mirror of
https://github.com/pascallanger/DIY-Multiprotocol-TX-Module.git
synced 2025-02-04 22:08:12 +00:00
OrangeTX code cleanning
This commit is contained in:
parent
fbb7a684bf
commit
39887df3ec
@ -3,14 +3,8 @@
|
||||
|
||||
#define XMEGA 1
|
||||
|
||||
#define XOUT 0x80
|
||||
#define PACTL 0x20
|
||||
|
||||
// For BLUE module use:
|
||||
//#define DSM_BLUE
|
||||
//#define XOUT 0x20
|
||||
//#define PACTL 0x80
|
||||
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
@ -18,7 +12,6 @@
|
||||
|
||||
static void protocol_init(void) ;
|
||||
static void update_aux_flags(void) ;
|
||||
//static void PPM_Telemetry_serial_init(void) ;
|
||||
static uint32_t random_id(uint16_t adress, uint8_t create_new) ;
|
||||
static void update_serial_data(void) ;
|
||||
static void Mprotocol_serial_init(void) ;
|
||||
@ -52,8 +45,6 @@ extern void delayMicroseconds(uint16_t x) ;
|
||||
extern void delayMilliseconds(unsigned long ms) ;
|
||||
extern void init(void) ;
|
||||
|
||||
extern int analogRead(uint8_t pin) ;
|
||||
|
||||
extern void modules_reset() ;
|
||||
extern void Update_All() ;
|
||||
extern void tx_pause() ;
|
||||
@ -62,17 +53,8 @@ extern void TelemetryUpdate() ;
|
||||
extern uint16_t initDsm() ;
|
||||
extern uint16_t ReadDsm() ;
|
||||
|
||||
|
||||
#define A6 20
|
||||
#define A7 21
|
||||
|
||||
#define yield()
|
||||
|
||||
//void _delay_us( uint16_t x )
|
||||
//{
|
||||
// delayMicroseconds( x ) ;
|
||||
//}
|
||||
|
||||
#define clockCyclesPerMicrosecond() ( F_CPU / 1000000L )
|
||||
#define clockCyclesToMicroseconds(a) ( (a) / clockCyclesPerMicrosecond() )
|
||||
|
||||
@ -89,218 +71,6 @@ extern uint16_t ReadDsm() ;
|
||||
#define FRACT_INC ((MICROSECONDS_PER_TIMER0_OVERFLOW % 1000) >> 3)
|
||||
#define FRACT_MAX (1000 >> 3)
|
||||
|
||||
//volatile unsigned long timer0_overflow_count = 0;
|
||||
//volatile unsigned long timer0_millis = 0;
|
||||
//static unsigned char timer0_fract = 0;
|
||||
|
||||
|
||||
|
||||
//void chipInit()
|
||||
//{
|
||||
// PR.PRGEN = 0 ; // RTC and event system active
|
||||
// PR.PRPC = 0 ; // No power reduction port C
|
||||
// PR.PRPD = 0 ; // No power reduction port D
|
||||
// PMIC.CTRL = 7 ;
|
||||
// OSC.CTRL = 0xC3 ; // unclear
|
||||
// OSC.CTRL |= 0x08 ; // Enable external oscillator
|
||||
// while( ( OSC.STATUS & 0x08 ) == 0 ) ; // Wait for ext osc to be ready
|
||||
// OSC.PLLCTRL = 0xC2 ; // Ext. Osc times 2
|
||||
// OSC.CTRL |= 0x10 ; // Enable PLL
|
||||
// while( ( OSC.STATUS & 0x10 ) == 0 ) ; // Wait PLL ready
|
||||
// CPU_CCP = 0xD8 ; // 0x34
|
||||
// CLK.CTRL = 0 ; // Select 2MHz internal clock
|
||||
// CPU_CCP = 0xD8 ; // 0x34
|
||||
// CLK.CTRL = 0x04 ; // Select PLL as clock (32MHz)
|
||||
// PORTD.OUTSET = 0x17 ;
|
||||
// PORTD.DIRSET = 0xB2 ;
|
||||
// PORTD.DIRCLR = 0x4D ;
|
||||
// PORTD.PIN0CTRL = 0x18 ;
|
||||
// PORTD.PIN2CTRL = 0x18 ;
|
||||
// PORTE.DIRSET = 0x01 ;
|
||||
// PORTE.DIRCLR = 0x02 ;
|
||||
// PORTE.OUTSET = 0x01 ;
|
||||
// PORTA.DIRCLR = 0xFF ;
|
||||
// PORTA.PIN0CTRL = 0x18 ;
|
||||
// PORTA.PIN1CTRL = 0x18 ;
|
||||
// PORTA.PIN2CTRL = 0x18 ;
|
||||
// PORTA.PIN3CTRL = 0x18 ;
|
||||
// PORTA.PIN4CTRL = 0x18 ;
|
||||
