FQ777](Protocols_Details.md#FQ777---23)|23|FQ777||||||||NRF24L01|SSV7241
[FrskyD](Protocols_Details.md#FRSKYD---3)|3|FrskyD||||||||CC2500|
@ -97,6 +98,7 @@ CFlie|38|CFlie||||||||NRF24L01|
[Hisky](Protocols_Details.md#HISKY---4)|4|Hisky|HK310|||||||NRF24L01|
[Hitec](Protocols_Details.md#HITEC---39)|39|OPT_FW|OPT_HUB|MINIMA||||||CC2500|
[Hontai](Protocols_Details.md#HONTAI---26)|26|HONTAI|JJRCX1|X5C1|FQ777_951|||||NRF24L01|XN297
[HoTT](Protocols_Details.md#HoTT---57)|57|||||||||CC2500|
[Hubsan](Protocols_Details.md#HUBSAN---2)|2|H107|H301|H501||||||A7105|
[J6Pro](Protocols_Details.md#J6Pro---22)|22|J6PRO||||||||CYRF6936|
[KF606](Protocols_Details.md#KF606---49)|49|KF606*||||||||NRF24L01|XN297
@ -165,11 +167,11 @@ Extended limits and failsafe supported
Telemetry enabled protocol:
- by defaut using FrSky Hub protocol (for example er9x): RX(A1), battery voltage FS-CVT01(A2) and RX&TX RSSI
- if using ersky9x and OpenTX: full telemetry information available
- if using erskyTX and OpenTX: full telemetry information available
Option is used to change the servo refresh rate. A value of 0 gives 50Hz (min), 70 gives 400Hz (max). Specific refresh rate value can be calculated like this option=(refresh_rate-50)/5.
**RX_Num is used to give a number a given RX. You must use a different RX_Num per RX. A maximum of 16 AFHDS2A RXs are supported.**
**RX_Num is used to give a number a given RX. You must use a different RX_Num per RX. A maximum of 64 AFHDS2A RXs are supported.**
OpenTX suggested RSSI alarm threshold settings (Telemetry tab): Low=15, Critical=12.
@ -188,6 +190,15 @@ Note that the RX ouput will be AETR whatever the input channel order is.
### Sub_protocol PWM_SBUS - *2*
### Sub_protocol PPM_SBUS - *3*
## FLYSKY AFHDS2A RX - *56*
The Flysky AFHDS2A receiver protocol enables master/slave trainning, separate access from 2 different radios to the same model,...
Available in OpenTX 2.3.2, Trainer Mode Master/Multi
Extended limits supported
Low power: enable/disable the LNA stage on the RF component to use depending on the distance with the TX.
## FLYZONE - *53*
Models using the Flyzone FZ-410 TX: Fokker D.VII Micro EP RTF
@ -345,6 +356,8 @@ CH1|CH2|CH3|CH4|CH5|CH6|CH7|CH8
## FRSKYX_RX - *55*
The FrSkyX receiver protocol enables master/slave trainning, separate access from 2 different radios to the same model,...
Available in OpenTX 2.3.2, Trainer Mode Master/Multi
Extended limits supported
Option for this protocol corresponds to fine frequency tuning.
@ -383,20 +396,40 @@ CH1|CH2|CH3|CH4|CH5|CH6|CH7|CH8|CH9
### Sub_protocol OPT_FW - *0*
OPTIMA RXs
Full telemetry available on ersky9x and OpenTX. This is still a WIP.
Full telemetry available on OpenTX 2.3.2+, still in progress for erskyTx.
**The TX must be close to the RX for the bind negotiation to complete successfully**
### Sub_protocol OPT_HUB - *1*
OPTIMA RXs
Basic telemetry using FrSky Hub on er9x, ersky9x, OpenTX and any radio with FrSky telemetry support with RX voltage, VOLT2 voltage, TX RSSI and TX LQI.
Basic telemetry using FrSky Hub on er9x, erskyTX, OpenTX and any radio with FrSky telemetry support with RX voltage, VOLT2 voltage, TX RSSI and TX LQI.
**The TX must be close to the RX for the bind negotiation to complete successfully**
### Sub_protocol MINIMA - *2*
MINIMA, MICRO and RED receivers
## HoTT - *57*
Models: Graupner HoTT receivers (tested on GR-12L and GR-16L).
Extended limits and failsafe supported
**RX_Num is used to give a number a given RX. You must use a different RX_Num per RX. A maximum of 64 HoTT RXs are supported.**
**Failsafe MUST be configured once with the desired channel values (hold or position) while the RX is up (wait 10+sec for the RX to learn the config) and then failsafe MUST be set to RX/Receiver otherwise the servos will jitter!!!**
The RX features configuration are done using the OpenTX script "Graupner HoTT.lua" .
