STM32 board & DSM fixes

Loads of changes:
STM32 board introduction: NOT TESTED
XMEGA renamed to ORANGE_TX to be more explicit
DSM: added reset if cyrf freezed
Validate: added a validate file to verify the different compilation
options
This commit is contained in:
pascallanger 2016-10-16 19:51:42 +02:00
parent cde8deaf4b
commit f557609e9e
21 changed files with 1144 additions and 717 deletions

View File

@ -15,6 +15,7 @@
/********************/
/** A7105 routines **/
/********************/
#ifdef A7105_INSTALLED
#include "iface_a7105.h"
void A7105_WriteData(uint8_t len, uint8_t channel)
@ -30,13 +31,14 @@ void A7105_WriteData(uint8_t len, uint8_t channel)
A7105_Strobe(A7105_TX);
}
void A7105_ReadData() {
void A7105_ReadData()
{
uint8_t i;
A7105_Strobe(0xF0); //A7105_RST_RDPTR
A7105_CSN_off;
SPI_Write(0x45);
for (i=0;i<16;i++)
packet[i]=SPI_SDIO_Read();
packet[i]=SPI_SDI_Read();
A7105_CSN_on;
}
@ -48,11 +50,12 @@ void A7105_WriteReg(uint8_t address, uint8_t data) {
A7105_CSN_on;
}
uint8_t A7105_ReadReg(uint8_t address) {
uint8_t A7105_ReadReg(uint8_t address)
{
uint8_t result;
A7105_CSN_off;
SPI_Write(address |=0x40); //bit 6 =1 for reading
result = SPI_SDIO_Read();
result = SPI_SDI_Read();
A7105_CSN_on;
return(result);
}
@ -163,21 +166,21 @@ const uint8_t PROGMEM FLYSKY_A7105_regs[] = {
#define ID_PLUS 0xAA201041
void A7105_Init(uint8_t protocol)
{
void *A7105_Regs;
uint8_t *A7105_Regs;
if(protocol==INIT_FLYSKY)
{
A7105_WriteID(0x5475c52A);//0x2Ac57554
A7105_Regs=(void *)FLYSKY_A7105_regs;
A7105_Regs=(uint8_t*)FLYSKY_A7105_regs;
}
else
{
A7105_WriteID(ID_NORMAL);
A7105_Regs=(void *)HUBSAN_A7105_regs;
A7105_Regs=(uint8_t*)HUBSAN_A7105_regs;
}
for (uint8_t i = 0; i < 0x33; i++){
if( pgm_read_byte_near((uint16_t)(A7105_Regs)+i) != 0xFF)
A7105_WriteReg(i, pgm_read_byte_near((uint16_t)(A7105_Regs)+i));
if( pgm_read_byte_near(&A7105_Regs[i]) != 0xFF)
A7105_WriteReg(i, pgm_read_byte_near(&A7105_Regs[i]));
}
A7105_Strobe(A7105_STANDBY);
@ -216,3 +219,4 @@ void A7105_Init(uint8_t protocol)
A7105_Strobe(A7105_STANDBY);
}
#endif

View File

@ -12,6 +12,8 @@
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef STM32_BOARD
/************************************/
/************************************/
/** Arduino replacement routines **/
/************************************/
@ -106,7 +108,7 @@ void delayMicroseconds(unsigned int us)
return;
us <<= 2; // * 4
us -= 2; // - 2
#ifdef XMEGA
#ifdef ORANGE_TX
__asm__ __volatile__ (
"1: sbiw %0,1" "\n\t" // 2 cycles
"nop \n"
@ -123,11 +125,12 @@ void delayMicroseconds(unsigned int us)
#endif
}
#ifndef XMEGA
#ifndef ORANGE_TX
void init()
{
// this needs to be called before setup() or some functions won't work there
sei();
}
#endif //XMEGA
#endif //ORANGE_TX
#endif //STM32_BOARD

View File

@ -1,3 +1,4 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -17,6 +18,7 @@
//CC2500 SPI routines
//-------------------------------
//-------------------------------
#ifdef CC2500_INSTALLED
#include "iface_cc2500.h"
//----------------------------
@ -152,4 +154,4 @@ void CC2500_SetPower()
prev_power=power;
}
}
#endif

View File

@ -12,9 +12,9 @@
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef CYRF6936_INSTALLED
#include "iface_cyrf6936.h"
void CYRF_WriteRegister(uint8_t address, uint8_t data)
{
CYRF_CSN_off;
@ -182,11 +182,6 @@ void CYRF_WritePreamble(uint32_t preamble)
/*
*
*/
static void CYRF_StartReceive()
{
CYRF_WriteRegister(CYRF_05_RX_CTRL,0x87);
}
/*static void CYRF_ReadDataPacket(uint8_t dpbuffer[])
{
CYRF_ReadRegisterMulti(CYRF_21_RX_BUFFER, dpbuffer, 0x10);
@ -243,10 +238,14 @@ void CYRF_FindBestChannels(uint8_t *channels, uint8_t len, uint8_t minspace, uin
for(i = 0; i < NUM_FREQ; i++)
{
CYRF_ConfigRFChannel(i);
CYRF_ReadRegister(CYRF_13_RSSI);
CYRF_StartReceive();
delayMicroseconds(10);
rssi[i] = CYRF_ReadRegister(CYRF_13_RSSI);
delayMicroseconds(270); //slow channel require 270usec for synthesizer to settle
if( !(CYRF_ReadRegister(CYRF_05_RX_CTRL) & 0x80)) {
CYRF_WriteRegister(CYRF_05_RX_CTRL, 0x80); //Prepare to receive
delayMicroseconds(15);
CYRF_ReadRegister(CYRF_13_RSSI); //dummy read
delayMicroseconds(15); //The conversion can occur as often as once every 12us
}
rssi[i] = CYRF_ReadRegister(CYRF_13_RSSI)&0x1F;
}
for (i = 0; i < len; i++)
@ -262,7 +261,9 @@ void CYRF_FindBestChannels(uint8_t *channels, uint8_t len, uint8_t minspace, uin
rssi[j] = 0xff;
}
}
CYRF_WriteRegister(CYRF_29_RX_ABORT, 0x20); // Abort RX operation
CYRF_SetTxRxMode(TX_EN);
CYRF_WriteRegister(CYRF_29_RX_ABORT, 0x20); // Clear abort RX
}
#if defined(DEVO_CYRF6936_INO) || defined(J6PRO_CYRF6936_INO)
@ -297,4 +298,5 @@ static void __attribute__((unused)) CYRF_PROGMEM_ConfigSOPCode(const uint8_t *da
for(uint8_t i=0;i<8;i++)
code[i]=pgm_read_byte_near(&data[i]);
CYRF_ConfigSOPCode(code);
}
}
#endif

View File

@ -15,6 +15,7 @@
/************************/
/** Convert routines **/
/************************/
#ifndef STM32_BOARD
int16_t map( int16_t x, int16_t in_min, int16_t in_max, int16_t out_min, int16_t out_max)
{
// return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
@ -25,6 +26,7 @@ int16_t map( int16_t x, int16_t in_min, int16_t in_max, int16_t out_min, int16_t
x = y / (in_max - in_min) ;
return x + out_min ;
}
#endif
// Channel value is converted to 8bit values full scale
uint8_t convert_channel_8b(uint8_t num)

View File

@ -135,8 +135,7 @@ static uint8_t __attribute__((unused)) get_pn_row(uint8_t channel)
}
const uint8_t PROGMEM init_vals[][2] = {
{CYRF_02_TX_CTRL, 0x03}, // TX interrupt complete and error enabled
//0x00 in deviation but needed to know when transmit is over
{CYRF_02_TX_CTRL, 0x00}, // All TX interrupt disabled
{CYRF_05_RX_CTRL, 0x00}, // All RX interrupt disabled
{CYRF_28_CLK_EN, 0x02}, // Force receive clock enable
{CYRF_32_AUTO_CAL_TIME, 0x3c}, // Default init value
@ -369,13 +368,13 @@ static uint8_t __attribute__((unused)) DSM_Check_RX_packet()
uint16_t ReadDsm()
{
#define DSM_CH1_CH2_DELAY 4010 // Time between write of channel 1 and channel 2
#define DSM_WRITE_DELAY 1550 // Time after write to verify write complete
#define DSM_WRITE_DELAY 1950 // Time after write to verify write complete
#define DSM_READ_DELAY 600 // Time before write to check read phase, and switch channels. Was 400 but 600 seems what the 328p needs to read a packet
uint16_t start;
#if defined DSM_TELEMETRY
uint8_t rx_phase;
uint8_t len;
#endif
uint8_t start;
switch(phase)
{
@ -451,19 +450,28 @@ uint16_t ReadDsm()
return DSM_WRITE_DELAY;
case DSM_CH1_CHECK_A:
case DSM_CH1_CHECK_B:
start=micros();
while ((uint16_t)micros()-start < 500) // Wait max 500µs
if(CYRF_ReadRegister(CYRF_04_TX_IRQ_STATUS) & 0x02)
break;
set_sop_data_crc();
phase++; // change from CH1_CHECK to CH2_WRITE
return DSM_CH1_CH2_DELAY - DSM_WRITE_DELAY;
case DSM_CH2_CHECK_A:
case DSM_CH2_CHECK_B:
start=micros();
while ((uint16_t)micros()-start < 500) // Wait max 500µs
while ((uint8_t)micros()-start < 100) // Wait max 100µs, max I've seen is 50µs
if(CYRF_ReadRegister(CYRF_04_TX_IRQ_STATUS) & 0x02)
break;
if(phase==DSM_CH1_CHECK_A || phase==DSM_CH1_CHECK_B)
{
#if defined DSM_TELEMETRY
// reset cyrf6936 if freezed after switching from TX to RX
if (((CYRF_ReadRegister(CYRF_04_TX_IRQ_STATUS) & 0x22) == 0x20) || (CYRF_ReadRegister(CYRF_02_TX_CTRL) & 0x80))
{
CYRF_Reset();
cyrf_config();
cyrf_configdata();
CYRF_SetTxRxMode(TX_EN);
}
#endif
set_sop_data_crc();
phase++; // change from CH1_CHECK to CH2_WRITE
return DSM_CH1_CH2_DELAY - DSM_WRITE_DELAY;
}
if (phase == DSM_CH2_CHECK_A)
CYRF_SetPower(0x28); //Keep transmit power in sync
#if defined DSM_TELEMETRY

View File

@ -63,7 +63,7 @@ static void __attribute__((unused)) DEVO_add_pkt_suffix()
BIND_SET_PULLUP; // set pullup
if(IS_BIND_BUTTON_on)
{
eeprom_write_byte((uint8_t*)(30+mode_select),0x01); // Set fixed id mode for the current model
eeprom_write_byte((EE_ADDR)(30+mode_select),0x01); // Set fixed id mode for the current model
option=1;
}
BIND_SET_OUTPUT;

View File

@ -274,13 +274,14 @@ uint16_t ReadFrSkyX()
return 3000;
case FRSKY_DATA4:
len = CC2500_ReadReg(CC2500_3B_RXBYTES | CC2500_READ_BURST) & 0x7F;
if (len && (len<MAX_PKT))
if (len && (len<=(0x0E + 3))) //Telemetry frame is 17
{
counter=0;
CC2500_ReadData(pkt, len);
#if defined TELEMETRY
frsky_check_telemetry(pkt,len); //check if valid telemetry packets
//parse telemetry packets here
//The same telemetry function used by FrSky(D8).
frsky_check_telemetry(pkt,len); //check if valid telemetry packets
//parse telemetry packets here
//The same telemetry function used by FrSky(D8).
#endif
}
else
@ -292,7 +293,9 @@ uint16_t ReadFrSkyX()
seq_last_sent = 0;
seq_last_rcvd = 8;
counter=0;
telemetry_lost=1;
}
CC2500_Strobe(CC2500_SFRX); //flush the RXFIFO
}
state = FRSKY_DATA1;
return 300;