// PORTA.PIN5CTRL = 0x18 ;
|
||||
// PORTA.PIN6CTRL = 0x18 ;
|
||||
// PORTA.PIN7CTRL = 0x18 ;
|
||||
// PORTC.DIRSET = 0x20 ;
|
||||
// PORTC.OUTCLR = 0x20 ;
|
||||
// SPID.CTRL = 0x51 ;
|
||||
// PORTC.OUTSET = 0x08 ;
|
||||
// PORTC.DIRSET = 0x08 ;
|
||||
// PORTC.PIN3CTRL = 0x18 ;
|
||||
// PORTC.PIN2CTRL = 0x18 ;
|
||||
// USARTC0.BAUDCTRLA = 19 ;
|
||||
// USARTC0.BAUDCTRLB = 0 ;
|
||||
// USARTC0.CTRLB = 0x18 ;
|
||||
// USARTC0.CTRLA = (USARTC0.CTRLA & 0xCF) | 0x10 ;
|
||||
// USARTC0.CTRLC = 0x03 ;
|
||||
|
||||
// TCC0.CTRLB = 0 ;
|
||||
// TCC0.CTRLC = 0 ;
|
||||
// TCC0.CTRLD = 0 ;
|
||||
// TCC0.CTRLE = 0 ;
|
||||
// TCC0.INTCTRLA = 0x01 ;
|
||||
// TCC0.INTCTRLB = 0 ;
|
||||
// TCC0.PER = 0x00FF ;
|
||||
// TCC0.CTRLA = 4 ;
|
||||
|
||||
// TCC1.CTRLB = 0 ;
|
||||
// TCC1.CTRLC = 0 ;
|
||||
// TCC1.CTRLD = 0 ;
|
||||
// TCC1.CTRLE = 0 ;
|
||||
// TCC1.INTCTRLA = 0x03 ;
|
||||
// TCC1.INTCTRLB = 0 ;
|
||||
// TCC1.PER = 0xFFFF ;
|
||||
// TCC1.CNT = 0 ;
|
||||
// TCC1.CTRLA = 4 ;
|
||||
|
||||
// TCD0.CTRLA = 4 ;
|
||||
// TCD0.INTCTRLA = 0x03 ;
|
||||
// TCD0.PER = 0x02ED ;
|
||||
|
||||
//// L0EDB() ;
|
||||
|
||||
// NVM.CTRLB &= 0xF7 ; // No EEPROM mapping
|
||||
//}
|
||||
|
||||
|
||||
//ISR(TCC0_OVF_vect)
|
||||
//{
|
||||
// // copy these to local variables so they can be stored in registers
|
||||
// // (volatile variables must be read from memory on every access)
|
||||
// unsigned long m = timer0_millis;
|
||||
// unsigned char f = timer0_fract;
|
||||
//
|
||||
// m += MILLIS_INC;
|
||||
// f += FRACT_INC;
|
||||
// if (f >= FRACT_MAX) {
|
||||
// f -= FRACT_MAX;
|
||||
// m += 1;
|
||||
// }
|
||||
//
|
||||
// timer0_fract = f;
|
||||
// timer0_millis = m;
|
||||
// timer0_overflow_count++;
|
||||
//}
|
||||
//
|
||||
//unsigned long millis()
|
||||
//{
|
||||
// unsigned long m;
|
||||
// uint8_t oldSREG = SREG;
|
||||
//
|
||||
// // disable interrupts while we read timer0_millis or we might get an
|
||||
// // inconsistent value (e.g. in the middle of a write to timer0_millis)
|
||||
// cli();
|
||||
// m = timer0_millis;
|
||||
// SREG = oldSREG;
|
||||
//
|
||||
// return m;
|
||||
//}
|
||||
//
|
||||
//unsigned long micros()
|
||||
//{
|
||||
// unsigned long m;
|
||||
// uint8_t oldSREG = SREG, t;
|
||||
//
|
||||
// cli();
|
||||
// m = timer0_overflow_count;
|
||||
// t = TCC0.CNT ;
|
||||
//
|
||||
// if ((TCC0.INTFLAGS & TC0_OVFIF_bm) && (t < 255))
|
||||
// m++;
|
||||
//
|
||||
// SREG = oldSREG;
|
||||
//
|
||||
// return ((m << 8) + t) * (64 / clockCyclesPerMicrosecond());
|
||||
//}
|
||||
//
|
||||
//void delayMilliseconds(unsigned long ms)
|
||||
//{
|
||||
// uint16_t start = (uint16_t)micros();
|
||||
//
|
||||
// while (ms > 0) {
|
||||
// yield();
|
||||
// if (((uint16_t)micros() - start) >= 1000) {
|
||||
// ms--;
|
||||
// start += 1000;
|
||||
// }
|
||||
// }
|
||||
//}
|
||||
//
|
||||
///* Delay for the given number of microseconds. Assumes a 8 or 16 MHz clock. */
|
||||
//void delayMicroseconds(unsigned int us)
|
||||
//{
|
||||
// // calling avrlib's delay_us() function with low values (e.g. 1 or
|
||||
// // 2 microseconds) gives delays longer than desired.
