mirror of
				https://github.com/pascallanger/DIY-Multiprotocol-TX-Module.git
				synced 2025-10-31 03:14:16 +00:00 
			
		
		
		
	
		
			
	
	
		
			1089 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			1089 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|  | /*
 | ||
|  |   wiring.c - Partial implementation of the Wiring API for the ATmega8. | ||
|  |   Part of Arduino - http://www.arduino.cc/
 | ||
|  | 
 | ||
|  |   Copyright (c) 2005-2006 David A. Mellis | ||
|  | 
 | ||
|  |   This library is free software; you can redistribute it and/or | ||
|  |   modify it under the terms of the GNU Lesser General Public | ||
|  |   License as published by the Free Software Foundation; either | ||
|  |   version 2.1 of the License, or (at your option) any later version. | ||
|  | 
 | ||
|  |   This library is distributed in the hope that it will be useful, | ||
|  |   but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | ||
|  |   Lesser General Public License for more details. | ||
|  | 
 | ||
|  |   You should have received a copy of the GNU Lesser General | ||
|  |   Public License along with this library; if not, write to the | ||
|  |   Free Software Foundation, Inc., 59 Temple Place, Suite 330, | ||
|  |   Boston, MA  02111-1307  USA | ||
|  | 
 | ||
|  |   Updated for 'xmega' core by bob frazier, S.F.T. Inc. - http://mrp3.com/
 | ||
|  | 
 | ||
|  |   In some cases, the xmega updates make assumptions about the pin assignments. | ||
|  |   See 'pins_arduino.h' for more detail. | ||
|  | 
 | ||
|  | */ | ||
|  | 
 | ||
|  | #include "wiring_private.h"
 | ||
|  | 
 | ||
|  | #include <avr/sleep.h>      // Include for sleep mode (see 'wait_for_interrupt()')
 | ||
|  | 
 | ||
|  | 
 | ||
|  | // The xmega architecture differs significantly from the mega in a number
 | ||
|  | // of ways that render the existing code unworkable.  Therefore a complete
 | ||
|  | // re-write was done to ensure 100% compatibility at the code level.
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | // the prescaler is set so that timer0 ticks every 64 clock cycles, and the
 | ||
|  | // the overflow handler is called every 256 ticks.
 | ||
|  | // (NOTE:  for 'E' series, it's 32 clock sycles)
 | ||
|  | //#ifdef TCC4 /* using timer 4,5 rather than 0,2 - 'E' series */
 | ||
|  | //#define MICROSECONDS_PER_TIMER0_OVERFLOW (clockCyclesToMicroseconds(32 * 256))
 | ||
|  | //#else // TCC4
 | ||
|  | #define MICROSECONDS_PER_TIMER0_OVERFLOW (clockCyclesToMicroseconds(64 * 256))
 | ||
|  | //#endif // TCC4
 | ||
|  | 
 | ||
|  | // the whole number of milliseconds per timer0 overflow
 | ||
|  | #define MILLIS_INC (MICROSECONDS_PER_TIMER0_OVERFLOW / 1000)
 | ||
|  | 
 | ||
|  | // NOTE:  xmega runs at 32 mhz typically.  However, it uses THE PERIPHERAL CLOCK
 | ||
|  | //        for the timer.  Normally this is the same as the CPU clock unless you use
 | ||
|  | //        some crazy clock pre-scaler.
 | ||
|  | //        See sections 6.9 and 6.10 in D manual for system clock setup
 | ||
|  | 
 | ||
|  | // the fractional number of milliseconds per timer0 overflow. we shift right
 | ||
|  | // by three to fit these numbers into a byte. (for the clock speeds we care
 | ||
|  | // about - 8 and 16 MHz and 32 Mhz for xmega - this doesn't lose precision.)
 | ||
|  | 
 | ||
|  | #define FRACT_INC ((MICROSECONDS_PER_TIMER0_OVERFLOW % 1000) >> 3)
 | ||
|  | #define FRACT_MAX (1000 >> 3)
 | ||
|  | 
 | ||
|  | volatile unsigned long timer0_overflow_count = 0; | ||
|  | volatile unsigned long timer0_millis = 0; | ||
|  | static unsigned char timer0_fract = 0; | ||
|  | 
 | ||
|  | // timer zero overflow - affects pins 5 and 6 for PWM on Arduino and compatibles
 | ||
|  | // what I want to do is simulate what the Arduino already does, using TCD2
 | ||
|  | // since it will share the same pre-scaler AND clock for all of the port D PWM out
 | ||
|  | 
 | ||
|  | // the timer prescaler MUST tick every 64 clock cycles for this to work, just like the mega TIMER 0
 | ||
|  | // NOTE:  at 32Mhz MICROSECONDS_PER_TIMER0_OVERFLOW will be 512 - consider a divider of 128 instead
 | ||
|  | //        unless you want 2khz for the PWM (which is actually a good idea, for servos etc.)
 | ||
|  | 
 | ||
|  | 
 | ||
|  | //////////////////////////////////////////////////////////////////////////////
 | ||
|  | //                                                                          //
 | ||
|  | //            _____  _                          ___  ____   ____            //
 | ||
|  | //           |_   _|(_) _ __ ___    ___  _ __  |_ _|/ ___| |  _ \           //
 | ||
|  | //             | |  | || '_ ` _ \  / _ \| '__|  | | \___ \ | |_) |          //
 | ||
|  | //             | |  | || | | | | ||  __/| |     | |  ___) ||  _ <           //
 | ||
|  | //             |_|  |_||_| |_| |_| \___||_|    |___||____/ |_| \_\          //
 | ||
|  | //                                                                          //
 | ||
|  | //                                                                          //
 | ||
|  | //////////////////////////////////////////////////////////////////////////////
 | ||
|  | 
 | ||
|  | #ifdef TCC4 // 'E' series or later that has TCC4 and TCD5
 | ||
|  | ISR(TCD5_OVF_vect) | ||
|  | #elif !defined(TCD2_LUNF_vect)
 | ||
|  | ISR(TCD0_OVF_vect) // for A series
 | ||
|  | #else // USING TCD2
 | ||
|  | ISR(TCD2_LUNF_vect) | ||
|  | #endif // TCD2, TCD5
 | ||
|  | { | ||
|  |   // for this to work the limit must be 255 (8-bit mode)
 | ||
|  | 
 | ||
|  | #ifdef TCC4 // 'E' series or later that has TCC4 and TCD5
 | ||
|  |   TCD5_INTFLAGS = 1; // clears the flag so I don't 'spin' (this behavior changed from previous timers)
 | ||
|  | #endif // 'E' series
 | ||
|  | 
 | ||
|  |   // copy these to local variables so they can be stored in registers
 | ||
|  |   // (volatile variables must be read from memory on every access)
 | ||
|  |   unsigned long m = timer0_millis; | ||
|  |   unsigned char f = timer0_fract; | ||
|  | 
 | ||
|  | #if MILLIS_INC > 0
 | ||
|  |   m += MILLIS_INC; | ||
|  | #endif // MILLIS_INC
 | ||
|  |   f += FRACT_INC; | ||
|  |   if (f >= FRACT_MAX) | ||
|  |   { | ||
|  |     f -= FRACT_MAX; | ||
|  |     m += 1; | ||
|  |   } | ||
|  | 
 | ||
|  |   timer0_fract = f; | ||
|  |   timer0_millis = m; | ||
|  |   timer0_overflow_count++; | ||
|  | } | ||
|  | 
 | ||
|  | unsigned long millis() | ||
|  | { | ||
|  |   unsigned long m; | ||
|  |   uint8_t oldSREG = SREG; | ||
|  | 
 | ||
|  |   // disable interrupts while we read timer0_millis or we might get an
 | ||
|  |   // inconsistent value (e.g. in the middle of a write to timer0_millis)
 | ||
|  |   cli(); | ||
|  |   m = timer0_millis; | ||
|  |   SREG = oldSREG; | ||
|  | 
 | ||
|  |   return m; | ||
|  | } | ||
|  | 
 | ||
|  | unsigned long micros() | ||
|  | { | ||
|  |   unsigned long m; | ||
|  |   uint8_t t, oldSREG; | ||
|  | 
 | ||
|  |   oldSREG = SREG; | ||
|  |   cli(); // for consistency, don't let this part get interrupted
 | ||
|  | 
 | ||
|  |   m = timer0_overflow_count; // for xmega it's really an underflow except 'E' series
 | ||
|  | #ifdef TCC4
 | ||
|  |   t = 255 - (TCD5_CNT & 0xff); | ||
|  | #elif !defined(TCD2)
 | ||
|  |   t = 255 - (TCD0_CNT & 0xff); | ||
|  | #else // TCC4
 | ||
|  |   t = 255 - TCD2_LCNT; // 'low' count, it's what we interrupt on (and it always counts DOWN)
 | ||
|  |                        // must subtract count value from 255 for this to work correctly
 | ||
|  | #endif // TCC4
 | ||
|  | 
 | ||
|  |   // check the interrupt flag to see if I just got an underflow
 | ||
|  | 
 | ||
|  | #ifdef TCC4
 | ||
|  |   if((TCD5_INTFLAGS & _BV(0)) && (t < 255)) // which means I overflowed but didn't call the ISR yet
 | ||
|  | #elif !defined(TCD2)
 | ||
|  |   if((TCD0_INTFLAGS & _BV(0)) && (t < 255)) // which means I underflowed but didn't call the ISR yet
 | ||
|  | #else // TCC4
 | ||
|  |   if((TCD2_INTFLAGS & _BV(0)) && (t < 255)) // which means I underflowed but didn't call the ISR yet
 | ||
|  | #endif // TCC4
 | ||
|  |   { | ||
|  |     m++; // increment ISR count for more accurate microseconds
 | ||
|  |   } | ||
|  | 
 | ||
|  |   SREG = oldSREG; | ||
|  | 
 | ||
|  |   return ((m << 8) + t) * (64 / clockCyclesPerMicrosecond()); // TODO:  make the '64' a #define ?