View File

@ -58,7 +58,7 @@ const uint8_t h7_mys_byte[] = {
0x05, 0x15, 0x06, 0x16, 0x07, 0x17, 0x00, 0x10
};
static const u8 ls_mys_byte[] = {
static const uint8_t ls_mys_byte[] = {
0x05, 0x15, 0x25, 0x06, 0x16, 0x26,
0x07, 0x17, 0x27, 0x00, 0x10, 0x20,
0x01, 0x11, 0x21, 0x02, 0x12, 0x22,

View File

@ -1,7 +1,7 @@
#define ARDUINO_AVR_PRO 1
//#define __AVR_ATmega328P__ 1
#define XMEGA 1
#define ORANGE_TX 1
// For BLUE module use:
//#define DSM_BLUE

View File

@ -13,16 +13,6 @@
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// Check selected board type
#ifndef XMEGA
#if not defined(ARDUINO_AVR_PRO) && not defined(ARDUINO_AVR_MINI) && not defined(ARDUINO_AVR_NANO)
#error You must select the board type "Arduino Pro or Pro Mini" or "Arduino Mini"
#endif
#if F_CPU != 16000000L || not defined(__AVR_ATmega328P__)
#error You must select the processor type "ATmega328(5V, 16MHz)"
#endif
#endif
//******************
// Protocols
//******************
@ -159,27 +149,6 @@ struct PPM_Parameters
// Macros
#define NOP() __asm__ __volatile__("nop")
//*******************
//*** Timer ***
//*******************
#ifdef XMEGA
#define TIFR1 TCC1.INTFLAGS
#define OCF1A_bm TC1_CCAIF_bm
#define OCR1A TCC1.CCA
#define TCNT1 TCC1.CNT
#define UDR0 USARTC0.DATA
#define OCF1B_bm TC1_CCBIF_bm
#define OCR1B TCC1.CCB
#define TIMSK1 TCC1.INTCTRLB
#define SET_TIMSK1_OCIE1B TIMSK1 = (TIMSK1 & 0xF3) | 0x04
#define CLR_TIMSK1_OCIE1B TIMSK1 &= 0xF3
#else
#define OCF1A_bm _BV(OCF1A)
#define OCF1B_bm _BV(OCF1B)
#define SET_TIMSK1_OCIE1B TIMSK1 |= _BV(OCIE1B)
#define CLR_TIMSK1_OCIE1B TIMSK1 &=~_BV(OCIE1B)
#endif
//***************
//*** Flags ***
//***************

