Protocol FrSkyD (D8) receiver (#283)

* Rename FrSkyX Rx to FrSky Rx

* Rename protocol

* Add D8 receiver sub protocol
This commit is contained in:
goebish 2019-10-12 19:50:11 +02:00 committed by pascallanger
parent 6dfd54b8be
commit a234ccbd05
9 changed files with 399 additions and 405 deletions

View File

@ -17,7 +17,7 @@
/** FrSky D and X routines **/
/******************************/
#if defined(FRSKYX_CC2500_INO) || defined(FRSKYX_RX_CC2500_INO)
#if defined(FRSKYX_CC2500_INO) || defined(FRSKY_RX_CC2500_INO)
//**CRC**
const uint16_t PROGMEM FrSkyX_CRC_Short[]={
0x0000, 0x1189, 0x2312, 0x329B, 0x4624, 0x57AD, 0x6536, 0x74BF,
@ -74,7 +74,7 @@ void Frsky_init_hop(void)
/******************************/
/** FrSky V, D and X routines **/
/******************************/
#if defined(FRSKYV_CC2500_INO) || defined(FRSKYD_CC2500_INO) || defined(FRSKYX_CC2500_INO)
#if defined(FRSKYV_CC2500_INO) || defined(FRSKYD_CC2500_INO) || defined(FRSKYX_CC2500_INO) || defined(FRSKY_RX_CC2500_INO)
const PROGMEM uint8_t FRSKY_common_startreg_cc2500_conf[]= {
CC2500_02_IOCFG0 ,
CC2500_00_IOCFG2 ,
@ -119,7 +119,7 @@ void Frsky_init_hop(void)
/*15_DEVIATN*/ 0x41 };
#endif
#if defined(FRSKYD_CC2500_INO)
#if defined(FRSKYD_CC2500_INO) || defined(FRSKY_RX_CC2500_INO)
const PROGMEM uint8_t FRSKYD_cc2500_conf[]= {
/*02_IOCFG0*/ 0x06 ,
/*00_IOCFG2*/ 0x06 ,
@ -142,7 +142,7 @@ void Frsky_init_hop(void)
/*15_DEVIATN*/ 0x42 };
#endif
#if defined(FRSKYX_CC2500_INO)
#if defined(FRSKYX_CC2500_INO) || defined(FRSKY_RX_CC2500_INO)
const PROGMEM uint8_t FRSKYX_cc2500_conf[]= {
//FRSKYX
/*02_IOCFG0*/ 0x06 ,