 | ||
|  | } | ||
|  | 
 | ||
|  | void delay(unsigned long ms) | ||
|  | { | ||
|  |   uint16_t start = (uint16_t)micros(); | ||
|  | 
 | ||
|  |   while (ms > 0) /* BF - fixed K&R style to Allman for readability/consistency */ | ||
|  |   { | ||
|  |     if (((uint16_t)micros() - start) >= 1000) | ||
|  |     { | ||
|  |       ms--; | ||
|  |       start += 1000; | ||
|  |     } | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | // XMEGA-specific code
 | ||
|  | void wait_for_interrupt(void) | ||
|  | { | ||
|  |   cli(); // disable interrupts
 | ||
|  | 
 | ||
|  |   set_sleep_mode(SLEEP_MODE_IDLE); // everything on but CPU and NVRAM
 | ||
|  | 
 | ||
|  |   sleep_enable(); | ||
|  | 
 | ||
|  |   sei(); // re-enable interrupts
 | ||
|  | 
 | ||
|  |   sleep_cpu(); // go to sleep
 | ||
|  | 
 | ||
|  |   sleep_disable(); // first thing to do out of sleep
 | ||
|  | } | ||
|  | 
 | ||
|  | void low_power_delay(unsigned long ms) | ||
|  | { | ||
|  |   uint16_t start = (uint16_t)micros(); | ||
|  | 
 | ||
|  |   while (ms > 0) | ||
|  |   { | ||
|  |     wait_for_interrupt(); // up to 1msec perhaps?
 | ||
|  | 
 | ||
|  |     while (((uint16_t)micros() - start) >= 1000) | ||
|  |     { | ||
|  |       ms--; | ||
|  |       start += 1000; | ||
|  |     } | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* Delay for the given number of microseconds.  Assumes a 8 or 16 MHz clock. */ | ||
|  | // NOTE:  for XMEGA, you can have a 32mhz clock
 | ||
|  | void delayMicroseconds(unsigned int us) | ||
|  | { | ||
|  |   // NOTE:  for 32mhz clock, max time is 65536 / 8 or about 8k microsecs
 | ||
|  | 
 | ||
|  |   // calling avrlib's delay_us() function with low values (e.g. 1 or
 | ||
|  |   // 2 microseconds) gives delays longer than desired.
 | ||
|  |   //delay_us(us);
 | ||
|  | #if F_CPU >= 32000000L /* the xmega typically has this */
 | ||
|  | 
 | ||
|  |   // for a one-microsecond delay, simply wait 12 cycles and return. The overhead
 | ||
|  |   // of the function call yields a delay of exactly a one microsecond.
 | ||
|  |   __asm__ __volatile__ ( | ||
|  |     "nop" "\n\t" | ||
|  |     "nop" "\n\t" | ||
|  |     "nop" "\n\t" | ||
|  |     "nop" "\n\t" | ||
|  |     "nop" "\n\t" | ||
|  |     "nop" "\n\t" | ||
|  |     "nop" "\n\t" | ||
|  |     "nop" "\n\t" | ||
|  |     "nop" "\n\t" | ||
|  |     "nop" "\n\t" | ||
|  |     "nop" "\n\t" | ||
|  |     "nop"); //just waiting 12 cycle
 | ||
|  |   if (--us == 0) | ||
|  |     return; | ||
|  | 
 | ||
|  |   // the following loop takes a 1/8 of a microsecond (4 cycles)
 | ||
|  |   // per iteration, so execute it five times for each microsecond of
 | ||
|  |   // delay requested.
 | ||
|  |   us = (us<<3);// * 8
 | ||
|  | 
 | ||
|  |   // account for the time taken in the preceeding commands.
 | ||
|  |   us -= 2; // 2 clock cycles
 | ||
|  | 
 | ||
|  | #elif F_CPU >= 20000000L
 | ||
|  |   // for the 20 MHz clock on rare Arduino boards
 | ||
|  | 
 | ||
|  |   // for a one-microsecond delay, simply wait 2 cycle and return. The overhead
 | ||
|  |   // of the function call yields a delay of exactly a one microsecond.
 | ||
|  |   __asm__ __volatile__ ( | ||
|  |     "nop" "\n\t" | ||
|  |     "nop"); //just waiting 2 cycle
 | ||
|  |   if (--us == 0) | ||
|  |     return; | ||
|  | 
 | ||
|  |   // the following loop takes a 1/5 of a microsecond (4 cycles)
 | ||
|  |   // per iteration, so execute it five times for each microsecond of
 | ||
|  |   // delay requested.
 | ||
|  |   us = (us<<2) + us; // x5 us
 | ||
|  | 
 | ||
|  |   // account for the time taken in the preceeding commands.
 | ||
|  |   us -= 2; | ||
|  | 
 | ||
|  | #elif F_CPU >= 16000000L
 | ||
|  |   // for the 16 MHz clock on most Arduino boards
 | ||
|  | 
 | ||
|  |   // for a one-microsecond delay, simply return.  the overhead
 | ||
|  |   // of the function call yields a delay of approximately 1 1/8 us.
 | ||
|  |   if (--us == 0) | ||
|  |     return; | ||
|  | 
 | ||
|  |   // the following loop takes a quarter of a microsecond (4 cycles)
 | ||
|  |   // per iteration, so execute it four times for each microsecond of
 | ||
|  |   // delay requested.
 | ||
|  |   us <<= 2; | ||
|  | 
 | ||
|  |   // account for the time taken in the preceeding commands.
 | ||
|  |   us -= 2; | ||
|  | #else
 | ||
|  |   // for the 8 MHz internal clock on the ATmega168
 | ||
|  | 
 | ||
|  |   // for a one- or two-microsecond delay, simply return.  the overhead of
 | ||
|  |   // the function calls takes more than two microseconds.  can't just
 | ||
|  |   // subtract two, since us is unsigned; we'd overflow.
 | ||
|  |   if (--us == 0) | ||
|  |     return; | ||
|  |   if (--us == 0) | ||
|  |     return; | ||
|  | 
 | ||
|  |   // the following loop takes half of a microsecond (4 cycles)
 | ||
|  |   // per iteration, so execute it twice for each microsecond of
 | ||
|  |   // delay requested.
 | ||
|  |   us <<= 1; | ||
|  | 
 | ||
|  |   // partially compensate for the time taken by the preceeding commands.
 | ||
|  |   // we can't subtract any more than this or we'd overflow w/ small delays.
