diff --git a/Multiprotocol/MultiOrange.cpp.xmega b/Multiprotocol/MultiOrange.cpp.xmega index 1cc7dfa..d9a916c 100644 --- a/Multiprotocol/MultiOrange.cpp.xmega +++ b/Multiprotocol/MultiOrange.cpp.xmega @@ -3,14 +3,8 @@ #define XMEGA 1 -#define XOUT 0x80 -#define PACTL 0x20 - // For BLUE module use: //#define DSM_BLUE -//#define XOUT 0x20 -//#define PACTL 0x80 - #include #include @@ -18,7 +12,6 @@ static void protocol_init(void) ; static void update_aux_flags(void) ; -//static void PPM_Telemetry_serial_init(void) ; static uint32_t random_id(uint16_t adress, uint8_t create_new) ; static void update_serial_data(void) ; static void Mprotocol_serial_init(void) ; @@ -52,8 +45,6 @@ extern void delayMicroseconds(uint16_t x) ; extern void delayMilliseconds(unsigned long ms) ; extern void init(void) ; -extern int analogRead(uint8_t pin) ; - extern void modules_reset() ; extern void Update_All() ; extern void tx_pause() ; @@ -62,17 +53,8 @@ extern void TelemetryUpdate() ; extern uint16_t initDsm() ; extern uint16_t ReadDsm() ; - -#define A6 20 -#define A7 21 - #define yield() -//void _delay_us( uint16_t x ) -//{ -// delayMicroseconds( x ) ; -//} - #define clockCyclesPerMicrosecond() ( F_CPU / 1000000L ) #define clockCyclesToMicroseconds(a) ( (a) / clockCyclesPerMicrosecond() ) @@ -89,218 +71,6 @@ extern uint16_t ReadDsm() ; #define FRACT_INC ((MICROSECONDS_PER_TIMER0_OVERFLOW % 1000) >> 3) #define FRACT_MAX (1000 >> 3) -//volatile unsigned long timer0_overflow_count = 0; -//volatile unsigned long timer0_millis = 0; -//static unsigned char timer0_fract = 0; - - - -//void chipInit() -//{ -// PR.PRGEN = 0 ; // RTC and event system active -// PR.PRPC = 0 ; // No power reduction port C -// PR.PRPD = 0 ; // No power reduction port D -// PMIC.CTRL = 7 ; -// OSC.CTRL = 0xC3 ; // unclear -// OSC.CTRL |= 0x08 ; // Enable external oscillator -// while( ( OSC.STATUS & 0x08 ) == 0 ) ; // Wait for ext osc to be ready -// OSC.PLLCTRL = 0xC2 ; // Ext. Osc times 2 -// OSC.CTRL |= 0x10 ; // Enable PLL -// while( ( OSC.STATUS & 0x10 ) == 0 ) ; // Wait PLL ready -// CPU_CCP = 0xD8 ; // 0x34 -// CLK.CTRL = 0 ; // Select 2MHz internal clock -// CPU_CCP = 0xD8 ; // 0x34 -// CLK.CTRL = 0x04 ; // Select PLL as clock (32MHz) -// PORTD.OUTSET = 0x17 ; -// PORTD.DIRSET = 0xB2 ; -// PORTD.DIRCLR = 0x4D ; -// PORTD.PIN0CTRL = 0x18 ; -// PORTD.PIN2CTRL = 0x18 ; -// PORTE.DIRSET = 0x01 ; -// PORTE.DIRCLR = 0x02 ; -// PORTE.OUTSET = 0x01 ; -// PORTA.DIRCLR = 0xFF ; -// PORTA.PIN0CTRL = 0x18 ; -// PORTA.PIN1CTRL = 0x18 ; -// PORTA.PIN2CTRL = 0x18 ; -// PORTA.PIN3CTRL = 0x18 ; -// PORTA.PIN4CTRL = 0x18 ; -// PORTA.PIN5CTRL = 0x18 ; -// PORTA.PIN6CTRL = 0x18 ; -// PORTA.PIN7CTRL = 0x18 ; -// PORTC.DIRSET = 0x20 ; -// PORTC.OUTCLR = 0x20 ; -// SPID.CTRL = 0x51 ; -// PORTC.OUTSET = 0x08 ; -// PORTC.DIRSET = 0x08 ; -// PORTC.PIN3CTRL = 0x18 ; -// PORTC.PIN2CTRL = 0x18 ; -// USARTC0.BAUDCTRLA = 19 ; -// USARTC0.BAUDCTRLB = 0 ; -// USARTC0.CTRLB = 0x18 ; -// USARTC0.CTRLA = (USARTC0.CTRLA & 0xCF) | 0x10 ; -// USARTC0.CTRLC = 0x03 ; - -// TCC0.CTRLB = 0 ; -// TCC0.CTRLC = 0 ; -// TCC0.CTRLD = 0 ; -// TCC0.CTRLE = 0 ; -// TCC0.INTCTRLA = 0x01 ; -// TCC0.INTCTRLB = 0 ; -// TCC0.PER = 0x00FF ; -// TCC0.CTRLA = 4 ; - -// TCC1.CTRLB = 0 ; -// TCC1.CTRLC = 0 ; -// TCC1.CTRLD = 0 ; -// TCC1.CTRLE = 0 ; -// TCC1.INTCTRLA = 0x03 ; -// TCC1.INTCTRLB = 0 ; -// TCC1.PER = 0xFFFF ; -// TCC1.CNT = 0 ; -// TCC1.CTRLA = 4 ; - -// TCD0.CTRLA = 4 ; -// TCD0.INTCTRLA = 0x03 ; -// TCD0.PER = 0x02ED ; - -//// L0EDB() ; - -// NVM.CTRLB &= 0xF7 ; // No EEPROM mapping -//} - - -//ISR(TCC0_OVF_vect) -//{ -// // copy these to local variables so they can be stored in registers -// // (volatile variables must be read from memory on every access) -// unsigned long m = timer0_millis; -// unsigned char f = timer0_fract; -// -// m += MILLIS_INC; -// f += FRACT_INC; -// if (f >= FRACT_MAX) { -// f -= FRACT_MAX; -// m += 1; -// } -// -// timer0_fract = f; -// timer0_millis = m; -// timer0_overflow_count++; -//} -// -//unsigned long millis() -//{ -// unsigned long m; -// uint8_t oldSREG = SREG; -// -// // disable interrupts while we read timer0_millis or we might get an -// // inconsistent value (e.g. in the middle of a write to timer0_millis) -// cli(); -// m = timer0_millis; -// SREG = oldSREG; -// -// return m; -//} -// -//unsigned long micros() -//{ -// unsigned long m; -// uint8_t oldSREG = SREG, t; -// -// cli(); -// m = timer0_overflow_count; -// t = TCC0.CNT ; -// -// if ((TCC0.INTFLAGS & TC0_OVFIF_bm) && (t < 255)) -// m++; -// -// SREG = oldSREG; -// -// return ((m << 8) + t) * (64 / clockCyclesPerMicrosecond()); -//} -// -//void delayMilliseconds(unsigned long ms) -//{ -// uint16_t start = (uint16_t)micros(); -// -// while (ms > 0) { -// yield(); -// if (((uint16_t)micros() - start) >= 1000) { -// ms--; -// start += 1000; -// } -// } -//} -// -///* Delay for the given number of microseconds. Assumes a 8 or 16 MHz clock. */ -//void delayMicroseconds(unsigned int us) -//{ -// // calling avrlib's delay_us() function with low values (e.g. 1 or -// // 2 microseconds) gives delays longer than desired. -// //delay_us(us); -//#if F_CPU >= 20000000L -// // for the 20 MHz clock on rare Arduino boards -// -// // for a one-microsecond delay, simply wait 2 cycle and return. The overhead -// // of the function call yields a delay of exactly a one microsecond. -// __asm__ __volatile__ ( -// "nop" "\n\t" -// "nop"); //just waiting 2 cycle -// if (--us == 0) -// return; -// -// // the following loop takes a 1/5 of a microsecond (4 cycles) -// // per iteration, so execute it five times for each microsecond of -// // delay requested. -// us = (us<<2) + us; // x5 us -// -// // account for the time taken in the preceeding commands. -// us -= 2; -// -//#elif F_CPU >= 16000000L -// // for the 16 MHz clock on most Arduino boards -// -// // for a one-microsecond delay, simply return. the overhead -// // of the function call yields a delay of approximately 1 1/8 us. -// if (--us == 0) -// return; -// -// // the following loop takes a quarter of a microsecond (4 cycles) -// // per iteration, so execute it four times for each microsecond of -// // delay requested. -// us <<= 2; -// -// // account for the time taken in the preceeding commands. -// us -= 2; -//#else -// // for the 8 MHz internal clock on the ATmega168 -// -// // for a one- or two-microsecond delay, simply return. the overhead of -// // the function calls takes more than two microseconds. can't just -// // subtract two, since us is unsigned; we'd overflow. -// if (--us == 0) -// return; -// if (--us == 0) -// return; -// -// // the following loop takes half of a microsecond (4 cycles) -// // per iteration, so execute it twice for each microsecond of -// // delay requested. -// us <<= 1; -// -// // partially compensate for the time taken by the preceeding commands. -// // we can't subtract any more than this or we'd overflow w/ small delays. -// us--; -//#endif -// -// // busy wait -// __asm__ __volatile__ ( -// "1: sbiw %0,1" "\n\t" // 2 cycles -// "brne 1b" : "=w" (us) : "0" (us) // 2 cycles -// ); -//} - #ifndef