View File

@ -1,373 +0,0 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(FRSKYX_RX_CC2500_INO)
#include "iface_cc2500.h"
#define FRSKYX_FCC_LENGTH (30+2)
#define FRSKYX_LBT_LENGTH (33+2)
enum {
FRSKYX_RX_TUNE_START,
FRSKYX_RX_TUNE_LOW,
FRSKYX_RX_TUNE_HIGH,
FRSKYX_RX_BIND,
FRSKYX_RX_DATA,
};
static uint8_t frskyx_rx_chanskip;
static uint8_t frskyx_rx_disable_lna;
static uint8_t frskyx_rx_data_started;
static int8_t frskyx_rx_finetune;
static void __attribute__((unused)) frskyx_rx_strobe_rx()
{
CC2500_Strobe(CC2500_SIDLE);
CC2500_Strobe(CC2500_SFRX);
CC2500_Strobe(CC2500_SRX);
}
static void __attribute__((unused)) FrSkyX_Rx_initialise() {
CC2500_Reset();
CC2500_WriteReg(CC2500_02_IOCFG0, 0x01);
CC2500_WriteReg(CC2500_18_MCSM0, 0x18);
CC2500_WriteReg(CC2500_07_PKTCTRL1, 0x04);
CC2500_WriteReg(CC2500_3E_PATABLE, 0xFF);
CC2500_WriteReg(CC2500_0C_FSCTRL0, 0);
CC2500_WriteReg(CC2500_0D_FREQ2, 0x5C);
CC2500_WriteReg(CC2500_13_MDMCFG1, 0x23);
CC2500_WriteReg(CC2500_14_MDMCFG0, 0x7A);
CC2500_WriteReg(CC2500_19_FOCCFG, 0x16);
CC2500_WriteReg(CC2500_1A_BSCFG, 0x6C);
CC2500_WriteReg(CC2500_1B_AGCCTRL2, 0x03);
CC2500_WriteReg(CC2500_1C_AGCCTRL1, 0x40);
CC2500_WriteReg(CC2500_1D_AGCCTRL0, 0x91);
CC2500_WriteReg(CC2500_21_FREND1, 0x56);
CC2500_WriteReg(CC2500_22_FREND0, 0x10);
CC2500_WriteReg(CC2500_23_FSCAL3, 0xA9);
CC2500_WriteReg(CC2500_24_FSCAL2, 0x0A);
CC2500_WriteReg(CC2500_25_FSCAL1, 0x00);
CC2500_WriteReg(CC2500_26_FSCAL0, 0x11);
CC2500_WriteReg(CC2500_29_FSTEST, 0x59);
CC2500_WriteReg(CC2500_2C_TEST2, 0x88);
CC2500_WriteReg(CC2500_2D_TEST1, 0x31);
CC2500_WriteReg(CC2500_2E_TEST0, 0x0B);
CC2500_WriteReg(CC2500_03_FIFOTHR, 0x07);
CC2500_WriteReg(CC2500_09_ADDR, 0x00);
switch (sub_protocol) {
case FRSKYX_FCC:
CC2500_WriteReg(CC2500_17_MCSM1, 0x0C);
CC2500_WriteReg(CC2500_0E_FREQ1, 0x76);
CC2500_WriteReg(CC2500_0F_FREQ0, 0x27);
CC2500_WriteReg(CC2500_06_PKTLEN, 0x1E);
CC2500_WriteReg(CC2500_08_PKTCTRL0, 0x01);
CC2500_WriteReg(CC2500_0B_FSCTRL1, 0x0A);
CC2500_WriteReg(CC2500_10_MDMCFG4, 0x7B);
CC2500_WriteReg(CC2500_11_MDMCFG3, 0x61);
CC2500_WriteReg(CC2500_12_MDMCFG2, 0x13);
CC2500_WriteReg(CC2500_15_DEVIATN, 0x51);
break;
case FRSKYX_LBT:
CC2500_WriteReg(CC2500_17_MCSM1, 0x0E);
CC2500_WriteReg(CC2500_0E_FREQ1, 0x80);
CC2500_WriteReg(CC2500_0F_FREQ0, 0x00);
CC2500_WriteReg(CC2500_06_PKTLEN, 0x23);
CC2500_WriteReg(CC2500_08_PKTCTRL0, 0x01);
CC2500_WriteReg(CC2500_0B_FSCTRL1, 0x08);
CC2500_WriteReg(CC2500_10_MDMCFG4, 0x7B);
CC2500_WriteReg(CC2500_11_MDMCFG3, 0xF8);
CC2500_WriteReg(CC2500_12_MDMCFG2, 0x03);
CC2500_WriteReg(CC2500_15_DEVIATN, 0x53);
break;
}
frskyx_rx_disable_lna = IS_POWER_FLAG_on;
CC2500_SetTxRxMode(frskyx_rx_disable_lna ? TXRX_OFF : RX_EN); // lna disable / enable
frskyx_rx_strobe_rx();
CC2500_WriteReg(CC2500_0A_CHANNR, 0); // bind channel
delayMicroseconds(1000); // wait for RX to activate
}
static void __attribute__((unused)) frskyx_rx_set_channel(uint8_t channel)
{
CC2500_WriteReg(CC2500_0A_CHANNR, hopping_frequency[channel]);
CC2500_WriteReg(CC2500_25_FSCAL1, calData[channel]);
frskyx_rx_strobe_rx();
}
static void __attribute__((unused)) frskyx_rx_calibrate()
{
frskyx_rx_strobe_rx();
for (unsigned c = 0; c < 47; c++)
{
CC2500_Strobe(CC2500_SIDLE);
CC2500_WriteReg(CC2500_0A_CHANNR, hopping_frequency[c]);
CC2500_Strobe(CC2500_SCAL);
delayMicroseconds(900);
calData[c] = CC2500_ReadReg(CC2500_25_FSCAL1);
}
}
static uint8_t __attribute__((unused)) frskyx_rx_check_crc()
{
uint8_t limit = packet_length - 4;
