877 lines
17 KiB
Arduino
Raw Normal View History

2016-09-21 14:28:37 +02:00
/*
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Multiprotocol is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Multiprotocol. If not, see <http://www.gnu.org/licenses/>.
*/
2016-09-01 17:41:24 +02:00
//**************************
// Telemetry serial code *
//**************************
#if defined TELEMETRY
#if defined SPORT_TELEMETRY
#define SPORT_TIME 12000
#define FRSKY_SPORT_PACKET_SIZE 8
uint32_t last = 0;
uint8_t sport_counter=0;
uint8_t RxBt = 0;
uint8_t rssi;
uint8_t sport = 0;
#endif
#if defined HUB_TELEMETRY
#define USER_MAX_BYTES 6
uint8_t prev_index;
#endif
#define START_STOP 0x7e
#define BYTESTUFF 0x7d
#define STUFF_MASK 0x20
#define MAX_PKTX 10
uint8_t pktx[MAX_PKTX];
2016-08-15 11:52:43 +02:00
uint8_t pktx1[MAX_PKTX];
uint8_t indx;
uint8_t frame[18];
2016-08-15 11:52:43 +02:00
#ifdef BASH_SERIAL
// For bit-bashed serial output
2016-09-01 17:41:24 +02:00
struct t_serial_bash
{
uint8_t head ;
uint8_t tail ;
uint8_t data[64] ;
uint8_t busy ;
uint8_t speed ;
} SerialControl ;
2016-08-15 11:52:43 +02:00
#endif
#if defined DSM_TELEMETRY
2016-09-01 14:00:42 +02:00
void DSM_frame()
{
Serial_write(0xAA); // Telemetry packet
for (uint8_t i = 0; i < 17; i++) // RSSI value followed by 16 bytes of telemetry data
Serial_write(pkt[i]);
}
#endif
#if defined AFHDS2A_TELEMETRY
void AFHDSA_short_frame()
{
Serial_write(0xAA); // Telemetry packet
for (uint8_t i = 0; i < 29; i++) // RSSI value followed by 4*7 bytes of telemetry data
Serial_write(pkt[i]);
}
#endif
void frskySendStuffed()
{
Serial_write(START_STOP);
for (uint8_t i = 0; i < 9; i++)
{
if ((frame[i] == START_STOP) || (frame[i] == BYTESTUFF))
{
Serial_write(BYTESTUFF);
frame[i] ^= STUFF_MASK;
2015-12-30 01:41:12 +01:00
}
Serial_write(frame[i]);
2015-12-30 01:41:12 +01:00
}
Serial_write(START_STOP);
}
void compute_RSSIdbm()
{
RSSI_dBm = (((uint16_t)(pktt[len-2])*18)>>4);
if(pktt[len-2] >=128)
RSSI_dBm -= 164;
else
RSSI_dBm += 130;
}
void frsky_check_telemetry(uint8_t *pkt,uint8_t len)
{
2016-07-27 20:55:53 +02:00
if(pkt[1] == rx_tx_addr[3] && pkt[2] == rx_tx_addr[2] && len ==(pkt[0] + 3))
{
for (uint8_t i=3;i<len;i++)
pktt[i]=pkt[i];
telemetry_link=1;
if(pktt[6])
telemetry_counter=(telemetry_counter+1)%32;
//
2016-09-21 14:45:17 +02:00
#if defined SPORT_TELEMETRY && defined FRSKYX_CC2500_INO
2016-10-24 23:14:42 +02:00
telemetry_lost=0;
if (protocol==MODE_FRSKYX)
{
if ((pktt[5] >> 4 & 0x0f) == 0x08)
{
seq_last_sent = 8;
seq_last_rcvd = 0;
pass=0;
}
else
{
if ((pktt[5] >> 4 & 0x03) == (seq_last_rcvd + 1) % 4)
