Orange TX module compilation fixes

This commit is contained in:
pascallanger 2016-09-12 21:44:30 +02:00
parent 8470f4f7fb
commit 47bae63548
3 changed files with 185 additions and 147 deletions

View File

@ -102,9 +102,15 @@ void CYRF_SetTxRxMode(uint8_t mode)
//Set the post tx/rx state
CYRF_WriteRegister(CYRF_0F_XACT_CFG, mode == TX_EN ? 0x28 : 0x2C); // 4=IDLE, 8=TX, C=RX
if(mode == TX_EN)
#ifdef DSM_BLUE
CYRF_WriteRegister(CYRF_0E_GPIO_CTRL,0x20); // XOUT=1, PACTL=0
else
CYRF_WriteRegister(CYRF_0E_GPIO_CTRL,0x80); // XOUT=0, PACTL=1
#else
CYRF_WriteRegister(CYRF_0E_GPIO_CTRL,0x80); // XOUT=1, PACTL=0
else
CYRF_WriteRegister(CYRF_0E_GPIO_CTRL,0x20); // XOUT=0, PACTL=1
#endif
}
}
/*

View File

@ -3,6 +3,15 @@
#define XMEGA 1
#define XOUT 0x80
#define PACTL 0x20
// For BLUE module use:
//#define DSM_BLUE
//#define XOUT 0x20
//#define PACTL 0x80
#include <stdlib.h>
#include <string.h>
#include <avr/interrupt.h>
@ -25,6 +34,9 @@ extern void CC2500_Reset(void ) ;
extern uint8_t CYRF_Reset(void ) ;
extern void CYRF_SetTxRxMode(uint8_t mode) ;
extern void frskyUpdate(void) ;
extern uint16_t initDsm2(void) ;
extern uint16_t ReadDsm2(void) ;
extern uint16_t DevoInit(void) ;
extern uint16_t devo_callback(void) ;
@ -35,6 +47,7 @@ extern long map(long x, long in_min, long in_max, long out_min, long out_max) ;
extern uint32_t millis(void) ;
extern uint32_t micros(void) ;
extern void delayMicroseconds(uint16_t x) ;
extern void delayMilliseconds(unsigned long ms) ;
extern void init(void) ;
extern int analogRead(uint8_t pin) ;
@ -74,9 +87,9 @@ extern uint16_t ReadDsm() ;
#define FRACT_INC ((MICROSECONDS_PER_TIMER0_OVERFLOW % 1000) >> 3)
#define FRACT_MAX (1000 >> 3)
volatile unsigned long timer0_overflow_count = 0;
volatile unsigned long timer0_millis = 0;
static unsigned char timer0_fract = 0;
//volatile unsigned long timer0_overflow_count = 0;
//volatile unsigned long timer0_millis = 0;
//static unsigned char timer0_fract = 0;
@ -155,137 +168,136 @@ static unsigned char timer0_fract = 0;
//}
ISR(TCC0_OVF_vect)
{
// copy these to local variables so they can be stored in registers
// (volatile variables must be read from memory on every access)
unsigned long m = timer0_millis;
unsigned char f = timer0_fract;
m += MILLIS_INC;
f += FRACT_INC;
if (f >= FRACT_MAX) {
f -= FRACT_MAX;
m += 1;
}
timer0_fract = f;
timer0_millis = m;
timer0_overflow_count++;
}
unsigned long millis()
{
unsigned long m;
uint8_t oldSREG = SREG;
// disable interrupts while we read timer0_millis or we might get an
// inconsistent value (e.g. in the middle of a write to timer0_millis)
cli();
m = timer0_millis;
SREG = oldSREG;
return m;
}
unsigned long micros()
{
unsigned long m;
uint8_t oldSREG = SREG, t;
cli();
m = timer0_overflow_count;
t = TCC0.CNT ;
if ((TCC0.INTFLAGS & TC0_OVFIF_bm) && (t < 255))
m++;
SREG = oldSREG;
return ((m << 8) + t) * (64 / clockCyclesPerMicrosecond());
}
void delayMilliseconds(unsigned long ms)
{
uint16_t start = (uint16_t)micros();
while (ms > 0) {
yield();
if (((uint16_t)micros() - start) >= 1000) {
ms--;
start += 1000;
}
}
}
/* Delay for the given number of microseconds. Assumes a 8 or 16 MHz clock. */
void delayMicroseconds(unsigned int us)
{
// calling avrlib's delay_us() function with low values (e.g. 1 or
// 2 microseconds) gives delays longer than desired.
//delay_us(us);
#if F_CPU >= 20000000L
// for the 20 MHz clock on rare Arduino boards
// for a one-microsecond delay, simply wait 2 cycle and return. The overhead
// of the function call yields a delay of exactly a one microsecond.
__asm__ __volatile__ (
"nop" "\n\t"
"nop"); //just waiting 2 cycle
if (--us == 0)
return;
// the following loop takes a 1/5 of a microsecond (4 cycles)
// per iteration, so execute it five times for each microsecond of
// delay requested.
us = (us<<2) + us; // x5 us
// account for the time taken in the preceeding commands.
us -= 2;
#elif F_CPU >= 16000000L
// for the 16 MHz clock on most Arduino boards
// for a one-microsecond delay, simply return. the overhead
// of the function call yields a delay of approximately 1 1/8 us.
if (--us == 0)
return;
// the following loop takes a quarter of a microsecond (4 cycles)
// per iteration, so execute it four times for each microsecond of
// delay requested.
us <<= 2;
// account for the time taken in the preceeding commands.
us -= 2;
#else
// for the 8 MHz internal clock on the ATmega168
// for a one- or two-microsecond delay, simply return. the overhead of
// the function calls takes more than two microseconds. can't just
