322 lines
11 KiB
Arduino
Raw Normal View History

/*
This project is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
Deviation is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with Deviation. If not, see <http://www.gnu.org/licenses/>.
*/
/* This protocol is for the HM Hobby HM830 RC Paper Airplane
Protocol spec:
Channel data:
AA BB CC DD EE FF GG
AA : Throttle Min=0x00 max =0x64
BB :
bit 0,1,2: Left/Right magnitude, bit 5 Polarity (set = right)
bit 6: Accelerate
bit 7: Right button (also the ABC Button)
CC : bit 0 seems to be impacted by the Right button
DD
EE
FF : Trim (bit 0-5: Magnitude, bit 6 polarity (set = right)
GG : Checksum (CRC8 on bytes AA-FF), init = 0xa5, poly = 0x01
*/
#ifdef HM830_NRF24L01_INO
#include "iface_nrf24l01.h"
enum {
HM830_BIND1A = 0,
HM830_BIND2A,
HM830_BIND3A,
HM830_BIND4A,
HM830_BIND5A,
HM830_BIND6A,
HM830_BIND7A,
HM830_DATA1,
HM830_DATA2,
HM830_DATA3,
HM830_DATA4,
HM830_DATA5,
HM830_DATA6,
HM830_DATA7,
HM830_BIND1B = 0x80,
HM830_BIND2B,
HM830_BIND3B,
HM830_BIND4B,
HM830_BIND5B,
HM830_BIND6B,
HM830_BIND7B,
};
static const uint8_t init_vals[][2] = {
{NRF24L01_17_FIFO_STATUS, 0x00},
{NRF24L01_16_RX_PW_P5, 0x07},
{NRF24L01_15_RX_PW_P4, 0x07},
{NRF24L01_14_RX_PW_P3, 0x07},
{NRF24L01_13_RX_PW_P2, 0x07},
{NRF24L01_12_RX_PW_P1, 0x07},
{NRF24L01_11_RX_PW_P0, 0x07},
{NRF24L01_0F_RX_ADDR_P5, 0xC6},
{NRF24L01_0E_RX_ADDR_P4, 0xC5},
{NRF24L01_0D_RX_ADDR_P3, 0xC4},
{NRF24L01_0C_RX_ADDR_P2, 0xC3},
{NRF24L01_09_CD, 0x00},
{NRF24L01_08_OBSERVE_TX, 0x00},
{NRF24L01_07_STATUS, 0x07},
// {NRF24L01_06_RF_SETUP, 0x07},
{NRF24L01_05_RF_CH, 0x18},
{NRF24L01_04_SETUP_RETR, 0x3F},
{NRF24L01_03_SETUP_AW, 0x03},
{NRF24L01_02_EN_RXADDR, 0x3F},
{NRF24L01_01_EN_AA, 0x3F},
{NRF24L01_00_CONFIG, 0x0E},
};
static uint8_t count;
static const uint8_t rf_ch[] = {0x08, 0x35, 0x12, 0x3f, 0x1c, 0x49, 0x26};
static const uint8_t bind_addr[] = {0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xc2};
static uint8_t crc8(uint32_t result, uint8_t *data, int len) {
int polynomial = 0x01;
for(int i = 0; i < len; i++) {
result = result ^ data[i];
for(int j = 0; j < 8; j++) {
if(result & 0x80) { result = (result << 1) ^ polynomial; }
else { result = result << 1; }
}
}
return result & 0xff;
}
static void HM830_init() {
NRF24L01_Initialize();
for (uint32_t i = 0; i < sizeof(init_vals) / sizeof(init_vals[0]); i++) { NRF24L01_WriteReg(init_vals[i][0], init_vals[i][1]); }
NRF24L01_SetTxRxMode(TX_EN);
NRF24L01_SetBitrate(0);
NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, bind_addr, 5);
NRF24L01_WriteRegisterMulti(NRF24L01_0B_RX_ADDR_P1, bind_addr+1, 5);
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, bind_addr, 5);
NRF24L01_Activate(0x73); //Enable FEATURE
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, 0x07);
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 0x3F);
//NRF24L01_ReadReg(NRF24L01_07_STATUS) ==> 0x07
// Check for Beken BK2421/BK2423 chip
// It is done by using Beken specific activate code, 0x53 and checking that status register changed appropriately
// There is no harm to run it on nRF24L01 because following closing activate command changes state back even if it does something on nRF24L01
// For detailed description of what's happening here see : http://www.inhaos.com/uploadfile/otherpic/AN0008-BK2423%20Communication%20In%20250Kbps%20Air%20Rate.pdf
NRF24L01_Activate(0x53); // magic for BK2421 bank switch
// printf("=>H377 : Trying to switch banks\n");
if (NRF24L01_ReadReg(NRF24L01_07_STATUS) & 0x80) {