seq_last_rcvd = (seq_last_rcvd + 1) % 4;
else
pass=0;//reset if sequence wrong
}
}
#endif
}
}
void frsky_link_frame()
{
frame[0] = 0xFE;
if (protocol==MODE_FRSKYD)
{
compute_RSSIdbm();
frame[1] = pktt[3];
frame[2] = pktt[4];
frame[3] = pktt[5];
frame[4] = (uint8_t)RSSI_dBm;
}
else
if (protocol==MODE_HUBSAN||protocol==MODE_AFHDS2A)
{
frame[1] = v_lipo*2; //v_lipo; common 0x2A=42/10=4.2V
frame[2] = frame[1];
2016-10-24 23:14:42 +02:00
frame[3] = protocol==MODE_HUBSAN?0x00:(uint8_t)RSSI_dBm;
frame[4] = TX_RSSI;
}
frame[5] = frame[6] = frame[7] = frame[8] = 0;
frskySendStuffed();
}
#if defined HUB_TELEMETRY
void frsky_user_frame()
{
uint8_t indexx = 0, j=8, i;
//uint8_t c=0, n=0;
if(pktt[6]>0 && pktt[6]<=10)
{//only valid hub frames
frame[0] = 0xFD;
frame[2] = pktt[7];
switch(pass)
{
case 0:
indexx=pktt[6];
for(i=0;i<indexx;i++)
{
2016-08-15 11:52:43 +02:00
// if(pktt[j]==0x5E)
// {
// if(c++)
// {
// c=0;
// n++;
// j++;
// }
// }
pktx[i]=pktt[j++];
}
2016-08-15 11:52:43 +02:00
// indexx = indexx-n;
pass=1;
case 1:
indx=indexx;
prev_index = indexx;
if(indx<USER_MAX_BYTES)
{
for(i=0;i<indx;i++)
frame[i+3]=pktx[i];
pktt[6]=0;
pass=0;
}
else
{
indx = USER_MAX_BYTES;
for(i=0;i<indx;i++)
frame[i+3]=pktx[i];
pass=2;
}
break;
case 2:
indx = prev_index - indx;
prev_index=0;
if(indx<=(MAX_PKTX-USER_MAX_BYTES)) //10-6=4
for(i=0;i<indx;i++)
frame[i+3]=pktx[USER_MAX_BYTES+i];
pass=0;
pktt[6]=0;
break;
default:
break;
}
if(!indx)
return;
frame[1] = indx;
frskySendStuffed();
}
else
pass=0;
}
#endif
/*
HuB RX packets.
pkt[6]|(counter++)|00 01 02 03 04 05 06 07 08 09
%32
01 08 5E 28 12 00 5E 5E 3A 06 00 5E
0A 09 28 12 00 5E 5E 3A 06 00 5E 5E
09 0A 3B 09 00 5E 5E 06 36 7D 5E 5E
03 0B 5E 28 11 00 5E 5E 06 06 6C 5E
0A 0C 00 5E 5E 3A 06 00 5E 5E 3B 09
07 0D 00 5E 5E 06 06 6C 5E 16 72 5E
05 0E 5E 28 11 00 5E 5E 3A 06 00 5E
0A 0F 5E 3A 06 00 5E 5E 3B 09 00 5E
05 10 5E 06 16 72 5E 5E 3A 06 00 5E
*/
#if defined SPORT_TELEMETRY
/* SPORT details serial
100K 8E2 normal-multiprotocol
-every 12ms-or multiple of 12; %36
1 2 3 4 5 6 7 8 9 CRC DESCR
7E 98 10 05 F1 20 23 0F 00 A6 SWR_ID
7E 98 10 01 F1 33 00 00 00 C9 RSSI_ID
7E 98 10 04 F1 58 00 00 00 A1 BATT_ID
7E BA 10 03 F1 E2 00 00 00 18 ADC2_ID
7E BA 10 03 F1 E2 00 00 00 18 ADC2_ID
7E BA 10 03 F1 E2 00 00 00 18 ADC2_ID
7E BA 10 03 F1 E2 00 00 00 18 ADC2_ID
7E BA 10 03 F1 E2 00 00 00 18 ADC2_ID
7E BA 10 03 F1 E2 00 00 00 18 ADC2_ID
Telemetry frames(RF) SPORT info
15 bytes payload
SPORT frame valid 6+3 bytes
[00] PKLEN 0E 0E 0E 0E
[01] TXID1 DD DD DD DD
[02] TXID2 6D 6D 6D 6D
[03] CONST 02 02 02 02