 | ||
|  |   us--; | ||
|  | #endif
 | ||
|  | 
 | ||
|  |   // busy wait
 | ||
|  |   __asm__ __volatile__ ( | ||
|  |     "1: sbiw %0,1" "\n\t" // 2 cycles
 | ||
|  |     "brne 1b" : "=w" (us) : "0" (us) // 2 cycles
 | ||
|  |   ); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | ///////////////////////////////////////////////////////////////////////////////////////////////////////////////
 | ||
|  | //                                                                                                           //
 | ||
|  | //   ____               _                      ____  _               _      ____         _                   //
 | ||
|  | //  / ___|  _   _  ___ | |_  ___  _ __ ___    / ___|| |  ___    ___ | | __ / ___|   ___ | |_  _   _  _ __    //
 | ||
|  | //  \___ \ | | | |/ __|| __|/ _ \| '_ ` _ \  | |    | | / _ \  / __|| |/ / \___ \  / _ \| __|| | | || '_ \   //
 | ||
|  | //   ___) || |_| |\__ \| |_|  __/| | | | | | | |___ | || (_) || (__ |   <   ___) ||  __/| |_ | |_| || |_) |  //
 | ||
|  | //  |____/  \__, ||___/ \__|\___||_| |_| |_|  \____||_| \___/  \___||_|\_\ |____/  \___| \__| \__,_|| .__/   //
 | ||
|  | //          |___/                                                                                   |_|      //
 | ||
|  | //                                                                                                           //
 | ||
|  | ///////////////////////////////////////////////////////////////////////////////////////////////////////////////
 | ||
|  | 
 | ||
|  | // this function is separate since it provides a specific functionality
 | ||
|  | // and aids in readability by separating it from the main 'init()' code
 | ||
|  | // regardless of the extra bytes needed to make the function call
 | ||
|  | void clock_setup(void) | ||
|  | { | ||
|  | unsigned short sCtr; | ||
|  | register unsigned char c1; | ||
|  | 
 | ||
|  |   // TODO:  get rid of magic bit numbers, and use bit value constants from iox64d4.h etc. (ongoing)
 | ||
|  | 
 | ||
|  |   // TODO:  consider clock setup using PLL and 2Mhz multiplied by 16, to free up the 32Mhz to be
 | ||
|  |   //        used by the USB at 48Mhz (sync on SOF).  this would be an alternate config for USB devices.
 | ||
|  | 
 | ||
|  |   // --------------------------------------------------------------------------------------------
 | ||
|  |   //                                         CLOCK SETUP
 | ||
|  |   //
 | ||
|  |   // enable BOTH the 32Mhz and 32.768KHz internal clocks [ignore what else might be set for now]
 | ||
|  |   // --------------------------------------------------------------------------------------------
 | ||
|  | 
 | ||
|  |   OSC_CTRL |= OSC_RC32KEN_bm | OSC_RC32MEN_bm; // CLK_SCLKSEL_RC32M_gc | CLK_SCLKSEL_RC32K_gc;
 | ||
|  | 
 | ||
|  |   if(!(CLK_LOCK & CLK_LOCK_bm)) // clock lock bit NOT set, so I can muck with the clock
 | ||
|  |   { | ||
|  |     if((CLK_CTRL & CLK_SCLKSEL_gm) != CLK_SCLKSEL_RC32M_gc) // it's not already 32 Mhz
 | ||
|  |     { | ||
|  |       // wait until 32mhz clock is 'stable'
 | ||
|  | 
 | ||
|  |       for(sCtr=32767; sCtr > 0; sCtr--) // TODO:  remove counter?
 | ||
|  |       { | ||
|  |         // spin on oscillator status bit for 32Mhz oscillator
 | ||
|  | 
 | ||
|  |         if(OSC_STATUS & OSC_RC32MRDY_bm/*CLK_SCLKSEL_RC32M_gc*/) // 32Mhz oscillator is 'ready' (6.10.2)
 | ||
|  |         { | ||
|  |           break; | ||
|  |         } | ||
|  |       } | ||
|  | 
 | ||
|  |       // for now, I can allow the clock to NOT be changed if it's
 | ||
|  |       // not ready.  This prevents infinite loop inside startup code
 | ||
|  | 
 | ||
|  |       if(!(OSC_STATUS & OSC_RC32MRDY_bm/*CLK_SCLKSEL_RC32M_gc*/)) // is my oscillator 'ready' ?
 | ||
|  |       { | ||
|  |         return; // exit - don't change anything
 | ||
|  |       } | ||
|  | 
 | ||
|  |       // switch to 32Mhz clock using internal source
 | ||
|  | 
 | ||
|  |       CCP = CCP_IOREG_gc; // 0xd8 - see D manual, sect 3.14.1 (protected I/O)
 | ||
|  |       CLK_CTRL = CLK_SCLKSEL_RC32M_gc; // set the clock to 32Mhz (6.9.1)
 | ||
|  |     } | ||
|  | 
 | ||
|  |     if(CLK_PSCTRL != 0) | ||
|  |     { | ||
|  |       CCP = CCP_IOREG_gc; // 0xd8 - see D manual, sect 3.14.1 (protected I/O)
 | ||
|  |       CLK_PSCTRL = CLK_PSADIV_1_gc | CLK_PSBCDIV_1_1_gc/*0*/; // set the clock divider(s) to 1:1 (6.9.2)
 | ||
|  |     } | ||
|  | 
 | ||
|  |     // now that I've changed the clock, disable 2Mhz, PLL, and external clocks
 | ||
|  |     // 32.768KHz should remain active, but I need to make sure it's stable
 | ||
|  |     OSC_CTRL &= // ~(_BV(4) | _BV(3) | _BV(0)); // sect 6.10.1 - disable PLL, external, 2Mhz clocks
 | ||
|  |       ~(OSC_PLLEN_bm | OSC_XOSCEN_bm | ||
|  |         | OSC_RC2MEN_bm    /* disable the 2Mhz oscillator - startup code *DOES* do this, boot code does NOT */ | ||
|  | #ifdef OSC_RC8MCAL // only present in 'E' series - for now shut it off
 | ||
|  |         | OSC_RC8MEN_bm    /* disable the 8M oscillator (when present) */ | ||
|  | #endif // OSC_RC8MCAL
 | ||
|  |         ); | ||
|  | 
 | ||
|  |     // wait until 32.768KHz clock is 'stable'.  this one goes for a while
 | ||
|  |     // in case it doesn't stabilize in a reasonable time.  I figure about
 | ||
|  |     // 64*255 clock cycles should be enough, ya think?  Timeout if it's not
 | ||
|  |     // actually ready, I don't want infinite loops.  TODO:  re-consider?
 | ||
|  |     for(sCtr=65535; sCtr > 0; sCtr--) | ||
|  |     { | ||
|  |       for(c1=255; c1 > 0; c1--) | ||
|  |       { | ||
|  |         if(OSC_STATUS & OSC_RC32KRDY_bm/*CLK_SCLKSEL_RC32K_gc*/) // 32.768KHz oscillator is 'ready' (6.10.2)
 | ||
|  |         { | ||
|  |           sCtr = 1; // this will bail out of the outer loop
 | ||
|  |           break; | ||
|  |         } | ||
|  |       } | ||
|  |     } | ||
|  | 
 | ||
|  |     // enable DFLL auto-calibration of the 32Mhz internal oscillator
 | ||
|  |     // (it uses the reasonably precise 32.768KHz clock to do it)
 | ||
|  | 
 | ||
|  |     OSC_DFLLCTRL = 0; // sect 6.10.7 - select 32.768KHz osc for everything, basically
 | ||
|  |     DFLLRC32M_CTRL = 1; // set the bit to enable DFLL calibration - section 6.11.1
 | ||
|  |   } | ||
|  | 
 | ||
|  |   // I'll be using the 1.024khz clock (from the 32.768KHz clock) for the real-time counter
 | ||
|  |   // this will give me a reasonable "about 1 millisecond" accuracy on the RTC
 | ||
|  | 
 | ||
|  |   // NOTE:  I may not have checked for this if I skipped the previous section,
 | ||
|  |   //        so now I check again, just in case, to make sure the 32.768KHz osc is stable
 | ||
|  |   for(sCtr=65535; sCtr > 0; sCtr--) | ||
|  |   { | ||
|  |     for(c1=255; c1 > 0; c1--) | ||
|  |     { | ||
|  |       if(OSC_STATUS & OSC_RC32KRDY_bm/*CLK_SCLKSEL_RC32K_gc*/) // 32.768KHz oscillator is 'ready' (6.10.2)
 | ||
|  |       { | ||
|  |         sCtr = 1; // this will bail out of the outer loop
 | ||
|  |         break; | ||
|  |       } | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   if(!(OSC_STATUS & OSC_RC32KRDY_bm/*CLK_SCLKSEL_RC32K_gc*/)) // is my oscillator 'ready' ?
