New protocols and optimizations

New protocols:
- FQ777 for FQ777-124
- MT99xx -> "LS" for 114/124
This commit is contained in:
pascallanger
2016-08-01 21:57:18 +02:00
parent 8dc5ae4f86
commit 6d546094ef
14 changed files with 576 additions and 299 deletions

View File

@@ -12,7 +12,7 @@
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
// compatible with MT99xx, Eachine H7, Yi Zhan i6S
// compatible with MT99xx, Eachine H7, Yi Zhan i6S and LS114/124
// Last sync with Goebish mt99xx_nrf24l01.c dated 2016-01-29
#if defined(MT99XX_NRF24L01_INO)
@@ -43,34 +43,54 @@ enum {
MT99XX_DATA
};
const uint8_t h7_mys_byte[] = {
0x01, 0x11, 0x02, 0x12, 0x03, 0x13, 0x04, 0x14,
0x05, 0x15, 0x06, 0x16, 0x07, 0x17, 0x00, 0x10
};
static const u8 ls_mys_byte[] = {
0x05, 0x15, 0x25, 0x06, 0x16, 0x26,
0x07, 0x17, 0x27, 0x00, 0x10, 0x20,
0x01, 0x11, 0x21, 0x02, 0x12, 0x22,
0x03, 0x13, 0x23, 0x04, 0x14, 0x24
};
static void __attribute__((unused)) MT99XX_send_packet()
{
const uint8_t yz_p4_seq[] = {0xa0, 0x20, 0x60};
const uint8_t mys_byte[] = {
0x01, 0x11, 0x02, 0x12, 0x03, 0x13, 0x04, 0x14,
0x05, 0x15, 0x06, 0x16, 0x07, 0x17, 0x00, 0x10
};
static uint8_t yz_seq_num=0;
static uint8_t ls_counter=0;
if(sub_protocol != YZ)
{ // MT99XX & H7
{ // MT99XX & H7 & LS
packet[0] = convert_channel_8b_scale(THROTTLE,0x00,0xE1); // throttle
packet[1] = convert_channel_8b_scale(RUDDER ,0x00,0xE1); // rudder
packet[2] = convert_channel_8b_scale(AILERON ,0x00,0xE1); // aileron
packet[3] = convert_channel_8b_scale(ELEVATOR,0x00,0xE1); // elevator
packet[4] = 0x20; // pitch trim (0x3f-0x20-0x00)
packet[5] = 0x20; // roll trim (0x00-0x20-0x3f)
packet[6] = GET_FLAG( Servo_AUX1, FLAG_MT_FLIP )
| GET_FLAG( Servo_AUX3, FLAG_MT_SNAPSHOT )
| GET_FLAG( Servo_AUX4, FLAG_MT_VIDEO );
if(sub_protocol==MT99)
packet[6] |= 0x40 | FLAG_MT_RATE2;
packet[6] = GET_FLAG( Servo_AUX1, FLAG_MT_FLIP );
packet[7] = h7_mys_byte[hopping_frequency_no]; // next rf channel index ?
if(sub_protocol==H7)
packet[6]|=FLAG_MT_RATE1; // max rate on H7
else
packet[6] |= FLAG_MT_RATE1; // max rate on H7
// todo: mys_byte = next channel index ?
// low nibble: index in chan list ?
// high nibble: 0->start from start of list, 1->start from end of list ?
packet[7] = mys_byte[hopping_frequency_no];
if(sub_protocol==MT99)
packet[6] |= 0x40 | FLAG_MT_RATE2
| GET_FLAG( Servo_AUX3, FLAG_MT_SNAPSHOT )
| GET_FLAG( Servo_AUX4, FLAG_MT_VIDEO ); // max rate on MT99xx
else
if(sub_protocol==LS)
packet[6] |= 0x40 | FLAG_MT_RATE2;
else //LS
{
packet[6] |= FLAG_MT_RATE2 // max rate
| GET_FLAG( Servo_AUX5, 0x10 ); //HEADLESS
packet[7] = ls_mys_byte[ls_counter++];
if(ls_counter >= sizeof(ls_mys_byte))
ls_counter=0;
}
uint8_t result=checksum_offset;
for(uint8_t i=0; i<8; i++)
result += packet[i];
@@ -102,7 +122,10 @@ static void __attribute__((unused)) MT99XX_send_packet()
packet[8] = 0xff;
}
NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency[hopping_frequency_no] + channel_offset);
if(sub_protocol == LS)
NRF24L01_WriteReg(NRF24L01_05_RF_CH, 0x2D); // LS always transmits on the same channel
else
NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency[hopping_frequency_no] + channel_offset);
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
