The Deviation project (on which this project was based) have a useful list of models and protocols [here](http://www.deviationtx.com/wiki/supported_models).
## Default Mapping of Protocols <a name="DefaultMapping"></a>
Here is the default mapping of protocols to the 16-position protocol selection switch on the module. You can customize these when you compile your own firmware as described in [Compiling and Programming.](Compiling.md)
**Note that the protocol must be selected before the unit is turned on.**
- **Extended limits supported** - A command range of -125%..+125% will be transmitted. Otherwise the default is -100%..+100% only.
- **Autobind protocol** - The transmitter will automatically initiate a bind sequence on power up. This is for models where the receiver expects to rebind every time it is powered up. In these protocols you do not need to press the bind button at power up to bind, it will be done automatically.
- **Channel Order** - The channel order assumed in all the documentation is AETR and it is highly recommended that you keep it this way. You can change this in the compilation settings. However, please indicate your channel order in all questions and posts on the forum pages.
Models: Hubsan H102D, H107/L/C/D and Hubsan H107P/C+/D+
Autobind protocol
Telemetry enabled for battery voltage and TX RSSI
Option=vTX frequency (H107D) 5645 - 5900 MHz
CH1|CH2|CH3|CH4|CH5|CH6|CH7|CH8|CH9
---|---|---|---|---|---|---|---|---
A|E|T|R|FLIP|LIGHT|PICTURE|VIDEO|HEADLESS
***
#CC2500 RF Module
##FRSKYV = FrSky 1 way
Models: FrSky receivers V8R4, V8R7 and V8FR.
Extended limits supported
Option=fine frequency tuning. This value is different for each board. To determine the option value, find the two limits where the RX loses connection then set the option value to half way between them. If you have a 4in1 V2 board the value is around 40.
CH1|CH2|CH3|CH4
---|---|---|---
CH1|CH2|CH3|CH4
##FRSKYD
Models: FrSky receivers D4R and D8R. DIY RX-F801 and RX-F802 receivers.
Extended limits supported
Telemetry enabled for A0, A1, RSSI, TSSI and Hub
Option=fine frequency tuning. This value is different for each board. To determine the option value, find the two limits where the RX loses connection then set the option value to half way between them. If you have a 4in1 V2 board the value is around 40.
CH1|CH2|CH3|CH4|CH5|CH6|CH7|CH8
---|---|---|---|---|---|---|---
CH1|CH2|CH3|CH4|CH5|CH6|CH7|CH8
##FRSKYX
Models: FrSky receivers X4R, X6R and X8R.
Extended limits supported
Telemetry enabled for A1 (RxBatt), A2, RSSI, TSSI and Hub
Option=fine frequency tuning. This value is different for each board. To determine the option value, find the two limits where the RX loses connection then set the option value to half way between them. If you have a 4in1 V2 board the value is around 40.
Option=fine frequency tuning. This value is different for each board. To determine the option value, find the two limits where the RX loses connection then set the option value to half way between them. If you have a 4in1 V2 board the value is around 40.
CH1|CH2|CH3|CH4|CH5|CH6|CH7|CH8
---|---|---|---|---|---|---|---
A|E|T|R|CH5|CH6|CH7|CH8
***
#CYRF6936 RF Module
##DEVO
Extended limits supported
CH1|CH2|CH3|CH4|CH5|CH6|CH7|CH8
---|---|---|---|---|---|---|---
A|E|T|R|CH5|CH6|CH7|CH8
Note that the RX ouput will be EATR.
Bind procedure using serial:
- With the TX off, put the binding plug in and power on the RX (RX LED slow blink), then power it down and remove the binding plug. Receiver should now be in autobind mode.
- Turn on the TX, set protocol = Devo with option=0, turn off the TX (TX is now in autobind mode).
- Turn on RX (RX LED fast blink).
- Turn on TX (RX LED solid, TX LED fast blink).
- Wait for bind on the TX to complete (TX LED solid).
- Make sure to set the RX_Num value for model match.
- Change option to 1 to use the global ID.
- Do not touch option/RX_Num anymore.
Bind procedure using PPM:
- With the TX off, put the binding plug in and power on the RX (RX LED slow blink), then power it down and remove the binding plug. Receiver should now be in autobind mode.
- Turn on RX (RX LED fast blink).
- Turn the dial to the model number running protocol DEVO on the module.
- Press the bind button and turn on the TX. TX is now in autobind mode.
- Release bind button after 1 second: RX LED solid, TX LED fast blink.
- Wait for bind on the TX to complete (TX LED solid).
- Press the bind button for 1 second. TX/RX is now in fixed ID mode.
- To verify that the TX is in fixed mode: power cycle the TX, the module LED should be solid ON (no blink).
- Note: Autobind/fixed ID mode is linked to the dial number. Which means that you can have multiple dial numbers set to the same protocol DEVO with different RX_Num and have different bind modes at the same time. It enables PPM users to get model match under DEVO.
- model/type/number of channels indicated on the RX can be different from what the RX is in fact wanting to see. So don't hesitate to test different combinations until you have something working. Using Auto is the best way to find these settings.
- RX ouput will always be TAER independently of the input AETR, RETA...
###Sub_protocol DSM2_22
DSM2, Resolution 1024, refresh rate 22ms
###Sub_protocol DSM2_11
DSM2, Resolution 2048, refresh rate 11ms
###Sub_protocol DSMX_22
DSMX, Resolution 2048, refresh rate 22ms
###Sub_protocol DSMX_11
DSMX, Resolution 2048, refresh rate 11ms
###Sub_protocol AUTO
The "AUTO" feature enables the TX to automatically choose what are the best settings for your DSM RX and update your model protocol settings accordingly.
The current radio firmware which are able to use the "AUTO" feature are ersky9x (9XR Pro, 9Xtreme, Taranis, ...) and er9x for M128 (9XR) and M2561.
For these firmwares, you must have a telemetry enabled TX and you have to make sure you set the Telemetry "Usr proto" to "DSMx".
Also on er9x you will need to be sure to match the polarity of the telemetry serial (normal or inverted by bitbashing), while on ersky9x you can set "Invert COM1" accordinlgy.