// subtract two, since us is unsigned; we'd overflow.
if (--us == 0)
return;
if (--us == 0)
return;
// the following loop takes half of a microsecond (4 cycles)
// per iteration, so execute it twice for each microsecond of
// delay requested.
us <<= 1;
// partially compensate for the time taken by the preceeding commands.
// we can't subtract any more than this or we'd overflow w/ small delays.
us--;
#endif
// busy wait
__asm__ __volatile__ (
"1: sbiw %0,1" "\n\t" // 2 cycles
"brne 1b" : "=w" (us) : "0" (us) // 2 cycles
);
}
//ISR(TCC0_OVF_vect)
//{
// // copy these to local variables so they can be stored in registers
// // (volatile variables must be read from memory on every access)
// unsigned long m = timer0_millis;
// unsigned char f = timer0_fract;
//
// m += MILLIS_INC;
// f += FRACT_INC;
// if (f >= FRACT_MAX) {
// f -= FRACT_MAX;
// m += 1;
// }
//
// timer0_fract = f;
// timer0_millis = m;
// timer0_overflow_count++;
//}
//
//unsigned long millis()
//{
// unsigned long m;
// uint8_t oldSREG = SREG;
//
// // disable interrupts while we read timer0_millis or we might get an
// // inconsistent value (e.g. in the middle of a write to timer0_millis)
// cli();
// m = timer0_millis;
// SREG = oldSREG;
//
// return m;
//}
//
//unsigned long micros()
//{
// unsigned long m;
// uint8_t oldSREG = SREG, t;
//
// cli();
// m = timer0_overflow_count;
// t = TCC0.CNT ;
//
// if ((TCC0.INTFLAGS & TC0_OVFIF_bm) && (t < 255))
// m++;
//
// SREG = oldSREG;
//
// return ((m << 8) + t) * (64 / clockCyclesPerMicrosecond());
//}
//
//void delayMilliseconds(unsigned long ms)
//{
// uint16_t start = (uint16_t)micros();
//
// while (ms > 0) {
// yield();
// if (((uint16_t)micros() - start) >= 1000) {
// ms--;
// start += 1000;
// }
// }
//}
//
///* Delay for the given number of microseconds. Assumes a 8 or 16 MHz clock. */
//void delayMicroseconds(unsigned int us)
//{
// // calling avrlib's delay_us() function with low values (e.g. 1 or
// // 2 microseconds) gives delays longer than desired.
// //delay_us(us);
//#if F_CPU >= 20000000L
// // for the 20 MHz clock on rare Arduino boards
//
// // for a one-microsecond delay, simply wait 2 cycle and return. The overhead
// // of the function call yields a delay of exactly a one microsecond.
// __asm__ __volatile__ (
// "nop" "\n\t"
// "nop"); //just waiting 2 cycle
// if (--us == 0)
// return;
//
// // the following loop takes a 1/5 of a microsecond (4 cycles)
// // per iteration, so execute it five times for each microsecond of
// // delay requested.
// us = (us<<2) + us; // x5 us
//
// // account for the time taken in the preceeding commands.
// us -= 2;
//
//#elif F_CPU >= 16000000L
// // for the 16 MHz clock on most Arduino boards
//
// // for a one-microsecond delay, simply return. the overhead
// // of the function call yields a delay of approximately 1 1/8 us.
// if (--us == 0)
// return;
//
// // the following loop takes a quarter of a microsecond (4 cycles)
// // per iteration, so execute it four times for each microsecond of
// // delay requested.
// us <<= 2;
//
// // account for the time taken in the preceeding commands.
// us -= 2;
//#else
// // for the 8 MHz internal clock on the ATmega168
//
// // for a one- or two-microsecond delay, simply return. the overhead of
// // the function calls takes more than two microseconds. can't just
// // subtract two, since us is unsigned; we'd overflow.
// if (--us == 0)
// return;
// if (--us == 0)
// return;
//
// // the following loop takes half of a microsecond (4 cycles)
// // per iteration, so execute it twice for each microsecond of
// // delay requested.
// us <<= 1;
//
// // partially compensate for the time taken by the preceeding commands.
// // we can't subtract any more than this or we'd overflow w/ small delays.
// us--;
//#endif
//
// // busy wait
// __asm__ __volatile__ (
// "1: sbiw %0,1" "\n\t" // 2 cycles
// "brne 1b" : "=w" (us) : "0" (us) // 2 cycles
// );
//}
#ifndef cbi
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
@ -329,15 +341,15 @@ void init()
// TCC0 counts 0-255 at 4uS clock rate
EVSYS.CH2MUX = 0x80 + 0x07 ; // Prescaler of 128
TCC0.CTRLB = 0 ;
TCC0.CTRLC = 0 ;
TCC0.CTRLD = 0 ;
TCC0.CTRLE = 0 ;
TCC0.INTCTRLA = 0x01 ;
TCC0.INTCTRLB = 0 ;
TCC0.PER = 0x00FF ;
TCC0.CTRLA = 0x0A ;
// EVSYS.CH2MUX = 0x80 + 0x07 ; // Prescaler of 128
// TCC0.CTRLB = 0 ;
// TCC0.CTRLC = 0 ;
// TCC0.CTRLD = 0 ;
// TCC0.CTRLE = 0 ;
// TCC0.INTCTRLA = 0x01 ;
// TCC0.INTCTRLB = 0 ;
// TCC0.PER = 0x00FF ;
// TCC0.CTRLA = 0x0A ;
#if defined(ADCSRA)