[04] RS/RB 2C D0 2C CE //D0;CE=2*RSSI;....2C = RX battery voltage(5V from Bec)
[05] HD-SK 03 10 21 32 //TX/RX telemetry hand-shake bytes
[06] NO.BT 00 00 06 03 //No.of valid SPORT frame bytes in the frame
[07] STRM1 00 00 7E 00
[08] STRM2 00 00 1A 00
[09] STRM3 00 00 10 00
[10] STRM4 03 03 03 03
[11] STRM5 F1 F1 F1 F1
[12] STRM6 D1 D1 D0 D0
[13] CHKSUM1 --|2 CRC bytes sent by RX (calculated on RX side crc16/table)
[14] CHKSUM2 --|
+2 appended bytes automatically RSSI and LQI/CRC bytes(len=0x0E+3);
0x06 0x06 0x06 0x06 0x06
0x7E 0x00 0x03 0x7E 0x00
0x1A 0x00 0xF1 0x1A 0x00
0x10 0x00 0xD7 0x10 0x00
0x03 0x7E 0x00 0x03 0x7E
0xF1 0x1A 0x00 0xF1 0x1A
0xD7 0x10 0x00 0xD7 0x10
0xE1 0x1C 0xD0 0xEE 0x33
0x34 0x0A 0xC3 0x56 0xF3
*/
void sportSend(uint8_t *p)
{
uint16_t crc_s = 0;
Serial_write(START_STOP);//+9
2016-08-15 11:52:43 +02:00
Serial_write(p[0]) ;
for (uint8_t i = 1; i < 9; i++)
{
if (i == 8)
p[i] = 0xff - crc_s;
if ((p[i] == START_STOP) || (p[i] == BYTESTUFF))
{
Serial_write(BYTESTUFF);//stuff again
Serial_write(STUFF_MASK ^ p[i]);
}
else
Serial_write(p[i]);
if (i>0)
{
crc_s += p[i]; //0-1FF
crc_s += crc_s >> 8; //0-100
crc_s &= 0x00ff;
}
}
}
void sportIdle()
{
Serial_write(START_STOP);
}
void sportSendFrame()
{
uint8_t i;
sport_counter = (sport_counter + 1) %36;
if(telemetry_lost)
{
sportIdle();
return;
}
2016-08-15 11:52:43 +02:00
if(sport_counter<6)
{
frame[0] = 0x98;
frame[1] = 0x10;
for (i=5;i<8;i++)
frame[i]=0;
}
switch (sport_counter)
{
case 0:
frame[2] = 0x05;
frame[3] = 0xf1;
2016-08-15 11:52:43 +02:00
frame[4] = 0x02 ;//dummy values if swr 20230f00
frame[5] = 0x23;
frame[6] = 0x0F;
break;
2016-08-15 11:52:43 +02:00
case 2: // RSSI
frame[2] = 0x01;
frame[3] = 0xf1;
frame[4] = rssi;
break;
2016-08-15 11:52:43 +02:00
case 4: //BATT
frame[2] = 0x04;
frame[3] = 0xf1;
frame[4] = RxBt;//a1;
break;
default:
if(sport)
{
for (i=0;i<FRSKY_SPORT_PACKET_SIZE;i++)
2016-08-15 11:52:43 +02:00
frame[i]=pktx1[i];
sport=0;
break;
}
else
{
sportIdle();
return;
}
}
sportSend(frame);
}
void proces_sport_data(uint8_t data)
{
switch (pass)
{
case 0:
if (data == START_STOP)
{//waiting for 0x7e
indx = 0;
pass = 1;
}
break;
case 1:
2016-08-15 11:52:43 +02:00
if (data == START_STOP) // Happens if missed packet
{//waiting for 0x7e
indx = 0;
2016-08-15 11:52:43 +02:00
pass = 1;
break;
}
if(data == BYTESTUFF)//if they are stuffed
pass=2;
else
if (indx < MAX_PKTX)
pktx[indx++] = data;
break;
case 2:
if (indx < MAX_PKTX)
pktx[indx++] = data ^ STUFF_MASK; //unstuff bytes
pass=1;
break;
} // end switch
if (indx >= FRSKY_SPORT_PACKET_SIZE)
{//8 bytes no crc
2016-08-15 11:52:43 +02:00
if ( sport )
{
// overrun!