 | ||
|  |   { | ||
|  |     return; // exit - don't change anything else.  Better to fail than to hang
 | ||
|  |   } | ||
|  | 
 | ||
|  | 
 | ||
|  |   // RUN-TIME clock - use internal 1.024 khz source.  cal'd 32khz needed for this (but it's running)
 | ||
|  |   // The RTC can be used to wake up the CPU.  It uses VERY little current.
 | ||
|  | 
 | ||
|  |   CLK_RTCCTRL = CLK_RTCSRC_RCOSC_gc; // section 6.9.4
 | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | // this was derived from a message board post.  The function is public to make it easy to
 | ||
|  | // use the 'Production Signature Row'.  There is a unique identifier for the CPU as well as
 | ||
|  | // calibration data for the ADC available, and also USB settings (for USB-capable devices)
 | ||
|  | // See sect. 4.14 "Production Signature Row" in 'D' manual.  
 | ||
|  | uint8_t readCalibrationData(uint16_t iIndex) | ||
|  | { | ||
|  |   uint8_t rVal; | ||
|  | 
 | ||
|  |   /* Load the NVM Command register to read the calibration row. */ | ||
|  |   NVM_CMD = NVM_CMD_READ_CALIB_ROW_gc; // see the section on NVM operations and lpm instruction
 | ||
|  | 
 | ||
|  | //  rVal = pgm_read_byte_near(iIndex); // effectively the same thing as the inline assembler
 | ||
|  |   __asm__ ("lpm %0, Z\n" : "=r" (rVal) : "z" (iIndex)); // do it THIS way instead
 | ||
|  | 
 | ||
|  |   /* Clean up NVM Command register. */ | ||
|  |   NVM_CMD = NVM_CMD_NO_OPERATION_gc; | ||
|  | 
 | ||
|  |   return(rVal); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | ///////////////////////////////////////////////////////////////////////////////////////////////////////////////
 | ||
|  | //                                                                                                           //
 | ||
|  | //   _____  _                          ___         _  _    _         _  _             _    _                 //
 | ||
|  | //  |_   _|(_) _ __ ___    ___  _ __  |_ _| _ __  (_)| |_ (_)  __ _ | |(_) ____ __ _ | |_ (_)  ___   _ __    //
 | ||
|  | //    | |  | || '_ ` _ \  / _ \| '__|  | | | '_ \ | || __|| | / _` || || ||_  // _` || __|| | / _ \ | '_ \   //
 | ||
|  | //    | |  | || | | | | ||  __/| |     | | | | | || || |_ | || (_| || || | / /| (_| || |_ | || (_) || | | |  //
 | ||
|  | //    |_|  |_||_| |_| |_| \___||_|    |___||_| |_||_| \__||_| \__,_||_||_|/___|\__,_| \__||_| \___/ |_| |_|  //
 | ||
|  | //                                                                                                           //
 | ||
|  | //                                                                                                           //
 | ||
|  | ///////////////////////////////////////////////////////////////////////////////////////////////////////////////
 | ||
|  | 
 | ||
|  | #ifdef TCC2
 | ||
|  | static void Timer2Init(TC2_t *port) | ||
|  | { | ||
|  |   port->CTRLA = 5; // b0101 - divide by 64 - D manual 13.9.1
 | ||
|  |   port->CTRLB = 0; // compare outputs disabled on all 8 bits (13.9.2)
 | ||
|  | //  port->CTRLC = 0; // when timer not running, sets compare (13.9.3)
 | ||
|  |   port->CTRLE = 0x2; // b10 - 'split' mode - D manual 13.9.4
 | ||
|  |   port->CTRLF = 0;   // not resetting or anything (13.9.7)
 | ||
|  | 
 | ||
|  |   port->LPER = 255; // count 255 to 0 (total period = 256)
 | ||
|  |   port->HPER = 255; | ||
|  | 
 | ||
|  |   // pre-assign comparison registers to 'zero' (for PWM out) which is actually 255
 | ||
|  |   // 'timer 2' counts DOWN.  This, however, would generate a '1' output.
 | ||
|  | 
 | ||
|  |   port->LCMPA = 255; | ||
|  |   port->LCMPB = 255; | ||
|  |   port->LCMPC = 255; | ||
|  |   port->LCMPD = 255; | ||
|  | 
 | ||
|  |   port->HCMPA = 255; | ||
|  |   port->HCMPB = 255; | ||
|  |   port->HCMPC = 255; | ||
|  |   port->HCMPD = 255; | ||
|  | 
 | ||
|  |   // disable underflow and comparison interrupts
 | ||
|  |   port->INTCTRLA = 0;   // no underflow interrupts
 | ||
|  |   port->INTCTRLB = 0;   // no comparison interrupts
 | ||
|  | } | ||
|  | #elif defined(TCC0) // use TC0_t
 | ||
|  | static void Timer2Init(TC0_t *port) | ||
|  | { | ||
|  |   // TCC2
 | ||
|  |   // first the clock selection
 | ||
|  |   port->CTRLA = 5; // b0101 - divide by 64 - D manual 13.9.1
 | ||
|  |   port->CTRLB = 0; // compare outputs disabled on all 8 bits (13.9.2)
 | ||
|  | //  TCC2_CTRLC = 0; // when timer not running, sets compare (13.9.3)
 | ||
|  |   port->CTRLE = 0x2; // b10 - 'split' mode - D manual 13.9.4
 | ||
|  | #ifdef TCC0_CTRLFCLR // NOTE:  is this correct?
 | ||
|  |   port->CTRLFCLR = 0xff; // this does NOT map to anything for TC_t, but I want zeros in CTRLF so 'just in case'
 | ||
|  |   port->CTRLFSET = 0; // this maps to 'CTRLF' for TC2_t, and this assignment should work on its own
 | ||
|  | #else // TCC0_CTRLFCLR
 | ||
|  |   // NOTE: this code will probably NOT be compiled due to the way TC0_t maps to TC2_t
 | ||
|  |   port->CTRLF = 0;   // not resetting or anything (13.9.7)
 | ||
|  | #endif // TCC0_CTRLFCLR
 | ||
|  | 
 | ||
|  |   port->PER = 255; | ||
|  | //  TCC2_LPER = 255; // count 255 to 0 (total period = 256)
 | ||
|  | //  TCC2_HPER = 255; // should this be zero?
 | ||
|  | 
 | ||
|  |   // pre-assign comparison registers to 'zero' (for PWM out) which is actually 255
 | ||
|  |   // 'timer 2' counts DOWN.  This, however, would generate a '1' output.
 | ||
|  | 
 | ||
|  | //  ((uint8_t *)&(port->CCA))[0] = 255; // low bytes
 | ||
|  | //  ((uint8_t *)&(port->CCB))[0] = 255;
 | ||
|  | //  ((uint8_t *)&(port->CCC))[0] = 255;
 | ||
|  | //  ((uint8_t *)&(port->CCD))[0] = 255;
 | ||
|  | 
 | ||
|  | //  ((uint8_t *)&(port->CCA))[1] = 255; // high bytes
 | ||
|  | //  ((uint8_t *)&(port->CCB))[1] = 255;
 | ||
|  | //  ((uint8_t *)&(port->CCC))[1] = 255;
 | ||
|  | //  ((uint8_t *)&(port->CCD))[1] = 255;
 | ||
|  | 
 | ||
|  |   // NOTE:  according to the docs, 16-bit registers MUST be accessed
 | ||
|  |   //        low byte first, then high byte, before the actual value
 | ||
|  |   //        is transferred to the register.  THIS code will.