uint16_t lcrc = FrSkyX_crc(&packet[3], limit - 3); // computed crc
uint16_t rcrc = (packet[limit] << 8) | (packet[limit + 1] & 0xff); // received crc
return lcrc == rcrc;
}
static void __attribute__((unused)) frskyx_rx_build_telemetry_packet()
{
static uint16_t frskyx_rx_rc_chan[16];
uint16_t pxx_channel[8];
uint32_t bits = 0;
uint8_t bitsavailable = 0;
uint8_t idx = 0;
// decode PXX channels
pxx_channel[0] = ((packet[10] << 8) & 0xF00) | packet[9];
pxx_channel[1] = ((packet[11] << 4) & 0xFF0) | (packet[10] >> 4);
pxx_channel[2] = ((packet[13] << 8) & 0xF00) | packet[12];
pxx_channel[3] = ((packet[14] << 4) & 0xFF0) | (packet[13] >> 4);
pxx_channel[4] = ((packet[16] << 8) & 0xF00) | packet[15];
pxx_channel[5] = ((packet[17] << 4) & 0xFF0) | (packet[16] >> 4);
pxx_channel[6] = ((packet[19] << 8) & 0xF00) | packet[18];
pxx_channel[7] = ((packet[20] << 4) & 0xFF0) | (packet[19] >> 4);
for (unsigned i = 0; i < 8; i++) {
uint8_t shifted = (pxx_channel[i] & 0x800)>0;
uint16_t channel_value = pxx_channel[i] & 0x7FF;
if (channel_value < 64)
frskyx_rx_rc_chan[shifted ? i + 8 : i] = 0;
else
frskyx_rx_rc_chan[shifted ? i + 8 : i] = min(((channel_value - 64) << 4) / 15, 2047);
}
// buid telemetry packet
packet_in[idx++] = RX_LQI;
packet_in[idx++] = RX_RSSI;
packet_in[idx++] = 0; // start channel
packet_in[idx++] = 16; // number of channels in packet
// pack channels
for (int i = 0; i < 16; i++) {
bits |= ((uint32_t)frskyx_rx_rc_chan[i]) << bitsavailable;
bitsavailable += 11;
while (bitsavailable >= 8) {
packet_in[idx++] = bits & 0xff;
bits >>= 8;
bitsavailable -= 8;
}
}
}
uint16_t initFrSkyX_Rx()
{
FrSkyX_Rx_initialise();
state = 0;
frskyx_rx_chanskip = 1;
hopping_frequency_no = 0;
frskyx_rx_data_started = 0;
frskyx_rx_finetune = 0;
telemetry_link = 0;
if (IS_BIND_IN_PROGRESS) {
phase = FRSKYX_RX_TUNE_START;
}
else {
uint16_t temp = FRSKYX_RX_EEPROM_OFFSET;
rx_tx_addr[0] = eeprom_read_byte((EE_ADDR)temp++);
rx_tx_addr[1] = eeprom_read_byte((EE_ADDR)temp++);
rx_tx_addr[2] = eeprom_read_byte((EE_ADDR)temp++);
frskyx_rx_finetune = eeprom_read_byte((EE_ADDR)temp++);
for(uint8_t ch = 0; ch < 47; ch++)
hopping_frequency[ch] = eeprom_read_byte((EE_ADDR)temp++);
frskyx_rx_calibrate();
CC2500_WriteReg(CC2500_18_MCSM0, 0x08); // FS_AUTOCAL = manual
CC2500_WriteReg(CC2500_09_ADDR, rx_tx_addr[0]); // set address
CC2500_WriteReg(CC2500_07_PKTCTRL1, 0x05); // check address
if (option == 0)
CC2500_WriteReg(CC2500_0C_FSCTRL0, frskyx_rx_finetune);
else
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
frskyx_rx_set_channel(hopping_frequency_no);
phase = FRSKYX_RX_DATA;
}
packet_length = (sub_protocol == FRSKYX_LBT) ? FRSKYX_LBT_LENGTH : FRSKYX_FCC_LENGTH;
return 1000;
}
uint16_t FrSkyX_Rx_callback()
{
static uint32_t pps_timer=0;
static uint8_t pps_counter=0;
static int8_t read_retry = 0;
static int8_t tune_low, tune_high;
uint8_t len, ch;
if ((prev_option != option) && (phase >= FRSKYX_RX_DATA)) {
if (option == 0)
CC2500_WriteReg(CC2500_0C_FSCTRL0, frskyx_rx_finetune);
else
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
prev_option = option;
}
if (frskyx_rx_disable_lna != IS_POWER_FLAG_on) {
frskyx_rx_disable_lna = IS_POWER_FLAG_on;
CC2500_SetTxRxMode(frskyx_rx_disable_lna ? TXRX_OFF : RX_EN);
}
len = CC2500_ReadReg(CC2500_3B_RXBYTES | CC2500_READ_BURST) & 0x7F;
switch(phase) {
case FRSKYX_RX_TUNE_START:
if (len >= packet_length) {
CC2500_ReadData(packet, packet_length);
if(packet[1] == 0x03 && packet[2] == 0x01) {
if(frskyx_rx_check_crc()) {
frskyx_rx_finetune = -127;