}
else
{
uint8_t i ;
for ( i = 0 ; i < FRSKY_SPORT_PACKET_SIZE ; i += 1 )
{
pktx1[i] = pktx[i] ; // Double buffer
}
sport = 1;//ok to send
}
pass = 0;//reset
}
}
#endif
void TelemetryUpdate()
2016-08-15 11:52:43 +02:00
{
// check for space in tx buffer
#ifdef BASH_SERIAL
uint8_t h ;
uint8_t t ;
h = SerialControl.head ;
t = SerialControl.tail ;
if ( h >= t )
{
t += 64 - h ;
}
else
{
t -= h ;
}
if ( t < 32 )
{
return ;
}
2016-08-15 11:52:43 +02:00
#else
uint8_t h ;
uint8_t t ;
h = tx_head ;
t = tx_tail ;
if ( h >= t )
{
t += TXBUFFER_SIZE - h ;
}
else
{
t -= h ;
}
if ( t < 16 )
{
return ;
}
#endif
2016-08-15 11:52:43 +02:00
#if defined SPORT_TELEMETRY
if (protocol==MODE_FRSKYX)
{ // FrSkyX
if(telemetry_link)
{
if(pktt[4] & 0x80)
rssi=pktt[4] & 0x7F ;
else
RxBt = (pktt[4]<<1) + 1 ;
if(pktt[6]<=6)
for (uint8_t i=0; i < pktt[6]; i++)
proces_sport_data(pktt[7+i]);
telemetry_link=0;
}
uint32_t now = micros();
if ((now - last) > SPORT_TIME)
{
sportSendFrame();
#ifdef STM32_BOARD
last=now;
#else
last += SPORT_TIME ;
#endif
}
}
#endif
#if defined DSM_TELEMETRY
if(telemetry_link && protocol == MODE_DSM )
{ // DSM
DSM_frame();
telemetry_link=0;
return;
}
#endif
#if defined AFHDS2A_TELEMETRY
if(telemetry_link == 2 && protocol == MODE_AFHDS2A)
{
AFHDSA_short_frame();
telemetry_link=0;
}
#endif
if(telemetry_link && protocol != MODE_FRSKYX )
2016-10-22 12:06:44 +02:00
{ // FrSkyD + Hubsan + AFHDS2A
frsky_link_frame();
telemetry_link=0;
return;
}
#if defined HUB_TELEMETRY
if(!telemetry_link && protocol == MODE_FRSKYD)
{ // FrSky
frsky_user_frame();
return;
}
#endif
}
2016-08-15 11:52:43 +02:00
/**************************/
/**************************/
/** Serial TX routines **/
/**************************/
/**************************/
#ifndef BASH_SERIAL
// Routines for normal serial output
void Serial_write(uint8_t data)
{
uint8_t nextHead ;
nextHead = tx_head + 1 ;
if ( nextHead >= TXBUFFER_SIZE )
nextHead = 0 ;
tx_buff[nextHead]=data;
tx_head = nextHead ;
tx_resume();
}
2016-08-15 11:52:43 +02:00
void initTXSerial( uint8_t speed)
{
#ifdef ENABLE_PPM
if(speed==SPEED_9600)
{ // 9600
#ifdef ORANGE_TX
USARTC0.BAUDCTRLA = 207 ;
USARTC0.BAUDCTRLB = 0 ;
USARTC0.CTRLB = 0x18 ;
USARTC0.CTRLA = (USARTC0.CTRLA & 0xCF) | 0x10 ;
USARTC0.CTRLC = 0x03 ;
#else
#ifdef STM32_BOARD
Serial2.begin(9600); //USART3
USART3_BASE->CR1 &= ~ USART_CR1_RE; //disable RX leave TX enabled
#else
UBRR0H = 0x00;
UBRR0L = 0x67;
UCSR0A = 0 ; // Clear X2 bit
//Set frame format to 8 data bits, none, 1 stop bit
UCSR0C = (1<<UCSZ01)|(1<<UCSZ00);
#endif
#endif
}
else if(speed==SPEED_57600)
{ // 57600
#ifdef ORANGE_TX
/*USARTC0.BAUDCTRLA = 207 ;
USARTC0.BAUDCTRLB = 0 ;
USARTC0.CTRLB = 0x18 ;
USARTC0.CTRLA = (USARTC0.CTRLA & 0xCF) | 0x10 ;
USARTC0.CTRLC = 0x03 ;*/
#else
#ifdef STM32_BOARD
Serial2.begin(57600); //USART3