|
||||
// //delay_us(us);
|
||||
//#if F_CPU >= 20000000L
|
||||
// // for the 20 MHz clock on rare Arduino boards
|
||||
//
|
||||
// // for a one-microsecond delay, simply wait 2 cycle and return. The overhead
|
||||
// // of the function call yields a delay of exactly a one microsecond.
|
||||
// __asm__ __volatile__ (
|
||||
// "nop" "\n\t"
|
||||
// "nop"); //just waiting 2 cycle
|
||||
// if (--us == 0)
|
||||
// return;
|
||||
//
|
||||
// // the following loop takes a 1/5 of a microsecond (4 cycles)
|
||||
// // per iteration, so execute it five times for each microsecond of
|
||||
// // delay requested.
|
||||
// us = (us<<2) + us; // x5 us
|
||||
//
|
||||
// // account for the time taken in the preceeding commands.
|
||||
// us -= 2;
|
||||
//
|
||||
//#elif F_CPU >= 16000000L
|
||||
// // for the 16 MHz clock on most Arduino boards
|
||||
//
|
||||
// // for a one-microsecond delay, simply return. the overhead
|
||||
// // of the function call yields a delay of approximately 1 1/8 us.
|
||||
// if (--us == 0)
|
||||
// return;
|
||||
//
|
||||
// // the following loop takes a quarter of a microsecond (4 cycles)
|
||||
// // per iteration, so execute it four times for each microsecond of
|
||||
// // delay requested.
|
||||
// us <<= 2;
|
||||
//
|
||||
// // account for the time taken in the preceeding commands.
|
||||
// us -= 2;
|
||||
//#else
|
||||
// // for the 8 MHz internal clock on the ATmega168
|
||||
//
|
||||
// // for a one- or two-microsecond delay, simply return. the overhead of
|
||||
// // the function calls takes more than two microseconds. can't just
|
||||
// // subtract two, since us is unsigned; we'd overflow.
|
||||
// if (--us == 0)
|
||||
// return;
|
||||
// if (--us == 0)
|
||||
// return;
|
||||
//
|
||||
// // the following loop takes half of a microsecond (4 cycles)
|
||||
// // per iteration, so execute it twice for each microsecond of
|
||||
// // delay requested.
|
||||
// us <<= 1;
|
||||
//
|
||||
// // partially compensate for the time taken by the preceeding commands.
|
||||
// // we can't subtract any more than this or we'd overflow w/ small delays.
|
||||
// us--;
|
||||
//#endif
|
||||
//
|
||||
// // busy wait
|
||||
// __asm__ __volatile__ (
|
||||
// "1: sbiw %0,1" "\n\t" // 2 cycles
|
||||
// "brne 1b" : "=w" (us) : "0" (us) // 2 cycles
|
||||
// );
|
||||
//}
|
||||
|
||||
#ifndef cbi
|
||||
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
|
||||
#endif
|
||||
@ -333,27 +103,6 @@ void init()
|
||||
PMIC.CTRL = 7 ; // Enable all interrupt levels
|
||||
sei();
|
||||
|
||||
// on the ATmega168, timer 0 is also used for fast hardware pwm
|
||||
// (using phase-correct PWM would mean that timer 0 overflowed half as often
|
||||
// resulting in different millis() behavior on the ATmega8 and ATmega168)
|
||||
//#if defined(TCCR0A) && defined(WGM01)
|
||||
// sbi(TCCR0A, WGM01);
|
||||
// sbi(TCCR0A, WGM00);
|
||||
//#endif
|
||||
|
||||
|
||||
// TCC0 counts 0-255 at 4uS clock rate
|
||||
// EVSYS.CH2MUX = 0x80 + 0x07 ; // Prescaler of 128
|
||||
// TCC0.CTRLB = 0 ;
|
||||
// TCC0.CTRLC = 0 ;
|
||||
// TCC0.CTRLD = 0 ;
|
||||
// TCC0.CTRLE = 0 ;
|
||||
// TCC0.INTCTRLA = 0x01 ;
|
||||
// TCC0.INTCTRLB = 0 ;
|
||||
// TCC0.PER = 0x00FF ;
|
||||
// TCC0.CTRLA = 0x0A ;
|
||||
|
||||
|
||||
#if defined(ADCSRA)
|
||||
// set a2d prescale factor to 128
|
||||
// 16 MHz / 128 = 125 KHz, inside the desired 50-200 KHz range.