cbi #define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit)) #endif @@ -333,27 +103,6 @@ void init() PMIC.CTRL = 7 ; // Enable all interrupt levels sei(); - // on the ATmega168, timer 0 is also used for fast hardware pwm - // (using phase-correct PWM would mean that timer 0 overflowed half as often - // resulting in different millis() behavior on the ATmega8 and ATmega168) -//#if defined(TCCR0A) && defined(WGM01) -// sbi(TCCR0A, WGM01); -// sbi(TCCR0A, WGM00); -//#endif - - -// TCC0 counts 0-255 at 4uS clock rate -// EVSYS.CH2MUX = 0x80 + 0x07 ; // Prescaler of 128 -// TCC0.CTRLB = 0 ; -// TCC0.CTRLC = 0 ; -// TCC0.CTRLD = 0 ; -// TCC0.CTRLE = 0 ; -// TCC0.INTCTRLA = 0x01 ; -// TCC0.INTCTRLB = 0 ; -// TCC0.PER = 0x00FF ; -// TCC0.CTRLA = 0x0A ; - - #if defined(ADCSRA) // set a2d prescale factor to 128 // 16 MHz / 128 = 125 KHz, inside the desired 50-200 KHz range. @@ -376,12 +125,6 @@ void init() UCSR0B = 0; #endif - // PPM interrupt -// PORTD.DIRCLR = 0x08 ; // D3 is input -// PORTD.PIN3CTRL = 0x01 ; // Rising edge -// PORTD.INT0MASK = 0x08 ; -// PORTD.INTCTRL = 0x02 ; // Medium level interrupt - // Dip Switch inputs PORTA.DIRCLR = 0xFF ; PORTA.PIN0CTRL = 0x18 ; @@ -394,76 +137,6 @@ void init() PORTA.PIN7CTRL = 0x18 ; } -#define DEFAULT 1 - -uint8_t analog_reference = DEFAULT; - -void analogReference(uint8_t mode) -{ - // can't actually set the register here because the default setting - // will connect AVCC and the AREF pin, which would cause a short if - // there's something connected to AREF. - analog_reference = mode; -} - -int analogRead(uint8_t pin) -{ - uint8_t low, high; - -#if defined(analogPinToChannel) -#if defined(__AVR_ATmega32U4__) - if (pin >= 18) pin -= 18; // allow for channel or pin numbers -#endif - pin = analogPinToChannel(pin); -#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) - if (pin >= 54) pin -= 54; // allow for channel or pin numbers -#elif defined(__AVR_ATmega32U4__) - if (pin >= 18) pin -= 18; // allow for channel or pin numbers -#elif defined(__AVR_ATmega1284__) || defined(__AVR_ATmega1284P__) || defined(__AVR_ATmega644__) || defined(__AVR_ATmega644A__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644PA__) - if (pin >= 24) pin -= 24; // allow for channel or pin numbers -#else - if (pin >= 14) pin -= 14; // allow for channel or pin numbers -#endif - -#if defined(ADCSRB) && defined(MUX5) - // the MUX5 bit of ADCSRB selects whether we're reading from channels - // 0 to 7 (MUX5 low) or 8 to 15 (MUX5 high). - ADCSRB = (ADCSRB & ~(1 << MUX5)) | (((pin >> 3) & 0x01) << MUX5); -#endif - - // set the analog reference (high two bits of ADMUX) and select the - // channel (low 4 bits). this also sets ADLAR (left-adjust result) - // to 0 (the default). -#if defined(ADMUX) - ADMUX = (analog_reference << 6) | (pin & 0x07); -#endif - - // without a delay, we seem to read from the wrong channel - //delayMilliseconds(1); - -#if defined(ADCSRA) && defined(ADCL) - // start the conversion - sbi(ADCSRA, ADSC); - - // ADSC is cleared when the conversion finishes - while (bit_is_set(ADCSRA, ADSC)); - - // we have to read ADCL first; doing so locks both ADCL - // and ADCH until ADCH is read. reading ADCL second would - // cause the results of each conversion to be discarded, - // as ADCL and ADCH would be locked when it completed. - low = ADCL; - high = ADCH; -#else - // we dont have an ADC, return 0 - low = 0; - high = 0; -#endif - - // combine the two bytes - return (high << 8) | low; -} - #include "Multiprotocol.ino" #include "SPI.ino" #include "Convert.ino"