USART3_BASE->CR1 &= ~ USART_CR1_RE; //disable RX leave TX enabled
#else
UBRR0H = 0x00;
UBRR0L = 0x22;
UCSR0A = 0x02 ; // Set X2 bit
//Set frame format to 8 data bits, none, 1 stop bit
UCSR0C = (1<<UCSZ01)|(1<<UCSZ00);
#endif
#endif
}
else if(speed==SPEED_125K)
{ // 125000
#ifdef ORANGE_TX
/*USARTC0.BAUDCTRLA = 207 ;
USARTC0.BAUDCTRLB = 0 ;
USARTC0.CTRLB = 0x18 ;
USARTC0.CTRLA = (USARTC0.CTRLA & 0xCF) | 0x10 ;
USARTC0.CTRLC = 0x03 ;*/
#else
#ifdef STM32_BOARD
Serial2.begin(125000); //USART3
USART3_BASE->CR1 &= ~ USART_CR1_RE; //disable RX leave TX enabled
#else
UBRR0H = 0x00;
UBRR0L = 0x07;
UCSR0A = 0x00 ; // Clear X2 bit
//Set frame format to 8 data bits, none, 1 stop bit
UCSR0C = (1<<UCSZ01)|(1<<UCSZ00);
#endif
#endif
}
#endif
#ifndef ORANGE_TX
#ifndef STM32_BOARD
UCSR0B |= (1<<TXEN0);//tx enable
#endif
#endif
}
//Serial TX
#ifdef ORANGE_TX
ISR(USARTC0_DRE_vect)
#else
#ifdef STM32_BOARD
void __irq_usart3()
#else
ISR(USART_UDRE_vect)
#endif
#endif
{ // Transmit interrupt
#ifdef STM32_BOARD
if(USART3_BASE->SR & USART_SR_TXE)
{
#endif
if(tx_head!=tx_tail)
{
if(++tx_tail>=TXBUFFER_SIZE)//head
tx_tail=0;
#ifdef STM32_BOARD
USART3_BASE->DR=tx_buff[tx_tail];//clears TXE bit
#else
UDR0=tx_buff[tx_tail];
#endif
}
if (tx_tail == tx_head)
tx_pause(); // Check if all data is transmitted . if yes disable transmitter UDRE interrupt
#ifdef STM32_BOARD
}
#endif
2016-08-15 11:52:43 +02:00
}
#else //BASH_SERIAL
// Routines for bit-bashed serial output
// Speed is 0 for 100K and 1 for 9600
void initTXSerial( uint8_t speed)
{
TIMSK0 = 0 ; // Stop all timer 0 interrupts
2016-09-01 17:41:24 +02:00
#ifdef INVERT_SERIAL
2016-09-19 23:43:14 +02:00
SERIAL_TX_off;
2016-09-01 17:41:24 +02:00
#else
2016-09-19 23:43:14 +02:00
SERIAL_TX_on;
2016-09-01 17:41:24 +02:00
#endif
2016-08-15 11:52:43 +02:00
UCSR0B &= ~(1<<TXEN0) ;
SerialControl.speed = speed ;
if ( speed == SPEED_9600 )
{
OCR0A = 207 ; // 104uS period
TCCR0A = 3 ;
TCCR0B = 0x0A ; // Fast PMM, 2MHz
}
else // 100K
{
TCCR0A = 0 ;
TCCR0B = 2 ; // Clock/8 (0.5uS)
}
}
void Serial_write( uint8_t byte )
{
uint8_t temp ;
uint8_t temp1 ;
uint8_t byteLo ;
2016-09-19 23:43:14 +02:00
#ifdef INVERT_SERIAL
byte = ~byte ;
#endif
2016-08-15 11:52:43 +02:00
byteLo = byte ;
byteLo >>= 7 ; // Top bit
if ( SerialControl.speed == SPEED_100K )
{
2016-09-19 23:43:14 +02:00
#ifdef INVERT_SERIAL
byteLo |= 0x02 ; // Parity bit
#else
byteLo |= 0xFC ; // Stop bits
#endif
// calc parity
2016-08-15 11:52:43 +02:00
temp = byte ;
temp >>= 4 ;
temp = byte ^ temp ;
temp1 = temp ;
temp1 >>= 2 ;
temp = temp ^ temp1 ;
temp1 = temp ;
temp1 <<= 1 ;
temp ^= temp1 ;
temp &= 0x02 ;
2016-09-19 23:43:14 +02:00
#ifdef INVERT_SERIAL
byteLo ^= temp ;
#else
byteLo |= temp ;
#endif
2016-08-15 11:52:43 +02:00
}
else
{
byteLo |= 0xFE ; // Stop bit
}
byte <<= 1 ;
2016-09-19 23:43:14 +02:00
#ifdef INVERT_SERIAL
byte |= 1 ; // Start bit