// printf("=>H377 : BK2421 detected\n");
long nul = 0;
// Beken registers don't have such nice names, so we just mention them by their numbers
// It's all magic, eavesdropped from real transfer and not even from the data sheet - it has slightly different values
NRF24L01_WriteRegisterMulti(0x00, (uint8_t *) "\x40\x4B\x01\xE2", 4);
NRF24L01_WriteRegisterMulti(0x01, (uint8_t *) "\xC0\x4B\x00\x00", 4);
NRF24L01_WriteRegisterMulti(0x02, (uint8_t *) "\xD0\xFC\x8C\x02", 4);
NRF24L01_WriteRegisterMulti(0x03, (uint8_t *) "\xF9\x00\x39\x21", 4);
NRF24L01_WriteRegisterMulti(0x04, (uint8_t *) "\xC1\x96\x9A\x1B", 4);
NRF24L01_WriteRegisterMulti(0x05, (uint8_t *) "\x24\x06\x7F\xA6", 4);
NRF24L01_WriteRegisterMulti(0x06, (uint8_t *) &nul, 4);
NRF24L01_WriteRegisterMulti(0x07, (uint8_t *) &nul, 4);
NRF24L01_WriteRegisterMulti(0x08, (uint8_t *) &nul, 4);
NRF24L01_WriteRegisterMulti(0x09, (uint8_t *) &nul, 4);
NRF24L01_WriteRegisterMulti(0x0A, (uint8_t *) &nul, 4);
NRF24L01_WriteRegisterMulti(0x0B, (uint8_t *) &nul, 4);
NRF24L01_WriteRegisterMulti(0x0C, (uint8_t *) "\x00\x12\x73\x00", 4);
NRF24L01_WriteRegisterMulti(0x0D, (uint8_t *) "\x46\xB4\x80\x00", 4);
//NRF24L01_WriteRegisterMulti(0x0E, (uint8_t *) "\x41\x10\x04\x82\x20\x08\x08\xF2\x7D\xEF\xFF", 11);
NRF24L01_WriteRegisterMulti(0x04, (uint8_t *) "\xC7\x96\x9A\x1B", 4);
NRF24L01_WriteRegisterMulti(0x04, (uint8_t *) "\xC1\x96\x9A\x1B", 4);
} else { } // printf("=>H377 : nRF24L01 detected\n");
//NRF24L01_ReadReg(NRF24L01_07_STATUS) ==> 0x07
NRF24L01_Activate(0x53); // switch bank back
NRF24L01_FlushTx();
//NRF24L01_ReadReg(NRF24L01_07_STATUS) ==> 0x0e
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x0e);
//NRF24L01_ReadReg(NRF24L01_00_CONFIG); ==> 0x0e
NRF24L01_WriteReg(NRF24L01_00_CONFIG, 0x0e);
NRF24L01_ReadReg(NRF24L01_01_EN_AA); // No Auto Acknoledgement
}
static void build_bind_packet() {
for(int i = 0; i < 6; i++) { packet[i] = rx_tx_addr[i]; }
packet[6] = crc8(0xa5, packet, 6);
}
static void build_data_packet() {
uint8_t ail_sign = 0, trim_sign = 0;
throttle = (uint32_t)Servo_data[2] * 50 / PPM_MAX + 50;
if (throttle < 0) { throttle = 0; }
aileron = (uint32_t)Servo_data[0] * 8 / PPM_MAX;
if (aileron < 0) { aileron = -aileron; ail_sign = 1; }
if (aileron > 7) { aileron = 7; }
uint8_t turbo = (uint32_t)Servo_data[1] > 0 ? 1 : 0;
uint8_t trim = ((uint32_t)Servo_data[3] * 0x1f / PPM_MAX);
if (trim < 0) { trim = -trim; trim_sign = 1; }
if (trim > 0x1f) { trim = 0x1f; }
uint8_t rbutton = (uint32_t)Channels[4] > 0 ? 1 : 0;
packet[0] = throttle;
packet[1] = aileron;
if (ail_sign) { packet[1] |= 0x20; }
if (turbo) { packet[1] |= 0x40; }
if (rbutton) { packet[1] |= 0x80; }
packet[5] = trim;
if (trim_sign) { packet[5] |= 0x20;}
packet[6] = crc8(0xa5, packet, 6);
}
static void send_packet_hm830() {
NRF24L01_ReadReg(NRF24L01_17_FIFO_STATUS);
NRF24L01_WritePayload(packet, 7);
}
static uint16_t handle_binding() {
uint8_t status = NRF24L01_ReadReg(NRF24L01_07_STATUS);
if (status & 0x20) {
//Binding complete
phase = HM830_DATA1 + ((phase&0x7F)-HM830_BIND1A);
count = 0;
NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, rx_tx_addr, 5);
NRF24L01_WriteRegisterMulti(NRF24L01_0B_RX_ADDR_P1, rx_tx_addr+1, 5);
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, rx_tx_addr, 5);
NRF24L01_FlushTx();
build_data_packet();
uint8_t rb = NRF24L01_ReadReg(NRF24L01_07_STATUS); //==> 0x0E
NRF24L01_WriteReg(NRF24L01_07_STATUS, rb);
rb = NRF24L01_ReadReg(NRF24L01_00_CONFIG); //==> 0x0E