 | ||
|  |   //        see A1U manual sect. 3.11 (and others as well)
 | ||
|  | 
 | ||
|  |   port->CCA = 0xffff; | ||
|  |   port->CCB = 0xffff; | ||
|  |   port->CCC = 0xffff; | ||
|  |   port->CCD = 0xffff; | ||
|  | 
 | ||
|  |   // disable underflow and comparison interrupts
 | ||
|  |   port->INTCTRLA = 0;   // no underflow interrupts
 | ||
|  |   port->INTCTRLB = 0;   // no comparison interrupts
 | ||
|  | } | ||
|  | #endif // TCC2
 | ||
|  | 
 | ||
|  | 
 | ||
|  | //////////////////////////////////////////////////////////////////////////////
 | ||
|  | //                                                                          //
 | ||
|  | //        ____               _                     ___         _  _         //
 | ||
|  | //       / ___|  _   _  ___ | |_  ___  _ __ ___   |_ _| _ __  (_)| |_       //
 | ||
|  | //       \___ \ | | | |/ __|| __|/ _ \| '_ ` _ \   | | | '_ \ | || __|      //
 | ||
|  | //        ___) || |_| |\__ \| |_|  __/| | | | | |  | | | | | || || |_       //
 | ||
|  | //       |____/  \__, ||___/ \__|\___||_| |_| |_| |___||_| |_||_| \__|      //
 | ||
|  | //               |___/                                                      //
 | ||
|  | //                                                                          //
 | ||
|  | //////////////////////////////////////////////////////////////////////////////
 | ||
|  | 
 | ||
|  | // NOTE:  calibration data for ADC must be loaded BEFORE it's initialized
 | ||
|  | // ADCA.CALL = readCalibrationData(&PRODSIGNATURES_ADCACAL0);
 | ||
|  | // ADCA.CALH = readCalibrationData(&PRODSIGNATURES_ADCACAL1);
 | ||
|  | 
 | ||
|  | void init() | ||
|  | { | ||
|  | 
 | ||
|  | 
 | ||
|  |   cli(); // do this before _ANYTHING_
 | ||
|  | 
 | ||
|  |   // ----------------------------------------------------------
 | ||
|  |   // first thing first - the system clock _MUST_ run at 32Mhz
 | ||
|  |   // ----------------------------------------------------------
 | ||
|  | 
 | ||
|  |   clock_setup(); | ||
|  | 
 | ||
|  | 
 | ||
|  |   // The watchdog timer MUST be off (the bootloader should do this too)
 | ||
|  |   // this next section of code will disable it.
 | ||
|  | 
 | ||
|  |   CCP = CCP_IOREG_gc; // 0xd8 - see D manual, sect 3.14.1 (protected I/O)
 | ||
|  |   WDT_CTRL = 1; // sets watchdog timer "enable" bit to zero - bit 0 must be set to change bit 1 - section 9.7.1
 | ||
|  |   CCP = CCP_IOREG_gc; // 0xd8 - see D manual, sect 3.14.1 (protected I/O)
 | ||
|  |   WDT_WINCTRL = 1; // sets watchdog 'window' timer "enable" bit to zero - bit 0 must be set to change bit 1 - section 9.7.2
 | ||
|  | 
 | ||
|  |   NVM_INTCTRL = 0; // disable interrupts in the NVM subsystem
 | ||
|  | 
 | ||
|  | #ifdef WEXC_OUTOVDIS
 | ||
|  |   WEXC_OUTOVDIS = 0; // in essence, it should allow waveform output on all pins (default value)
 | ||
|  |                      // assigning this to FFH prevents PWM output on PORTC - does not appear to affect PORTD
 | ||
|  | 
 | ||
|  |   WEXC_CTRL = 0;     // hopefully disabling everything
 | ||
|  |   WEXC_SWAP = 0;     // no bit swapping
 | ||
|  |   WEXC_PGO = 0;      // disable PGV output on all bits
 | ||
|  | 
 | ||
|  | #endif // WEXC_OUTOVDIS
 | ||
|  | 
 | ||
|  | #ifdef HIRESC_CTRLA
 | ||
|  |   HIRESC_CTRLA = 0; // disable hi-res timer extension
 | ||
|  | #endif // HIRESC_CTRLA
 | ||
|  | 
 | ||
|  | 
 | ||
|  |   // --------------------------------
 | ||
|  |   //   INITIAL TIMER CONFIGURATION
 | ||
|  |   // --------------------------------
 | ||
|  | 
 | ||
|  |   // For the E series, set up timers TCC4, TCC5, and TCD5 in 'normal' mode with a pre-scale of 64.
 | ||
|  |   // TODO:  consider CC ISR for PWM and manual bit-flip, if it's even possible.
 | ||
|  |   //
 | ||
|  |   // For everything else, set up timers TCC2 and TCD2 and TCE0.  Use pre-scale of 64.
 | ||
|  |   // If other timers exist (like 'A' series) initialize them as well.
 | ||
|  |   //
 | ||
|  |   // For a 32Mhz clock they will run at 2Khz with the appropriate pre-scale + divide.
 | ||
|  |   // For PWM out, use the comparison result to drive the appropriate pins.
 | ||
|  | 
 | ||
|  |   // If you don't need PWM, or want 'other than 2khz', you can re-configure the other timers,
 | ||
|  |   // but leave TCD2 (or TCD5) alone because it's needed for the system clock (via TCD2_LUNF_vect, etc.)
 | ||
|  | 
 | ||
|  | 
 | ||
|  | #ifdef TCC4 /* this is my trigger for 'E' series */
 | ||
|  | 
 | ||
|  |   // TCD5 first (the system timer)
 | ||
|  |   TCD5_INTCTRLA = 0;   // no underflow interrupts
 | ||
|  |   TCD5_INTCTRLB = 0;   // no comparison interrupts
 | ||
|  | 
 | ||
|  |   TCD5_CTRLA = 5; // b0101 - divide by 64 - E manual 13.13.1
 | ||
|  | //  TCD5_CTRLB = TC45_BYTEM_BYTEMODE_gc; // byte mode, normal mode
 | ||
|  |   TCD5_CTRLB = TC45_BYTEM_BYTEMODE_gc | TC45_WGMODE_SINGLESLOPE_gc; // byte mode, single slope
 | ||
|  | //  TCD5_CTRLB = TC45_BYTEM_BYTEMODE_gc | TC45_WGMODE_DSBOTH_gc; // byte mode, dual slope, ovf on bottom AND top
 | ||
|  | ////  TCD5_CTRLC = 0; // when timer not running, sets compare (13.9.3)
 | ||
|  |   TCD5_CTRLD = 0; // events off
 | ||
|  |   TCD5_CTRLE = 0; // no output on L pins
 | ||
|  |   TCD5_CTRLF = 0; // no output on H pins
 | ||
|  | 
 | ||
|  |   TCD5_PER = 255; // 255 for period limit
 | ||
|  | 
 | ||
|  |   // pre-assign comparison registers to 'zero' (for PWM out) which is actually 255
 | ||
|  |   // 'timer 2' counts DOWN.
 | ||
|  | 
 | ||
|  |   TCD5_CCA = 65535; | ||
|  |   TCD5_CCB = 65535; | ||
|  | 
 | ||
|  |   TCD5_CTRLGCLR = 0xfe; | ||
|  |   TCD5_CTRLGSET = 1; // count DOWN
 | ||
|  | 
 | ||
|  |   // enable the underflow interrupt on A, disable on B, disable comparison interrupts
 | ||
|  |   TCD5_INTCTRLA = 0x3; // enable LOW underflow interrupt, pri level 3 (see 13.9.5 in D manual)
 | ||
|  | 
 | ||
|  | // TODO:  this is not well documented - does it even work for TIMER D5 ??
 | ||
|  | #ifdef TCD5_PIN_SHIFT /* shifting PWM output pins, normally 4,5,6,7 */
 | ||
|  |   PORTD_REMAP = (PORTD_REMAP & PORT_USART0_bm) | TCD5_PIN_SHIFT; | ||
|  | #else  // PORTD_REMAP
 | ||
|  |   PORTD_REMAP &= PORT_USART0_bm; // all other pins are zero except maybe USART0 remap
 | ||
|  | #endif // PORTD_REMAP
 | ||
|  | 
 | ||
|  | 
 | ||
|  | // if 'HIRES' enabled, shut it off
 | ||
|  | #ifdef HIRESC_ENABLE
 | ||
|  |   HIRESC_ENABLE = HIRES_HREN_NONE_gc; | ||
|  | #endif // HIRESC_ENABLE
 | ||
|  | 
 | ||
|  |   PORTC_REMAP &= PORT_USART0_bm; // all other pins are zero except maybe USART0 remap
 | ||
|  | 
 | ||
|  |   // TCC4
 | ||
|  |   // first the clock selection
 | ||
|  |   TCC4_CTRLA = 5; // b0101 - divide by 64 - E manual 13.13.1
 | ||
|  |   TCC4_CTRLB = TC45_BYTEM_BYTEMODE_gc | TC45_WGMODE_SINGLESLOPE_gc; // byte mode, single slope
 | ||
|  | //  TCC4_CTRLB = TC45_BYTEM_BYTEMODE_gc | TC45_WGMODE_DSBOTH_gc; // byte mode, dual slope, ovf on bottom AND top
 | ||
|  | ////  TCC4_CTRLC = 0; // when timer not running, sets compare (13.9.3)
 | ||
|  |   TCC4_CTRLD = 0; // events off
 | ||
|  |   TCC4_CTRLE = 0; // no output on L pins
 | ||
|  |   TCC4_CTRLF = 0; // no output on H pins
 | ||
|  | 
 | ||
|  |   TCC4_PER = 255; // 255 for period limit
 | ||
|  | 
 | ||
|  |   // pre-assign comparison registers to 'zero' (for PWM out) which is actually 255
 | ||
|  |   // 'timer 2' counts DOWN.