CC2500_WriteReg(CC2500_0C_FSCTRL0, frskyx_rx_finetune);
phase = FRSKYX_RX_TUNE_LOW;
frskyx_rx_strobe_rx();
return 1000;
}
}
}
frskyx_rx_finetune += 10;
CC2500_WriteReg(CC2500_0C_FSCTRL0, frskyx_rx_finetune);
frskyx_rx_strobe_rx();
return 18000;
case FRSKYX_RX_TUNE_LOW:
if (len >= packet_length) {
CC2500_ReadData(packet, packet_length);
if (frskyx_rx_check_crc()) {
tune_low = frskyx_rx_finetune;
frskyx_rx_finetune = 127;
CC2500_WriteReg(CC2500_0C_FSCTRL0, frskyx_rx_finetune);
phase = FRSKYX_RX_TUNE_HIGH;
frskyx_rx_strobe_rx();
return 1000;
}
}
frskyx_rx_finetune += 1;
CC2500_WriteReg(CC2500_0C_FSCTRL0, frskyx_rx_finetune);
frskyx_rx_strobe_rx();
return 18000;
case FRSKYX_RX_TUNE_HIGH:
if (len >= packet_length) {
CC2500_ReadData(packet, packet_length);
if (frskyx_rx_check_crc()) {
tune_high = frskyx_rx_finetune;
frskyx_rx_finetune = (tune_low + tune_high) / 2;
CC2500_WriteReg(CC2500_0C_FSCTRL0, (int8_t)frskyx_rx_finetune);
if(tune_low < tune_high)
phase = FRSKYX_RX_BIND;
else
phase = FRSKYX_RX_TUNE_START;
frskyx_rx_strobe_rx();
return 1000;
}
}
frskyx_rx_finetune -= 1;
CC2500_WriteReg(CC2500_0C_FSCTRL0, frskyx_rx_finetune);
frskyx_rx_strobe_rx();
return 18000;
case FRSKYX_RX_BIND:
if(len >= packet_length) {
CC2500_ReadData(packet, packet_length);
if (frskyx_rx_check_crc()) {
if (packet[5] <= 0x2D) {
for (ch = 0; ch < 5; ch++)
hopping_frequency[packet[5]+ch] = packet[6+ch];
state |= 1 << (packet[5] / 5);
}
}
if (state == 0x3ff) {
debugln("bind complete");
frskyx_rx_calibrate();
rx_tx_addr[0] = packet[3]; // TXID
rx_tx_addr[1] = packet[4]; // TXID
rx_tx_addr[2] = packet[12]; // RX #
CC2500_WriteReg(CC2500_18_MCSM0, 0x08); // FS_AUTOCAL = manual
CC2500_WriteReg(CC2500_09_ADDR, rx_tx_addr[0]); // set address
CC2500_WriteReg(CC2500_07_PKTCTRL1, 0x05); // check address
phase = FRSKYX_RX_DATA;
frskyx_rx_set_channel(hopping_frequency_no);
// store txid and channel list
uint16_t temp = FRSKYX_RX_EEPROM_OFFSET;
eeprom_write_byte((EE_ADDR)temp++, rx_tx_addr[0]);
eeprom_write_byte((EE_ADDR)temp++, rx_tx_addr[1]);
eeprom_write_byte((EE_ADDR)temp++, rx_tx_addr[2]);
eeprom_write_byte((EE_ADDR)temp++, frskyx_rx_finetune);
for (ch = 0; ch < 47; ch++)
eeprom_write_byte((EE_ADDR)temp++, hopping_frequency[ch]);
BIND_DONE;
}
frskyx_rx_strobe_rx();
}
return 1000;
case FRSKYX_RX_DATA:
if (len >= packet_length) {
CC2500_ReadData(packet, packet_length);
if (packet[1] == rx_tx_addr[0] && packet[2] == rx_tx_addr[1] && packet[6] == rx_tx_addr[2] && frskyx_rx_check_crc()) {
RX_RSSI = packet[packet_length-2];
if(RX_RSSI >= 128)
RX_RSSI -= 128;
else
RX_RSSI += 128;
// hop to next channel
frskyx_rx_chanskip = ((packet[4] & 0xC0) >> 6) | ((packet[5] & 0x3F) << 2);
hopping_frequency_no = (hopping_frequency_no + frskyx_rx_chanskip) % 47;
frskyx_rx_set_channel(hopping_frequency_no);
if(packet[7] == 0 && telemetry_link == 0) { // standard packet, send channels to TX
frskyx_rx_build_telemetry_packet();
telemetry_link = 1;
}
frskyx_rx_data_started = 1;
read_retry = 0;
pps_counter++;
}
}
// packets per second
if (millis() - pps_timer >= 1000) {
pps_timer = millis();
debugln("%d pps", pps_counter);
RX_LQI = pps_counter;
pps_counter = 0;
}
// skip channel if no packet received in time
if (read_retry++ >= 9) {
hopping_frequency_no = (hopping_frequency_no + frskyx_rx_chanskip) % 47;
frskyx_rx_set_channel(hopping_frequency_no);
if(frskyx_rx_data_started)
read_retry = 0;
else
read_retry = -50; // retry longer until first packet is catched
}
break;
}
return 1000;
}
#endif