XN297_WritePayload(packet, MT99XX_PACKET_SIZE);
@@ -120,8 +143,11 @@ static void __attribute__((unused)) MT99XX_send_packet()
static void __attribute__((unused)) MT99XX_init()
{
NRF24L01_Initialize();
if(sub_protocol == YZ)
XN297_SetScrambledMode(XN297_UNSCRAMBLED);
NRF24L01_SetTxRxMode(TX_EN);
NRF24L01_FlushTx();
XN297_SetTXAddr((uint8_t *)"\xCC\xCC\xCC\xCC\xCC", 5);
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowldgement on all data pipes
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, 0x01); // Enable data pipe 0 only
@@ -133,19 +159,26 @@ static void __attribute__((unused)) MT99XX_init()
NRF24L01_SetBitrate(NRF24L01_BR_1M); // 1Mbps
NRF24L01_SetPower();
XN297_Configure(BV(NRF24L01_00_EN_CRC) | BV(NRF24L01_00_CRCO) | BV(NRF24L01_00_PWR_UP) | (sub_protocol == YZ ? BV(XN297_UNSCRAMBLED):0) );
XN297_Configure(BV(NRF24L01_00_EN_CRC) | BV(NRF24L01_00_CRCO) | BV(NRF24L01_00_PWR_UP) );
XN297_SetTXAddr((uint8_t *)"\xCC\xCC\xCC\xCC\xCC", 5);
}
static void __attribute__((unused)) MT99XX_initialize_txid()
{
rx_tx_addr[3] = 0xCC;
rx_tx_addr[4] = 0xCC;
if(sub_protocol == YZ)
{
rx_tx_addr[0] = 0x53; // test (SB id)
rx_tx_addr[1] = 0x00;
rx_tx_addr[2] = 0x00;
}
checksum_offset = (rx_tx_addr[0] + rx_tx_addr[1]) & 0xff;
else
if(sub_protocol == LS)
rx_tx_addr[0] = 0xCC;
else //MT99 & H7
rx_tx_addr[2] = 0x00;
checksum_offset = rx_tx_addr[0] + rx_tx_addr[1] + rx_tx_addr[2];
channel_offset = (((checksum_offset & 0xf0)>>4) + (checksum_offset & 0x0f)) % 8;
}
@@ -157,16 +190,16 @@ uint16_t MT99XX_callback()
{
if (bind_counter == 0)
{
rx_tx_addr[2] = 0x00;
rx_tx_addr[3] = 0xCC;
rx_tx_addr[4] = 0xCC;
// set tx address for data packets
XN297_SetTXAddr(rx_tx_addr, 5);
BIND_DONE;
}
else
{
NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency[hopping_frequency_no]);
if(sub_protocol == LS)
NRF24L01_WriteReg(NRF24L01_05_RF_CH, 0x2D); // LS always transmits on the same channel
else
NRF24L01_WriteReg(NRF24L01_05_RF_CH, hopping_frequency[hopping_frequency_no]);
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70);
NRF24L01_FlushTx();
XN297_WritePayload(packet, MT99XX_PACKET_SIZE); // bind packet
@@ -193,23 +226,30 @@ uint16_t initMT99XX(void)
MT99XX_init();
packet[0] = 0x20;
if(sub_protocol!=YZ)
packet_period = MT99XX_PACKET_PERIOD_MT;
switch(sub_protocol)
{ // MT99 & H7
packet_period = MT99XX_PACKET_PERIOD_MT;
packet[1] = 0x14;
packet[2] = 0x03;
packet[3] = 0x25;
case MT99:
case H7:
packet[1] = 0x14;
packet[2] = 0x03;
packet[3] = 0x25;
break;
case YZ:
packet_period = MT99XX_PACKET_PERIOD_YZ;
packet[1] = 0x15;
packet[2] = 0x05;
packet[3] = 0x06;
break;
case LS:
packet[1] = 0x14;
packet[2] = 0x05;
packet[3] = 0x11;
break;
}
else
{ // YZ
packet_period = MT99XX_PACKET_PERIOD_YZ;
packet[1] = 0x15;
packet[2] = 0x05;
packet[3] = 0x06;
}
packet[4] = rx_tx_addr[0]; // 1st byte for data state tx address
packet[5] = rx_tx_addr[1]; // 2nd byte for data state tx address (always 0x00 on Yi Zhan ?)
packet[6] = 0x00; // 3rd byte for data state tx address (always 0x00 ?)
packet[4] = rx_tx_addr[0];
packet[5] = rx_tx_addr[1];
packet[6] = rx_tx_addr[2];
packet[7] = checksum_offset; // checksum offset
packet[8] = 0xAA; // fixed
packet_count=0;