419 lines
11 KiB
Arduino
Raw Normal View History

2015-12-30 01:41:12 +01:00
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
//---------------------------
// AVR nrf chip bitbang SPI functions
//---------------------------
#include "iface_nrf24l01.h"
void nrf_spi_write(uint8_t command)
{
uint8_t n=8;
SCK_off;//SCK start low
SDI_off;
while(n--) {
if(command&0x80)
SDI_on;
else
SDI_off;
SCK_on;
NOP();
SCK_off;
command = command << 1;
}
SDI_on;
}
//VARIANT 2
uint8_t nrf_spi_read(void)
{
uint8_t result;
uint8_t i;
result=0;
for(i=0;i<8;i++) {
result<<=1;
if(SDO_1) ///
result|=0x01;
SCK_on;
NOP();
SCK_off;
NOP();
}
return result;
}
//--------------------------------------------
//---------------------------
// NRF24L01+ SPI Specific Functions
//---------------------------
uint8_t rf_setup;
void NRF24L01_Initialize()
{
rf_setup = 0x09;
}
void NRF24L01_WriteReg(uint8_t reg, uint8_t data)
{
NRF_CSN_off;
nrf_spi_write(W_REGISTER | (REGISTER_MASK & reg));
nrf_spi_write(data);
NRF_CSN_on;
}
void NRF24L01_WriteRegisterMulti(uint8_t reg, uint8_t * data, uint8_t length)
{
NRF_CSN_off;
nrf_spi_write(W_REGISTER | ( REGISTER_MASK & reg));
for (uint8_t i = 0; i < length; i++)
nrf_spi_write(data[i]);
NRF_CSN_on;
}
void NRF24L01_WritePayload(uint8_t * data, uint8_t length)
{
NRF_CSN_off;
nrf_spi_write(W_TX_PAYLOAD);
for (uint8_t i = 0; i < length; i++)
nrf_spi_write(data[i]);
NRF_CSN_on;
}
uint8_t NRF24L01_ReadReg(uint8_t reg)
{
NRF_CSN_off;
nrf_spi_write(R_REGISTER | (REGISTER_MASK & reg));
uint8_t data = nrf_spi_read();
NRF_CSN_on;
return data;
}
void NRF24L01_ReadRegisterMulti(uint8_t reg, uint8_t * data, uint8_t length)
{
NRF_CSN_off;
nrf_spi_write(R_REGISTER | (REGISTER_MASK & reg));
for(uint8_t i = 0; i < length; i++)
data[i] = nrf_spi_read();
NRF_CSN_on;
}
void NRF24L01_ReadPayload(uint8_t * data, uint8_t length)
{
NRF_CSN_off;
nrf_spi_write(R_RX_PAYLOAD);
for(uint8_t i = 0; i < length; i++)
data[i] = nrf_spi_read();
NRF_CSN_on;
}
void NRF24L01_Strobe(uint8_t state)
{
NRF_CSN_off;
nrf_spi_write(state);
NRF_CSN_on;
}
void NRF24L01_FlushTx()
{
NRF24L01_Strobe(FLUSH_TX);
}
void NRF24L01_FlushRx()
{
NRF24L01_Strobe(FLUSH_RX);
}
void NRF24L01_Activate(uint8_t code)
{
NRF_CSN_off;
nrf_spi_write(ACTIVATE);
nrf_spi_write(code);
NRF_CSN_on;
}
void NRF24L01_SetBitrate(uint8_t bitrate)
{
// Note that bitrate 250kbps (and bit RF_DR_LOW) is valid only
// for nRF24L01+. There is no way to programmatically tell it from
// older version, nRF24L01, but the older is practically phased out
// by Nordic, so we assume that we deal with with modern version.