View File

@ -20,24 +20,25 @@
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#include <avr/eeprom.h>
#include <avr/pgmspace.h>
//#define DEBUG_TX
#include "Pins.h"
#include "Multiprotocol.h"
//Multiprotocol module configuration file
#include "_Config.h"
#include "Pins.h"
#include "TX_Def.h"
#include "Validate.h"
#ifdef XMEGA
#undef ENABLE_PPM // Disable PPM for OrangeTX module
#undef A7105_INSTALLED // Disable A7105 for OrangeTX module
#undef CC2500_INSTALLED // Disable CC2500 for OrangeTX module
#undef NRF24L01_INSTALLED // Disable NRF for OrangeTX module
#define TELEMETRY // Enable telemetry
#define INVERT_TELEMETRY // Enable invert telemetry
#define DSM_TELEMETRY // Enable DSM telemetry
#ifndef STM32_BOARD
#include <avr/eeprom.h>
#else
#undef __cplusplus
#include <libmaple/usart.h>
#include <libmaple/timer.h>
#include <SPI.h>
#include <EEPROM.h>
HardwareTimer timer(2);
#endif
//Global constants/variables
@ -97,7 +98,7 @@ uint8_t protocol_flags=0,protocol_flags2=0;
// PPM variable
volatile uint16_t PPM_data[NUM_CHN];
#ifndef XMEGA
#ifndef ORANGE_TX
//Random variable
volatile uint32_t gWDT_entropy=0;
#endif
@ -117,35 +118,17 @@ volatile uint8_t rx_buff[RXBUFFER_SIZE];
volatile uint8_t rx_ok_buff[RXBUFFER_SIZE];
volatile uint8_t discard_frame = 0;
//Make sure telemetry is selected correctly
#ifndef TELEMETRY
#undef INVERT_TELEMETRY
#undef DSM_TELEMETRY
#undef SPORT_TELEMETRY
#undef HUB_TELEMETRY
#else
#if not defined(CYRF6936_INSTALLED) || not defined(DSM_CYRF6936_INO)
#undef DSM_TELEMETRY
#endif
#if (not defined(CC2500_INSTALLED) || not defined(FRSKYD_CC2500_INO)) && (not defined(A7105_INSTALLED) || not defined(HUBSAN_A7105_INO))
#undef HUB_TELEMETRY
#endif
#if not defined(CC2500_INSTALLED) || not defined(FRSKYX_CC2500_INO)
#undef SPORT_TELEMETRY
#endif
#ifdef STM32_BOARD
void PPM_decode();
void ISR_COMPB();
#endif
#if not defined(DSM_TELEMETRY) && not defined(HUB_TELEMETRY) && not defined(SPORT_TELEMETRY)
#undef TELEMETRY
#undef INVERT_TELEMETRY
#endif
// Telemetry
#define MAX_PKT 27
uint8_t pkt[MAX_PKT];//telemetry receiving packets
#if defined(TELEMETRY)
#ifdef INVERT_TELEMETRY
// enable bit bash for serial
#ifndef XMEGA
#if not defined(ORANGE_TX) && not defined(STM32_BOARD)
// enable bit bash for serial
#define BASH_SERIAL 1
#endif
#define INVERT_SERIAL 1
@ -160,9 +143,9 @@ uint8_t pkt[MAX_PKT];//telemetry receiving packets
#endif // BASH_SERIAL
uint8_t v_lipo;
int16_t RSSI_dBm;
//const uint8_t RSSI_offset=72;//69 71.72 values db
uint8_t telemetry_link=0;
uint8_t telemetry_counter=0;
uint8_t telemetry_lost;
#endif
// Callback
@ -172,8 +155,9 @@ void_function_t remote_callback = 0;
// Init
void setup()
{
#ifdef XMEGA
// General pinout
// General pinout
#ifdef ORANGE_TX
//XMEGA
PORTD.OUTSET = 0x17 ;
PORTD.DIRSET = 0xB2 ;
PORTD.DIRCLR = 0x4D ;
@ -189,8 +173,40 @@ void setup()
TCC1.PER = 0xFFFF ;
TCNT1 = 0 ;
TCC1.CTRLA = 0x0B ; // Event3 (prescale of 16)
#else
// General pinout
#elif defined STM32_BOARD
//STM32
pinMode(A7105_CSN_pin,OUTPUT);
pinMode(CC25_CSN_pin,OUTPUT);
pinMode(NRF_CSN_pin,OUTPUT);
pinMode(CYRF_CSN_pin,OUTPUT);
pinMode(CYRF_RST_pin,OUTPUT);
pinMode(PE1_pin,OUTPUT);
pinMode(PE2_pin,OUTPUT);
#if defined TELEMETRY
pinMode(TX_INV_pin,OUTPUT);
pinMode(RX_INV_pin,OUTPUT);
#if defined INVERT_SERIAL
TX_INV_on;//activated inverter for both serial TX and RX signals
RX_INV_on;
#else
TX_INV_off;
RX_INV_off;
#endif
#endif
pinMode(BIND_pin,INPUT_PULLUP);
pinMode(PPM_pin,INPUT);
pinMode(S1_pin,INPUT_PULLUP);//dial switch
pinMode(S2_pin,INPUT_PULLUP);
pinMode(S3_pin,INPUT_PULLUP);
pinMode(S4_pin,INPUT_PULLUP);
//Random pins
pinMode(PB0, INPUT_ANALOG); // set up pin for analog input
pinMode(PB1, INPUT_ANALOG); // set up pin for analog input
//select the counter clock.
start_timer2();//0.5us
#else
//ATMEGA328p
// all inputs
DDRB=0x00;DDRC=0x00;DDRD=0x00;
// outputs
@ -242,8 +258,12 @@ void setup()
NRF_CSN_on;
#endif
// Set SPI lines
SDI_on;
SCLK_off;
#ifdef STM32_BOARD
initSPI2();
#else
SDI_on;
SCLK_off;
#endif
// Set servos positions
for(uint8_t i=0;i<NUM_CHN;i++)
@ -264,6 +284,8 @@ void setup()
// after this mode_select will be one of {0000, 0001, ..., 1111}
#ifndef ENABLE_PPM
mode_select = MODE_SERIAL ; // force serial mode
#elif defined STM32_BOARD
mode_select= 0x0F -(uint8_t)(((GPIOA->regs->IDR)>>4)&0x0F);
#else
mode_select =
((MODE_DIAL1_ipr & _BV(MODE_DIAL1_pin)) ? 0 : 1) +
@ -279,9 +301,13 @@ void setup()
//Init RF modules
modules_reset();
#ifndef XMEGA
#ifndef ORANGE_TX
//Init the seed with a random value created from watchdog timer for all protocols requiring random values
randomSeed(random_value());
#ifdef STM32_BOARD
randomSeed((uint32_t)analogRead(PB0) << 10 | analogRead(PB1));
#else
randomSeed(random_value());
#endif
#endif
// Read or create protocol id
@ -306,15 +332,19 @@ void setup()
protocol_init();
//Configure PPM interrupt
#if PPM_pin == 2
EICRA |= _BV(ISC01); // The rising edge of INT0 pin D2 generates an interrupt request
EIMSK |= _BV(INT0); // INT0 interrupt enable
#elif PPM_pin == 3
EICRA |= _BV(ISC11); // The rising edge of INT1 pin D3 generates an interrupt request
EIMSK |= _BV(INT1); // INT1 interrupt enable
#ifndef STM32_BOARD
//Configure PPM interrupt
#if PPM_pin == 2
EICRA |= _BV(ISC01); // The rising edge of INT0 pin D2 generates an interrupt request
EIMSK |= _BV(INT0); // INT0 interrupt enable
#elif PPM_pin == 3
EICRA |= _BV(ISC11); // The rising edge of INT1 pin D3 generates an interrupt request
EIMSK |= _BV(INT1); // INT1 interrupt enable
#else
#error PPM pin can only be 2 or 3
#endif
#else
#error PPM pin can only be 2 or 3
attachInterrupt(PPM_pin,PPM_decode,FALLING);
#endif
#if defined(TELEMETRY)
@ -351,14 +381,25 @@ void loop()
}
while(remote_callback==0);
}
if( (TIFR1 & OCF1A_bm) != 0)
{
cli(); // Disable global int due to RW of 16 bits registers
OCR1A=TCNT1; // Callback should already have been called... Use "now" as new sync point.
sei(); // Enable global int
}
else
while((TIFR1 & OCF1A_bm) == 0); // Wait before callback
#ifndef STM32_BOARD
if( (TIFR1 & OCF1A_bm) != 0)
{
cli(); // Disable global int due to RW of 16 bits registers
OCR1A=TCNT1; // Callback should already have been called... Use "now" as new sync point.
sei(); // Enable global int
}
else
while((TIFR1 & OCF1A_bm) == 0); // Wait before callback
#else
if((TIMER2_BASE->SR & TIMER_SR_CC1IF)!=0)
{
cli();
OCR1A = TCNT1;
sei();
}
else
while((TIMER2_BASE->SR & TIMER_SR_CC1IF )==0); // Wait before callback
#endif
do
{
TX_MAIN_PAUSE_on;
@ -371,18 +412,30 @@ void loop()
next_callback-=2000; // We will wait below for 2ms
cli(); // Disable global int due to RW of 16 bits registers
OCR1A += 2000*2 ; // set compare A for callback
TIFR1=OCF1A_bm; // clear compare A=callback flag
#ifndef STM32_BOARD
TIFR1=OCF1A_bm; // clear compare A=callback flag
#else
TIMER2_BASE->SR &= ~TIMER_SR_CC1IF; //clear compare Flag
#endif
sei(); // enable global int
Update_All();
if(IS_CHANGE_PROTOCOL_FLAG_on)
break; // Protocol has been changed
while((TIFR1 & OCF1A_bm) == 0); // wait 2ms...
#ifndef STM32_BOARD
while((TIFR1 & OCF1A_bm) == 0); // wait 2ms...
#else
while((TIMER2_BASE->SR & TIMER_SR_CC1IF)==0);//2ms wait
#endif
}
// at this point we have a maximum of 4ms in next_callback
next_callback *= 2 ;
cli(); // Disable global int due to RW of 16 bits registers
OCR1A+= next_callback ; // set compare A for callback
TIFR1=OCF1A_bm; // clear compare A=callback flag
#ifndef STM32_BOARD
TIFR1=OCF1A_bm; // clear compare A=callback flag
#else
TIMER2_BASE->SR &= ~TIMER_SR_CC1IF; //clear compare Flag write zero
#endif
diff=OCR1A-TCNT1; // compare timer and comparator
sei(); // enable global int
}
@ -465,12 +518,14 @@ static void update_led_status(void)
inline void tx_pause()
{
#ifdef TELEMETRY
#ifdef XMEGA
USARTC0.CTRLA &= ~0x03 ; // Pause telemetry by disabling transmitter interrupt
#else
#ifndef BASH_SERIAL
UCSR0B &= ~_BV(UDRIE0); // Pause telemetry by disabling transmitter interrupt
#ifndef STM32_BOARD
#ifdef TELEMETRY
#ifdef ORANGE_TX
USARTC0.CTRLA &= ~0x03 ; // Pause telemetry by disabling transmitter interrupt
#else
#ifndef BASH_SERIAL
UCSR0B &= ~_BV(UDRIE0); // Pause telemetry by disabling transmitter interrupt
#endif
#endif
#endif
#endif
@ -478,24 +533,41 @@ inline void tx_pause()
inline void tx_resume()
{
#ifdef TELEMETRY
if(!IS_TX_PAUSE_on)
{
#ifdef XMEGA
cli() ;
USARTC0.CTRLA = (USARTC0.CTRLA & 0xFC) | 0x01 ; // Resume telemetry by enabling transmitter interrupt
sei() ;
#else
#ifndef BASH_SERIAL
UCSR0B |= _BV(UDRIE0); // Resume telemetry by enabling transmitter interrupt
#ifndef STM32_BOARD
#ifdef TELEMETRY
if(!IS_TX_PAUSE_on)
{
#ifdef ORANGE_TX
cli() ;
USARTC0.CTRLA = (USARTC0.CTRLA & 0xFC) | 0x01 ; // Resume telemetry by enabling transmitter interrupt
sei() ;
#else
resumeBashSerial() ;
#ifndef BASH_SERIAL
UCSR0B |= _BV(UDRIE0); // Resume telemetry by enabling transmitter interrupt
#else
resumeBashSerial() ;
#endif
#endif
#endif
}
}
#endif
#endif
}
#ifdef STM32_BOARD
void start_timer2()
{
// Pause the timer while we're configuring it
timer.pause();
TIMER2_BASE->PSC = 35; //36-1;for 72 MHZ /0.5sec/(35+1)
TIMER2_BASE->ARR = 0xFFFF; //count till max
timer.setMode(TIMER_CH1, TIMER_OUTPUT_COMPARE);
timer.setMode(TIMER_CH2, TIMER_OUTPUT_COMPARE);
// Refresh the timer's count, prescale, and overflow
timer.refresh();
timer.resume();
}
#endif
// Protocol start
static void protocol_init()
{
@ -507,6 +579,7 @@ static void protocol_init()
tx_pause();
pass=0;
telemetry_link=0;
telemetry_lost=1;
#ifndef BASH_SERIAL
tx_tail=0;
tx_head=0;
@ -521,7 +594,7 @@ static void protocol_init()
else
BIND_DONE;
PE1_on; //NRF24L01 antenna RF3 by default
PE1_on; //NRF24L01 antenna RF3 by default
PE2_off; //NRF24L01 antenna RF3 by default
switch(protocol) // Init the requested protocol
@ -593,13 +666,13 @@ static void protocol_init()
{
if(IS_BIND_BUTTON_FLAG_on)
{
eeprom_write_byte((uint8_t*)(30+mode_select),0x00); // reset to autobind mode for the current model
eeprom_write_byte((EE_ADDR)(30+mode_select),0x00); // reset to autobind mode for the current model
option=0;
}
else
{
option=eeprom_read_byte((uint8_t*)(30+mode_select)); // load previous mode: autobind or fixed id
if(option!=1) option=0; // if not fixed id mode then it should be autobind
option=eeprom_read_byte((EE_ADDR)(30+mode_select)); // load previous mode: autobind or fixed id
if(option!=1) option=0; // if not fixed id mode then it should be autobind
}
}
#endif //ENABLE_PPM
@ -731,7 +804,11 @@ static void protocol_init()
cli(); // disable global int
OCR1A = TCNT1 + next_callback*2; // set compare A for callback
sei(); // enable global int
TIFR1 = OCF1A_bm ; // clear compare A flag
#ifndef STM32_BOARD
TIFR1 = OCF1A_bm ; // clear compare A flag
#else
TIMER2_BASE->SR &= ~TIMER_SR_CC1IF; //clear compare Flag write zero
#endif
BIND_BUTTON_FLAG_off; // do not bind/reset id anymore even if protocol change
}
@ -787,7 +864,7 @@ void update_serial_data()
Servo_data[i]=((((*((uint32_t *)p))>>dec)&0x7FF)*5)/8+860; //value range 860<->2140 -125%<->+125%
}
RX_DONOTUPDTAE_off;
#ifdef XMEGA
#ifdef ORANGE_TX
cli();
#else
UCSR0B &= ~_BV(RXCIE0); // RX interrupt disable
@ -797,7 +874,7 @@ void update_serial_data()
RX_FLAG_on; // data to be processed next time...
RX_MISSED_BUFF_off;
}
#ifdef XMEGA
#ifdef ORANGE_TX
sei();
#else
UCSR0B |= _BV(RXCIE0) ; // RX interrupt enable
@ -826,7 +903,7 @@ void modules_reset()
void Mprotocol_serial_init()
{
#ifdef XMEGA
#ifdef ORANGE_TX
PORTC.OUTSET = 0x08 ;
PORTC.DIRSET = 0x08 ;
@ -837,10 +914,17 @@ void Mprotocol_serial_init()
USARTC0.CTRLA = (USARTC0.CTRLA & 0xCF) | 0x10 ;
USARTC0.CTRLC = 0x2B ;
UDR0 ;
#ifdef INVERT_TELEMETRY
#ifdef INVERT_SERIAL
PORTC.PIN3CTRL |= 0x40 ;
#endif
#elif defined STM32_BOARD
Serial1.begin(100000,SERIAL_8E2);//USART2
Serial2.begin(100000,SERIAL_8E2);//USART3
USART2_BASE->CR1 |= USART_CR1_PCE_BIT;
USART3_BASE->CR1 &= ~ USART_CR1_RE;//disable
USART2_BASE->CR1 &= ~ USART_CR1_TE;//disable transmit
#else
//ATMEGA328p
#include <util/setbaud.h>
UBRR0H = UBRRH_VALUE;
UBRR0L = UBRRL_VALUE;
@ -856,7 +940,7 @@ void Mprotocol_serial_init()
initTXSerial( SPEED_100K ) ;
#endif //TELEMETRY
#endif //DEBUG_TX
#endif //XMEGA
#endif //ORANGE_TX
}
#if defined(TELEMETRY)
@ -881,7 +965,7 @@ static void set_rx_tx_addr(uint32_t id)
rx_tx_addr[4] = (rx_tx_addr[2]&0xF0)|(rx_tx_addr[3]&0x0F);
}
#ifndef XMEGA
#if not defined (ORANGE_TX) && not defined (STM32_BOARD)
static void random_init(void)
{
cli(); // Temporarily turn off interrupts, until WDT configured
@ -900,24 +984,26 @@ static uint32_t random_value(void)
static uint32_t random_id(uint16_t adress, uint8_t create_new)
{
uint32_t id;
uint8_t txid[4];
uint32_t id=0;
if(eeprom_read_byte((uint8_t*)(adress+10))==0xf0 && !create_new)
if(eeprom_read_byte((EE_ADDR)(adress+10))==0xf0 && !create_new)
{ // TXID exists in EEPROM
eeprom_read_block((void*)txid,(const void*)adress,4);
id=(txid[0] | ((uint32_t)txid[1]<<8) | ((uint32_t)txid[2]<<16) | ((uint32_t)txid[3]<<24));
for(uint8_t i=4;i>0;i--)
{
id<<=8;
id|=eeprom_read_byte((EE_ADDR)adress+i-1);
}
if(id!=0x2AD141A7) //ID with seed=0
return id;
}
// Generate a random ID
id = random(0xfefefefe) + ((uint32_t)random(0xfefefefe) << 16);
txid[0]= (id &0xFF);
txid[1] = ((id >> 8) & 0xFF);
txid[2] = ((id >> 16) & 0xFF);
txid[3] = ((id >> 24) & 0xFF);
eeprom_write_block((const void*)txid,(void*)adress,4);
eeprom_write_byte((uint8_t*)(adress+10),0xf0);//write bind flag in eeprom.
for(uint8_t i=0;i<4;i++)
{
eeprom_write_byte((EE_ADDR)adress+i,id);
id>>=8;
}
eeprom_write_byte((EE_ADDR)(adress+10),0xf0);//write bind flag in eeprom.
return id;
}
@ -929,12 +1015,14 @@ static uint32_t random_id(uint16_t adress, uint8_t create_new)
//PPM
#ifdef ENABLE_PPM
#ifdef XMEGA
#ifdef ORANGE_TX
#if PPM_pin == 2
ISR(PORTD_INT0_vect)
#else
ISR(PORTD_INT1_vect)
#endif
#elif defined STM32_BOARD
void PPM_decode()
#else
#if PPM_pin == 2
ISR(INT0_vect, ISR_NOBLOCK)
@ -969,15 +1057,22 @@ static uint32_t random_id(uint16_t adress, uint8_t create_new)
//Serial RX
#ifdef ENABLE_SERIAL
#ifdef XMEGA
#ifdef ORANGE_TX
ISR(USARTC0_RXC_vect)
#elif defined STM32_BOARD
#ifdef __cplusplus
extern "C" {
#endif
void __irq_usart2()
#else
ISR(USART_RX_vect)
#endif
{ // RX interrupt
static uint8_t idx=0;
#ifdef XMEGA
#ifdef ORANGE_TX
if((USARTC0.STATUS & 0x1C)==0) // Check frame error, data overrun and parity error
#elif defined STM32_BOARD
if((USART2_BASE->SR & USART_SR_RXNE) && (USART2_BASE->SR &0x0F)==0)
#else
UCSR0B &= ~_BV(RXCIE0) ; // RX interrupt disable
sei() ;
@ -991,11 +1086,18 @@ static uint32_t random_id(uint16_t adress, uint8_t create_new)
rx_buff[0]=UDR0;
if((rx_buff[0]&0xFE)==0x54) // If 1st byte is 0x54 or 0x55 it looks ok
{
TX_RX_PAUSE_on;
tx_pause();
OCR1B = TCNT1+(6500L) ; // Full message should be received within timer of 3250us
TIFR1 = OCF1B_bm ; // clear OCR1B match flag
SET_TIMSK1_OCIE1B ; // enable interrupt on compare B match
#if defined STM32_BOARD
uint16_t OCR1B;
OCR1B =TCNT1+(6500L);
timer.setCompare(TIMER_CH2,OCR1B);
timer.attachCompare2Interrupt(ISR_COMPB);
#else
TX_RX_PAUSE_on;
tx_pause();
OCR1B = TCNT1+(6500L) ; // Full message should be received within timer of 3250us
TIFR1 = OCF1B_bm ; // clear OCR1B match flag
SET_TIMSK1_OCIE1B ; // enable interrupt on compare B match
#endif
idx++;
}
}
@ -1022,30 +1124,43 @@ static uint32_t random_id(uint16_t adress, uint8_t create_new)
}
if(discard_frame==1)
{
CLR_TIMSK1_OCIE1B; // Disable interrupt on compare B match
TX_RX_PAUSE_off;
tx_resume();
#ifdef STM32_BOARD
detachInterrupt(2); // Disable interrupt on ch2
#else
CLR_TIMSK1_OCIE1B; // Disable interrupt on compare B match
TX_RX_PAUSE_off;
tx_resume();
#endif
}
#ifndef XMEGA
#if not defined (ORANGE_TX) && not defined (STM32_BOARD)
cli() ;
UCSR0B |= _BV(RXCIE0) ; // RX interrupt enable
#endif
}
#if defined (STM32_BOARD) && defined (__cplusplus)
}
#endif
//Serial timer
#ifdef XMEGA
#ifdef ORANGE_TX
ISR(TCC1_CCB_vect)
#elif defined STM32_BOARD
void ISR_COMPB()
#else
ISR(TIMER1_COMPB_vect, ISR_NOBLOCK )
#endif
{ // Timer1 compare B interrupt
discard_frame=1;
CLR_TIMSK1_OCIE1B; // Disable interrupt on compare B match
tx_resume();
#ifdef STM32_BOARD
detachInterrupt(2); // Disable interrupt on ch2
#else
CLR_TIMSK1_OCIE1B; // Disable interrupt on compare B match
tx_resume();
#endif
}
#endif //ENABLE_SERIAL
#ifndef XMEGA
#if not defined (ORANGE_TX) && not defined (STM32_BOARD)
// Random interrupt service routine called every time the WDT interrupt is triggered.
// It is only enabled at startup to generate a seed.
ISR(WDT_vect)