 | ||
|  | 
 | ||
|  |   TCC4_CCA = 65535; | ||
|  |   TCC4_CCB = 65535; | ||
|  |   TCC4_CCC = 65535; | ||
|  |   TCC4_CCD = 65535; | ||
|  | 
 | ||
|  |   TCC4_CTRLGCLR = 0xfe; | ||
|  |   TCC4_CTRLGSET = 1; // count DOWN
 | ||
|  | 
 | ||
|  |   // disable underflow and comparison interrupts
 | ||
|  |   TCC4_INTCTRLA = 0;   // no underflow interrupts
 | ||
|  |   TCC4_INTCTRLB = 0;   // no comparison interrupts
 | ||
|  | 
 | ||
|  | 
 | ||
|  |   // also set up TCC5
 | ||
|  | 
 | ||
|  | #ifdef TCC5
 | ||
|  | 
 | ||
|  |   TCC5_INTCTRLA = 0;   // no underflow interrupts
 | ||
|  |   TCC5_INTCTRLB = 0;   // no comparison interrupts
 | ||
|  | 
 | ||
|  |   TCC5_CTRLA = 5; // b0101 - divide by 64 - E manual 13.13.1
 | ||
|  |   TCC5_CTRLB = TC45_WGMODE_NORMAL_gc; // 'normal' mode, 16-bit mode
 | ||
|  | ////  TCC5_CTRLC = 0; // when timer not running, sets compare (13.9.3)
 | ||
|  |   TCC5_CTRLD = 0; // events off
 | ||
|  |   TCC5_CTRLE = 0; // no output on L pins
 | ||
|  |   TCC5_CTRLF = 0; // no output on H pins
 | ||
|  | 
 | ||
|  |   TCC5_PER = 255; // 255 for period limit
 | ||
|  | 
 | ||
|  |   TCC5_CCA = 0; | ||
|  |   TCC5_CCB = 0; | ||
|  | 
 | ||
|  |   TCC5_CTRLGCLR = 0xff; | ||
|  |   TCC5_CTRLGSET = 0; // count UP
 | ||
|  | 
 | ||
|  |   // disable underflow and comparison interrupts
 | ||
|  |   TCC5_INTCTRLA = 0;   // no underflow interrupts
 | ||
|  |   TCC5_INTCTRLB = 0;   // no comparison interrupts
 | ||
|  | 
 | ||
|  | #endif // TCC5
 | ||
|  | 
 | ||
|  | 
 | ||
|  | #else // everything else uses TCD2 for system timer
 | ||
|  | 
 | ||
|  | #ifndef TCC2 /* A1 series doesn't define this properly, so use TCC0 and TCD0, etc. */
 | ||
|  | 
 | ||
|  |   // TCD2
 | ||
|  |   // first the clock selection
 | ||
|  |   TCD0_CTRLA = 5; // b0101 - divide by 64 - D manual 13.9.1 (should be the same for 'A' and others)
 | ||
|  |   TCD0_CTRLB = 0; // compare outputs disabled on all 8 bits (13.9.2)
 | ||
|  | //  TCD0_CTRLC = 0; // when timer not running, sets compare (13.9.3)
 | ||
|  |   TCD0_CTRLE = 0x2; // b10 - 'split' mode - D manual 13.9.4
 | ||
|  | #ifdef TCD0_CTRLFCLR
 | ||
|  |   TCD0_CTRLFCLR = 0xff; | ||
|  | #else // TCD0_CTRLFCLR
 | ||
|  |   TCD0_CTRLF = 0;   // not resetting or anything (13.9.7)
 | ||
|  | #endif // TCD0_CTRLFCLR
 | ||
|  | 
 | ||
|  |   TCD0_PER = 255; | ||
|  | //  TCD2_LPER = 255; // count 255 to 0 (total period = 256)
 | ||
|  | //  TCD2_HPER = 255;
 | ||
|  | 
 | ||
|  |   // pre-assign comparison registers to 'zero' (for PWM out) which is actually 255
 | ||
|  |   // 'timer 2' counts DOWN.  use FFFFH in the compare registers.
 | ||
|  | 
 | ||
|  |   // NOTE:  according to the docs, 16-bit registers MUST be accessed
 | ||
|  |   //        low byte first, then high byte, before the actual value
 | ||
|  |   //        is transferred to the register.  THIS code will do that.
 | ||
|  |   //        see A1U manual sect. 3.11 (and others as well)
 | ||
|  | 
 | ||
|  |   TCD0_CCA = 0xffff; | ||
|  |   TCD0_CCB = 0xffff; | ||
|  |   TCD0_CCC = 0xffff; | ||
|  |   TCD0_CCD = 0xffff; | ||
|  | 
 | ||
|  |   // enable the underflow interrupt on A, disable on B, disable comparison interrupts
 | ||
|  |   TCD0_INTCTRLA = 0x3; // enable LOW underflow interrupt, pri level 3 (see 13.9.5 in D manual)
 | ||
|  |   TCD0_INTCTRLB = 0;   // no comparison or underflow interrupts on anything else
 | ||
|  | 
 | ||
|  |   Timer2Init(&TCC0); | ||
|  | 
 | ||
|  | #else // TCC2
 | ||
|  | 
 | ||
|  |   // TCD2
 | ||
|  |   // first the clock selection
 | ||
|  |   TCD2_CTRLA = 5; // b0101 - divide by 64 - D manual 13.9.1
 | ||
|  |   TCD2_CTRLB = 0; // compare outputs disabled on all 8 bits (13.9.2)
 | ||
|  | //  TCD2_CTRLC = 0; // when timer not running, sets compare (13.9.3)
 | ||
|  |   TCD2_CTRLE = 0x2; // b10 - 'split' mode - D manual 13.9.4
 | ||
|  |   TCD2_CTRLF = 0;   // not resetting or anything (13.9.7)
 | ||
|  | 
 | ||
|  |   TCD2_LPER = 255; // count 255 to 0 (total period = 256)
 | ||
|  |   TCD2_HPER = 255; | ||
|  | 
 | ||
|  |   // pre-assign comparison registers to 'zero' (for PWM out) which is actually 255
 | ||
|  |   // 'timer 2' counts DOWN.  Timer 2 regs are 8-bit.
 | ||
|  | 
 | ||
|  |   TCD2_LCMPA = 255; | ||
|  |   TCD2_LCMPB = 255; | ||
|  |   TCD2_LCMPC = 255; | ||
|  |   TCD2_LCMPD = 255; | ||
|  | 
 | ||
|  |   TCD2_HCMPA = 255; | ||
|  |   TCD2_HCMPB = 255; | ||
|  |   TCD2_HCMPC = 255; | ||
|  |   TCD2_HCMPD = 255; | ||
|  | 
 | ||
|  |   // enable the underflow interrupt on A, disable on B, disable comparison interrupts
 | ||
|  |   TCD2_INTCTRLA = 0x3; // enable LOW underflow interrupt, pri level 3 (see 13.9.5 in D manual)
 | ||
|  |   TCD2_INTCTRLB = 0;   // no comparison or underflow interrupts on anything else
 | ||
|  | 
 | ||
|  |   Timer2Init(&TCC2); | ||
|  | 
 | ||
|  | #endif // TCC2
 | ||
|  | 
 | ||
|  | #endif // TCD5 or TCD2
 | ||
|  | 
 | ||
|  | 
 | ||
|  | #if NUM_DIGITAL_PINS > 22 /* meaning PORTE is available and has 8 pins */
 | ||
|  | 
 | ||
|  | #if !defined(TCE2) && defined(TCE0)
 | ||
|  | 
 | ||
|  |   Timer2Init(&TCE0); | ||
|  | 
 | ||
|  | #elif defined(TCE2) // TCE2 defined, use that
 | ||
|  | 
 | ||
|  |   Timer2Init(&TCE2); | ||
|  | 
 | ||
|  | #endif // TCE2, TCE0
 | ||
|  | 
 | ||
|  | 
 | ||
|  | #if NUM_DIGITAL_PINS > 30 /* meaning PORTF exists */
 | ||
|  | 
 | ||
|  | #if !defined(TCF2) && defined(TCF0)
 | ||
|  | 
 | ||
|  |   Timer2Init(&TCF0); | ||
|  | 
 | ||
|  | #elif defined(TCF2) // TCF2 defined, use that
 | ||
|  | 
 | ||
|  |   Timer2Init(&TCF2); | ||
|  | 
 | ||
|  | #endif // TCF2, TCF0
 | ||
|  | 
 | ||
|  | 
 | ||
|  | // TODO:  other timers on other ports when more than 38 pins available?