View File

@ -0,0 +1,365 @@
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(FRSKY_RX_CC2500_INO)
#include "iface_cc2500.h"
#define FRSKY_RX_D16FCC_LENGTH 32
#define FRSKY_RX_D16LBT_LENGTH 35
#define FRSKY_RX_D8_LENGTH 20
enum {
FRSKY_RX_TUNE_START,
FRSKY_RX_TUNE_LOW,
FRSKY_RX_TUNE_HIGH,
FRSKY_RX_BIND,
FRSKY_RX_DATA,
};
static uint8_t frsky_rx_chanskip;
static uint8_t frsky_rx_disable_lna;
static uint8_t frsky_rx_data_started;
static int8_t frsky_rx_finetune;
static uint16_t frsky_rx_rc_chan[16];
static void __attribute__((unused)) frsky_rx_strobe_rx()
{
CC2500_Strobe(CC2500_SIDLE);
CC2500_Strobe(CC2500_SFRX);
CC2500_Strobe(CC2500_SRX);
}
static void __attribute__((unused)) frsky_rx_initialise() {
CC2500_Reset();
CC2500_Strobe(CC2500_SIDLE);
CC2500_WriteReg(CC2500_0A_CHANNR, 0); // bind channel
switch (sub_protocol) {
case FRSKY_RX_D16FCC:
FRSKY_init_cc2500(FRSKYX_cc2500_conf);
break;
case FRSKY_RX_D16LBT:
FRSKY_init_cc2500(FRSKYXEU_cc2500_conf);
break;
case FRSKY_RX_D8:
FRSKY_init_cc2500(FRSKYD_cc2500_conf);
CC2500_WriteReg(CC2500_07_PKTCTRL1, 0x05); // always check address
CC2500_WriteReg(CC2500_09_ADDR, 0x03); // bind address
CC2500_WriteReg(CC2500_23_FSCAL3, 0x89); // fixed FSCAL3 ?
break;
}
frsky_rx_disable_lna = IS_POWER_FLAG_on;
CC2500_SetTxRxMode(frsky_rx_disable_lna ? TXRX_OFF : RX_EN); // lna disable / enable
frsky_rx_strobe_rx();
delayMicroseconds(1000); // wait for RX to activate
}
static void __attribute__((unused)) frsky_rx_set_channel(uint8_t channel)
{
CC2500_WriteReg(CC2500_0A_CHANNR, hopping_frequency[channel]);
if(sub_protocol == FRSKY_RX_D8)
CC2500_WriteReg(CC2500_23_FSCAL3, 0x89);
else
CC2500_WriteReg(CC2500_25_FSCAL1, calData[channel]);
frsky_rx_strobe_rx();
}
static void __attribute__((unused)) frsky_rx_calibrate()
{
frsky_rx_strobe_rx();
for (unsigned c = 0; c < 47; c++)
{
CC2500_Strobe(CC2500_SIDLE);
CC2500_WriteReg(CC2500_0A_CHANNR, hopping_frequency[c]);
CC2500_Strobe(CC2500_SCAL);
delayMicroseconds(900);
calData[c] = CC2500_ReadReg(CC2500_25_FSCAL1);
}
}
static uint8_t __attribute__((unused)) frskyx_rx_check_crc()
{
if (sub_protocol == FRSKY_RX_D8)
return 1;
uint8_t limit = packet_length - 4;
uint16_t lcrc = FrSkyX_crc(&packet[3], limit - 3); // computed crc
uint16_t rcrc = (packet[limit] << 8) | (packet[limit + 1] & 0xff); // received crc
return lcrc == rcrc;
}
static void __attribute__((unused)) frsky_rx_build_telemetry_packet()
{
uint16_t raw_channel[8];
uint32_t bits = 0;
uint8_t bitsavailable = 0;
uint8_t idx = 0;
uint8_t i;
if (sub_protocol == FRSKY_RX_D16FCC || sub_protocol == FRSKY_RX_D16LBT) {
// decode D16 channels
raw_channel[0] = ((packet[10] << 8) & 0xF00) | packet[9];
raw_channel[1] = ((packet[11] << 4) & 0xFF0) | (packet[10] >> 4);
raw_channel[2] = ((packet[13] << 8) & 0xF00) | packet[12];
raw_channel[3] = ((packet[14] << 4) & 0xFF0) | (packet[13] >> 4);
raw_channel[4] = ((packet[16] << 8) & 0xF00) | packet[15];
raw_channel[5] = ((packet[17] << 4) & 0xFF0) | (packet[16] >> 4);
raw_channel[6] = ((packet[19] << 8) & 0xF00) | packet[18];
raw_channel[7] = ((packet[20] << 4) & 0xFF0) | (packet[19] >> 4);
for (i = 0; i < 8; i++) {
uint8_t shifted = (raw_channel[i] & 0x800)>0;
uint16_t channel_value = raw_channel[i] & 0x7FF;
if (channel_value < 64)
frsky_rx_rc_chan[shifted ? i + 8 : i] = 0;
else
frsky_rx_rc_chan[shifted ? i + 8 : i] = min(((channel_value - 64) << 4) / 15, 2047);
}
}
else {
// decode D8 channels
raw_channel[0] = ((packet[10] & 0x0F) << 8 | packet[6]);
raw_channel[1] = ((packet[10] & 0xF0) << 4 | packet[7]);
raw_channel[2] = ((packet[11] & 0x0F) << 8 | packet[8]);
raw_channel[3] = ((packet[11] & 0xF0) << 4 | packet[9]);
raw_channel[4] = ((packet[16] & 0x0F) << 8 | packet[12]);
raw_channel[5] = ((packet[16] & 0xF0) << 4 | packet[13]);
raw_channel[6] = ((packet[17] & 0x0F) << 8 | packet[14]);
raw_channel[7] = ((packet[17] & 0xF0) << 4 | packet[15]);
for (i = 0; i < 8; i++) {
if (raw_channel[i] < 1290)
raw_channel[i] = 1290;
frsky_rx_rc_chan[i] = min(((raw_channel[i] - 1290) << 4) / 15, 2047);
}
}
// buid telemetry packet
packet_in[idx++] = RX_LQI;
packet_in[idx++] = RX_RSSI;
packet_in[idx++] = 0; // start channel
packet_in[idx++] = sub_protocol == FRSKY_RX_D8 ? 8 : 16; // number of channels in packet
// pack channels
for (i = 0; i < packet_in[3]; i++) {
bits |= ((uint32_t)frsky_rx_rc_chan[i]) << bitsavailable;
bitsavailable += 11;
while (bitsavailable >= 8) {
packet_in[idx++] = bits & 0xff;
bits >>= 8;
bitsavailable -= 8;
}
}
}
uint16_t initFrSky_Rx()
{
const uint8_t frsky_rx_length[] = {FRSKY_RX_D16FCC_LENGTH, FRSKY_RX_D16LBT_LENGTH, FRSKY_RX_D8_LENGTH};
packet_length = frsky_rx_length[sub_protocol];
frsky_rx_initialise();
state = 0;
frsky_rx_chanskip = 1;
hopping_frequency_no = 0;
frsky_rx_data_started = 0;
frsky_rx_finetune = 0;
telemetry_link = 0;
for(uint8_t ch=0; ch<sizeof(frsky_rx_rc_chan); ch++)
frsky_rx_rc_chan[ch] = 1023;
if (IS_BIND_IN_PROGRESS) {
phase = FRSKY_RX_TUNE_START;
}
else {
uint16_t temp = FRSKY_RX_EEPROM_OFFSET;
rx_tx_addr[0] = eeprom_read_byte((EE_ADDR)temp++);
rx_tx_addr[1] = eeprom_read_byte((EE_ADDR)temp++);
rx_tx_addr[2] = eeprom_read_byte((EE_ADDR)temp++);