View File

@ -14,9 +14,7 @@
*/
//---------------------------
// AVR nrf chip bitbang SPI functions
//---------------------------
#ifdef NRF24L01_INSTALLED
#include "iface_nrf24l01.h"
@ -181,7 +179,8 @@ void NRF24L01_SetTxRxMode(enum TXRX_State mode)
NRF_CE_on;
}
else
if (mode == RX_EN) {
if (mode == RX_EN)
{
NRF_CE_off;
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // reset the flag(s)
NRF24L01_WriteReg(NRF24L01_00_CONFIG, 0x0F); // switch to RX mode
@ -327,7 +326,7 @@ void XN297_Configure(uint8_t flags)
NRF24L01_WriteReg(NRF24L01_00_CONFIG, flags & 0xFF);
}
void XN297_SetScrambledMode(const u8 mode)
void XN297_SetScrambledMode(const uint8_t mode)
{
xn297_scramble_enabled = mode;
}
@ -583,3 +582,4 @@ void LT8900_WritePayload(uint8_t* msg, uint8_t len)
NRF24L01_WritePayload(LT8900_buffer+LT8900_buffer_start,pos_final+pos-LT8900_buffer_start);
}
// End of LT8900 emulation
#endif

View File

@ -15,195 +15,338 @@
//*******************
//*** Pinouts ***
//*******************
#ifndef STM32_BOARD
// TX
#define SERIAL_TX_pin 1 //PD1
#define SERIAL_TX_port PORTD
#define SERIAL_TX_ddr DDRD
#define SERIAL_TX_output SERIAL_TX_ddr |= _BV(SERIAL_TX_pin)
#define SERIAL_TX_on SERIAL_TX_port |= _BV(SERIAL_TX_pin)
#define SERIAL_TX_off SERIAL_TX_port &= ~_BV(SERIAL_TX_pin)
#ifdef DEBUG_TX
#define DEBUG_TX_on SERIAL_TX_on
#define DEBUG_TX_off SERIAL_TX_off
#define DEBUG_TX_toggle SERIAL_TX_port ^= _BV(SERIAL_TX_pin)
#else
#define DEBUG_TX_on
#define DEBUG_TX_off
#define DEBUG_TX_toggle
#endif
// TX
#define SERIAL_TX_pin 1 //PD1
#define SERIAL_TX_port PORTD
#define SERIAL_TX_ddr DDRD
#define SERIAL_TX_output SERIAL_TX_ddr |= _BV(SERIAL_TX_pin)
#define SERIAL_TX_on SERIAL_TX_port |= _BV(SERIAL_TX_pin)
#define SERIAL_TX_off SERIAL_TX_port &= ~_BV(SERIAL_TX_pin)
#ifdef DEBUG_TX
#define DEBUG_TX_on SERIAL_TX_ON
#define DEBUG_TX_off SERIAL_TX_OFF
#define DEBUG_TX_toggle SERIAL_TX_port ^= _BV(SERIAL_TX_pin)
#else
#define DEBUG_TX_on
#define DEBUG_TX_off
#define DEBUG_TX_toggle
// Dial
#define MODE_DIAL1_pin 2
#define MODE_DIAL1_port PORTB
#define MODE_DIAL1_ipr PINB
#define MODE_DIAL2_pin 3
#define MODE_DIAL2_port PORTB
#define MODE_DIAL2_ipr PINB
#define MODE_DIAL3_pin 4
#define MODE_DIAL3_port PORTB
#define MODE_DIAL3_ipr PINB
#define MODE_DIAL4_pin 0
#define MODE_DIAL4_port PORTC
#define MODE_DIAL4_ipr PINC
// PPM
#define PPM_pin 3 //D3 = PD3
#define PPM_port PORTD
// SDIO
#define SDI_pin 5 //D5 = PD5
#define SDI_port PORTD
#define SDI_ipr PIND
#define SDI_ddr DDRD
#ifdef ORANGE_TX
#define SDI_on SDI_port.OUTSET = _BV(SDI_pin)
#define SDI_off SDI_port.OUTCLR = _BV(SDI_pin)
#else
#define SDI_on SDI_port |= _BV(SDI_pin)
#define SDI_off SDI_port &= ~_BV(SDI_pin)
#define SDI_1 (SDI_ipr & _BV(SDI_pin))
#define SDI_0 (SDI_ipr & _BV(SDI_pin)) == 0x00
#endif
#define SDI_input SDI_ddr &= ~_BV(SDI_pin)
#define SDI_output SDI_ddr |= _BV(SDI_pin)
//SDO
#define SDO_pin 6 //D6 = PD6
#define SDO_port PORTD
#define SDO_ipr PIND
#ifdef ORANGE_TX
#define SDO_1 (SDO_port.IN & _BV(SDO_pin))
#define SDO_0 (SDO_port.IN & _BV(SDO_pin)) == 0x00
#else
#define SDO_1 (SDO_ipr & _BV(SDO_pin))
#define SDO_0 (SDO_ipr & _BV(SDO_pin)) == 0x00
#endif
// SCLK
#define SCLK_port PORTD
#define SCLK_ddr DDRD
#ifdef ORANGE_TX
#define SCLK_pin 7 //PD7
#define SCLK_on SCLK_port.OUTSET = _BV(SCLK_pin)
#define SCLK_off SCLK_port.OUTCLR = _BV(SCLK_pin)
#else
#define SCLK_pin 4 //D4 = PD4
#define SCLK_output SCLK_ddr |= _BV(SCLK_pin)
#define SCLK_on SCLK_port |= _BV(SCLK_pin)
#define SCLK_off SCLK_port &= ~_BV(SCLK_pin)
#endif
// A7105
#define A7105_CSN_pin 2 //D2 = PD2
#define A7105_CSN_port PORTD
#define A7105_CSN_ddr DDRD
#define A7105_CSN_output A7105_CSN_ddr |= _BV(A7105_CSN_pin)
#define A7105_CSN_on A7105_CSN_port |= _BV(A7105_CSN_pin)
#define A7105_CSN_off A7105_CSN_port &= ~_BV(A7105_CSN_pin)
// CC2500
#define CC25_CSN_pin 7 //D7 = PD7
#define CC25_CSN_port PORTD
#define CC25_CSN_ddr DDRD
#define CC25_CSN_output CC25_CSN_ddr |= _BV(CC25_CSN_pin)
#define CC25_CSN_on CC25_CSN_port |= _BV(CC25_CSN_pin)
#define CC25_CSN_off CC25_CSN_port &= ~_BV(CC25_CSN_pin)
// NRF24L01
#define NRF_CSN_pin 0 //D8 = PB0
#define NRF_CSN_port PORTB
#define NRF_CSN_ddr DDRB
#define NRF_CSN_output NRF_CSN_ddr |= _BV(NRF_CSN_pin)
#define NRF_CSN_on NRF_CSN_port |= _BV(NRF_CSN_pin)
#define NRF_CSN_off NRF_CSN_port &= ~_BV(NRF_CSN_pin)
#define NRF_CE_on
#define NRF_CE_off
// CYRF6936
#ifdef ORANGE_TX
#define CYRF_CSN_pin 4 //PD4
#define CYRF_CSN_port PORTD
#define CYRF_CSN_ddr DDRD
#define CYRF_CSN_on CYRF_CSN_port.OUTSET = _BV(CYRF_CSN_pin)
#define CYRF_CSN_off CYRF_CSN_port.OUTCLR = _BV(CYRF_CSN_pin)
#define CYRF_RST_pin 0 //PE0
#define CYRF_RST_port PORTE
#define CYRF_RST_ddr DDRE
#define CYRF_RST_HI CYRF_RST_port.OUTSET = _BV(CYRF_RST_pin)
#define CYRF_RST_LO CYRF_RST_port.OUTCLR = _BV(CYRF_RST_pin)
#else
#define CYRF_CSN_pin 1 //D9 = PB1
#define CYRF_CSN_port PORTB
#define CYRF_CSN_ddr DDRB
#define CYRF_CSN_output CYRF_CSN_ddr |= _BV(CYRF_CSN_pin)
#define CYRF_CSN_on CYRF_CSN_port |= _BV(CYRF_CSN_pin)
#define CYRF_CSN_off CYRF_CSN_port &= ~_BV(CYRF_CSN_pin)
#define CYRF_RST_pin 5 //A5 = PC5
#define CYRF_RST_port PORTC
#define CYRF_RST_ddr DDRC
#define CYRF_RST_output CYRF_RST_ddr |= _BV(CYRF_RST_pin)
#define CYRF_RST_HI CYRF_RST_port |= _BV(CYRF_RST_pin)
#define CYRF_RST_LO CYRF_RST_port &= ~_BV(CYRF_RST_pin)
#endif
//RF Switch
#ifdef ORANGE_TX
#define PE1_on
#define PE1_off
#define PE2_on
#define PE2_off
#else
#define PE1_pin 1 //A1 = PC1
#define PE1_port PORTC
#define PE1_ddr DDRC
#define PE1_output PE1_ddr |= _BV(PE1_pin)
#define PE1_on PE1_port |= _BV(PE1_pin)
#define PE1_off PE1_port &= ~_BV(PE1_pin)
#define PE2_pin 2 //A2 = PC2
#define PE2_port PORTC
#define PE2_ddr DDRC
#define PE2_output PE2_ddr |= _BV(PE2_pin)
#define PE2_on PE2_port |= _BV(PE2_pin)
#define PE2_off PE2_port &= ~_BV(PE2_pin)
#endif
// LED
#ifdef ORANGE_TX
#define LED_pin 1 //PD1
#define LED_port PORTD
#define LED_ddr DDRD
#define LED_on LED_port.OUTCLR = _BV(LED_pin)
#define LED_off LED_port.OUTSET = _BV(LED_pin)
#define LED_toggle LED_port.OUTTGL = _BV(LED_pin)
#define LED_output LED_port.DIRSET = _BV(LED_pin)
#define IS_LED_on (LED_port.OUT & _BV(LED_pin))
#else
#define LED_pin 5 //D13 = PB5
#define LED_port PORTB
#define LED_ddr DDRB
#define LED_on LED_port |= _BV(LED_pin)
#define LED_off LED_port &= ~_BV(LED_pin)
#define LED_toggle LED_port ^= _BV(LED_pin)
#define LED_output LED_ddr |= _BV(LED_pin)
#define IS_LED_on (LED_port & _BV(LED_pin))
#endif
//BIND
#ifdef ORANGE_TX
#define BIND_pin 2 //PD2
#define BIND_port PORTD
#define IS_BIND_BUTTON_on ( (BIND_port.IN & _BV(BIND_pin)) == 0x00 )
#else
#define BIND_pin 5 //D13 = PB5
#define BIND_port PORTB
#define BIND_ipr PINB
#define BIND_ddr DDRB
#define BIND_SET_INPUT BIND_ddr &= ~_BV(BIND_pin)
#define BIND_SET_OUTPUT BIND_ddr |= _BV(BIND_pin)
#define BIND_SET_PULLUP BIND_port |= _BV(BIND_pin)
#define IS_BIND_BUTTON_on ( (BIND_ipr & _BV(BIND_pin)) == 0x00 )
#endif
#else //STM32_BOARD
#define BIND_pin PA0
#define LED_pin PA1
//
#define PPM_pin PA8 //PPM 5V tolerant
//
#define S1_pin PA4 //Dial switch pins
#define S2_pin PA5
#define S3_pin PA6
#define S4_pin PA7
//
#define PE1_pin PB4 //PE1
#define PE2_pin PB5 //PE2
//CS pins
#define CC25_CSN_pin PB6 //CC2500
#define NRF_CSN_pin PB7 //NRF24L01
#define CYRF_RST_pin PB8 //CYRF RESET
#define A7105_CSN_pin PB9 //A7105
#define CYRF_CSN_pin PB12 //CYRF CSN
//SPI pins
#define SCK_pin PB13 //SCK
#define SDO_pin PB14 //MISO
#define SDI_pin PB15 //MOSI
//
#define TX_INV_pin PB3
#define RX_INV_pin PB1
//
#define PE1_on digitalWrite(PE1_pin,HIGH)
#define PE1_off digitalWrite(PE1_pin,LOW)
//
#define PE2_on digitalWrite(PE2_pin,HIGH)
#define PE2_off digitalWrite(PE2_pin,LOW)
#define A7105_CSN_on digitalWrite(A7105_CSN_pin,HIGH)
#define A7105_CSN_off digitalWrite(A7105_CSN_pin,LOW)
#define NRF_CE_on
#define NRF_CE_off