#endif
uint8_t next = (SerialControl.head + 2) & 0x3f ;
2016-08-15 11:52:43 +02:00
if ( next != SerialControl.tail )
{
SerialControl.data[SerialControl.head] = byte ;
SerialControl.data[SerialControl.head+1] = byteLo ;
SerialControl.head = next ;
}
if(!IS_TX_PAUSE_on)
tx_resume();
}
void resumeBashSerial()
{
2016-08-15 11:52:43 +02:00
cli() ;
if ( SerialControl.busy == 0 )
{
sei() ;
// Start the transmission here
2016-09-19 23:43:14 +02:00
#ifdef INVERT_SERIAL
GPIOR2 = 0 ;
#else
GPIOR2 = 0x01 ;
#endif
2016-08-15 11:52:43 +02:00
if ( SerialControl.speed == SPEED_100K )
{
GPIOR1 = 1 ;
OCR0B = TCNT0 + 40 ;
OCR0A = OCR0B + 210 ;
TIFR0 = (1<<OCF0A) | (1<<OCF0B) ;
TIMSK0 |= (1<<OCIE0B) ;
SerialControl.busy = 1 ;
}
else
{
GPIOR1 = 1 ;
TIFR0 = (1<<TOV0) ;
TIMSK0 |= (1<<TOIE0) ;
SerialControl.busy = 1 ;
}
}
else
{
sei() ;
}
}
// Assume timer0 at 0.5uS clock
ISR(TIMER0_COMPA_vect)
{
uint8_t byte ;
byte = GPIOR0 ;
if ( byte & 0x01 )
2016-09-19 23:43:14 +02:00
SERIAL_TX_on;
2016-08-15 11:52:43 +02:00
else
2016-09-19 23:43:14 +02:00
SERIAL_TX_off;
2016-08-15 11:52:43 +02:00
byte /= 2 ; // Generates shorter code than byte >>= 1
GPIOR0 = byte ;
if ( --GPIOR1 == 0 )
{
TIMSK0 &= ~(1<<OCIE0A) ;
GPIOR1 = 3 ;
}
else
{
OCR0A += 20 ;
}
}
ISR(TIMER0_COMPB_vect)
{
uint8_t byte ;
byte = GPIOR2 ;
if ( byte & 0x01 )
2016-09-19 23:43:14 +02:00
SERIAL_TX_on;
2016-08-15 11:52:43 +02:00
else
2016-09-19 23:43:14 +02:00
SERIAL_TX_off;
2016-08-15 11:52:43 +02:00
byte /= 2 ; // Generates shorter code than byte >>= 1
GPIOR2 = byte ;
if ( --GPIOR1 == 0 )
{
if ( IS_TX_PAUSE_on )
2016-08-15 11:52:43 +02:00
{
SerialControl.busy = 0 ;
TIMSK0 &= ~(1<<OCIE0B) ;
2016-08-15 11:52:43 +02:00
}
else
{
// prepare next byte and allow for 2 stop bits
struct t_serial_bash *ptr = &SerialControl ;
if ( ptr->head != ptr->tail )
{
GPIOR0 = ptr->data[ptr->tail] ;
GPIOR2 = ptr->data[ptr->tail+1] ;
ptr->tail = ( ptr->tail + 2 ) & 0x3F ;
GPIOR1 = 8 ;
OCR0A = OCR0B + 40 ;
OCR0B = OCR0A + 8 * 20 ;
TIMSK0 |= (1<<OCIE0A) ;
}
else
{
SerialControl.busy = 0 ;
TIMSK0 &= ~(1<<OCIE0B) ;
}
2016-08-15 11:52:43 +02:00
}
}
else
{
OCR0B += 20 ;
}
}
ISR(TIMER0_OVF_vect)
{
uint8_t byte ;
if ( GPIOR1 > 2 )
{
byte = GPIOR0 ;
}
else
{
byte = GPIOR2 ;
}
if ( byte & 0x01 )
2016-09-19 23:43:14 +02:00
SERIAL_TX_on;
2016-08-15 11:52:43 +02:00
else
2016-09-19 23:43:14 +02:00
SERIAL_TX_off;
2016-08-15 11:52:43 +02:00
byte /= 2 ; // Generates shorter code than byte >>= 1
if ( GPIOR1 > 2 )
{
GPIOR0 = byte ;
}
else
{
GPIOR2 = byte ;
}
if ( --GPIOR1 == 0 )
{
// prepare next byte
struct t_serial_bash *ptr = &SerialControl ;
if ( ptr->head != ptr->tail )
{
GPIOR0 = ptr->data[ptr->tail] ;
GPIOR2 = ptr->data[ptr->tail+1] ;
ptr->tail = ( ptr->tail + 2 ) & 0x3F ;
GPIOR1 = 10 ;
}
else
{
SerialControl.busy = 0 ;
TIMSK0 &= ~(1<<TOIE0) ;
}
}
}
#endif // BASH_SERIAL
#endif // TELEMETRY