 | ||
|  | 
 | ||
|  | 
 | ||
|  | #endif // NUM_DIGITAL_PINS > 30
 | ||
|  | 
 | ||
|  | 
 | ||
|  | #elif NUM_DIGITAL_PINS > 18 /* meaning there is a PORT E available with only 4 pins */
 | ||
|  | 
 | ||
|  |   // now set up TCE0 as an 8-bit timer so it's compatible with Arduino's PWM
 | ||
|  |   // first the clock selection
 | ||
|  |   TCE0_CTRLA = 5; // b0101 - divide by 64 - D manual 12.11.1
 | ||
|  |   TCE0_CTRLB = TC_WGMODE_SS_gc; // single-slope PWM.  NOTE:  this counts UP, whereas the other timers count DOWN
 | ||
|  |                // other bits (high nybble) are OFF - they enable output on the 4 port E pins
 | ||
|  | //  TCE0_CTRLC = 0; // when timer not running, sets compare (12.11.3)
 | ||
|  |   TCE0_CTRLD = 0; // not an event timer, 16-bit mode (12.11.4)
 | ||
|  |   TCE0_CTRLE = 1; // normal 8-bit timer (set to 0 for 16-bit mode) (12.11.5)
 | ||
|  | 
 | ||
|  |   // disable under/overflow and comparison interrupts
 | ||
|  |   TCE0_INTCTRLA = 0;   // no underflow interrupts
 | ||
|  |   TCE0_INTCTRLB = 0;   // no comparison interrupts
 | ||
|  | 
 | ||
|  |   // make sure the timer E 'period' register is correctly set at 255 (i.e. 0-255 or 256 clock cycles).
 | ||
|  |   TCE0_PER = 255; | ||
|  | 
 | ||
|  |   // pre-assign comparison registers to 'zero' (for PWM out) which is actually 255
 | ||
|  |   // timer 0 can be configured to count UP or DOWN, but for single-slope PWM it is
 | ||
|  |   // always 'UP'.  A value of '255' should generate a '1' output for each PWM.
 | ||
|  | 
 | ||
|  |   TCE0_CCA = 255; | ||
|  |   TCE0_CCB = 255; | ||
|  |   TCE0_CCC = 255; | ||
|  |   TCE0_CCD = 255; | ||
|  | 
 | ||
|  | #endif // NUM_DIGITAL_PINS > 18, 22
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  |   // in case the bootloader enabled serial or TWI, disable it
 | ||
|  |   // and make sure the associated port input pins are inputs
 | ||
|  |   //
 | ||
|  |   // NOTE:  Port R pins 0 and 1 will be outputs, but all others should be inputs
 | ||
|  |   //        PR0 and PR1 are designated LED output pins for this design.  PR1 is
 | ||
|  |   //        the blinking LED pin used by the bootloader.  These will NOT be re-assigned
 | ||
|  |   //        at this time, but left 'as-is'.
 | ||
|  | 
 | ||
|  |   // -----------------------------------------
 | ||
|  |   // DISABLE TWI (specifically TWI interrupts)
 | ||
|  |   // -----------------------------------------
 | ||
|  | 
 | ||
|  | #ifdef TWIC_CTRL
 | ||
|  |   TWIC_MASTER_CTRLA = 0; | ||
|  |   TWIC_SLAVE_CTRLA = 0; | ||
|  | #endif // TWIC_CTRL
 | ||
|  | #ifdef TWID_CTRL
 | ||
|  |   TWID_MASTER_CTRLA = 0; | ||
|  |   TWID_SLAVE_CTRLA = 0; | ||
|  | #endif // TWID
 | ||
|  | //#if NUM_DIGITAL_PINS > 18 /* meaning there is a PORT E available */
 | ||
|  | #ifdef TWIE_CTRL
 | ||
|  |   TWIE_MASTER_CTRLA = 0; | ||
|  |   TWIE_SLAVE_CTRLA = 0; | ||
|  | #endif // TWIE_CTRL
 | ||
|  | #ifdef TWIF_CTRL
 | ||
|  |   TWIF_MASTER_CTRLA = 0; | ||
|  |   TWIF_SLAVE_CTRLA = 0; | ||
|  | #endif // TWIF
 | ||
|  | 
 | ||
|  |   // --------------------
 | ||
|  |   // DISABLE SERIAL PORTS
 | ||
|  |   // --------------------
 | ||
|  | 
 | ||
|  |   USARTD0_CTRLA = 0; // disables interrupts
 | ||
|  |   USARTD0_CTRLB = 0; // disables TX and RX pin override
 | ||
|  |   USARTC0_CTRLA = 0; // do the same thing
 | ||
|  |   USARTC0_CTRLB = 0; // for both port C and D
 | ||
|  | 
 | ||
|  | #ifdef USARTC0_CTRLD
 | ||
|  |   USARTC0_CTRLD = 0;  // E5 has this register, must assign to zero
 | ||
|  | #endif // USARTC0_CTRLD  
 | ||
|  | #ifdef USARTD0_CTRLD
 | ||
|  |   USARTD0_CTRLD = 0;  // E5 has this register, must assign to zero
 | ||
|  | #endif // USARTC0_CTRLD  
 | ||
|  | 
 | ||
|  |   // other serial ports found on A series
 | ||
|  | #ifdef USARTDD1_CTRLA
 | ||
|  |   USARTD1_CTRLA = 0; // disables interrupts
 | ||
|  |   USARTD1_CTRLB = 0; // disables interrupts
 | ||
|  | #endif // USARTD1_CTRLA
 | ||
|  | #ifdef USARTDC1_CTRLA
 | ||
|  |   USARTC1_CTRLA = 0; // disables interrupts
 | ||
|  |   USARTC1_CTRLB = 0; // disables interrupts
 | ||
|  | #endif // USARTD1_CTRLA
 | ||
|  | #ifdef USARTDE0_CTRLA
 | ||
|  |   USARTE0_CTRLA = 0; // disables interrupts
 | ||
|  |   USARTE0_CTRLB = 0; // disables interrupts
 | ||
|  | #endif // USARTD1_CTRLA
 | ||
|  | #ifdef USARTDE1_CTRLA
 | ||
|  |   USARTE1_CTRLA = 0; // disables interrupts
 | ||
|  |   USARTE1_CTRLB = 0; // disables interrupts
 | ||
|  | #endif // USARTD1_CTRLA
 | ||
|  | #ifdef USARTDF0_CTRLA
 | ||
|  |   USARTF0_CTRLA = 0; // disables interrupts
 | ||
|  |   USARTF0_CTRLB = 0; // disables interrupts
 | ||
|  | #endif // USARTD1_CTRLA
 | ||
|  | #ifdef USARTDF1_CTRLA
 | ||
|  |   USARTF1_CTRLA = 0; // disables interrupts
 | ||
|  |   USARTF1_CTRLB = 0; // disables interrupts
 | ||
|  | #endif // USARTD1_CTRLA
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  |   //--------------------------------------------------------------
 | ||
|  |   // all pins on all ports are inputs except for the LEDs on PR0,1
 | ||
|  |   //--------------------------------------------------------------
 | ||
|  | 
 | ||
|  |   PORTC_DIR = 0; // all 'port C' pins are now inputs
 | ||
|  |   PORTD_DIR = 0; // all 'port D' pins are now inputs
 | ||
|  | #ifdef PORTE_DIR
 | ||
|  |   PORTE_DIR = 0; // all 'port E' pins are now inputs
 | ||
|  | #endif // PORTE_DIR
 | ||
|  | 
 | ||
|  | #ifdef PORTF_DIR
 | ||
|  |   PORTF_DIR = 0; | ||
|  | #endif // PORTF_DIR
 | ||
|  | 
 | ||
|  | #ifdef PORTF_DIR
 | ||
|  |   PORTF_DIR = 0; | ||
|  | #endif // PORTF_DIR
 | ||
|  | 
 | ||
|  | #ifdef PORTG_DIR
 | ||
|  |   PORTG_DIR = 0; | ||
|  | #endif // PORTF_DIR
 | ||
|  | 
 | ||
|  | #ifdef PORTH_DIR
 | ||
|  |   PORTH_DIR = 0; | ||
|  | #endif // PORTF_DIR
 | ||
|  | 
 | ||
|  | // TODO:  external ram support for A series?