#define SCK_on digitalWrite(SCK_pin,HIGH)
#define SCK_off digitalWrite(SCK_pin,LOW)
#define SDI_on digitalWrite(SDI_pin,HIGH)
#define SDI_off digitalWrite(SDI_pin,LOW)
#define SDI_1 (digitalRead(SDI_pin)==HIGH)
#define SDI_0 (digitalRead(SDI_pin)==LOW)
#define CC25_CSN_on digitalWrite(CC25_CSN_pin,HIGH)
#define CC25_CSN_off digitalWrite(CC25_CSN_pin,LOW)
#define NRF_CSN_on digitalWrite(NRF_CSN_pin,HIGH)
#define NRF_CSN_off digitalWrite(NRF_CSN_pin,LOW)
#define CYRF_CSN_on digitalWrite(CYRF_CSN_pin,HIGH)
#define CYRF_CSN_off digitalWrite(CYRF_CSN_pin,LOW)
#define CYRF_RST_HI digitalWrite(CYRF_RST_pin,HIGH) //reset cyrf
#define CYRF_RST_LO digitalWrite(CYRF_RST_pin,LOW) //
#define SDO_1 (digitalRead(SDO_pin)==HIGH)
#define SDO_0 (digitalRead(SDO_pin)==LOW)
#define TX_INV_on digitalWrite(TX_INV_pin,HIGH)
#define TX_INV_off digitalWrite(TX_INV_pin,LOW)
#define RX_INV_on digitalWrite(RX_INV_pin,HIGH)
#define RX_INV_off digitalWrite(RX_INV_pin,LOW)
#define LED_on digitalWrite(LED_pin,HIGH)
#define LED_off digitalWrite(LED_pin,LOW)
#define LED_toggle digitalWrite(LED_pin ,!digitalRead(LED_pin))
#define LED_output pinMode(LED_pin,OUTPUT)
#define IS_LED_on ( digitalRead(LED_pin)==HIGH)
#define BIND_SET_INPUT pinMode(BIND_pin,INPUT)
#define BIND_SET_PULLUP digitalWrite(BIND_pin,HIGH)
#define BIND_SET_OUTPUT pinMode(BIND_pin,OUTPUT)
#define IS_BIND_BUTTON_on (digitalRead(BIND_pin)==LOW)
#define cli() noInterrupts()
#define sei() interrupts()
#define delayMilliseconds(x) delay(x)
//TX Pause
#undef TX_MAIN_PAUSE_off
#undef TX_MAIN_PAUSE_on
#undef IS_TX_MAIN_PAUSE_on
#undef TX_RX_PAUSE_off
#undef TX_RX_PAUSE_on
#undef IS_TX_RX_PAUSE_on
#undef IS_TX_PAUSE_on
#define TX_MAIN_PAUSE_off
#define TX_MAIN_PAUSE_on
#define IS_TX_MAIN_PAUSE_on
#define TX_RX_PAUSE_off
#define TX_RX_PAUSE_on
#define IS_TX_RX_PAUSE_on
#define IS_TX_PAUSE_on
#endif
// Dial
#define MODE_DIAL1_pin 2
#define MODE_DIAL1_port PORTB
#define MODE_DIAL1_ipr PINB
#define MODE_DIAL2_pin 3
#define MODE_DIAL2_port PORTB
#define MODE_DIAL2_ipr PINB
#define MODE_DIAL3_pin 4
#define MODE_DIAL3_port PORTB
#define MODE_DIAL3_ipr PINB
#define MODE_DIAL4_pin 0
#define MODE_DIAL4_port PORTC
#define MODE_DIAL4_ipr PINC
// PPM
#define PPM_pin 3 //D3 = PD3
#define PPM_port PORTD
// SDIO
#define SDI_pin 5 //D5 = PD5
#define SDI_port PORTD
#define SDI_ipr PIND
#define SDI_ddr DDRD
#ifdef XMEGA
#define SDI_on SDI_port.OUTSET = _BV(SDI_pin)
#define SDI_off SDI_port.OUTCLR = _BV(SDI_pin)
//*******************
//*** Timer ***
//*******************
#ifdef ORANGE_TX
#define TIFR1 TCC1.INTFLAGS
#define OCF1A_bm TC1_CCAIF_bm
#define OCR1A TCC1.CCA
#define TCNT1 TCC1.CNT
#define UDR0 USARTC0.DATA
#define OCF1B_bm TC1_CCBIF_bm
#define OCR1B TCC1.CCB
#define TIMSK1 TCC1.INTCTRLB
#define SET_TIMSK1_OCIE1B TIMSK1 = (TIMSK1 & 0xF3) | 0x04
#define CLR_TIMSK1_OCIE1B TIMSK1 &= 0xF3
#else
#define SDI_on SDI_port |= _BV(SDI_pin)
#define SDI_off SDI_port &= ~_BV(SDI_pin)
#define SDI_1 (SDI_ipr & _BV(SDI_pin))
#define SDI_0 (SDI_ipr & _BV(SDI_pin)) == 0x00
#endif
#define SDI_input SDI_ddr &= ~_BV(SDI_pin)
#define SDI_output SDI_ddr |= _BV(SDI_pin)
//SDO
#define SDO_pin 6 //D6 = PD6
#define SDO_port PORTD
#define SDO_ipr PIND
#ifdef XMEGA
#define SDO_1 (SDO_port.IN & _BV(SDO_pin))
#define SDO_0 (SDO_port.IN & _BV(SDO_pin)) == 0x00
#else
#define SDO_1 (SDO_ipr & _BV(SDO_pin))
#define SDO_0 (SDO_ipr & _BV(SDO_pin)) == 0x00
#ifdef STM32_BOARD
#define OCR1A TIMER2_BASE->CCR1
#define TCNT1 TIMER2_BASE->CNT
#define UDR0 USART2_BASE->DR
#define TIFR1 TIMER2_BASE->SR
#define OCF1A_bm TIMER_SR_CC1IF
#define UCSR0B USART2_BASE->CR1
#define RXCIE0 USART_CR1_RXNEIE_BIT
#define TXCIE0 USART_CR1_TXEIE_BIT
//#define TIFR1 TIMER2_BASE->SR
#else
#define OCF1A_bm _BV(OCF1A)
#define OCF1B_bm _BV(OCF1B)
#define SET_TIMSK1_OCIE1B TIMSK1 |= _BV(OCIE1B)
#define CLR_TIMSK1_OCIE1B TIMSK1 &=~_BV(OCIE1B)
#endif
#endif
// SCLK
#define SCLK_port PORTD
#define SCLK_ddr DDRD
#ifdef XMEGA
#define SCLK_pin 7 //PD7
#define SCLK_on SCLK_port.OUTSET = _BV(SCLK_pin)
#define SCLK_off SCLK_port.OUTCLR = _BV(SCLK_pin)
//*******************
//*** EEPROM ***
//*******************
#ifdef STM32_BOARD
#define EE_ADDR uint16
#define eeprom_write_byte EEPROM.write
#define eeprom_read_byte EEPROM.read
#else
#define SCLK_pin 4 //D4 = PD4
#define SCLK_output SCLK_ddr |= _BV(SCLK_pin)
#define SCLK_on SCLK_port |= _BV(SCLK_pin)
#define SCLK_off SCLK_port &= ~_BV(SCLK_pin)
#endif
// A7105
#define A7105_CSN_pin 2 //D2 = PD2
#define A7105_CSN_port PORTD
#define A7105_CSN_ddr DDRD
#define A7105_CSN_output A7105_CSN_ddr |= _BV(A7105_CSN_pin)
#define A7105_CSN_on A7105_CSN_port |= _BV(A7105_CSN_pin)
#define A7105_CSN_off A7105_CSN_port &= ~_BV(A7105_CSN_pin)
// CC2500
#define CC25_CSN_pin 7 //D7 = PD7
#define CC25_CSN_port PORTD
#define CC25_CSN_ddr DDRD
#define CC25_CSN_output CC25_CSN_ddr |= _BV(CC25_CSN_pin)
#define CC25_CSN_on CC25_CSN_port |= _BV(CC25_CSN_pin)
#define CC25_CSN_off CC25_CSN_port &= ~_BV(CC25_CSN_pin)
// NRF24L01
#define NRF_CSN_pin 0 //D8 = PB0
#define NRF_CSN_port PORTB
#define NRF_CSN_ddr DDRB
#define NRF_CSN_output NRF_CSN_ddr |= _BV(NRF_CSN_pin)
#define NRF_CSN_on NRF_CSN_port |= _BV(NRF_CSN_pin)
#define NRF_CSN_off NRF_CSN_port &= ~_BV(NRF_CSN_pin)
#define NRF_CE_on
#define NRF_CE_off
// CYRF6936
#ifdef XMEGA
#define CYRF_CSN_pin 4 //PD4
#define CYRF_CSN_port PORTD
#define CYRF_CSN_ddr DDRD
#define CYRF_CSN_on CYRF_CSN_port.OUTSET = _BV(CYRF_CSN_pin)
#define CYRF_CSN_off CYRF_CSN_port.OUTCLR = _BV(CYRF_CSN_pin)
#define CYRF_RST_pin 0 //PE0
#define CYRF_RST_port PORTE
#define CYRF_RST_ddr DDRE
#define CYRF_RST_HI CYRF_RST_port.OUTSET = _BV(CYRF_RST_pin)
#define CYRF_RST_LO CYRF_RST_port.OUTCLR = _BV(CYRF_RST_pin)
#else
#define CYRF_CSN_pin 1 //D9 = PB1
#define CYRF_CSN_port PORTB
#define CYRF_CSN_ddr DDRB
#define CYRF_CSN_output CYRF_CSN_ddr |= _BV(CYRF_CSN_pin)
#define CYRF_CSN_on CYRF_CSN_port |= _BV(CYRF_CSN_pin)
#define CYRF_CSN_off CYRF_CSN_port &= ~_BV(CYRF_CSN_pin)
#define CYRF_RST_pin 5 //A5 = PC5
#define CYRF_RST_port PORTC
#define CYRF_RST_ddr DDRC
#define CYRF_RST_output CYRF_RST_ddr |= _BV(CYRF_RST_pin)
#define CYRF_RST_HI CYRF_RST_port |= _BV(CYRF_RST_pin)
#define CYRF_RST_LO CYRF_RST_port &= ~_BV(CYRF_RST_pin)
#endif
//RF Switch
#ifdef XMEGA
#define PE1_on
#define PE1_off
#define PE2_on
#define PE2_off
#else
#define PE1_pin 1 //A1 = PC1
#define PE1_port PORTC
#define PE1_ddr DDRC
#define PE1_output PE1_ddr |= _BV(PE1_pin)
#define PE1_on PE1_port |= _BV(PE1_pin)
#define PE1_off PE1_port &= ~_BV(PE1_pin)
#define PE2_pin 2 //A2 = PC2
#define PE2_port PORTC
#define PE2_ddr DDRC
#define PE2_output PE2_ddr |= _BV(PE2_pin)
#define PE2_on PE2_port |= _BV(PE2_pin)
#define PE2_off PE2_port &= ~_BV(PE2_pin)
#endif
// LED
#ifdef XMEGA
#define LED_pin 1 //PD1
#define LED_port PORTD
#define LED_ddr DDRD
#define LED_on LED_port.OUTCLR = _BV(LED_pin)
#define LED_off LED_port.OUTSET = _BV(LED_pin)
#define LED_toggle LED_port.OUTTGL = _BV(LED_pin)
#define LED_output LED_port.DIRSET = _BV(LED_pin)
#define IS_LED_on (LED_port.OUT & _BV(LED_pin))
#else
#define LED_pin 5 //D13 = PB5
#define LED_port PORTB
#define LED_ddr DDRB
#define LED_on LED_port |= _BV(LED_pin)
#define LED_off LED_port &= ~_BV(LED_pin)
#define LED_toggle LED_port ^= _BV(LED_pin)
#define LED_output LED_ddr |= _BV(LED_pin)
#define IS_LED_on (LED_port & _BV(LED_pin))
#endif
//BIND
#ifdef XMEGA
#define BIND_pin 2 //PD2
#define BIND_port PORTD
#define IS_BIND_BUTTON_on ( (BIND_port.IN & _BV(BIND_pin)) == 0x00 )
#else
#define BIND_pin 5 //D13 = PB5
#define BIND_port PORTB
#define BIND_ipr PINB
#define BIND_ddr DDRB
#define BIND_SET_INPUT BIND_ddr &= ~_BV(BIND_pin)
#define BIND_SET_OUTPUT BIND_ddr |= _BV(BIND_pin)
#define BIND_SET_PULLUP BIND_port |= _BV(BIND_pin)
#define IS_BIND_BUTTON_on ( (BIND_ipr & _BV(BIND_pin)) == 0x00 )
#define EE_ADDR uint8_t*
#endif