frsky_rx_finetune = eeprom_read_byte((EE_ADDR)temp++);
for (uint8_t ch = 0; ch < 47; ch++)
hopping_frequency[ch] = eeprom_read_byte((EE_ADDR)temp++);
if (sub_protocol == FRSKY_RX_D16FCC || sub_protocol == FRSKY_RX_D16LBT) {
frsky_rx_calibrate();
CC2500_WriteReg(CC2500_18_MCSM0, 0x08); // FS_AUTOCAL = manual
}
CC2500_WriteReg(CC2500_09_ADDR, rx_tx_addr[0]); // set address
CC2500_WriteReg(CC2500_07_PKTCTRL1, 0x05); // check address
if (option == 0)
CC2500_WriteReg(CC2500_0C_FSCTRL0, frsky_rx_finetune);
else
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
frsky_rx_set_channel(hopping_frequency_no);
phase = FRSKY_RX_DATA;
}
return 1000;
}
uint16_t FrSky_Rx_callback()
{
static uint32_t pps_timer=0;
static uint8_t pps_counter=0;
static int8_t read_retry = 0;
static int8_t tune_low, tune_high;
uint8_t len, ch;
if ((prev_option != option) && (phase >= FRSKY_RX_DATA)) {
if (option == 0)
CC2500_WriteReg(CC2500_0C_FSCTRL0, frsky_rx_finetune);
else
CC2500_WriteReg(CC2500_0C_FSCTRL0, option);
prev_option = option;
}
if (frsky_rx_disable_lna != IS_POWER_FLAG_on) {
frsky_rx_disable_lna = IS_POWER_FLAG_on;
CC2500_SetTxRxMode(frsky_rx_disable_lna ? TXRX_OFF : RX_EN);
}
len = CC2500_ReadReg(CC2500_3B_RXBYTES | CC2500_READ_BURST) & 0x7F;
switch(phase) {
case FRSKY_RX_TUNE_START:
if (len >= packet_length) {
CC2500_ReadData(packet, packet_length);
if(packet[1] == 0x03 && packet[2] == 0x01) {
if(frskyx_rx_check_crc()) {
frsky_rx_finetune = -127;
CC2500_WriteReg(CC2500_0C_FSCTRL0, frsky_rx_finetune);
phase = FRSKY_RX_TUNE_LOW;
frsky_rx_strobe_rx();
return 1000;
}
}
}
frsky_rx_finetune += 10;
CC2500_WriteReg(CC2500_0C_FSCTRL0, frsky_rx_finetune);
frsky_rx_strobe_rx();
return 18000;
case FRSKY_RX_TUNE_LOW:
if (len >= packet_length) {
CC2500_ReadData(packet, packet_length);
if (frskyx_rx_check_crc()) {
tune_low = frsky_rx_finetune;
frsky_rx_finetune = 127;
CC2500_WriteReg(CC2500_0C_FSCTRL0, frsky_rx_finetune);
phase = FRSKY_RX_TUNE_HIGH;
frsky_rx_strobe_rx();
return 1000;
}
}
frsky_rx_finetune += 1;
CC2500_WriteReg(CC2500_0C_FSCTRL0, frsky_rx_finetune);
frsky_rx_strobe_rx();
return 18000;
case FRSKY_RX_TUNE_HIGH:
if (len >= packet_length) {
CC2500_ReadData(packet, packet_length);
if (frskyx_rx_check_crc()) {
tune_high = frsky_rx_finetune;
frsky_rx_finetune = (tune_low + tune_high) / 2;
CC2500_WriteReg(CC2500_0C_FSCTRL0, (int8_t)frsky_rx_finetune);
if(tune_low < tune_high)
phase = FRSKY_RX_BIND;
else
phase = FRSKY_RX_TUNE_START;
frsky_rx_strobe_rx();
return 1000;
}
}
frsky_rx_finetune -= 1;
CC2500_WriteReg(CC2500_0C_FSCTRL0, frsky_rx_finetune);
frsky_rx_strobe_rx();
return 18000;
case FRSKY_RX_BIND:
if(len >= packet_length) {
CC2500_ReadData(packet, packet_length);
if (frskyx_rx_check_crc()) {
if (packet[5] <= 0x2D) {
for (ch = 0; ch < 5; ch++)
hopping_frequency[packet[5]+ch] = packet[6+ch];
state |= 1 << (packet[5] / 5);
}
}
if (state == 0x3ff) {
debugln("bind complete");
frsky_rx_calibrate();
rx_tx_addr[0] = packet[3]; // TXID
rx_tx_addr[1] = packet[4]; // TXID
rx_tx_addr[2] = packet[12]; // RX # (D16)
if (sub_protocol == FRSKY_RX_D16FCC || sub_protocol == FRSKY_RX_D16LBT)
CC2500_WriteReg(CC2500_18_MCSM0, 0x08); // FS_AUTOCAL = manual
CC2500_WriteReg(CC2500_09_ADDR, rx_tx_addr[0]); // set address
CC2500_WriteReg(CC2500_07_PKTCTRL1, 0x05); // check address
phase = FRSKY_RX_DATA;
frsky_rx_set_channel(hopping_frequency_no);
// store txid and channel list
uint16_t temp = FRSKY_RX_EEPROM_OFFSET;
eeprom_write_byte((EE_ADDR)temp++, rx_tx_addr[0]);
eeprom_write_byte((EE_ADDR)temp++, rx_tx_addr[1]);
eeprom_write_byte((EE_ADDR)temp++, rx_tx_addr[2]);
eeprom_write_byte((EE_ADDR)temp++, frsky_rx_finetune);
for (ch = 0; ch < 47; ch++)
eeprom_write_byte((EE_ADDR)temp++, hopping_frequency[ch]);
BIND_DONE;
}
frsky_rx_strobe_rx();
}
return 1000;
case FRSKY_RX_DATA:
if (len >= packet_length) {
CC2500_ReadData(packet, packet_length);
if (packet[1] == rx_tx_addr[0] && packet[2] == rx_tx_addr[1] && frskyx_rx_check_crc() && (sub_protocol == FRSKY_RX_D8 || packet[6] == rx_tx_addr[2])) {
RX_RSSI = packet[packet_length-2];
if(RX_RSSI >= 128)
RX_RSSI -= 128;
else
RX_RSSI += 128;
// hop to next channel
if (sub_protocol == FRSKY_RX_D16FCC || sub_protocol == FRSKY_RX_D16LBT)
frsky_rx_chanskip = ((packet[4] & 0xC0) >> 6) | ((packet[5] & 0x3F) << 2);
hopping_frequency_no = (hopping_frequency_no + frsky_rx_chanskip) % 47;
frsky_rx_set_channel(hopping_frequency_no);
if((sub_protocol == FRSKY_RX_D8 || packet[7] == 0) && telemetry_link == 0) { // send channels to TX
frsky_rx_build_telemetry_packet();
telemetry_link = 1;
}
frsky_rx_data_started = 1;
read_retry = 0;
pps_counter++;
}
}
// packets per second
if (millis() - pps_timer >= 1000) {
pps_timer = millis();
debugln("%d pps", pps_counter);
RX_LQI = pps_counter;
pps_counter = 0;
}
// skip channel if no packet received in time
if (read_retry++ >= 9) {
hopping_frequency_no = (hopping_frequency_no + frsky_rx_chanskip) % 47;
frsky_rx_set_channel(hopping_frequency_no);
if(frsky_rx_data_started)
read_retry = 0;
else
read_retry = -50; // retry longer until first packet is catched
}
break;
}
return 1000;
}
#endif