// Bit 0 goes to RF_DR_HIGH, bit 1 - to RF_DR_LOW
rf_setup = (rf_setup & 0xD7) | ((bitrate & 0x02) << 4) | ((bitrate & 0x01) << 3);
NRF24L01_WriteReg(NRF24L01_06_RF_SETUP, rf_setup);
}
void NRF24L01_SetPower_Value(uint8_t power)
{
uint8_t nrf_power = 0;
switch(power) {
case TXPOWER_100uW: nrf_power = 0; break;
case TXPOWER_300uW: nrf_power = 0; break;
case TXPOWER_1mW: nrf_power = 0; break;
case TXPOWER_3mW: nrf_power = 1; break;
case TXPOWER_10mW: nrf_power = 1; break;
case TXPOWER_30mW: nrf_power = 2; break;
case TXPOWER_100mW: nrf_power = 3; break;
case TXPOWER_150mW: nrf_power = 3; break;
default: nrf_power = 0; break;
};
// Power is in range 0..3 for nRF24L01
rf_setup = (rf_setup & 0xF9) | ((nrf_power & 0x03) << 1);
NRF24L01_WriteReg(NRF24L01_06_RF_SETUP, rf_setup);
}
void NRF24L01_SetPower()
{
uint8_t power=NRF_BIND_POWER;
if(IS_BIND_DONE_on)
power=IS_POWER_FLAG_on?NRF_HIGH_POWER:NRF_LOW_POWER;
else
if(IS_RANGE_FLAG_on)
power=NRF_POWER_0;
rf_setup = (rf_setup & 0xF9) | (power << 1);
NRF24L01_WriteReg(NRF24L01_06_RF_SETUP, rf_setup);
}
void NRF24L01_SetTxRxMode(enum TXRX_State mode)
{
if(mode == TX_EN) {
NRF_CSN_off;
NRF24L01_WriteReg(NRF24L01_07_STATUS, (1 << NRF24L01_07_RX_DR) //reset the flag(s)
| (1 << NRF24L01_07_TX_DS)
| (1 << NRF24L01_07_MAX_RT));
NRF24L01_WriteReg(NRF24L01_00_CONFIG, (1 << NRF24L01_00_EN_CRC) // switch to TX mode
| (1 << NRF24L01_00_CRCO)
| (1 << NRF24L01_00_PWR_UP));
_delay_us(130);
NRF_CSN_on;
}
else
if (mode == RX_EN) {
NRF_CSN_off;
NRF24L01_WriteReg(NRF24L01_07_STATUS, 0x70); // reset the flag(s)
NRF24L01_WriteReg(NRF24L01_00_CONFIG, 0x0F); // switch to RX mode
NRF24L01_WriteReg(NRF24L01_07_STATUS, (1 << NRF24L01_07_RX_DR) //reset the flag(s)
| (1 << NRF24L01_07_TX_DS)
| (1 << NRF24L01_07_MAX_RT));
NRF24L01_WriteReg(NRF24L01_00_CONFIG, (1 << NRF24L01_00_EN_CRC) // switch to RX mode
| (1 << NRF24L01_00_CRCO)
| (1 << NRF24L01_00_PWR_UP)
| (1 << NRF24L01_00_PRIM_RX));
_delay_us(130);
NRF_CSN_on;
}
else
{
NRF24L01_WriteReg(NRF24L01_00_CONFIG, (1 << NRF24L01_00_EN_CRC)); //PowerDown
NRF_CSN_off;
}
}
void NRF24L01_Reset()
{
//** not in deviation but needed to hot switch between models
NRF24L01_Activate(0x73); // Activate feature register
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, 0x00); // Disable dynamic payload length on all pipes
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, 0x00); // Set feature bits off
NRF24L01_Activate(0x73);
//**
NRF24L01_FlushTx();
NRF24L01_FlushRx();
NRF24L01_Strobe(0xff); // NOP
NRF24L01_ReadReg(0x07);
NRF24L01_SetTxRxMode(TXRX_OFF);
_delay_us(100);
}
uint8_t NRF24L01_packet_ack()
{
switch (NRF24L01_ReadReg(NRF24L01_07_STATUS) & (BV(NRF24L01_07_TX_DS) | BV(NRF24L01_07_MAX_RT))) {
case BV(NRF24L01_07_TX_DS):
return PKT_ACKED;
case BV(NRF24L01_07_MAX_RT):
return PKT_TIMEOUT;
}
return PKT_PENDING;
}
//---------------------------
/*
void NRF24L01_spi_test(void)
{
unsigned long errors = 0;
unsigned long test = 0;
unsigned long time;
uint8_t test_data_r[5];
uint8_t test_data_w[5] = {0x01,0x02,0x03,0x04,0x05};
time = micros();
Serial.println("Testing SPI");
for(test=0; test < 2775600 ; test++) // should run for X mins.