View File

@ -15,7 +15,81 @@
/********************/
/** SPI routines **/
/********************/
#ifdef XMEGA
#ifdef STM32_BOARD
SPIClass SPI_2(2); //Create an instance of the SPI Class called SPI_2 that uses the 2nd SPI Port
void initSPI2()
{
//SPI_DISABLE();
SPI_2.end();
SPI2_BASE->CR1 &= ~SPI_CR1_DFF_8_BIT; //8 bits format This bit should be written only when SPI is disabled (SPE = ?0?) for correct operation.
SPI_2.begin(); //Initialize the SPI_2 port.
SPI_2.setBitOrder(MSBFIRST); // Set the SPI_2 bit order
SPI_2.setDataMode(SPI_MODE0); // Set the SPI_2 data mode 0
SPI_2.setClockDivider(SPI_CLOCK_DIV8); // Set the speed (36 / 8 = 4.5 MHz SPI_2 speed)
}
void SPI_Write(uint8_t command)
{//working OK
SPI2_BASE->DR = command; //Write the first data item to be transmitted into the SPI_DR register (this clears the TXE flag).
while (!(SPI2_BASE->SR & SPI_SR_RXNE));
command = SPI2_BASE->DR; // ... and read the last received data.
}
uint8_t SPI_Read(void)
{
SPI_Write(0x00);
return SPI2_BASE->DR;
}
uint8_t SPI_SDI_Read()
{
uint8_t rx=0;
cli(); //Fix Hubsan droputs??
while(!(SPI2_BASE->SR & SPI_SR_TXE));
while((SPI2_BASE->SR & SPI_SR_BSY));
//
SPI_DISABLE();
SPI_SET_BIDIRECTIONAL();
volatile uint8_t x = SPI2_BASE->DR;
(void)x;
SPI_ENABLE();
//
SPI_DISABLE();
while(!(SPI2_BASE->SR& SPI_SR_RXNE));
rx=SPI2_BASE->DR;
SPI_SET_UNIDIRECTIONAL();
SPI_ENABLE();
sei();//fix Hubsan dropouts??
return rx;
}
void SPI_ENABLE()
{
SPI2_BASE->CR1 |= SPI_CR1_SPE;
}
void SPI_DISABLE()
{
SPI2_BASE->CR1 &= ~SPI_CR1_SPE;
}
void SPI_SET_BIDIRECTIONAL()
{
SPI2_BASE->CR1 |= SPI_CR1_BIDIMODE;
SPI2_BASE->CR1 &= ~ SPI_CR1_BIDIOE;//receive only
}
void SPI_SET_UNIDIRECTIONAL()
{
SPI2_BASE->CR1 &= ~SPI_CR1_BIDIMODE;
}
#else
#ifdef ORANGE_TX
#define XNOP() NOP()
#else
#define XNOP()
@ -67,7 +141,7 @@ uint8_t SPI_Read(void)
}
#ifdef A7105_INSTALLED
uint8_t SPI_SDIO_Read(void)
uint8_t SPI_SDI_Read(void)
{
uint8_t result=0;
SDI_input;
@ -84,3 +158,5 @@ uint8_t SPI_SDIO_Read(void)
return result;
}
#endif
#endif//STM32_BOARD