View File

@ -52,6 +52,6 @@
52,ZSX,280
53,Flyzone,FZ-410
54,Scanner
55,FrskyX_RX,FCC,EU_LBT
55,Frsky_RX,D16FCC,D16LBT,D8
56,AFHDS2A_RX
63,XN_DUMP,250K,1M,2M

View File

@ -81,7 +81,7 @@ enum PROTOCOLS
PROTO_ZSX = 52, // =>NRF24L01
PROTO_FLYZONE = 53, // =>A7105
PROTO_SCANNER = 54, // =>CC2500
PROTO_FRSKYX_RX = 55, // =>CC2500
PROTO_FRSKY_RX = 55, // =>CC2500
PROTO_AFHDS2A_RX= 56, // =>A7105
PROTO_XN297DUMP = 63, // =>NRF24L01
};
@ -290,10 +290,11 @@ enum TRAXXAS
{
RX6519 = 0,
};
enum FRSKYX_RX
enum FRSKY_RX
{
FRSKYX_FCC = 0,
FRSKYX_LBT
FRSKY_RX_D16FCC= 0,
FRSKY_RX_D16LBT,
FRSKY_RX_D8
};
#define NONE 0
@ -594,7 +595,7 @@ enum {
#define AFHDS2A_EEPROM_OFFSET 50 // RX ID, 4 bytes per model id, end is 50+64=114
#define BUGS_EEPROM_OFFSET 114 // RX ID, 2 bytes per model id, end is 114+32=146
#define BUGSMINI_EEPROM_OFFSET 146 // RX ID, 2 bytes per model id, end is 146+32=178
#define FRSKYX_RX_EEPROM_OFFSET 178 // (3) TX ID + (1) freq_tune + (47) channels, 51 bytes, end is 178+51=229
#define FRSKY_RX_EEPROM_OFFSET 178 // (3) TX ID + (1) freq_tune + (47) channels, 51 bytes, end is 178+51=229
#define AFHDS2A_RX_EEPROM_OFFSET 229 // (4) TX ID + (16) channels, 20 bytes, end is 229+20=249
#define AFHDS2A_EEPROM_OFFSET2 249 // RX ID, 4 bytes per model id, end is 249+192=441
//#define CONFIG_EEPROM_OFFSET 441 // Current configuration of the multimodule
@ -670,7 +671,7 @@ Serial: 100000 Baud 8e2 _ xxxx xxxx p --
ZSX 52
FLYZONE 53
SCANNER 54
FRSKYX_RX 55
FRSKY_RX 55
BindBit=> 0x80 1=Bind/0=No
AutoBindBit=> 0x40 1=Yes /0=No
RangeCheck=> 0x20 1=Yes /0=No
@ -812,9 +813,10 @@ Serial: 100000 Baud 8e2 _ xxxx xxxx p --
RED_SLOW 1
sub_protocol==TRAXXAS
RX6519 0
sub_protocol==FRSKYX_RX
FCC 0
LBT 1
sub_protocol==FRSKY_RX
FRSKY_RX_D16FCC 0
FRSKY_RX_D16LBT 1
FRSKY_RX_D8 2
Power value => 0x80 0=High/1=Low
Stream[3] = option_protocol;

View File

@ -668,7 +668,7 @@ uint8_t Update_All()
update_led_status();
#if defined(TELEMETRY)
#if ( !( defined(MULTI_TELEMETRY) || defined(MULTI_STATUS) ) )
if( (protocol == PROTO_FRSKYX_RX) || (protocol == PROTO_SCANNER) || (protocol==PROTO_FRSKYD) || (protocol==PROTO_BAYANG) || (protocol==PROTO_NCC1701) || (protocol==PROTO_BUGS) || (protocol==PROTO_BUGSMINI) || (protocol==PROTO_HUBSAN) || (protocol==PROTO_AFHDS2A) || (protocol==PROTO_FRSKYX) || (protocol==PROTO_DSM) || (protocol==PROTO_CABELL) || (protocol==PROTO_HITEC))
if( (protocol == PROTO_FRSKY_RX) || (protocol == PROTO_SCANNER) || (protocol==PROTO_FRSKYD) || (protocol==PROTO_BAYANG) || (protocol==PROTO_NCC1701) || (protocol==PROTO_BUGS) || (protocol==PROTO_BUGSMINI) || (protocol==PROTO_HUBSAN) || (protocol==PROTO_AFHDS2A) || (protocol==PROTO_FRSKYX) || (protocol==PROTO_DSM) || (protocol==PROTO_CABELL) || (protocol==PROTO_HITEC))
#endif
if(IS_DISABLE_TELEM_off && !(protocol==PROTO_XN297DUMP))
TelemetryUpdate();
@ -1086,12 +1086,12 @@ static void protocol_init()
remote_callback = Scanner_callback;
break;
#endif
#if defined(FRSKYX_RX_CC2500_INO)
case PROTO_FRSKYX_RX:
#if defined(FRSKY_RX_CC2500_INO)
case PROTO_FRSKY_RX:
PE1_off;
PE2_on; //antenna RF2
next_callback = initFrSkyX_Rx();
remote_callback = FrSkyX_Rx_callback;
next_callback = initFrSky_Rx();
remote_callback = FrSky_Rx_callback;
break;
#endif
#endif