NRF24L01_WriteReg(NRF24L01_00_CONFIG, rb);
send_packet_hm830();
return 14000;
}
switch (phase) {
case HM830_BIND1A:
//Look for a Rx that is already bound
NRF24L01_SetPower();
NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, rx_tx_addr, 5);
NRF24L01_WriteRegisterMulti(NRF24L01_0B_RX_ADDR_P1, rx_tx_addr+1, 5);
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, rx_tx_addr, 5);
NRF24L01_WriteReg(NRF24L01_05_RF_CH, rf_ch[0]);
build_bind_packet();
break;
case HM830_BIND1B:
//Look for a Rx that is not yet bound
NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, bind_addr, 5);
NRF24L01_WriteRegisterMulti(NRF24L01_0B_RX_ADDR_P1, bind_addr+1, 5);
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, bind_addr, 5);
NRF24L01_WriteReg(NRF24L01_05_RF_CH, rf_ch[0]);
break;
case HM830_BIND2A:
case HM830_BIND3A:
case HM830_BIND4A:
case HM830_BIND5A:
case HM830_BIND6A:
case HM830_BIND7A:
case HM830_BIND2B:
case HM830_BIND3B:
case HM830_BIND4B:
case HM830_BIND5B:
case HM830_BIND6B:
case HM830_BIND7B:
NRF24L01_WriteReg(NRF24L01_05_RF_CH, rf_ch[(phase&0x7F)-HM830_BIND1A]);
break;
}
NRF24L01_FlushTx();
uint8_t rb = NRF24L01_ReadReg(NRF24L01_07_STATUS); //==> 0x0E
NRF24L01_WriteReg(NRF24L01_07_STATUS, rb);
rb = NRF24L01_ReadReg(NRF24L01_00_CONFIG); //==> 0x0E
NRF24L01_WriteReg(NRF24L01_00_CONFIG, rb);
send_packet_hm830();
phase++;
if (phase == HM830_BIND7B+1) { phase = HM830_BIND1A; }
else if (phase == HM830_BIND7A+1) { phase = HM830_BIND1B; }
return 20000;
}
static uint16_t handle_data() {
uint8_t status = NRF24L01_ReadReg(NRF24L01_07_STATUS);
if (count <= 0 || !(status & 0x20)) {
if(count < 0 || ! (status & 0x20)) {
count = 0;
//We didn't get a response on this channel, try the next one
phase++;
if (phase-HM830_DATA1 > 6) { phase = HM830_DATA1; }
NRF24L01_WriteReg(NRF24L01_05_RF_CH, rf_ch[0]);
NRF24L01_FlushTx();
build_data_packet();
uint8_t rb = NRF24L01_ReadReg(NRF24L01_07_STATUS); //==> 0x0E
NRF24L01_WriteReg(NRF24L01_07_STATUS, rb);
rb = NRF24L01_ReadReg(NRF24L01_00_CONFIG); //==> 0x0E
NRF24L01_WriteReg(NRF24L01_00_CONFIG, rb);
send_packet_hm830();
return 14000;
}
}
build_data_packet();
count++;
if(count == 98) {
count = -1;
NRF24L01_SetPower();
}
uint8_t rb = NRF24L01_ReadReg(NRF24L01_07_STATUS); //==> 0x0E
NRF24L01_WriteReg(NRF24L01_07_STATUS, rb);
rb = NRF24L01_ReadReg(NRF24L01_00_CONFIG); //==> 0x0E
NRF24L01_WriteReg(NRF24L01_00_CONFIG, rb);
send_packet_hm830();
return 20000;
}
static uint32_t HM830_callback() {
if ((phase & 0x7F) < HM830_DATA1) { return handle_binding(); }
else { return handle_data(); }
}
static uint32_t HM830_setup(){
count = 0;
// initialize_tx_id
rx_tx_addr[4] = 0xee;
rx_tx_addr[5] = 0xc2;
HM830_init();
phase = HM830_BIND1A;
return 500;
// CLOCK_StartTimer(50000, HM830_callback);
}
/*
const void *HM830_Cmds(enum ProtoCmds cmd)
{
switch(cmd) {
case PROTOCMD_INIT: initialize(); return 0;
case PROTOCMD_DEINIT:
case PROTOCMD_RESET:
CLOCK_StopTimer();
return (void *)(NRF24L01_Reset() ? 1L : -1L);
case PROTOCMD_CHECK_AUTOBIND: return (void *)1L; // Always Autobind
case PROTOCMD_BIND: initialize(); return 0;
case PROTOCMD_NUMCHAN: return (void *) 5L; // T, A, E, R, G
case PROTOCMD_DEFAULT_NUMCHAN: return (void *)5L;
// TODO: return id correctly
case PROTOCMD_CURRENT_ID: return Model.fixed_id ? (void *)((unsigned long)Model.fixed_id) : 0;
case PROTOCMD_TELEMETRYSTATE: return (void *)(long)PROTO_TELEM_UNSUPPORTED;
default: break;
}
return 0;
}
*/
#endif //PROTO_HAS_NRF24L01