|
||||
@ -376,12 +125,6 @@ void init()
|
||||
UCSR0B = 0;
|
||||
#endif
|
||||
|
||||
// PPM interrupt
|
||||
// PORTD.DIRCLR = 0x08 ; // D3 is input
|
||||
// PORTD.PIN3CTRL = 0x01 ; // Rising edge
|
||||
// PORTD.INT0MASK = 0x08 ;
|
||||
// PORTD.INTCTRL = 0x02 ; // Medium level interrupt
|
||||
|
||||
// Dip Switch inputs
|
||||
PORTA.DIRCLR = 0xFF ;
|
||||
PORTA.PIN0CTRL = 0x18 ;
|
||||
@ -394,76 +137,6 @@ void init()
|
||||
PORTA.PIN7CTRL = 0x18 ;
|
||||
}
|
||||
|
||||
#define DEFAULT 1
|
||||
|
||||
uint8_t analog_reference = DEFAULT;
|
||||
|
||||
void analogReference(uint8_t mode)
|
||||
{
|
||||
// can't actually set the register here because the default setting
|
||||
// will connect AVCC and the AREF pin, which would cause a short if
|
||||
// there's something connected to AREF.
|
||||
analog_reference = mode;
|
||||
}
|
||||
|
||||
int analogRead(uint8_t pin)
|
||||
{
|
||||
uint8_t low, high;
|
||||
|
||||
#if defined(analogPinToChannel)
|
||||
#if defined(__AVR_ATmega32U4__)
|
||||
if (pin >= 18) pin -= 18; // allow for channel or pin numbers
|
||||
#endif
|
||||
pin = analogPinToChannel(pin);
|
||||
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
|
||||
if (pin >= 54) pin -= 54; // allow for channel or pin numbers
|
||||
#elif defined(__AVR_ATmega32U4__)
|
||||
if (pin >= 18) pin -= 18; // allow for channel or pin numbers
|
||||
#elif defined(__AVR_ATmega1284__) || defined(__AVR_ATmega1284P__) || defined(__AVR_ATmega644__) || defined(__AVR_ATmega644A__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644PA__)
|
||||
if (pin >= 24) pin -= 24; // allow for channel or pin numbers
|
||||
#else
|
||||
if (pin >= 14) pin -= 14; // allow for channel or pin numbers
|
||||
#endif
|
||||
|
||||
#if defined(ADCSRB) && defined(MUX5)
|
||||
// the MUX5 bit of ADCSRB selects whether we're reading from channels
|
||||
// 0 to 7 (MUX5 low) or 8 to 15 (MUX5 high).
|
||||
ADCSRB = (ADCSRB & ~(1 << MUX5)) | (((pin >> 3) & 0x01) << MUX5);
|
||||
#endif
|
||||
|
||||
// set the analog reference (high two bits of ADMUX) and select the
|
||||
// channel (low 4 bits). this also sets ADLAR (left-adjust result)
|
||||
// to 0 (the default).
|
||||
#if defined(ADMUX)
|
||||
ADMUX = (analog_reference << 6) | (pin & 0x07);
|
||||
#endif
|
||||
|
||||
// without a delay, we seem to read from the wrong channel
|
||||
//delayMilliseconds(1);
|
||||
|
||||
#if defined(ADCSRA) && defined(ADCL)
|
||||
// start the conversion
|
||||
sbi(ADCSRA, ADSC);
|
||||
|
||||
// ADSC is cleared when the conversion finishes
|
||||
while (bit_is_set(ADCSRA, ADSC));
|
||||
|
||||
// we have to read ADCL first; doing so locks both ADCL
|
||||
// and ADCH until ADCH is read. reading ADCL second would
|
||||
// cause the results of each conversion to be discarded,
|
||||
// as ADCL and ADCH would be locked when it completed.
|
||||
low = ADCL;
|
||||
high = ADCH;
|
||||
#else
|
||||
// we dont have an ADC, return 0
|
||||
low = 0;
|
||||
high = 0;
|
||||
#endif
|
||||
|
||||
// combine the two bytes
|
||||
return (high << 8) | low;
|
||||
}
|
||||
|
||||
#include "Multiprotocol.ino"
|
||||
#include "SPI.ino"
|
||||
#include "Convert.ino"
|
||||
|
Loading…
x
Reference in New Issue
Block a user