View File

@ -51,199 +51,151 @@
//Channel definitions
#ifdef AETR
enum {
AILERON =0,
ELEVATOR,
THROTTLE,
RUDDER,
};
#define AILERON 0
#define ELEVATOR 1
#define THROTTLE 2
#define RUDDER 3
#endif
#ifdef AERT
enum {
AILERON =0,
ELEVATOR,
RUDDER,
THROTTLE,
};
#define AILERON 0
#define ELEVATOR 1
#define THROTTLE 3
#define RUDDER 2
#endif
#ifdef ARET
enum {
AILERON =0,
RUDDER,
ELEVATOR,
THROTTLE,
};
#define AILERON 0
#define ELEVATOR 2
#define THROTTLE 3
#define RUDDER 1
#endif
#ifdef ARTE
enum {
AILERON =0,
RUDDER,
THROTTLE,
ELEVATOR,
};
#define AILERON 0
#define ELEVATOR 3
#define THROTTLE 2
#define RUDDER 1
#endif
#ifdef ATRE
enum {
AILERON =0,
THROTTLE,
RUDDER,
ELEVATOR,
};
#define AILERON 0
#define ELEVATOR 3
#define THROTTLE 1
#define RUDDER 2
#endif
#ifdef ATER
enum {
AILERON =0,
THROTTLE,
ELEVATOR,
RUDDER,
};
#define AILERON 0
#define ELEVATOR 2
#define THROTTLE 1
#define RUDDER 3
#endif
#ifdef EATR
enum {
ELEVATOR =0,
AILERON,
THROTTLE,
RUDDER,
};
#define AILERON 1
#define ELEVATOR 0
#define THROTTLE 2
#define RUDDER 3
#endif
#ifdef EART
enum {
ELEVATOR =0,
AILERON,
RUDDER,
THROTTLE,
};
#define AILERON 1
#define ELEVATOR 0
#define THROTTLE 3
#define RUDDER 2
#endif
#ifdef ERAT
enum {
ELEVATOR =0,
RUDDER,
AILERON,
THROTTLE,
};
#define AILERON 2
#define ELEVATOR 0
#define THROTTLE 3
#define RUDDER 1
#endif
#ifdef ERTA
enum {
ELEVATOR =0,
RUDDER,
THROTTLE,
AILERON,
};
#define AILERON 3
#define ELEVATOR 0
#define THROTTLE 2
#define RUDDER 1
#endif
#ifdef ETRA
enum {
ELEVATOR =0,
THROTTLE,
RUDDER,
AILERON,
};
#define AILERON 3
#define ELEVATOR 0
#define THROTTLE 1
#define RUDDER 2
#endif
#ifdef ETAR
enum {
ELEVATOR =0,
THROTTLE,
AILERON,
RUDDER,
};
#define AILERON 2
#define ELEVATOR 0
#define THROTTLE 1
#define RUDDER 3
#endif
#ifdef TEAR
enum {
THROTTLE =0,
ELEVATOR,
AILERON,
RUDDER,
};
#define AILERON 2
#define ELEVATOR 1
#define THROTTLE 0
#define RUDDER 3
#endif
#ifdef TERA
enum {
THROTTLE =0,
ELEVATOR,
RUDDER,
AILERON,
};
#define AILERON 3
#define ELEVATOR 1
#define THROTTLE 0
#define RUDDER 2
#endif
#ifdef TREA
enum {
THROTTLE =0,
RUDDER,
ELEVATOR,
AILERON,
};
#define AILERON 3
#define ELEVATOR 2
#define THROTTLE 0
#define RUDDER 1
#endif
#ifdef TRAE
enum {
THROTTLE =0,
RUDDER,
AILERON,
ELEVATOR,
};
#define AILERON 2
#define ELEVATOR 3
#define THROTTLE 0
#define RUDDER 1
#endif
#ifdef TARE
enum {
THROTTLE =0,
AILERON,
RUDDER,
ELEVATOR,
};
#define AILERON 1
#define ELEVATOR 3
#define THROTTLE 0
#define RUDDER 2
#endif
#ifdef TAER
enum {
THROTTLE =0,
AILERON,
ELEVATOR,
RUDDER,
};
#define AILERON 1
#define ELEVATOR 2
#define THROTTLE 0
#define RUDDER 3
#endif
#ifdef RETA
enum {
RUDDER =0,
ELEVATOR,
THROTTLE,
AILERON,
};
#define AILERON 3
#define ELEVATOR 1
#define THROTTLE 2
#define RUDDER 0
#endif
#ifdef REAT
enum {
RUDDER =0,
ELEVATOR,
AILERON,
THROTTLE,
};
#define AILERON 2
#define ELEVATOR 1
#define THROTTLE 3
#define RUDDER 0
#endif
#ifdef RAET
enum {
RUDDER =0,
AILERON,
ELEVATOR,
THROTTLE,
};
#define AILERON 1
#define ELEVATOR 2
#define THROTTLE 3
#define RUDDER 0
#endif
#ifdef RATE
enum {
RUDDER =0,
AILERON,
THROTTLE,
ELEVATOR,
};
#define AILERON 1
#define ELEVATOR 3
#define THROTTLE 2
#define RUDDER 0
#endif
#ifdef RTAE
enum {
RUDDER =0,
THROTTLE,
AILERON,
ELEVATOR,
};
#define AILERON 2
#define ELEVATOR 3
#define THROTTLE 1
#define RUDDER 0
#endif
#ifdef RTEA
enum {
RUDDER =0,
THROTTLE,
ELEVATOR,
AILERON,
};
#define AILERON 3
#define ELEVATOR 2
#define THROTTLE 1
#define RUDDER 0
#endif
#define AUX1 4

View File

@ -37,7 +37,7 @@
#define MAX_PKTX 10
uint8_t pktx[MAX_PKTX];
uint8_t pktx1[MAX_PKTX];
uint8_t index;
uint8_t indx;
uint8_t frame[18];
#ifdef BASH_SERIAL
@ -93,6 +93,7 @@ void frsky_check_telemetry(uint8_t *pkt,uint8_t len)
for (uint8_t i=3;i<len;i++)
pktt[i]=pkt[i];
telemetry_link=1;
telemetry_lost=0;
if(pktt[6])
telemetry_counter=(telemetry_counter+1)%32;
//
@ -171,28 +172,28 @@ void frsky_user_frame()
pass=1;
case 1:
index=indexx;
indx=indexx;
prev_index = indexx;
if(index<USER_MAX_BYTES)
if(indx<USER_MAX_BYTES)
{
for(i=0;i<index;i++)
for(i=0;i<indx;i++)
frame[i+3]=pktx[i];
pktt[6]=0;
pass=0;
}
else
{
index = USER_MAX_BYTES;
for(i=0;i<index;i++)
indx = USER_MAX_BYTES;
for(i=0;i<indx;i++)
frame[i+3]=pktx[i];
pass=2;
}
break;
case 2:
index = prev_index - index;
indx = prev_index - indx;
prev_index=0;
if(index<=(MAX_PKTX-USER_MAX_BYTES)) //10-6=4
for(i=0;i<index;i++)
if(indx<=(MAX_PKTX-USER_MAX_BYTES)) //10-6=4
for(i=0;i<indx;i++)
frame[i+3]=pktx[USER_MAX_BYTES+i];
pass=0;
pktt[6]=0;
@ -200,9 +201,9 @@ void frsky_user_frame()
default:
break;
}
if(!index)
if(!indx)
return;
frame[1] = index;
frame[1] = indx;
frskySendStuffed();
}
else
@ -310,7 +311,11 @@ void sportSendFrame()
{
uint8_t i;
sport_counter = (sport_counter + 1) %36;
if(telemetry_lost)
{
sportIdle();
return;
}
if(sport_counter<6)
{
frame[0] = 0x98;
@ -361,30 +366,30 @@ void proces_sport_data(uint8_t data)
case 0:
if (data == START_STOP)
{//waiting for 0x7e
index = 0;
indx = 0;
pass = 1;
}
break;
case 1:
if (data == START_STOP) // Happens if missed packet
{//waiting for 0x7e
index = 0;
indx = 0;
pass = 1;
break;
}
if(data == BYTESTUFF)//if they are stuffed
pass=2;
else
if (index < MAX_PKTX)
pktx[index++] = data;
if (indx < MAX_PKTX)
pktx[indx++] = data;
break;
case 2:
if (index < MAX_PKTX)
pktx[index++] = data ^ STUFF_MASK; //unstuff bytes
if (indx < MAX_PKTX)
pktx[indx++] = data ^ STUFF_MASK; //unstuff bytes
pass=1;
break;
} // end switch
if (index >= FRSKY_SPORT_PACKET_SIZE)
if (indx >= FRSKY_SPORT_PACKET_SIZE)
{//8 bytes no crc
if ( sport )
{
@ -407,93 +412,92 @@ void proces_sport_data(uint8_t data)
void TelemetryUpdate()
{
#if defined SPORT_TELEMETRY
if (protocol==MODE_FRSKYX)
{ // FrSkyX
if(telemetry_link)
{
if(pktt[4] & 0x80)
rssi=pktt[4] & 0x7F ;
else
RxBt = (pktt[4]<<1) + 1 ;
for (uint8_t i=0; i < pktt[6]; i++)
proces_sport_data(pktt[7+i]);
telemetry_link=0;
}
}
#endif
// check for space in tx buffer
#ifdef BASH_SERIAL
uint8_t h ;
uint8_t t ;
h = SerialControl.head ;
t = SerialControl.tail ;
if ( h >= t )
{
t += 64 - h ;
}
else
{
t -= h ;
}
if ( t < 32 )
{
return ;
}
#else
uint8_t h ;
uint8_t t ;
h = tx_head ;
t = tx_tail ;
if ( h >= t )
{
t += TXBUFFER_SIZE - h ;
}
else
{
t -= h ;
}
if ( t < 16 )
{
return ;
}
#endif
#if defined DSM_TELEMETRY
if(telemetry_link && protocol == MODE_DSM )
{ // DSM
DSM_frame();
telemetry_link=0;
return;
}
#endif
if(telemetry_link && protocol != MODE_FRSKYX )
{ // FrSky + Hubsan
frsky_link_frame();
telemetry_link=0;
return;
}
#if defined HUB_TELEMETRY
if(!telemetry_link && protocol == MODE_FRSKYD)
{ // FrSky
frsky_user_frame();
return;
}
#endif
#if defined SPORT_TELEMETRY
if (protocol==MODE_FRSKYX)
{ // FrSkyX
uint32_t now = micros();
if ((now - last) > SPORT_TIME)
#ifdef BASH_SERIAL
uint8_t h ;
uint8_t t ;
h = SerialControl.head ;
t = SerialControl.tail ;
if ( h >= t )
{
sportSendFrame();
last += SPORT_TIME ;
t += 64 - h ;
}
else
{
t -= h ;
}
if ( t < 32 )
{
return ;
}
#else
uint8_t h ;
uint8_t t ;
h = tx_head ;
t = tx_tail ;
if ( h >= t )
{
t += TXBUFFER_SIZE - h ;
}
else
{
t -= h ;
}
if ( t < 16 )
{
return ;
}
#endif
#if defined SPORT_TELEMETRY
if (protocol==MODE_FRSKYX)
{ // FrSkyX
if(telemetry_link)
{
if(pktt[4] & 0x80)
rssi=pktt[4] & 0x7F ;
else
RxBt = (pktt[4]<<1) + 1 ;
if(pktt[6]<=6)
for (uint8_t i=0; i < pktt[6]; i++)
proces_sport_data(pktt[7+i]);
telemetry_link=0;
}
uint32_t now = micros();
if ((now - last) > SPORT_TIME)
{
sportSendFrame();
#ifdef STM32_BOARD
last=now;
#else
last += SPORT_TIME ;
#endif
}
}
}
#endif
#if defined DSM_TELEMETRY
if(telemetry_link && protocol == MODE_DSM )
{ // DSM
DSM_frame();
telemetry_link=0;
return;
}
#endif
if(telemetry_link && protocol != MODE_FRSKYX )
{ // FrSky + Hubsan
frsky_link_frame();
telemetry_link=0;
return;
}
#if defined HUB_TELEMETRY
if(!telemetry_link && protocol == MODE_FRSKYD)
{ // FrSky
frsky_user_frame();
return;
}
#endif
}
@ -504,93 +508,133 @@ void TelemetryUpdate()
/**************************/
#ifndef BASH_SERIAL
// Routines for normal serial output
void Serial_write(uint8_t data)
{
uint8_t nextHead ;
nextHead = tx_head + 1 ;
if ( nextHead >= TXBUFFER_SIZE )
nextHead = 0 ;
tx_buff[nextHead]=data;
tx_head = nextHead ;
tx_resume();
}
void initTXSerial( uint8_t speed)
{
#ifdef ENABLE_PPM
if(speed==SPEED_9600)
{ // 9600
#ifdef XMEGA
USARTC0.BAUDCTRLA = 207 ;
USARTC0.BAUDCTRLB = 0 ;
USARTC0.CTRLB = 0x18 ;
USARTC0.CTRLA = (USARTC0.CTRLA & 0xCF) | 0x10 ;
USARTC0.CTRLC = 0x03 ;
#else
//9600 bauds
UBRR0H = 0x00;
UBRR0L = 0x67;
UCSR0A = 0 ; // Clear X2 bit
//Set frame format to 8 data bits, none, 1 stop bit
UCSR0C = (1<<UCSZ01)|(1<<UCSZ00);
#endif
}
else if(speed==SPEED_57600)
{ // 57600
#ifdef XMEGA
/*USARTC0.BAUDCTRLA = 207 ;
USARTC0.BAUDCTRLB = 0 ;
USARTC0.CTRLB = 0x18 ;
USARTC0.CTRLA = (USARTC0.CTRLA & 0xCF) | 0x10 ;
USARTC0.CTRLC = 0x03 ;*/
#else
//57600 bauds
UBRR0H = 0x00;
UBRR0L = 0x22;
UCSR0A = 0x02 ; // Set X2 bit
//Set frame format to 8 data bits, none, 1 stop bit
UCSR0C = (1<<UCSZ01)|(1<<UCSZ00);
#endif
}
else if(speed==SPEED_125K)
{ // 125000
#ifdef XMEGA
/*USARTC0.BAUDCTRLA = 207 ;
USARTC0.BAUDCTRLB = 0 ;
USARTC0.CTRLB = 0x18 ;
USARTC0.CTRLA = (USARTC0.CTRLA & 0xCF) | 0x10 ;
USARTC0.CTRLC = 0x03 ;*/
#else
//125000 bauds
UBRR0H = 0x00;
UBRR0L = 0x07;
UCSR0A = 0x00 ; // Clear X2 bit
//Set frame format to 8 data bits, none, 1 stop bit
UCSR0C = (1<<UCSZ01)|(1<<UCSZ00);
#endif
}
#endif
#ifndef XMEGA
UCSR0B |= (1<<TXEN0);//tx enable
#endif
}
#ifdef XMEGA
ISR(USARTC0_DRE_vect)
#else
ISR(USART_UDRE_vect)
#endif
{ // Transmit interrupt
if(tx_head!=tx_tail)
// Routines for normal serial output
void Serial_write(uint8_t data)
{
if(++tx_tail>=TXBUFFER_SIZE)//head
tx_tail=0;
UDR0=tx_buff[tx_tail];
uint8_t nextHead ;
nextHead = tx_head + 1 ;
if ( nextHead >= TXBUFFER_SIZE )
nextHead = 0 ;
tx_buff[nextHead]=data;
tx_head = nextHead ;
tx_resume();
}
if (tx_tail == tx_head)
tx_pause(); // Check if all data is transmitted . if yes disable transmitter UDRE interrupt
}
void initTXSerial( uint8_t speed)
{
#ifdef ENABLE_PPM
if(speed==SPEED_9600)
{ // 9600
#ifdef ORANGE_TX
USARTC0.BAUDCTRLA = 207 ;
USARTC0.BAUDCTRLB = 0 ;
USARTC0.CTRLB = 0x18 ;
USARTC0.CTRLA = (USARTC0.CTRLA & 0xCF) | 0x10 ;
USARTC0.CTRLC = 0x03 ;
#else
#ifdef STM32_BOARD
Serial2.begin(9600); //USART3
USART3_BASE->CR1 &= ~ USART_CR1_RE; //disable RX leave TX enabled
#else
UBRR0H = 0x00;
UBRR0L = 0x67;
UCSR0A = 0 ; // Clear X2 bit
//Set frame format to 8 data bits, none, 1 stop bit
UCSR0C = (1<<UCSZ01)|(1<<UCSZ00);
#endif
#endif
}
else if(speed==SPEED_57600)
{ // 57600
#ifdef ORANGE_TX
/*USARTC0.BAUDCTRLA = 207 ;
USARTC0.BAUDCTRLB = 0 ;
USARTC0.CTRLB = 0x18 ;
USARTC0.CTRLA = (USARTC0.CTRLA & 0xCF) | 0x10 ;
USARTC0.CTRLC = 0x03 ;*/
#else
#ifdef STM32_BOARD
Serial2.begin(57600); //USART3
USART3_BASE->CR1 &= ~ USART_CR1_RE; //disable RX leave TX enabled
#else
UBRR0H = 0x00;
UBRR0L = 0x22;
UCSR0A = 0x02 ; // Set X2 bit
//Set frame format to 8 data bits, none, 1 stop bit
UCSR0C = (1<<UCSZ01)|(1<<UCSZ00);
#endif
#endif
}
else if(speed==SPEED_125K)
{ // 125000
#ifdef ORANGE_TX
/*USARTC0.BAUDCTRLA = 207 ;
USARTC0.BAUDCTRLB = 0 ;
USARTC0.CTRLB = 0x18 ;
USARTC0.CTRLA = (USARTC0.CTRLA & 0xCF) | 0x10 ;
USARTC0.CTRLC = 0x03 ;*/
#else
#ifdef STM32_BOARD
Serial2.begin(125000); //USART3
USART3_BASE->CR1 &= ~ USART_CR1_RE; //disable RX leave TX enabled
#else
UBRR0H = 0x00;
UBRR0L = 0x07;
UCSR0A = 0x00 ; // Clear X2 bit
//Set frame format to 8 data bits, none, 1 stop bit
UCSR0C = (1<<UCSZ01)|(1<<UCSZ00);
#endif
#endif
}
#endif
#ifndef ORANGE_TX
#ifndef STM32_BOARD
UCSR0B |= (1<<TXEN0);//tx enable
#endif
#endif
}
//Serial TX
#ifdef ORANGE_TX
ISR(USARTC0_DRE_vect)
#else
#ifdef STM32_BOARD
#ifdef __cplusplus
extern "C" {
#endif
void __irq_usart3()
#else
ISR(USART_UDRE_vect)
#endif
#endif
{ // Transmit interrupt
#ifdef STM32_BOARD
if(USART3_BASE->SR & USART_SR_TXE)
{
#endif
if(tx_head!=tx_tail)
{
if(++tx_tail>=TXBUFFER_SIZE)//head
tx_tail=0;
#ifdef STM32_BOARD
USART3_BASE->DR=tx_buff[tx_tail];//clears TXE bit
#else
UDR0=tx_buff[tx_tail];
#endif
}
if (tx_tail == tx_head)
#ifdef STM32_BOARD
USART3_BASE->CR1 &= ~USART_CR1_TXEIE;//disable interrupt
}
#else
tx_pause(); // Check if all data is transmitted . if yes disable transmitter UDRE interrupt
#endif
}
#if defined STM32_BOARD
#ifdef __cplusplus
}
#endif
#endif //STM32_BOARD
#else //BASH_SERIAL
// Routines for bit-bashed serial output