{
NRF24L01_WriteRegisterMulti(NRF24L01_0B_RX_ADDR_P1, test_data_w, 5);
NRF24L01_ReadRegisterMulti(NRF24L01_0B_RX_ADDR_P1, test_data_r, 5);
if(0 != memcmp(test_data_r, test_data_w, sizeof(test_data_r))) errors++;
test_data_w[0] ++;
test_data_w[1] ++;
test_data_w[2] ++;
test_data_w[3] ++;
test_data_w[4] ++;
}
Serial.print("test "); Serial.print(test, HEX); Serial.print("\n");
Serial.print("errors "); Serial.print(errors, HEX); Serial.print("\n");
Serial.print("time "); Serial.print(micros()- time, DEC); Serial.print("\n");
// 124211960
// 90899216
}
*/
//---------------------------
///////////////
// XN297 emulation layer
uint8_t xn297_addr_len;
uint8_t xn297_tx_addr[5];
uint8_t xn297_rx_addr[5];
uint8_t xn297_crc = 0;
static const uint8_t xn297_scramble[] = {
0xe3, 0xb1, 0x4b, 0xea, 0x85, 0xbc, 0xe5, 0x66,
0x0d, 0xae, 0x8c, 0x88, 0x12, 0x69, 0xee, 0x1f,
0xc7, 0x62, 0x97, 0xd5, 0x0b, 0x79, 0xca, 0xcc,
0x1b, 0x5d, 0x19, 0x10, 0x24, 0xd3, 0xdc, 0x3f,
0x8e, 0xc5, 0x2f};
static const uint16_t xn297_crc_xorout[] = {
0x0000, 0x3448, 0x9BA7, 0x8BBB, 0x85E1, 0x3E8C, // 1st entry is missing, probably never needed
0x451E, 0x18E6, 0x6B24, 0xE7AB, 0x3828, 0x8148, // it's used for 3-byte address w/ 0 byte payload only
0xD461, 0xF494, 0x2503, 0x691D, 0xFE8B, 0x9BA7,
0x8B17, 0x2920, 0x8B5F, 0x61B1, 0xD391, 0x7401,
0x2138, 0x129F, 0xB3A0, 0x2988};
uint8_t bit_reverse(uint8_t b_in)
{
uint8_t b_out = 0;
for (uint8_t i = 0; i < 8; ++i)
{
b_out = (b_out << 1) | (b_in & 1);
b_in >>= 1;
}
return b_out;
}
uint16_t crc16_update(uint16_t crc, uint8_t a)
{
static const uint16_t polynomial = 0x1021;
crc ^= a << 8;
for (uint8_t i = 0; i < 8; ++i)
if (crc & 0x8000)
crc = (crc << 1) ^ polynomial;
else
crc = crc << 1;
return crc;
}
void XN297_SetTXAddr(const uint8_t* addr, uint8_t len)
{
if (len > 5) len = 5;
if (len < 3) len = 3;
uint8_t buf[] = { 0x55, 0x0F, 0x71, 0x0C, 0x00 }; // bytes for XN297 preamble 0xC710F55 (28 bit)
xn297_addr_len = len;
if (xn297_addr_len < 4)
for (uint8_t i = 0; i < 4; ++i)
buf[i] = buf[i+1];
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, len-2);
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, buf, 5);
// Receive address is complicated. We need to use scrambled actual address as a receive address
// but the TX code now assumes fixed 4-byte transmit address for preamble. We need to adjust it
// first. Also, if the scrambled address begins with 1 nRF24 will look for preamble byte 0xAA
// instead of 0x55 to ensure enough 0-1 transitions to tune the receiver. Still need to experiment
// with receiving signals.
memcpy(xn297_tx_addr, addr, len);
}
void XN297_SetRXAddr(const uint8_t* addr, uint8_t len)
{
if (len > 5) len = 5;
if (len < 3) len = 3;
uint8_t buf[] = { 0, 0, 0, 0, 0 };
memcpy(buf, addr, len);
memcpy(xn297_rx_addr, addr, len);
for (uint8_t i = 0; i < xn297_addr_len; ++i)
buf[i] = xn297_rx_addr[i] ^ xn297_scramble[xn297_addr_len-i-1];
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, len-2);
NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, buf, 5);
}
void XN297_Configure(uint8_t flags)
{
xn297_crc = !!(flags & BV(NRF24L01_00_EN_CRC));
flags &= ~(BV(NRF24L01_00_EN_CRC) | BV(NRF24L01_00_CRCO));
NRF24L01_WriteReg(NRF24L01_00_CONFIG, flags);
}
void XN297_WritePayload(uint8_t* msg, uint8_t len)
{
uint8_t buf[32];
uint8_t last = 0;
if (xn297_addr_len < 4)
{
// If address length (which is defined by receive address length)
// is less than 4 the TX address can't fit the preamble, so the last
// byte goes here
buf[last++] = 0x55;
}
for (uint8_t i = 0; i < xn297_addr_len; ++i)
buf[last++] = xn297_tx_addr[xn297_addr_len-i-1] ^ xn297_scramble[i];
for (uint8_t i = 0; i < len; ++i) {
// bit-reverse bytes in packet
uint8_t b_out = bit_reverse(msg[i]);
buf[last++] = b_out ^ xn297_scramble[xn297_addr_len+i];
}
if (xn297_crc)
{
uint8_t offset = xn297_addr_len < 4 ? 1 : 0;
uint16_t crc = 0xb5d2;
for (uint8_t i = offset; i < last; ++i)
crc = crc16_update(crc, buf[i]);
crc ^= xn297_crc_xorout[xn297_addr_len - 3 + len];
buf[last++] = crc >> 8;
buf[last++] = crc & 0xff;
}
NRF24L01_WritePayload(buf, last);
}
void XN297_ReadPayload(uint8_t* msg, uint8_t len)
{
NRF24L01_ReadPayload(msg, len);
for(uint8_t i=0; i<len; i++)
msg[i] = bit_reverse(msg[i]) ^ bit_reverse(xn297_scramble[i+xn297_addr_len]);
}
// End of XN297 emulation