 | ||
|  | 
 | ||
|  | #ifdef PORTJ_DIR
 | ||
|  |   PORTJ_DIR = 0; | ||
|  | #endif // PORTF_DIR
 | ||
|  | 
 | ||
|  | #ifdef PORTK_DIR
 | ||
|  |   PORTK_DIR = 0; | ||
|  | #endif // PORTF_DIR
 | ||
|  | 
 | ||
|  | #ifdef PORTQ_DIR
 | ||
|  |   PORTQ_DIR = 0; | ||
|  | #endif // PORTF_DIR
 | ||
|  | 
 | ||
|  | // port R - outputs on pin 1 if LED_BUILTIN defined as 'PR1'
 | ||
|  | 
 | ||
|  |   PORTR_OUT = 0; // turn them off
 | ||
|  | #ifdef LED_BUILTIN
 | ||
|  | #if LED_BUILTIN == PR1
 | ||
|  |   PORTR_DIR = 2; // define as output
 | ||
|  | #else
 | ||
|  |   PORTR_DIR = 0; | ||
|  | #endif // LED_BUILTIN == PR1
 | ||
|  | #else
 | ||
|  |   PORTR_DIR = 0; | ||
|  | #endif // LED_BUILTIN not defined
 | ||
|  | 
 | ||
|  |   // Added code to pre-set input pins also - note PIN0CTRL through PIN7CTRL are like an array
 | ||
|  |   // also, 'PORT_ISC_BOTHEDGES_gc | PORT_OPC_TOTEM_gc' evaluates to '0' and is the normal default
 | ||
|  |   memset((void *)&(PORTC.PIN0CTRL), PORT_ISC_BOTHEDGES_gc | PORT_OPC_TOTEM_gc, 8); | ||
|  |   memset((void *)&(PORTD.PIN0CTRL), PORT_ISC_BOTHEDGES_gc | PORT_OPC_TOTEM_gc, 8); | ||
|  | 
 | ||
|  | #ifdef PORTE 
 | ||
|  | #if NUM_DIGITAL_PINS > 22 /* meaning there is a PORT E available and it has 8 pins */
 | ||
|  |   memset((void *)&(PORTE.PIN0CTRL), PORT_ISC_BOTHEDGES_gc | PORT_OPC_TOTEM_gc, 8); | ||
|  | #else // NUM_DIGITAL_PINS <= 22
 | ||
|  |   memset((void *)&(PORTE.PIN0CTRL), PORT_ISC_BOTHEDGES_gc | PORT_OPC_TOTEM_gc, 4); | ||
|  | #endif // NUM_DIGITAL_PINS > 22
 | ||
|  | #endif // PORTE defined
 | ||
|  | 
 | ||
|  | #ifdef PORTF_DIR
 | ||
|  |   memset((void *)&(PORTF.PIN0CTRL), PORT_ISC_BOTHEDGES_gc | PORT_OPC_TOTEM_gc, 8); | ||
|  | #endif // PORTF_DIR
 | ||
|  | 
 | ||
|  | #ifdef PORTG_DIR
 | ||
|  |   memset((void *)&(PORTG.PIN0CTRL), PORT_ISC_BOTHEDGES_gc | PORT_OPC_TOTEM_gc, 8); | ||
|  | #endif // PORTG_DIR
 | ||
|  | 
 | ||
|  | #ifdef PORTH_DIR
 | ||
|  |   memset((void *)&(PORTH.PIN0CTRL), PORT_ISC_BOTHEDGES_gc | PORT_OPC_TOTEM_gc, 8); | ||
|  | #endif // PORTH_DIR
 | ||
|  | 
 | ||
|  | // TODO:  external ram support for A series?
 | ||
|  | 
 | ||
|  | #ifdef PORTJ_DIR
 | ||
|  |   memset((void *)&(PORTJ.PIN0CTRL), PORT_ISC_BOTHEDGES_gc | PORT_OPC_TOTEM_gc, 8); | ||
|  | #endif // PORTJ_DIR
 | ||
|  | 
 | ||
|  | #ifdef PORTK_DIR
 | ||
|  |   memset((void *)&(PORTK.PIN0CTRL), PORT_ISC_BOTHEDGES_gc | PORT_OPC_TOTEM_gc, 8); | ||
|  | #endif // PORTK_DIR
 | ||
|  | 
 | ||
|  | #ifdef PORTQ_DIR /* PORTQ only has 4 pins */
 | ||
|  |   memset((void *)&(PORTQ.PIN0CTRL), PORT_ISC_BOTHEDGES_gc | PORT_OPC_TOTEM_gc, 4); // always 4?
 | ||
|  | #endif // PORTQ_DIR
 | ||
|  | 
 | ||
|  |   // PORT R (which is typically an output on both pins)
 | ||
|  |   PORTR.PIN0CTRL = PORT_ISC_BOTHEDGES_gc | PORT_OPC_TOTEM_gc; | ||
|  |   PORTR.PIN1CTRL = PORT_ISC_BOTHEDGES_gc | PORT_OPC_TOTEM_gc; | ||
|  | 
 | ||
|  | 
 | ||
|  |   // ---------------------------------------------------
 | ||
|  |   // ANALOG INPUT PINS - 'INPUT_DISABLED' (recommended)
 | ||
|  |   // ---------------------------------------------------
 | ||
|  | 
 | ||
|  |   PORTA_DIR = 0; // direction bits - set all of them as input
 | ||
|  | #if defined(PORTB_DIR)// NUM_ANALOG_PINS > 8 /* meaning there is a PORT B */
 | ||
|  |   PORTB_DIR = 0; | ||
|  | #endif // NUM_ANALOG_PINS > 8
 | ||
|  | 
 | ||
|  |   // all analog pins set up for 'INPUT_DISABLED' which is recommended for analog read
 | ||
|  |   memset((void *)&(PORTA.PIN0CTRL), PORT_ISC_INPUT_DISABLE_gc | PORT_OPC_TOTEM_gc, 8); | ||
|  | #ifdef PORTB
 | ||
|  | #if NUM_ANALOG_INPUTS > 12
 | ||
|  |   memset((void *)&(PORTB.PIN0CTRL), PORT_ISC_INPUT_DISABLE_gc | PORT_OPC_TOTEM_gc, 8); | ||
|  | #elif NUM_ANALOG_INPUTS > 8
 | ||
|  |   memset((void *)&(PORTB.PIN0CTRL), PORT_ISC_INPUT_DISABLE_gc | PORT_OPC_TOTEM_gc, 4); | ||
|  | #endif // NUM_ANALOG_INPUTS > 8, 12
 | ||
|  | #endif // PORTB
 | ||
|  | 
 | ||
|  | 
 | ||
|  |   // TODO:  handling PORTC as analog input for 'E' series?
 | ||
|  | 
 | ||
|  |   // --------------------
 | ||
|  |   // INTERRUPT CONTROLLER
 | ||
|  |   // --------------------
 | ||
|  | 
 | ||
|  |   // FINALLY, set up the interrupt controller for priority-based interrupts
 | ||
|  |   // _AND_ enable them.  Important.  See 10.8.3 in D manual.
 | ||
|  |   //
 | ||
|  |   // This also makes sure the IVT is at the bottom of NVRAM, not the boot section
 | ||
|  |   // It's very important to make sure the IVT is pointed at 00:0000 and not someplace else
 | ||
|  |   // *BEFORE* I enable interrupts.
 | ||
|  | 
 | ||
|  |   *((volatile uint8_t *)&(CCP)) = CCP_IOREG_gc; // 0xd8 - see D manual, sect 3.14.1 (protected I/O)
 | ||
|  |   *((volatile uint8_t *)&(PMIC_CTRL)) = PMIC_RREN_bm | PMIC_HILVLEN_bm | PMIC_MEDLVLEN_bm | PMIC_LOLVLEN_bm; | ||
|  | 
 | ||
|  | 
 | ||
|  |   adc_setup(); // set up the ADC (function exported from wiring_analog.c)
 | ||
|  | 
 | ||
|  |   // this needs to be called before setup() or some functions won't work there
 | ||
|  |   // but it's safe to enable interrupts so I shall simply do it!
 | ||
|  | 
 | ||
|  |   sei(); | ||
|  | } | ||
|  | 
 | ||
|  | 
 |