96
Multiprotocol/Validate.h Normal file
View File

@ -0,0 +1,96 @@
// Check selected board type
#if defined (STM32_BOARD) && defined (ORANGE_TX)
#error You must comment the board type STM32_BOARD in _Config.h to compile ORANGE_TX
#endif
#if not defined (ORANGE_TX) && not defined (STM32_BOARD)
//Atmega328p
#if not defined(ARDUINO_AVR_PRO) && not defined(ARDUINO_AVR_MINI) && not defined(ARDUINO_AVR_NANO)
#error You must select the board type "Arduino Pro or Pro Mini" or "Arduino Mini"
#endif
#if F_CPU != 16000000L || not defined(__AVR_ATmega328P__)
#error You must select the processor type "ATmega328(5V, 16MHz)"
#endif
#endif
#if defined (STM32_BOARD) && not defined (ORANGE_TX)
//STM32
#ifndef ARDUINO_GENERIC_STM32F103C
#error You must select the board type "Generic STM32F103C series"
#endif
#endif
//Change/Force configuration if OrangeTX
#ifdef ORANGE_TX
#undef ENABLE_PPM // Disable PPM for OrangeTX module
#undef A7105_INSTALLED // Disable A7105 for OrangeTX module
#undef CC2500_INSTALLED // Disable CC2500 for OrangeTX module
#undef NRF24L01_INSTALLED // Disable NRF for OrangeTX module
#define TELEMETRY // Enable telemetry
#define INVERT_TELEMETRY // Enable invert telemetry
#define DSM_TELEMETRY // Enable DSM telemetry
#endif
//Make sure protocols are selected correctly
#ifndef A7105_INSTALLED
#undef FLYSKY_A7105_INO
#undef HUBSAN_A7105_INO
#endif
#ifndef CYRF6936_INSTALLED
#undef DEVO_CYRF6936_INO
#undef DSM_CYRF6936_INO
#undef J6PRO_CYRF6936_INO
#endif
#ifndef CC2500_INSTALLED
#undef FRSKYD_CC2500_INO
#undef FRSKYV_CC2500_INO
#undef FRSKYX_CC2500_INO
#undef SFHSS_CC2500_INO
#endif
#ifndef NRF24L01_INSTALLED
#undef BAYANG_NRF24L01_INO
#undef CG023_NRF24L01_INO
#undef CX10_NRF24L01_INO
#undef ESKY_NRF24L01_INO
#undef HISKY_NRF24L01_INO
#undef KN_NRF24L01_INO
#undef SLT_NRF24L01_INO
#undef SYMAX_NRF24L01_INO
#undef V2X2_NRF24L01_INO
#undef YD717_NRF24L01_INO
#undef MT99XX_NRF24L01_INO
#undef MJXQ_NRF24L01_INO
#undef SHENQI_NRF24L01_INO
#undef FY326_NRF24L01_INO
#undef FQ777_NRF24L01_INO
#undef ASSAN_NRF24L01_INO
#undef HONTAI_NRF24L01_INO
#endif
//Make sure telemetry is selected correctly
#ifndef TELEMETRY
#undef INVERT_TELEMETRY
#undef DSM_TELEMETRY
#undef SPORT_TELEMETRY
#undef HUB_TELEMETRY
#else
#if not defined(CYRF6936_INSTALLED) || not defined(DSM_CYRF6936_INO)
#undef DSM_TELEMETRY
#endif
#if (not defined(CC2500_INSTALLED) || not defined(FRSKYD_CC2500_INO)) && (not defined(A7105_INSTALLED) || not defined(HUBSAN_A7105_INO))
#undef HUB_TELEMETRY
#endif
#if not defined(CC2500_INSTALLED) || not defined(FRSKYX_CC2500_INO)
#undef SPORT_TELEMETRY
#endif
#if not defined(DSM_TELEMETRY) && not defined(HUB_TELEMETRY) && not defined(SPORT_TELEMETRY)
#undef TELEMETRY
#undef INVERT_TELEMETRY
#endif
#endif
//Make sure TX is defined correctly
#ifndef AILERON
#error You must select a correct channel order.
#endif
#if not defined(PPM_MAX_100) || not defined(PPM_MIN_100) || not defined(PPM_MAX_125) || not defined(PPM_MIN_125)
#error You must set correct TX end points.
#endif

View File

@ -17,6 +17,14 @@
/** Multiprotocol module configuration file ***/
/**********************************************/
/********************/
/*** BOARD TYPE ***/
/********************/
//Uncomment one of the line below if you have a different module not based on the original Multi Atmega328p design which includes the 4-in-1.
//If you don't know then leave them commented.
//#define STM32_BOARD
/*******************/
/*** TX SETTINGS ***/
/*******************/
@ -53,13 +61,13 @@
//The protocols below need a CYRF6936 to be installed
#define DEVO_CYRF6936_INO
#define DSM_CYRF6936_INO
#define J6PRO_CYRF6936_INO
#define J6PRO_CYRF6936_INO
//The protocols below need a CC2500 to be installed
#define FRSKYD_CC2500_INO
#define FRSKYV_CC2500_INO
#define FRSKYX_CC2500_INO
#define SFHSS_CC2500_INO
#define SFHSS_CC2500_INO
//The protocols below need a NRF24L01 to be installed
#define BAYANG_NRF24L01_INO