Option for this protocol corresponds to fine frequency tuning. This value is different for each Module and **must** be accurate otherwise the link will not be stable.
Check the [Frequency Tuning page](/docs/Frequency_Tuning.md) to determine it.
CH1|CH2|CH3|CH4|CH5|CH6|CH7|CH8|CH9|CH10|CH11|CH12
---|---|---|---|---|---|---|---|---|----|----|----
CH1|CH2|CH3|CH4|CH5|CH6|CH7|CH8|CH9|CH10|CH11|CH12
Basic telemetry is available on OpenTX 2.3.2+ with RX voltage, Rx temperature, RX RSSI, RX LQI, TX RSSI and TX LQI.
## SFHSS - *21*
Models: Futaba RXs and XK models.
@ -550,9 +583,9 @@ DSMX, Resolution 2048, refresh rate 11ms
### Sub_protocol AUTO - *4*
The "AUTO" feature enables the TX to automatically choose what are the best settings for your DSM RX and update your model protocol settings accordingly.
The current radio firmware which are able to use the "AUTO" feature are ersky9x (9XR Pro, 9Xtreme, Taranis, ...), er9x for M128(9XR)&M2561 and OpenTX (mostly Taranis).
The current radio firmware which are able to use the "AUTO" feature are erskyTX (9XR Pro, 9Xtreme, Taranis, ...), er9x for M128(9XR)&M2561 and OpenTX (mostly Taranis).
For these firmwares, you must have a telemetry enabled TX and you have to make sure you set the Telemetry "Usr proto" to "DSMx".
Also on er9x you will need to be sure to match the polarity of the telemetry serial (normal or inverted by bitbashing), while on ersky9x you can set "Invert COM1" accordinlgy.
Also on er9x you will need to be sure to match the polarity of the telemetry serial (normal or inverted by bitbashing), while on erskyTX you can set "Invert COM1" accordinlgy.
## J6Pro - *22*

View File

@ -8,16 +8,17 @@ The protocols which require frequency tuning are:
* **S-FHSS** (e.g. Futaba S-FHSS receivers)
* **Corona** (e.g. Corona V1 FSS, Corona V2 DSSS CR8D/CR6D/CR4D and FlyDream IS-4R/IS-4R0 receivers)
* **Hitec** (e.g. Optima, Minima, Micro and RED receivers)
* **HoTT** (e.g. Graupner receivers)
There is a [video](#video) at the end of this page which gives an example of the tuning process.
## More information
Original FrSky, Futaba, Corona and Hitec receivers have been frequency-tuned by the manufacturer at the factory. Because of variations in the oscillator crystals used in multiprotocol modules it is necessary to fine-tune the module to match the manufacturer frequencies.
Original FrSky, Futaba, Corona Hitec and HoTT receivers have been frequency-tuned by the manufacturer at the factory. Because of variations in the oscillator crystals used in multiprotocol modules it is necessary to fine-tune the module to match the manufacturer frequencies.
'Compatible' receivers suffer the same variation in crystal oscillators as multiprotocol modules, but have to be compatible with genuine (manufacturer-tuned) transmitters so they will typically have auto-tuning built in, and will self-tune to the radio's frequency when they are bound.
## Fine-tuning procedure
**Note:** For best results, the fine-tuning procedure should be carried out with a genuine FrSky/Futaba/Corona/Hitec receiver.
**Note:** For best results, the fine-tuning procedure should be carried out with a genuine FrSky/Futaba/Corona/Hitec/HoTT receiver.
The procedure can be performed in serial or PPM mode, but is easier with in serial mode where the effect of the change can be seen in real-time.
@ -49,7 +50,7 @@ Connection is lost at -73 and +35; the median is -19:
### Finally
Once the **Freq** value is known it should be applied to all other models which use this protocol and, if they were previously bound, the receivers must be re-bound.
For convenience this can be done in the `_Config.h` (or `_MyConfig.h`) configuration file.
For convenience this can be applied once for all per protocol using the FORCE commands described below in `_Config.h` (or `_MyConfig.h`) configuration file.
#### Forced tuning values
Once known-good tuning values have been determined, they can be stored in the configuration file to be automatically applied to all models which use the given protocol.
@ -73,6 +74,7 @@ These settings can also be used to force different tuning values for different m
//#define FORCE_SFHSS_TUNING 0
//#define FORCE_CORONA_TUNING 0
//#define FORCE_HITEC_TUNING 0
//#define FORCE_HOTT_TUNING 0
```
## Video