View File

@ -226,7 +226,7 @@ static void multi_send_status()
}
#endif
#if defined (FRSKYX_RX_TELEMETRY) || defined (AFHDS2A_RX_TELEMETRY)
#if defined (FRSKY_RX_TELEMETRY) || defined (AFHDS2A_RX_TELEMETRY)
void receiver_channels_frame()
{
uint16_t len = packet_in[3] * 11; // 11 bit per channel
@ -861,8 +861,8 @@ void TelemetryUpdate()
}
#endif
#if defined (FRSKYX_RX_TELEMETRY) || defined(AFHDS2A_RX_TELEMETRY)
if (telemetry_link && (protocol == PROTO_FRSKYX_RX || protocol == PROTO_AFHDS2A_RX))
#if defined (FRSKY_RX_TELEMETRY) || defined(AFHDS2A_RX_TELEMETRY)
if (telemetry_link && (protocol == PROTO_FRSKY_RX || protocol == PROTO_AFHDS2A_RX))
{
receiver_channels_frame();
telemetry_link = 0;

View File

@ -194,7 +194,7 @@
#undef HITEC_CC2500_INO
#undef XN297L_CC2500_EMU
#undef SCANNER_CC2500_INO
#undef FRSKYX_RX_CC2500_INO
#undef FRSKY_RX_CC2500_INO
#endif
#ifndef NRF24L01_INSTALLED
#undef BAYANG_NRF24L01_INO
@ -253,8 +253,8 @@
#undef MULTI_TELEMETRY
#undef SCANNER_TELEMETRY
#undef SCANNER_CC2500_INO
#undef FRSKYX_RX_TELEMETRY
#undef FRSKYX_RX_CC2500_INO
#undef FRSKY_RX_TELEMETRY
#undef FRSKY_RX_CC2500_INO
#undef AFHDS2A_RX_TELEMETRY
#undef AFHDS2A_RX_A7105_INO
#else
@ -265,9 +265,9 @@
#undef SCANNER_TELEMETRY
#undef SCANNER_CC2500_INO
#endif
#if not defined(FRSKYX_RX_CC2500_INO) || not defined(FRSKYX_RX_TELEMETRY)
#undef FRSKYX_RX_TELEMETRY
#undef FRSKYX_RX_CC2500_INO
#if not defined(FRSKY_RX_CC2500_INO) || not defined(FRSKY_RX_TELEMETRY)
#undef FRSKY_RX_TELEMETRY
#undef FRSKY_RX_CC2500_INO
#endif
#if not defined(AFHDS2A_RX_A7105_INO) || not defined(AFHDS2A_RX_TELEMETRY)
#undef AFHDS2A_RX_TELEMETRY
@ -309,7 +309,7 @@
#if not defined(DSM_CYRF6936_INO)
#undef DSM_TELEMETRY
#endif
#if not defined(DSM_TELEMETRY) && not defined(SPORT_TELEMETRY) && not defined(HUB_TELEMETRY) && not defined(HUBSAN_HUB_TELEMETRY) && not defined(BUGS_HUB_TELEMETRY) && not defined(NCC1701_HUB_TELEMETRY) && not defined(BAYANG_HUB_TELEMETRY) && not defined(CABELL_HUB_TELEMETRY) && not defined(AFHDS2A_HUB_TELEMETRY) && not defined(AFHDS2A_FW_TELEMETRY) && not defined(MULTI_TELEMETRY) && not defined(MULTI_STATUS) && not defined(HITEC_HUB_TELEMETRY) && not defined(HITEC_FW_TELEMETRY) && not defined(SCANNER_TELEMETRY) && not defined(FRSKYX_RX_TELEMETRY)
#if not defined(DSM_TELEMETRY) && not defined(SPORT_TELEMETRY) && not defined(HUB_TELEMETRY) && not defined(HUBSAN_HUB_TELEMETRY) && not defined(BUGS_HUB_TELEMETRY) && not defined(NCC1701_HUB_TELEMETRY) && not defined(BAYANG_HUB_TELEMETRY) && not defined(CABELL_HUB_TELEMETRY) && not defined(AFHDS2A_HUB_TELEMETRY) && not defined(AFHDS2A_FW_TELEMETRY) && not defined(MULTI_TELEMETRY) && not defined(MULTI_STATUS) && not defined(HITEC_HUB_TELEMETRY) && not defined(HITEC_FW_TELEMETRY) && not defined(SCANNER_TELEMETRY) && not defined(FRSKY_RX_TELEMETRY)
#undef TELEMETRY
#undef INVERT_TELEMETRY
#endif

View File

@ -176,7 +176,7 @@
#define FRSKYD_CC2500_INO
#define FRSKYV_CC2500_INO
#define FRSKYX_CC2500_INO
#define FRSKYX_RX_CC2500_INO
#define FRSKY_RX_CC2500_INO
#define HITEC_CC2500_INO
#define SCANNER_CC2500_INO
#define SFHSS_CC2500_INO
@ -288,7 +288,7 @@
#define HITEC_HUB_TELEMETRY // Use FrSkyD Hub format to send basic telemetry to the radios which can decode it like er9x, ersky9x and OpenTX
#define HITEC_FW_TELEMETRY // Under development: Forward received telemetry packets to be decoded by ersky9x and OpenTX
#define SCANNER_TELEMETRY // Forward spectrum scanner data to TX
#define FRSKYX_RX_TELEMETRY // Forward channels data to TX
#define FRSKY_RX_TELEMETRY // Forward channels data to TX
#define AFHDS2A_RX_TELEMETRY // Forward channels data to TX
/****************************/
@ -545,7 +545,7 @@ const PPM_Parameters PPM_prot[14*NBR_BANKS]= {
CH_8
EU_16
EU_8
PROTO_FRSKYX_RX
PROTO_FRSKY_RX
FRSKYX_FCC
FRSKYX_LBT
PROTO_FY326