View File

@ -95,9 +95,10 @@ uint8_t protocol_flags=0,protocol_flags2=0;
// PPM variable
volatile uint16_t PPM_data[NUM_CHN];
#ifndef XMEGA
//Random variable
volatile uint32_t gWDT_entropy=0;
#endif
// Serial variables
#ifdef INVERT_TELEMETRY
// enable bit bash for serial
@ -183,8 +184,8 @@ void setup()
// Timer1 config
TCCR1A = 0;
TCCR1B = (1 << CS11); //prescaler8, set timer1 to increment every 0.5us(16Mhz) and start timer
#endif
random_init();
#endif
// Set Chip selects
A7105_CS_on;
@ -225,8 +226,10 @@ void setup()
//Init RF modules
modules_reset();
#ifndef XMEGA
//Init the seed with a random value created from watchdog timer for all protocols requiring random values
randomSeed(random_value());
#endif
// Read or create protocol id
MProtocol_id_master=random_id(10,false);
@ -419,7 +422,9 @@ inline void tx_resume()
if(!IS_TX_PAUSE_on)
{
#ifdef XMEGA
cli() ;
USARTC0.CTRLA = (USARTC0.CTRLA & 0xFC) | 0x01 ; // Resume telemetry by enabling transmitter interrupt
sei() ;
#else
#ifndef BASH_SERIAL
UCSR0B |= _BV(UDRIE0); // Resume telemetry by enabling transmitter interrupt
@ -865,6 +870,7 @@ static void set_rx_tx_addr(uint32_t id)
rx_tx_addr[4] = 0xC1; // for YD717: always uses first data port
}
#ifndef XMEGA
static void random_init(void)
{
cli(); // Temporarily turn off interrupts, until WDT configured
@ -879,6 +885,7 @@ static uint32_t random_value(void)
while (!gWDT_entropy);
return gWDT_entropy;
}
#endif
static uint32_t random_id(uint16_t adress, uint8_t create_new)
{
@ -963,7 +970,6 @@ uint8_t SPI_Read(void)
// replacement millis() and micros()
// These work polled, no interrupts
// micros() MUST be called at least once every 32 milliseconds
#ifndef XMEGA
uint16_t MillisPrecount ;
uint16_t lastTimerValue ;
uint32_t TotalMicros ;
@ -1052,12 +1058,24 @@ void delayMicroseconds(unsigned int us)
return;
us <<= 2; // * 4
us -= 2; // - 2
#ifdef XMEGA
__asm__ __volatile__ (
"1: sbiw %0,1" "\n\t" // 2 cycles
"nop \n"
"nop \n"
"nop \n"
"nop \n"
"brne 1b" : "=w" (us) : "0" (us) // 2 cycles
);
#else
__asm__ __volatile__ (
"1: sbiw %0,1" "\n\t" // 2 cycles
"brne 1b" : "=w" (us) : "0" (us) // 2 cycles
);
#endif
}
#ifndef XMEGA
void init()
{
// this needs to be called before setup() or some functions won't work there
@ -1180,6 +1198,7 @@ ISR(TIMER1_COMPB_vect, ISR_NOBLOCK )
}
#endif //ENABLE_SERIAL
#ifndef XMEGA
// Random interrupt service routine called every time the WDT interrupt is triggered.
// It is only enabled at startup to generate a seed.
ISR(WDT_vect)
@ -1204,3 +1223,4 @@ ISR(WDT_vect)
WDTCSR = 0; // Disable Watchdog interrupt
}
}
#endif